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Abstract. In the context of the second Sandia Fracture Challenge, dynamic 

tensile experiments performed on a Ti-6Al-4V alloy with a complex fracture 

specimen geometry are modeled numerically. Sandia National Laboratories (SNL) 

provided the participants with limited experimental data, comprising of uniaxial 

tensile test and V-notched rail shear test results. To model the material behavior up to 

large strains, the flow stress is described with a linear combination of Swift and Voce 

strain hardening laws in conjunction with the inverse method. The effect of the strain 

rate and temperature is incorporated through the Johnson-Cook strain rate hardening 

and temperature softening functions. A strain rate dependent weighting function is 

used to compute the fraction of incremental plastic work converted to heat. The 

Hill’48 anisotropic yield function is adopted to capture weak deformation resistance 

under in-plane pure shear stress. Fracture initiation is predicted by the recently 

developed strain rate dependent Hosford-Coulomb fracture criterion. The calibration 

procedure is described in detail, and a good agreement between the blind prediction 

and the experiments at two different speeds is obtained both for the crack path and the 

force-crack opening displacement (COD) curve.  

A comprehensive experimental and numerical follow-up study on leftover 

material is conducted, and plasticity and fracture parameters are carefully re-

calibrated. A more elaborate modeling approach using a non-associated flow rule is 

pursued, and the fracture locus of the Ti-6Al-4V is clearly identified by means of four 

different fracture specimens covering a wide range of stress states and strain rates. 

With the full characterization, a noticeable improvement in the force-COD curve is 

obtained. In addition, the effect of friction is studied numerically. 

Keywords: Sandia Fracture Challenge, ductile fracture, dynamic, shear localization, 

Hosford, triaxiality, Lode angle, Ti-6Al-4V 
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1. Introduction 

In 2012, Sandia National Laboratories (SNL) announced an intriguing round 

robin challenge for the fracture mechanics community. Thirteen participating teams 

were provided with a limited number of elementary test data on a typical stainless 

steel sheet and asked to make a blind prediction of crack initiation and propagation for 

a modified compact tension specimen with a round starter notch and three randomly 

distributed holes subjected to tensile loading (Boyce et al., 2014). A variety of 

modeling approaches were taken; from porous plasticity (Cerrone et al., 2014 and 

Nahshon et al., 2014) to extended finite element methods (Zhang et al., 2014) and 

damage indicator models uncoupled from plasticity (Gross and Ravi-Chandar, 2014; 

Neilsen et al., 2014; Pack et al., 2014). This was an opportunity for the community to 

evaluate their current modeling capability and identify missing information essential 

to improve prediction. After fully characterizing spare material, Pack et al. (2014) 

pointed out that an accurate description of the hardening behavior at large strains is 

crucial in capturing localization and subsequent crack development. 

The successful completion of the first challenge was followed by the present 

challenge in 2014 (Boyce et al., 2015), examining the effect of dynamic loading on 

ductile fracture of a titanium alloy Ti-6Al-4V sheet. Two loading speeds are selected: 

0.0254 mm/s for the slow loading case and 25.4 mm/s for the fast loading case. 

Besides data from basic uniaxial tensile tests on dog-bone shaped specimens 

(engineering stress-strain curves at the two loading speeds), only results of V-notched 

rail shear tests (force-displacement curves at the two loading speeds) are additionally 

provided. The shear test was suggested by former participants to further characterize 

the material behavior under shear dominant loading. The geometry of the challenge 

specimen is S-shaped with two circular notches and three different-sized holes. The 

participants are asked to report their numerical prediction of crack paths as well as 

force-crack opening displacement (COD) curves. Answers are allowed to include 

upper and lower boundaries. 

Ductile fracture of metallic materials is one of the most common failure modes, 

ranging from the integrity of a large structure such as buildings, bridges, and off-shore 

installations to the safety of automobiles, ships, and aircrafts. Ductile fracture on a 

microscopic scale is understood as a consequence of void nucleation, growth, and 
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coalescence. Various approaches have been taken to model this phenomenon. The 

theory of porous plasticity, introduced by Gurson (1977), mathematically formulates 

the aforementioned micro-mechanism by incorporating the effect of a current void 

volume fraction on the macroscopic plastic flow. Fracture is said to occur when the 

void volume fraction reaches a critical value. The original model was enriched by 

Tvergaard and Needleman (1984) and Nahshon and Hutchinson (2008). The latter 

modification was particularly aimed at accumulating damage due to void shearing, 

which has also been shown by Xue (2008). Another avenue for modeling ductile 

fracture was introduced by Lemaitre (1985) who used the idea of an effective stress 

carried by an effective area of a damaged material and derived that the elastic 

properties are altered accordingly. The other group of modeling methods uses a 

damage indicator concept. Herein, elastic and plastic properties remain unaffected, 

and fracture is said to occur once a damage indicator reaches a critical value. Typical 

examples include McClintock (1968), Rice and Tracey (1969), Bai and Wierzbicki 

(2010), and Lou et al. (2012). Recently, Roth and Mohr (2014) developed a strain rate 

dependent Hosford-Coulomb fracture initiation model, which was initially proposed 

by Mohr and Marcadet (2015) in a strain rate independent form. 

Furthermore, the innate anisotropy of thin structures, due to the manufacturing 

process (e.g. rolling), has also been a research topic of interest to the metal forming 

community. To address this effect, Hill (1948) suggested a quadratic anisotropic yield 

function for orthotropic materials, while Barlat (2003) introduced a linear 

transformation to the well-known Hosford plasticity (1972) for aluminum sheets. To 

capture the pronounced anisotropy in yield stresses and plastic strain ratios, Stoughton 

(2002) proposed a non-associated flow rule with two quadratic potentials. 

Furthermore, Huh et al. (2013) showed that the plane anisotropy of advanced high 

strength steel sheets exhibits strain rate dependence. 

A wide variety of models for dynamic loading have been studied extensively in 

the literature. They can be divided into physics-based models (Kocks et al., 1975; 

Zerilli and Armstrong, 1987; Khan and Huang, 1992; Rusinek–Klepaczko, 2001; 

Voyiadjis and Abed, 2005), which are usually inspired by thermodynamics and 

dislocation dynamics, and phenomenological/empirical models. One of the most 

popular phenomenological models is based on the work by Johnson and Cook (1983). 

Herein a multiplicative decomposition of the flow stresses from a strain, strain rate, 
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and temperature term is postulated. It has been shown in several works that it provides 

a reasonable prediction of temperature-dependent viscoplastic response up to large 

strains (e.g. Clausen et al., 2004; Smerd et al., 2005; Verleysen et al., 2011; Erice et 

al., 2012). Recently, Roth and Mohr (2014) coupled the Johnson–Cook plasticity 

model with a combined Swift–Voce strain hardening function and a non-associated 

anisotropic flow rule, obtaining very good results for two different advanced high 

strength steels. 

The present paper describes in detail the modeling efforts made by the Impact and 

Crashworthiness Laboratory (ICL) at Massachusetts Institute of Technology (MIT) 

for the second Sandia Fracture Challenge. In the first section, the plasticity and 

fracture models chosen to model the titanium alloy are briefly reviewed. Next, the 

calibration procedures based on the limited number of test data provided by SNL are 

comprehensively presented. The sequence of deformation predicted by blind 

simulation is thoroughly analyzed and compared with the experimental results that 

were disclosed to the participants after the blind prediction. In the fourth section, a 

full characterization of the Ti-6Al-4V alloy is performed. It comprises of an extensive 

testing program at slow and fast loading speeds, including uniaxial tensile tests in 

three in-plane directions and four types of fracture experiments, and a recalibration of 

the plasticity and fracture models. Finally, the simulation results of the challenge 

specimen geometry based on the more advanced calibration of the material models are 

evaluated and discussed. 

2. Rate-dependent plasticity and fracture model 

This section is devoted to presenting the constitutive law and the fracture model 

that were used to describe the plasticity and fracture response of the Ti-6Al-4V sheet.  

2.1. Material 

The material chosen for the challenge is a 3.124 mm thick mill-annealed sheet of 

a Ti-6Al-4V alloy, the most commonly used titanium alloy due to its significantly 

improved strength over a pure metal state. Its chemical composition is given in Table 

1. It is an alpha plus beta alloy, meaning that the hexagonal close-packed phase and 
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the body-centered cubic phase co-exist. The alloy is known to exhibit a high yield 

stress, a relatively low strain hardening, and a moderate strain rate sensitivity. Its wide 

applications cover airframes, vessels, fasteners, blades, and forgings. Notable 

properties include its excellent biocompatibility. 

2.2. Rate- dependent plasticity model 

The plastic behavior of the Ti-6Al-4V sheet is described by a conventional theory 

of metal plasticity in continuum mechanics, namely a yield function, a flow rule, and 

a hardening law, closely following Roth and Mohr (2014). The following subsections 

briefly explain a specific model used for each constituent. 

2.2.1 Yield function 

The simple yet effective Hill’48 quadratic yield function (Hill, 1948) is chosen to 

account for the in-plane anisotropy of the sheet. Hereinafter, we make use of the 

notation proposed by Mohr et al. (2010). 

( )Hill
f k kσ= − = ⋅ −Pσ σ

    (1) 

The Mandel-Voigt notation is used to represent the symmetric Cauchy stress σ , 

while k  denotes the deformation resistance that defines the boundary of an elastic set.

P  describes the positive definite 66×  matrix in the case of a general three-

dimensional stress state. 

( )
( )

( ) ( )

12 12

12 22 12 22

12 12 22 12 22

44

1 1 0 0 0

0 0 0

1 1 2 0 0 0

0 0 0 0 0

0 0 0 0 3 0

0 0 0 0 0 3

P P

P P P P

P P P P P

P

 − + 
 

− + 
 − + − + + +

=  
 
 
 
  

P   (2) 

The expanded form for Eq. (1) reads as 
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The yield stress ratios for uniaxial tension in three typical directions i.e. rolling, 

diagonal, and transverse directions (RD, DD, and TD, respectively) and for equi-

biaxial tension or pure shear determine three independent parameters, 12P , 22P  and 44P

. For the special case of 5.012 −=P , 122 =P  and 344 =P , the well-known von-Mises 

J2 isotropic yield function is obtained. 

2.2.2 Flow rule 

To incorporate the effect of a different directionality of the r-values from the yield 

stresses without losing advantages of quadratic functions, Stoughton (2002) 

introduced a potential function g  in addition to the yield function f and assumed that 

the direction of the plastic flow is aligned with the stress derivative of the plastic flow 

potential g . Thus, a non-associated flow rule is obtained. 

σ

σ
ε

∂

∂
=

][g
dd p λ  with  

11 22 33 12 23 31[      ]
p p p p p p T

p
d d d d d d dε ε ε γ γ γ=ε            (4) 

p

ij
dγ denotes the plastic engineering shear strain. Based on the notation proposed 

by Mohr et al. (2010), the plastic flow potential is written as  

( )g = ⋅Gσ σ .     (5) 

G  can be obtained by replacing ijP  in Eq. (2) with ijG . It is noted that the non-

associated flow rule reduces to an associated one for 12 12
G P= , 22 22

G P= , and  

44 44G P= . 

The equivalent plastic strain increment pdε  is defined as work-conjugate to the 

equivalent stress through the identity 

p Hill pd dσ ε⋅ =σ ε .     (6) 

2.2.3 Hardening law 

The isotropic hardening function k in Eq. (1) governs the growth of the radius of 

the yield surface. With dynamic loading conditions being considered in the second 

Sandia Fracture Challenge, the model proposed by Roth and Mohr (2014) is 
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employed. The deformation resistance k uses the equivalent plastic strain 
pε , the 

equivalent plastic strain rate 
p

ε& , and temperature T  as internal variables. Inspired by 

the work by Johnson and Cook (1983), the model suggests the multiplicative 

decomposition of the three effects: 

][][][],,[ TkkkTk
Tpppp

εεεε εε
&&

&
= .    (7) 

The strain hardening function kε
 reads as 

( ) ( ) ( )( )peQkAk
n

pp

εβ

ε αεεαε
−

−+−++= 11][ 00 .   (8) 

It is a linear combination of a power law (Swift, 1952) and an exponential law 

(Voce, 1948) using the weighting parameter α . Equation (8) proved to be suitable for 

large strains beyond necking for a wide variety of materials (Roth and Mohr, 2014; 

Marcadet and Mohr, 2015; Pack and Marcadet, 2016).  

The strain rate hardening function kε&  and the temperature softening function 
Tk

are in the standard Johnson-Cook form and read as  
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with the strain rate sensitivity � , the reference strain rate 
0

ε& , the temperature 

softening exponent �, the reference temperature r
T , and the melting temperature m

T . 

Note that both functions reduce to unity for 
0p

ε ε<& &  and rT T< , respectively. 

2.2.4 Temperature evolution 

To account for the increase in temperature due to plastic work, fully coupled 

thermo-mechanical analysis is normally required, treating the temperature as an 

external state variable. Even though this is often neglected because of higher 

computational costs or uncertainties in the boundary conditions, temperature softening 
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plays an important role in the post-necking behavior of the material. As shown in 

Roth and Mohr (2014), a purely mechanical analysis is used, treating the temperature 

as an internal state variable determined from 

pHillkpp
ddTC εσηεωρ ][ &= .    (11) 

Herein, ρ , pC , and kη  are density, heat capacity and the Taylor-Quinney 

coefficient, respectively. The strain rate dependent conversion factor ][
p

εω &  varies 

smoothly from the isothermal condition ( 0=ω ) with complete heat dissipation to the 

adiabatic condition ( 1=ω ) where no time is allowed for dissipation: 

( ) ( )
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1

23

0
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3

2

.  (12) 

it
ε& , greater than zero, indicates the isothermal limit below which no temperature 

increase takes place, and a
ε& , greater than it

ε& , defines the adiabatic limit beyond which 

the conversion of plastic work into heat is maximized. It is stressed that 
p

ε&  in the 

above formulae represents a local strain rate at each material point and is not a 

function of the global loading speed. For additional information, the reader is referred 

to Roth and Mohr (2014). 

2.3. Rate dependent Hosford-Coulomb fracture initiation model 

For the numerical prediction of fracture initiation, the strain rate modified version 

of the Hosford-Coulomb model (Roth and Mohr, 2014) is used. It is supported by the 

results of a computational localization analysis of a unit cell by Dunand and Mohr 

(2014). The Hosford-Coulomb model presents a very similar fracture envelope to the 

modified Mohr-Coulomb model (Bai and Wierzbicki, 2010), but it is mathematically 

and physically more consistent with the chosen plasticity model. More specifically, 

the stress triaxiality and Lode angle dependent hardening law (Bai and Wierzbicki, 

2008) does not have to be applied in transforming stress at fracture to strain at fracture. 

2.3.1 Characterization of stress states 
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The fracture mechanics community has long been using the stress triaxiality η  as 

the main scalar variable that characterizes a current stress state. It is defined as the 

ratio of mean stress mσ  to the von-Mises equivalent stress VMσ . 

m

VM

σ
η

σ
= , where 11 22 33

3
m

σ σ σ
σ

+ +
=  and 

3
' : '

2
VM

σ = σ σ   (13) 

'σ  denotes the second-order deviatoric Cauchy stress tensor. This concept reflects 

a fundamental microscopic mechanism that ductile fracture is a result of void 

nucleation, growth, and coalescence. However, unusual dependence of strain to 

fracture on η  between simple shear to simple tension observed by Bao and 

Wierzbicki (2004) inspired Xue (2007) to introduce the second measure of stress state, 

the Lode angle parameter θ , as the other key variable to control ductility. 

( )6
1   1 1

θ
θ θ

π
= − − ≤ ≤      (14) 

where 1 3

3

1 27
cos   0

3 2 3VM

J π
θ θ

σ
−    

= ≤ ≤   
  

    

( )3

1
det ' ' ' : '

3
J = = ⋅σ σ σ σ        

The two isotropic stress parameters η  and θ  uniquely determine the direction of 

a stress vector in the three-dimensional isotropic principal stress space. 

2.3.2 Hosford-Coulomb fracture initiation model 

Mohr and Marcadet (2015) postulated that an initially un-cracked ductile solid 

under proportional loading condition loses its local load bearing capacity, and a 

macroscopic crack initiates when a critical stress value B  is reached by a linear 

combination of the Hosford equivalent stress and the normal stress on the plane on 

which the maximum shear stress occurs. 

( )Hosford I III
c Bσ σ σ+ + =     (15) 
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Herein, Iσ   and IIIσ  are the maximum and the minimum principal stresses. 

Through coordinate transformation one can obtain an expression for pr

f
ε  in the mixed 

space of stress and strain in the form of Eq. (16):  

( ) ( ) ( )( ) ( )

1
11

1 2 2 3 3 1 1 3

1
( , ) (1 ) ( 2

2

f

f

n
aa a anpr

f
b c f f f f f f c f fε η θ η

−
 
  = + − + − + − + + + 
  
 

 

(16) 

with 

( )1

2
( )   cos 1

3 6
f

π
θ θ

 
= −   ,

( )2

2
( )   cos 3

3 6
f

π
θ θ

 
= +   , 

( )3

2
( ) cos 1

3 6
f

π
θ θ

 
= − +   . 

The main parameters of the model are },,{ cba : the Hosford exponent a , 

controlling the effect of the Lode angle parameter θ , the friction coefficient c , 

controlling the effect of the stress triaxiality η , and the parameter b , a multiplier 

controlling the overall magnitude of the strain to fracture. The exponent 
fn is used to 

transform the equivalent stress at fracture fσ  to the equivalent strain 
pr

f
ε  with a 

simple power hardening law. 

( ) fnpr

f f
Aσ ε=                                 (17) 

This assumption allows for the concise analytical expression of the fracture criterion 

in Eq. (16) and reduces computational time wihout the need to perform additional 

Newton-Raphson iterations with an actual strain hardening law in Eq. (8). 

Roth and Mohr (2014) extended the formulation in loose analogy to Johnson and 

Cook (1983) to incorporate the effect of strain rate on fracture through the parameter 

b : 

0

0

1 ln
p

b b
ε

γ
ε

  
= +   

   

&

&
 when 0p

ε ε>& &               (18) 

The strain to fracture for uniaxial tension at low strain rates is given through

00 >b , while the strain rate sensitivity of the fracture initiation model is governed by 

the parameter 0≥γ . 
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Non-proportional loading conditions, for which η  and θ  vary, are treated by 

means of a simple linear damage accumulation rule in Eq. (19).  

                                          

 
0 [ , , ]

p p

pr

f p

d
D

ε ε

ε η θ ε
= ∫ &

                                           (19) 

The damage indicator D  varies from the initial value 0D =  to the maximum 

value of 1=D , for which fracture initiation occurs. It is worth mentioning that Eq. 

(19) recovers the cumulated equivalent plastic strain to fracture ( , , )f pr

p f p
ε ε η θ ε= &  for 

proportional loading paths.  

3. Blind simulation of second Sandia Fracture Challenge problem 

In this section, the methodology to simulate the second Sandia Fracture Challenge 

problem based on a very limited number of experimental data is described. 

3.1. Model calibration based on SNL experimental results  

3.1.1 Plasticity model parameter identification 

Figure 1b summarizes the results of uniaxial tensile tests on dog-bone shaped 

specimens (Fig. 1a) cut at 0° and 90° with respect to the sheet rolling direction (RD 

and TD, respectively). The experiments were performed by SNL at two different 

loading speeds of 0.0254 mm/s and 25.4 mm/s. The nominal strain in the axial 

direction was measured by a 25.4 mm extensometer, and the corresponding strain 

rates were about 0.0006/s and 0.6/s, respectively. Young’s modulus was calculated to 

lie in the range of 112~115 GPa, and the Poisson’s ratio ( 342.0=ν ) was taken from 

the MatWeb LLC webpage. 

Without the result from the 45° direction (DD) provided to the participants, 

almost identical hardening curves between the two orthogonal directions suggested a 

possible isotropy of the material. Hence, initially a von Mises yield surface with 

5.012 −=P , 122 =P  and 344 =P  was assumed. 



Pack and Roth (Feb 4, 2016) 

 

 

 12

Because of the lack of additional measurements such as the nominal strain in the 

width direction, the Lankford ratios could not be calculated, and as a consequence an 

associated flow rule, enforcing normality of the incremental plastic strain tensor to the 

yield function, was assumed. This is achieved by setting 12 12
G P= , 22 22

G P=  and  

44 44
G P=  in Eq. (5). 

To perform numerical analysis for further calibration, the constitutive law and the 

fracture model from section 2 were implemented into Abaqus/Explicit using a 

VUMAT user subroutine. Exploiting the symmetry of the dog-bone specimen with a 

large radius of curvature of R=14287.5 mm in Fig. 1a, only 1/8th of its geometry was 

discretized using three-dimensional brick elements with reduced integration (C3D8R) 

(see inserted figure in Fig. 3). It is emphasized that the Hosford-Coulomb fracture 

criterion is intended to predict the onset of fracture, not the propagation even though it 

can simulate propagation as a consecutive re-initiation. Therefore, a symmetric model 

of the specimen is allowed weather a finally separated piece shows an asymmetric 

fracture surface. Very fine elements ( 0.1 0.1 0.1× ×  mm
3
) were used in the critical area 

of necking based on convergence study as indicated by Dunand and Mohr (2010). 

Zero displacement boundary conditions were applied to the symmetry planes. Careful 

attention was paid to applying a velocity profile resulting in the same engineering 

strain versus time relation at the position of the 25.4 mm extensometer as obtained 

from the experiments by SNL. 

As mentioned before, the participants were allowed to report a lower and an upper 

boundary for the blind prediction. Therefore, two separate sets of hardening 

parameters were identified with the following methodology: 

• The highest and lowest engineering stress-strain curves in RD at 0.0006/s 

from the set of tests provided by SNL are chosen. After converting each 

curve to true stress-plastic strain, the parameters of the Swift law ( nA ,, 0ε ) 

and the Voce law ( β,,0 Qk ) are calibrated separately to each curve using a 

least square fit. As an example, the result for the highest case (specimen 

RD2) is illustrated in Fig. 2, showing a very good agreement. 

• Due to their mathematical formulation (the Swift law based on a power 

function and the Voce law with an exponential function saturated to 
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Qk +0 ), the two laws show a completely different response in the post-

necking regime. Thus, a linear combination of the two functions (Eq. (8)) 

is sought to control the shape of the hardening curve after necking without 

changing its early part. The combination factor α  is determined by an 

inverse method, optimizing it until the engineering stress-strain response 

at 0.0254 mm/s is accurately predicted up to fracture elongation. 

Assuming no dynamic effects for this low loading speed, rate hardening 

and thermal softening features are turned off, allowing for the exclusive 

determination of α . It has to be noted, as will be shown in section 4, that 

this assumption underestimates the evolution of the strain rate and 

consequentially may lead to an overestimation of the parameter α . Figure 

3 shows the results of the two calibrated α  values for the upper and the 

lower boundary, based on the experimental scatter with the 

longest/shortest fracture elongation. 

The strain rate sensitivity parameter C  was calculated from the ratio of the true 

stress for the fast experiment ( 0.6 /
p

sε =& ) to the slow one ( 0.0006 /
p

sε =& ) at 0=pε

. For this equivalent plastic strain, the strain rate effect can already be observed in the 

higher yield stress, while temperature softening has not yet come into play. The 

reference strain rate, as well as the isothermal limit, was chosen to be 

s
it

/0006.00 == εε && . The reference and initial temperature were set to 0
293

r
T T K= =

. The two remaining model parameters, the adiabatic limit 
a

ε&  and the temperature 

softening exponent m , were simultaneously optimized with an inverse method to 

match the engineering stress-strain curve for the fast loading case at 25.4 mm/s. Note 

that the uniqueness of two parameters was assured by confirming that no other 

combination could achieve a comparably satisfactory fit. Other general properties 

such as m
T , ρ , pC , and k

η  were taken from the MatWeb LLC webpage. Table 2 

gives an overview of the calibrated parameters, and a comparison of the experimental 

and the simulated engineering stress–strain curves is given in Fig. 3. In addition, for 

the upper boundary, the evolution of the equivalent plastic strain pε  at the most 

deformed and thus critical element is also plotted. It reveals a positive effect of the 
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strain rate on the ductility of the material and will be used in the calibration of the 

fracture model. 

Besides the uniaxial tensile tests in RD and TD, SNL provided additional 

experimental data from V-notched rail shear tests to the participants (Fig. 4a-b), 

allowing for the examination of the material behavior under shear dominant loading. 

However, SNL stated in the challenge package provided to the participants that 

noticeable slippage of the specimens occurred during the experiments. Additionally, 

the test data contains non-negligible bending and rotation of fixtures due to the 

displacement measurement using LVDT attached to the fixtures. Instead of trying to 

capture these very complex boundary conditions in a numerical simulation, a different 

modeling approach was pursued. An idealized engineering model was created, only 

discretizing the gauge section of the specimen (see inserted figure in Fig. 4c). The 

boundaries on both sides of the model were assumed not to rotate. This ideal 

boundary condition was compensated by scaling up displacement in the simulation 

such that the elastic part of the simulation could match that of the experiment. Figure 

4c depicts the comparison of the force-displacement curve between the simulation and 

the experiment for the slow loading speed (0.0254 mm/s). 344 =P , obtained based on 

the uniaxial tensile tests in RD and TD in the early step of the calibration, 

significantly over-estimated the overall force level. This suggests that the actual 

deformation resistance of the material under shear is much lower than that under 

tension in RD or TD. With an inverse method, 9.344 =P  was determined. This 

observation is in accordance with the well-known fact that the Ti-6Al-4V alloy 

possesses poor shear strength. It is further verified that the change in 44P  does not 

alter any simulation results for dog-bone specimens: in this geometry, shear stresses 

are only present in very limited regions and one order of magnitude lower than the 

axial stresses, thus of negligible influence. 

3.1.2 Fracture model parameter identification 

In the previous section, it was shown that after careful calibration the engineering 

stress-strain curves for the uniaxial tensile tests could be accurately predicted for the 

slow and the fast case. Following a hybrid experimental-numerical approach (Dunand 

and Mohr, 2010) to calibrate the fracture model, the loading history, comprising of the 
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evolution of the stress triaxiality η , the Lode angle parameter θ , the equivalent 

plastic strain pε , the strain rate pε&  and temperature T, was extracted from the so-

called critical element, the element exhibiting the highest equivalent plastic strain pε  

at fracture elongation. For the dog-bone specimen, it is located at the center on the 

mid-plane as indicated by a white dot on the necked cross section in Fig. 5b.  

Due to the profound experimental and numerical uncertainties in the V-notched 

rail shear test, especially inconsistency of boundary conditions, it was not included in 

the calibration of the fracture model. Instead, the fracture parameters { , , }fa c n  

governing the shape of the fracture envelope were taken from the ICL’s material 

database for a similar titanium alloy (Tancogne et al, 2015). It has to be noted that 

without these parameters, an accurate calibration of the fracture model solely based 

on uniaxial tensile tests remains nearly impossible. Additional information from 

specimens with different geometries is required to fully calibrate the fracture model as 

further shown in section 4. 

The remaining parameters b  and γ , controlling the overall strain to fracture and 

the strain rate dependence of the fracture model, were calibrated using the simulation 

results for the uniaxial tensile tests at different speeds in a two-step procedure: 

• First, the evolution of the stress triaxiality η , the Lode angle parameter 

θ , and the equivalent plastic strain pε  at the critical element for the slow 

speed case is extracted up to fracture elongation, which is assumed to be 

the instant of crack initiation (black solid line in Fig. 5a and 5b). The 

parameter b  is then optimized with the strain rate effect switched off ( γ

=0) such that the damage indicator D  (Eq. (19)) is as close as possible to 

unity at the end of the loading path. 

• Second, the loading paths are obtained from the fast case (red solid line in 

Fig. 5a and 5b), additionally including the evolution of the strain rate 
p

ε& . 

The strain rate sensitivity parameter γ  is finally calibrated in the same 

way as b . 
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Figure 5a and 5b show the calibrated fracture model for the upper boundary case 

in the three-dimensional space of η , θ , and pε  and its plane stress projection in the 

space of η  and pε , respectively. Circular dots denote the predicted onset of fracture 

by the Hosford-Coulomb model. It is worth mentioning that the fracture parameters 

obtained from the lower boundary plasticity parameters yielded higher ductility than 

those from the upper boundary ones. Therefore, only one set of fracture parameters 

obtained from the latter was kept and applied to both the upper and lower plasticity 

cases in order to obtain the lowest possible response of the material based on the 

conservatism in a design standpoint. The fracture parameters are summarized in Table 

3. 

3.2.Numerical simulation of fracture challenge geometry 

The geometry of the challenge specimen is shown in Fig. 6a. To easily report a 

crack path, notches, holes and outer edges are named alphabetically. The detailed 

dimensions of the specimen given in Fig. 10 of Boyce et al. (2015) were used for 

finite element modeling, not taking into account machining tolerances. Exploiting the 

geometrical symmetry, only half of the specimen thickness was modeled. Due to the 

time limit, mesh convergence study for the challenge geometry was not pursued. 

Instead, the critical areas around the notches and holes were discretized with brick 

elements (C3D8R) of the same size and aspect ratio (1:1:1) as used for the dog-bone 

specimens to minimize a potential mesh size sensitivity. Fifteen elements were used 

over half the thickness. The resulting finite element mesh is shown in Fig. 6b. The 

total number of nodes and elements is about 820,000 and 760,000, respectively. 

Two pins, considered to be an analytical rigid cylinder with the same radius as the 

upper and the lower hole of the specimen, were used to transmit the displacement to 

the specimen. A frictionless tangential interaction property was assigned between the 

specimen and the two rigid pins. A penalty contact algorithm was chosen instead of a 

kinematic one, because the nodes on the z-symmetric plane were involved in the 

boundary condition as well. The upper pin was fixed, and the lower pin was pulled 

down at 0.0254 mm/s for the slow case and at 25.4 mm/s for the fast case as 

determined by SNL. The velocity was accelerated from zero to these target values for 

one tenth of total simulation time that resulted in the translation of the lower pin of 
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about 6.5 mm, which is consistent with a usual experimental condition. The cross-

head is indeed accelerated, and its displacement is not all transmitted to the specimen 

in the early stage due to the compliance of mechanical systems in the testing machine 

(note that the actual velocity profile of the lower pin in challenge experiments was not 

provided by SNL). This also ensures that unnecessary noise in the quantity of interest 

such as the reaction force at the fixed upper pin is removed by smooth transition from 

elastic to plastic domain. 

Crack initiation was modeled using the element deletion technique, and 

propagation was considered to be a consecutive crack re-initiation. In total, four cases 

were simulated consisting of the upper and lower boundary cases at slow and fast 

loading speeds. 

3.3. Comparison of challenge geometry experiments and simulations 

Experiments on the challenge geometry were performed by SNL, and the results 

were unveiled after all participants had submitted their blind prediction of the crack 

path and the force-COD1 curve. Two independent labs at SNL, the Solid Mechanics 

Lab and the Materials Mechanics Lab, tested a total of 11 samples for the slow 

loading condition and 8 samples for the fast loading condition. All but one sample in 

the slow test failed by the path B-D-E-A. SNL pointed out that the outlier case (A-C-

F) was attributed to the pronounced non-flatness of the specimen. 

3.3.1 Crack initiation and propagation 

All four simulations performed by the MIT team, both upper and lower boundary 

cases at slow and fast speeds, consistently predicted a crack path of B-D-E-A, 

agreeing with the experimental results. Figure 7 visualizes a representative 

deformation and crack development for the slow upper boundary case by means of the 

damage indicator. In the early stage, plastic deformation results mainly from stress 

concentration around notches and holes. The ligament between A and C is deformed 

by tension whereas two ligaments between B and D and D and E undergo combined 

shear and tension. Additional global displacement leads to a localization of the 

deformation in the narrow band of sheared ligaments. This is due to the material’s 

weak deformation resistance under in-plane shear. The two ligaments finally fail 
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almost at the same time. Using a high-speed camera (20,000 fps), the team from the 

University of Texas at Austin performed follow-up experiments for the slow case. 

They revealed that the upper ligament between D and E breaks first, followed almost 

immediately by the breakage of the B-D ligament (Gross and Ravi-Chandar, 2015). 

This interesting observation is captured by the presented modeling approach as shown 

in Fig. 8. The element on the boundary of the hole D in the ligament between D and E 

on the mid plane (red circle) is deleted first, indicating the onset of fracture. The two 

sheared ligaments crack completely in the next frame. This phenomenon was also 

observed in the simulation of the fast loading case, but it needs to be further validated 

experimentally. Finally, the combination of bending and tension applied to the 

remaining ligament between E and A leads to ultimate failure. 

For comparison, the sequence of deformation assuming a von Mises yield surface 

( 0.344 =P ), is also simulated and shown in Fig. 9. The increased deformation 

resistance under shear stress favors necking in the A-C ligament. As a result, the crack 

initiates there and propagates to the backside edge F. This finding re-emphasizes the 

importance of a thorough material characterization under shear. 

However, the use of an anisotropic Hill’48 yield criterion is not the only solution 

and may not be correct, as 
44P  ends up also influencing the yield stress under tension 

in other directions, e.g. 45° direction (DD). Bai and Wierzbicki (2008) showed that 

Al2024-T351 despite its isotropy could not be entirely described with the J2 plasticity 

theory. They proposed a new plasticity model that has a flow dependence on the stress 

triaxiality η  and the Lode angle parameter θ , thus capturing a weak shear strength 

without altering the nature of isotropy. 

3.3.2 Force-COD curve 

Figure 10 shows the comparison of the force-COD1 curves between the 

simulations for the upper (solid red line) and the lower boundary case (solid blue line) 

and all experiments showing a B-D-E-A crack path (grey lines). The prediction made 

by other participants can be found in Fig. 29 of Boyce et al. (2015). 

The overall shape of the curves and the force levels are predicted with a high level 

of accuracy. To be more quantitative, the force level at COD1=1 mm and 2 mm are 

overestimated by 7.02% (5.34%) and 2.10% (0.65%) for the slow speed and by 5.66% 
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(4.15%) and 2.07% (0.16%) for the fast speed in the case of the upper (lower) 

boundary simulation. The maximum force is also slightly over-predicted by 6.30% 

(3.60%) and 2.22% (0.07%), respectively. This slight overestimation might have 

originated partially due to incomplete description of plasticity and dimensional 

discrepancy between actual specimens and the finite element model. 

However, the COD1 at crack initiation, which is identified by a sudden drop in 

force, is overshot by a non-negligible amount for the slow case. The lower and the 

upper boundary case over-predict the COD1 by 47.4% and 57.8%, respectively. In 

contrast, the fast case is predicted more accurately. The upper boundary prediction 

overshoots by 20.2%, and the lower boundary prediction is within the experimental 

scatter.  

A close examination of the results reveals that the poor prediction of the COD1 at 

crack initiation is caused by an inaccurate calibration of not only the fracture model 

but also the plasticity model. Three main aspects are: 

• First, the dependency of fracture loci on η and θ , represented by the 

parameters { , , }fa c n , relied entirely on the material database. Similar 

alloys can possess entirely different fracture properties depending on 

detailed plasticity properties, caused by different manufacturing process 

and heat treatment. A single type of fracture experiments used in the 

calibration process was the dog-bone shaped specimen whose stress state 

lies away from the shear-dominant state revealed to be critical in the 

challenge specimen. The V-notched rail shear tests without slippage 

would have led to more accurate description of ductility of the alloy.     

• Second, for the slow case the effect of the strain rate cannot be completely 

ignored once necking takes place. Recall that the determination of the 

weighting factor α  in Section 2.2 was solely based on the engineering 

stress-strain curve for the slow speed with rate sensitivity and thermal 

softening turned off. The calibration of α , m, and 
a

ε&  should have been 

performed simultaneously for the engineering stress-strain curves for both 

the slow and the fast speed, as will be shown in section 4. 
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• Third, ductile fracture is a local phenomenon as a consequence of 

significant plasticity. Therefore, plasticity in large deformation i.e. the 

hardening curve in the post necking regime plays a very important role. It 

was pointed out by many researchers (e.g. Pack et al., 2014; Marcadet and 

Mohr, 2015) that the plasticity calibration based on a dog-bone specimen 

does not allow for an accurate prediction of large deformation in other 

specimen geometries or structural components. Necking in a dog-bone 

specimen is governed mainly by material imperfection rather than the 

geometry itself due to its parallel gauge section. Instead, a flat specimen 

with symmetric circular cutouts (a notched tension specimen) is 

recommended. 

4. Full characterization of plasticity and fracture properties based on additional 

experiments  

After the blind round robin, SNL provided the ICL with a leftover sheet from the 

challenge to conduct additional experiments and fully characterize the Ti-6Al-4V 

alloy. This section introduces a new testing program, corresponding numerical 

simulations, and a more advanced calibration technique to characterize the material in 

a wide range of stress states and strain rates. 

4.1. Experimental program performed at MIT 

4.1.1 Experimental setup 

It can be seen from the challenge geometry that there are two competing fracture 

mechanisms: tensile fracture along A-C-F and shear-dominant fracture along B-D-E-

A. Hence, the additional testing program consists of four types of specimens extracted 

mainly in RD of the sheet (Fig. 11) that cover a wide range of stress state probable in 

the challenge specimen including uniaxial tension, plane strain tension, and pure 

shear: 
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• Uniaxial tension (UT) specimens with a 40 mm long and 10 mm wide 

gauge section. These were extracted at 0°, 45°, and 90° with respect to the 

sheet rolling direction (RD, DD, and TD, respectively). 

• Notched tension specimens (NT) with a 20 mm wide gauge section, which 

is reduced to a width of 10 mm in the center by circular cutouts. Two 

different notch radii of R=20 mm (NT20) and R=6.67 mm (NT6) were 

considered. 

• Specimens with a central hole (CH). These specimens with a 20 mm wide 

gauge section feature an 8 mm diameter hole in the center.  

• Smiley shear (SH) specimens with the 20 mm width and two shape-

optimized gauge sections obtained by the methodology described in Roth 

and Mohr (2015).  

The SH specimens were cut by wire EDM, while all other geometries were 

machined with a CNC end mill. A random speckle pattern was applied to the surface 

of specimens prior to testing to allow for the accurate measurement of the relative 

displacement between two points on the shoulders of specimens (blue dots in Fig. 11), 

using digital image correlation (DIC) (VIC2D, Correlated Solutions, SC). The initial 

distance between these points was 8 mm for UT specimens and 30 mm for NT, CH, 

and SH specimens.  

All experiments were carried out on the Instron 8080 hydraulic testing machine 

equipped with custom-made high pressure clamps. To be consistent with the 

experiments performed by SNL, two different testing speeds were considered: 

• Low speed, with a cross-head velocity of 2.4 mm/min (0.001/s) for UT (in 

all three directions) and 0.4 mm/min for NT, CH and SH specimens. 

Images for DIC were obtained using a 1300×1030 pixel monochrome 

camera with an acquisition frequency of 1Hz. 

• High speed, with a cross-head velocity of 2400 mm/min (1/s) for UT (only 

in RD) and 400 mm/min for NT and CH specimens. The images for DIC 

were acquired at a frequency of 1,000Hz using a high speed camera 

(Phantom 7.3, Vision Research) with a resolution of 800×600 pixels. The 
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high speed camera was triggered by a TTL pulse from LabView’s Signal 

Express, thus assuring the synchronization of data and images. 

All experiments were performed at least twice for each loading speed to ensure 

repeatability. 

4.1.2 Experimental results 

The true stress–strain curves measured from UT experiments in RD, DD, and TD 

for the strain rate of 0.001/s are shown in Fig. 12. The material exhibits a much 

weaker response in DD, for which the flow stress is approximately 7% lower than for 

the other two directions. This important information was not included in the challenge 

package provided by SNL. The curves in RD and TD are very similar and match those 

at 0.0006/s in Fig. 1b. The corresponding Lankford ratios (i.e. plastic strain ratios or r-

values) were calculated from plastic strains in the axial and the width direction, 

p p

w w

p p p

th w ax

d d
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ε ε
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    (20) 

resulting in 38.10 =r , 76.345 =r  and 88.290 =r . Fig. 12 also shows the effect of the 

strain rate for a UT specimen in RD. For a strain rate of about 1/s, it exhibits an 11% 

higher yield stress than for a strain rate of 0.001/s. 

Figure 13 shows the results of NT and CH experiments at slow and fast speeds as 

well as SH experiments at the slow speed. The onset of fracture was determined from 

the steep drop in the load-displacement curve. It is worth mentioning that all 

experiments showed an excellent repeatability in both the force-displacement curve 

and the onset of fracture. Only for the NT20 specimens, a noticeable deviation was 

observed in the onset of fracture at the slow speed. Within the framework of this 

article, the experiment with the shorter displacement to fracture was used, which can 

be regarded as a lower boundary.  

In all experiments, a force maximum is observed before the onset of fracture, 

which indicates the ductile nature of fracture. However, the shape of the curve 

changes with the loading speed. The fast case shows a significantly higher maximum 

force (positive strain rate sensitivity), which occurs much earlier in the displacement 

than for the slow case. This is followed by a relatively rapid decrease in the force until 
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the onset of fracture. Note that in spite of different loading speeds, the same specimen 

geometry exhibits the almost identical displacement to fracture, again with the 

exception of the NT20. 

To gather deeper insight into the deformation behavior, an axial surface 

engineering strain was measured with a 2 mm virtual extensometer lying on the 

longitudinal axis of symmetry for NT specimens and 1 mm away from the boundary 

of the central hole for CH specimens, as depicted in Fig 11. These measurements are 

plotted on the secondary axis of Fig. 13. All cases but NT20 show an increase in the 

measured local engineering strain with increasing loading speed. 

4.2. Full calibration of plasticity model 

4.2.1 Numerical simulations and parameter identification 

All simulations were carried out using Abaqus/Explicit with the aforementioned 

constitutive model implemented through VUMAT. Taking advantage of the 

symmetries of the specimens, only one eighth was modeled with C3D8R elements for 

NT20, NT6, and CH specimens whereas a quarter was discretized for the SH 

specimen. The length of each finite element model corresponds to half the global 

extensometer, so that the measured displacement history can be directly applied to the 

nodes on the upper boundary of the model. Critical areas of the specimens were 

meshed with an element edge length of about 0.1 mm and eight elements through half 

the thickness.  

The parameters for the plasticity model were determined as follows: 

• The previously identified P  matrix ( 12P = -0.5, 22P =1.0 and 44P =3.9) for 

the yield function is maintained. Instead, this is validated by performing 

single element calculations. More detailed explanation is given in section 

4.2.2.  

• Complete uniaxial tensile tests in three different in-plane directions reveal 

a much softer flow stress in DD. This tendency is different from the 

Lankford ratios. Thus, a non-associated flow rule is chosen. Using the 

measured Lankford ratios in conjunction with the analytical relationships 

from the non-associated flow rule,  
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, 12G = - 0.58, 22G =0.78 and 44G =5.29. 

• Because the same hardening law as in section 3 is used, the Swift 

parameters },,{ 0 nA ε  and the Voce parameters },,{ 0 βQk  are determined 

from two separate fits to the true stress-plastic strain curve at 0.001/s. 

• The weighting factor α  of the combined Swift-Voce strain hardening law 

together with the strain rate sensitivity C , the temperature softening 

exponent m , and the adiabatic limit strain rate aε&  are then optimized 

through inverse analysis for NT20 at slow and high speeds, for which 

large plastic strains are attained. 

• The isothermal limit strain rate is chosen to be sit /001.0=ε& , which 

corresponds to the strain rate of the slow UT experiments. Otherwise, all 

parameters from section 3.1.1 are kept. Table 2 summarizes the newly 

optimized parameters.  

4.2.2 Comparison between experiments and simulations  

Normally, the yield stresses under uniaxial tension in RD, DD, and TD and the 

equi-biaxial yield stress are used to uniquely determine the P  matrix. However, the 

absence of this complete set of data in section 3 led to 44P being inversely identified 

based on the V-notched rail shear test. With the true stress-strain curve in DD 

available from the additional testing program, single element calculations of uniaxial 

tension in three different directions were performed and compared with experimental 

results as illustrated in Fig. 12. A satisfactory agreement in DD validates not only the 

previous calibration but also the use of the Hill’48 quadratic yield function for the Ti-

6Al-4V alloy. It can be concluded that a weak deformation resistance under shear 

loading originates from anisotropy rather than the Lode angle dependency. Remaining 

discrepancies are attributable to the difference in the instantaneous hardening modulus 

between RD and DD. This anisotropic hardening could be taken into account by a 



Pack and Roth (Feb 4, 2016) 

 

 

 25

more complex plasticity model such as the one proposed by Stoughton and Yoon 

(2009). 

Figure 13 demonstrates that the chosen plasticity model with a new calibration is 

accurate to capture the important features of the specimens tested in section 4.1.1. 

Overall, the force-displacement curves for NT and CH specimens were predicted with 

a high level of accuracy. Not only the displacement at maximum force but also the 

rate at which the force decreases was predicted very precisely. A minor over-

estimation for the SH specimen is partially due to the limitation of the Hill’48 

quadratic yield function. Here, a more accurate prediction of the force level could be 

achieved for 44P =4.4, but at the same time this would deteriorate the accuracy of the 

true stress-strain curve in DD. To address this, a more elaborate construction of the 

yield function would be required. It is also noted that the experimental curve shows a 

substantial softening at the end due to the formation of a narrow shear band, which 

could not be simulated by the current finite element model. 

On the other hand, excellent agreement was achieved in the evolution of the local 

engineering strains for the fast loading cases, while they were slightly over-predicted 

for the slow cases. Nevertheless, this indicates that necking, the phenomenon 

preceding ductile fracture, was modeled accurately. It is worth noting that the local 

engineering strains at two different speeds evolve differently early in the experiment. 

This behavior, leading to the curves intersecting each other, was captured in the 

simulations (navy and cyan blue lines in Fig. 13). 

4.3. Full calibration of fracture model 

With the calibration and validation of the plasticity model completed, the loading 

path to fracture was extracted from the critical element in each simulation using the 

methodology described in section 3.1.2. Figure 14 gives an example of the evolution 

of the strain rate and temperature as a function of the equivalent plastic strain for the 

NT20 specimens. It can be observed that the strain rate increases by approximately a 

factor of 5 over the initial strain rate. For this reason, it is important to take into 

account the effect of strain rate hardening even for the slow case. The temperature 

remains constant for the slow case, while it increases by approximately 150 °C for the 
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fast case. However, a thermocouple was not used in the experiment, so quantitative 

comparison of temperature was not performed. 

Figure 15 shows the evolution of the equivalent plastic strain pε  against the 

stress triaxiality η  for all specimen geometries. The slow cases are drawn in solid 

black lines and the fast cases are plotted with solid red lines. The predicted onset of 

fracture by the calibrated rate-dependent Hosford-Coulomb fracture model is denoted 

by solid dots. An accurate prediction was achieved for the parameters a =1.24, b = 

0.97, c =0.05, n =0.0465, and γ =0.08. In addition, the fracture loci for the strain 

rates of pε& =0.001/s (black W-shaped curve), pε& =1/s (red), and pε& =100/s (blue) are 

illustrated. Note that the loading path evolves differently for the same geometry at 

different loading speeds. This is mainly due to the change in hardening behavior at 

different strain rates and temperatures. For slow cases, the maximum force occurred at 

about half the displacement to fracture, while for fast cases, it was observed 

significantly earlier, which was followed by a prolonged decrease in the force level. 

In addition to that, due to the limited accuracy in predicting the behavior of the SH 

specimen, the strain to fracture has to be considered a lower boundary. 

5. Discussion 

Following the full calibration based on the comprehensive experimental program, 

both the plasticity model and the fracture model were applied to the challenge 

problem, using the same numerical method as described in section 3.2. 

5.1.Improvement in prediction by full characterization 

The crack path remained unchanged as B-D-E-A, and the sequence of 

deformation, localization, and crack development were very similar to what was 

observed in the initial blind simulation (see Fig. 7). Figure 16 shows a damage 

distribution on the mid-plane right before crack initiation for slow and fast speeds. It 

is observed that deformation is localized along a narrow band in both cases. The 

width of the localization band in the fast case is much narrower than in the slow case. 

This is because the strain rate within the band for the fast case is well above the 
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adiabatic limit 
a

ε& . As a result, the temperature rise and the consequent softening are 

more pronounced, leading to more localized deformation. Both cases show higher 

damage accumulation in the ligament between D and E than in the ligament between 

B and D. Figure 17 clearly demonstrates that the ligament between D and E breaks 

earlier for both the slow and the fast case, which is in line with the experimental 

observation for the slow case by Gross and Ravi-Chandar (2015) (Fig. 17c). It is 

stressed that two ligaments fracture almost with no time elapse, which required a very 

tiny field output interval to capture the moment. 

The force-COD1 curves predicted by the new simulations are plotted with green 

solid lines in Fig. 10. The force level is still slightly over-predicted, but the shape of 

the curves agrees very well with the experimental data. A great improvement is 

obtained in the COD1 at crack initiation. Its value at both loading speeds lies well 

within the experimental scatter. Compared to the fracture loci determined in section 

3.1.2 (Fig. 5b), a new fracture calibration revealed a significantly lower ductility at 

0.001/s with a much higher strain rate sensitivity (Fig. 15). This made it possible to 

improve the COD1 at crack initiation for the slow case without worsening the 

prediction for the fast case. It has to be noted that all simulations already slightly 

overestimate the slope in the elastic region. This might have been caused by the 

compliance of the cylindrical connector pins placed in the lower and upper holes of 

the specimens. A simple analogy can be made with two springs in series, where the 

overall stiffness is less than that of a single spring. Li et al. (2010) showed a possible 

strong influence of the machine stiffness on the force-displacement curve in their 

work. 

5.2.Investigation of loading path at critical points 

Figure 18 shows the loading path to fracture for two critical elements for the slow 

(black) and the fast case (red). The solid dots represent the predicted onset of fracture 

from the model. Fracture starts in the center of the D-E ligament on the mid-plane for 

the slow case with a stress state evolving from pure shear ( 0η = ) to uniaxial tension 

( 1/ 3η = ) (see black solid line). This is in contrast to the blind prediction in Fig. 8. 

In the fast case, fracture commences from the lower boundary of the D-E ligament on 

the mid-plane with a stress state changing from uniaxial tension to plane strain tension 
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( 1 / 3η = ) (see red dashed line). When examining an element from the center of the 

D-E ligament on the mid-plane (red solid line), one can observe that it fails almost at 

the same time and in a similar final stress state. In general, the onset of fracture occurs 

under a combined shear and tensile stress state for both speeds. 

5.3.Effect of friction between pins and challenge specimen 

There have been a number of discussions among participants over what boundary 

conditions are appropriate to simulate the challenge problem such as modeling of pins, 

friction between pins and the specimen, etc. This section is devoted to partially 

addressing the issue of friction coefficients.  

The team E from France performed DIC analysis on the video clip for the 

challenge sample 27 at the fast speed provided by Sandia after the challenge ended. 

This allows for the comparison of the force-COD1 curve between experiment and 

simulation even after the COD gauge jumps off the sample due to catastrophic crack 

propagation from B to E and subsequent vibration. The comparison with the 

simulations with four different friction coefficients all the way to the ultimate failure 

(breakage of the E-A ligament) is shown in Fig. 19.  It is clearly seen that the friction 

coefficient does not have a noticeable effect on the COD1 at the first crack initiation. 

It slightly increases the overall force level. However, its influence becomes significant 

in the later stage. Increasing friction shortens the COD1 at the complete failure of the 

specimen. Frictionless condition tracks the experimental result the best. The 

oscillation on the force prediction is attributed to not entirely removing a dynamic 

effect by using explicit time integration scheme and mass scaling. Figure 20 compares 

the deformed shape of the challenge specimen just before ultimate failure. The case 

with zero friction matches the experimental shape most accurately. With no doubt, a 

higher friction coefficient prevents relative rotation between two material blocks 

connected to the E-A ligament more effectively, which changes a dominant stress 

state in the E-A ligament. Therefore, the COD1 at the complete failure is highly 

affected by friction. A simple qualitative analysis casts one more vote for the 

frictionless contact. 
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6. Conclusion 

The ICL at MIT has successfully completed the second Sandia Fracture 

Challenge concerning an S-shaped challenge specimen made from a Ti-6Al-4V sheet 

with two starter notches and three holes. A blind prediction of the crack path and the 

force-COD1 curve during the tensile test of the specimen at slow and fast loading 

speeds was made, using a Hill’48 yield function and a modified Johnson-Cook model 

incorporating a combined Swift-Voce strain hardening law. Treating temperature as 

an internal variable, its evolution was approximated without solving thermal field 

equations. The onset of fracture was predicted by a rate-dependent Hosford-Coulomb 

fracture initiation model. After the blind prediction, a leftover sheet was fully 

characterized with a comprehensive testing and modeling program. A significant 

improvement in the prediction was achieved. The key findings are summarized as 

follows.  

1. In the framework of a non-associated flow rule, the Hill’48 anisotropic 

yield function is able to predict the plastic anisotropy of the Ti-6Al-4V 

sheet with great accuracy and computational efficiency. To obtain an even 

higher level of accuracy, especially in the diagonal direction, a more 

complex yield function and anisotropic hardening could be required. 

2. An accurate description of the hardening curve at large strains is crucial 

for predicting ductile fracture. It is achieved by linearly combining the 

Swift and the Voce strain hardening laws. It is emphasized that the 

calibration should be based on notched tension rather than uniaxial tension 

(dog-bone) specimens. Furthermore, even when treating temperature as an 

internal variable instead of performing fully-coupled thermo-mechanical 

analysis, the Johnson-Cook strain rate hardening and temperature 

softening functions are able to accurately model the dynamic flow stress 

of the Ti-6Al-4V sheet.  

3. The strain rate dependent Hosford-Coulomb fracture initiation model can 

accurately predict the onset of fracture in the Ti-6Al-4V sheet at different 

strain rates. Besides the global crack path, B-D-E-A, and the COD1 at 

fracture, the applied plasticity and fracture modeling approach is able to 

correctly predict the first crack initiation in the D-E ligament. 
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4. The low yield stress under shear turned out to originate from anisotropy, 

so the effect of the Lode angle can be neglected in the plasticity point of 

view. However, its influence on ductile fracture cannot be ignored to 

ensure the accuracy of predicting the onset of fracture. 
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Tables 

 

Table 1. Alloying elements of the Ti-6Al-4V alloy sheet (all in wt%).  

 
Al V C Fe O N Y 

6.02 3.94 0.01 0.19 0.16 0.04 <50 ppm 

 

 

Table 2. Hardening model parameters of the 3.124 mmTi-6Al-4V alloy sheet for the 

upper/lower boundary. Values in brackets are the results of the full calibration of the 

material.  

 

A  [MPa] 0ε  n  
0k  [MPa] 

1408/1393  

(1380) 

0.01613/0.01763 

(0.01500) 

0.07937/0.07955 

(0.07300) 

1016/1011  

(1020) 

Q  [MPa] β  α  C  

160.5/147.2 

(153.4) 

26.41/24.94 

(25.74) 

1.400/1.200 

(1.184) 

0.01517/0.01605 

(0.01908) 

a
ε&  m  

0
ε& = it

ε&  [/s] 0
T = r

T  [K] 

0.6000/1.000 

(1.540) 

0.7900/0.7400 

(0.7882) 

6.000E-4 

(1.000E-3) 
293.0 

mT [K] ρ  [kg/m3] 
pC [J/kg·K] 

kη  

1900 4430 5.263E2 0.9000 

 
Table 3. Fracture model parameters of 3.124 mm Ti-6Al-4V alloy sheet. Values in 

brackets denote the parameters from the additional full calibration of the material. 

 

a  b  c fn  γ
 

1.15  

(1.24) 

1.22  

(0.970) 

0.0608 

(0.0500) 

0.117  

(0.0465) 

0.0142  

(0.0800) 
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 Figures 

 

 
(a) 

 

 
(b) 

 

Figure 1. (a) Dog-bone specimen for uniaxial tensile tests (b) Engineering stress-strain 

curves of the 3.124 mm Ti-6Al-4V alloy sheet in rolling and transverse directions at 

slow (0.0254 mm/s) and fast (25.4 mm/s) loading speeds provided by Sandia National 

Laboratories 
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Figure 2. True stress-plastic strain curve from the uniaxial tensile test that showed 

highest stress level at slow and fast loading speeds. Observe an excellent fit of the 

Swift (red) and the Voce (blue) law for the slow speed case.  
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Figure 3. Comparison of the engineering stress-strain curves from uniaxial tensile 

tests between experiments (dots) and simulations (lines) at 0.0254 mm/s (light grey) 

and 25.4 mm/s (black) for upper and lower boundary cases. The equivalent plastic 

strain is also shown as a function of the engineering strain for the upper boundary 

case. Inserted is the finite element model for a dog-bone specimen. 
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(a) (b) 

 
(c) 

 

Figure 4. (a) V-notched shear specimen; (b) photo of a specimen installed in fixtures 

used for the V-notched rail shear test; (c) comparison of the force-displacement curve 

from slow V-notched rail shear test between an experiment (VP2, dots) and 

simulations for 0.3
44

=P  (black line) and 9.3
44

=P  (red line). Additionally, the finite 

element model of the specimen gauge section is shown.  
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(a)  

 
(b)  

Figure 5. Representation of the calibrated fracture model for the upper boundary case 

together with loading histories to failure of dog-bone specimens at slow (solid black 

line) and fast (solid red line) speeds. The predicted onset of fracture by the Hosford-

Coulomb fracture model is indicated by solid dots. (a) three-dimensional envelopes 

for three exemplary strain rates; (b) two-dimensional loci for the plane stress 

condition in the space of the stress triaxiality η  and the equivalent plastic strain p
ε . 
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(a)       (b)     

 

Figure 6. (a) Geometry and designations of the challenge specimen; (b) finite element 

mesh of the challenge specimen. 

 
 

 

 

 

Figure 7. Sequence of damage accumulation and crack development for the slow 

upper boundary case with 
44 3.9P =  on the mid-plane (contour is for the damage 

indicator D  interpreted as percentage of ductility that material point already 

consumed). 
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Figure 8. Distribution of the damage indicator D  for the slow upper boundary case 

when the first element is deleted. This shows that fracture initiates on the lower 

boundary of the ligament between D and E on the mid-plane. 

 

 

 

 

 

 

 

 
 

 

Figure 9. Sequence of damage accumulation and crack development for the slow 

upper boundary case with 
44

3.0P =  on the mid-plane. 
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(a) 

 
(b) 

Figure 10. Comparison of force-COD1 curves between experiments and simulations: 

(a) at the slow speed; (b) at the fast speed. 
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Figure 11. Specimens for the additional testing program at slow and fast loading 

speeds. From left to right, specimens for: uniaxial tension (UT), notched tension with 

R20 cutouts (NT20), notched tension with R6.67 cutouts (NT6), tension with a D8 

central hole (CH), and smiley shear (SH). Blue solid dots highlight the position of the 

virtual extensometer for relative displacement and speed measurements; red solid dots 

highlight the position for local axial strain measurements. 

 

Figure 12. True stress-strain curves from uniaxial tensile tests in three different 

directions (RD, DD, TD) at the slow speed (0.001/s) and in RD at the fast speed (1/s). 

Symbols denote experimental results, while solid lines are from single element 

calculations. 
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(a)       (b) 

  
(c)       (d) 

Figure 13. Comparison of the force-displacement curve and the evolution of local 

axial engineering strain for (a) NT20, (b) NT6, (c) CH, and (d) SH specimen between 

experiments (dots) and simulations (solid lines) at slow (grey and cyan blue) and fast 

(black and navy blue) speeds. Inserted figures show the discretized finite element 

model for each specimen. 
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Figure 14. Evolution of the strain rate and temperature for a NT20 specimen as a 

function of the equivalent plastic strain at slow and fast speeds. 

 

 

 

Figure 15. Loading paths to fracture for the specimens included in the additional 

testing program at slow (black lines) and fast speeds (red lines). On each curve, the 

fracture strain predicted by the rate-dependent Hosford–Coulomb model is indicated 

by solid dots. Additionally, the fracture loci at three different strain rates are 

illustrated. 

0.0 0.1 0.2 0.3
1E-3

0.01

0.1

1

10

Temperature

 

 

S
tr

a
in

-r
a
te

 [
1
/s

]

Equivalent plastic strain [-]

 NT20_Slow

 NT20_Fast

Strain-rate

0

50

100

150

200

T
e
m

p
e
ra

tu
re

 [
°° °° C

]

Shear

CH NT20

NT6



Pack and Roth (Feb 4, 2016) 

 

 

    
(a)       (b) 

Figure 16. Contour plot of the damage indicator D  for the challenge specimen on the 

mid-plane just before crack initiation at (a) the slow speed and (b) the fast speed. 

Observe the formation of a shear band.  

 

 

      
(a)                                    (b)                                       (c) 

 

Figure 17. Moment of fracture of the D-E ligament ahead of the B-D ligament : (a) 

finite element simulation for the slow speed (contour plot of the damage indicator D  

just after the breakage of the D-E ligament); (b) simulation for the fast speed; (c) 

experimental evidence observed by the team of the University of Texas at Austin ( 

adapted from Fig. 26b in Boyce et al., 2015) 
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Figure 18. Loading histories at two critical points in the D-E ligament for slow (black) 

and fast speeds (red); one from the element located in the center (solid line) and the 

other from the element located on the lower boundary (dashed line).

 

Figure 19. Comparison of force-COD1 curve between the sample 27 and simulations 

with four different friction coefficients all the way to ultimate failure of the challenge 

specimen. 
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(a)                                      (b)                                           (c) 

   

 
 

(d)                                                             (e) 
 

Figure 20. Deformed configuration of the challenge specimen right before ultimate 

failure (contour plot indicates the distribution of damage indicator):  

(a) experiment (sample 27); (b) μ=0.0; (c) μ=0.2; (d) μ=0.4; (e) μ=0.6 


