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Abstract Onshore oil fields may contain hundreds of wells that use sophisti-
cated and complex equipments. These equipments need regular maintenance
to keep the wells at maximum productivity. When the productivity of a well
decreases, a specially-equipped vehicle called a workover rig must visit this
well to restore its full productivity. Given a heterogeneous fleet of workover
rigs and a set of wells requiring maintenance, the workover rig routing prob-
lem (WRRP) consists of finding rig routes that minimize the total production
loss of the wells over a finite horizon. The wells have different loss rates, need
different services, and may not be serviced within the horizon. On the other
hand, the number of available workover rigs is limited, they have different ini-
tial positions, and they do not have the same equipments. This paper presents
and compares four heuristics for the WRRP: an existing variable neighborhood
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search heuristic, a branch-price-and-cut heuristic, an adaptive large neighbor-
hood search heuristic, and a hybrid genetic algorithm. These heuristics are
tested on practical-sized instances involving up to 300 wells, 10 rigs on a 350-
period horizon. Our computational results indicate that the hybrid genetic
algorithm outperforms the other heuristics on average and in most cases.

Keywords Workover rig routing · Branch-price-and-cut heuristic · Adaptive
large neighborhood search · Hybrid genetic algorithm · Vehicle routing

1 Introduction

The workover rig routing problem (WRRP) arises on onshore oil fields which
can contain hundreds of oil wells. These wells use artificial lift methods to
make oil surface and this operation uses complex equipments. When such
equipments present some malfunction, the productivity of the well is reduced
and a request for maintenance describing the type of maintenance required
and a production loss rate (e.g., 20m3/day) is issued. The maintenance is per-
formed by a specially-equipped vehicle called a workover rig (in short, a rig)
which is a compact mobile unit carrying external equipment for mud prepa-
ration and power generation. To avoid high production losses, maintenance
should be completed as soon as possible.

Typically, in large oil fields such as those encountered in Brazil, many wells
require maintenance at the same time and oil companies possess more than
one rig to service the wells as soon as possible. However, due to the high costs
of acquiring and operating rigs, they own relatively few of them compared
with the number of wells to maintain. Consequently, an immediate allocation
of a rig to a maintenance request is not possible, resulting in a queue of wells
awaiting a rig for service. Moreover, the rigs are not necessarily equipped
similarly and, depending on the maintenance type to perform, only a subset
of them may be suitable to service a request. In this case, the fleet of rigs is
said to be heterogeneous.

Given that the wells are located in various places in the oil field, the rigs
must often travel between two maintenance services. Given their slow speed
(approximately 12mph), travel times must be taken into account when routing
the rigs and scheduling the services. We assume that all rigs travel at the same
speed but the algorithms that we propose in this paper can easily be adapted
for the case with varying speeds.

Maintenance services also require time that must be considered when sche-
duling the rigs. The service time at a well depends on the maintenance type
(e.g., completion, reinstatement, cleaning and stimulation), not on the rig per-
forming the service. In Brazil, the completion service is considered strategic
and takes about 15 days on average. The reinstatement service is also time-
consuming and lasts between 5 to 15 days. The cleaning and stimulation ser-
vices are much shorter and can be performed in less than a day or two.

The maintenance requests are issued dynamically but they are not directly
assigned to a rig. The planning of the rig routes (sequences of wells to service)
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is performed in a rolling horizon fashion, that is, at every P time periods, where
a period may correspond to, e.g., 2, 6, 12 or 24 hours. For a planning session,
a finite horizon of H time periods with H ≥ P is considered for servicing
the requests that are known at this time, including the portions of the routes
previously planned that will not be completed before the beginning of the
horizon. Given the limited number of rigs available, it might not be possible
to plan the service of all the requests within the horizon. The unserved ones
are postponed to the next planning session together with the requests to be
issued in the next P periods, that is, until the next planning session. Because
of this rolling horizon process, a rig can be located anywhere in the field at
the beginning of the planning horizon, i.e., where it performed its last service
or at a location en-route to another well. Also, it might not be available at the
beginning of the horizon if it requires time to complete a maintenance that
started before the horizon.

One particularity that distinguishes the WRRP from many other vehicle
routing problems is that it involves no depot. To increase their productivity,
the rigs are replenished in diesel in the field and their crews are also relieved
where they are located. In consequence, the rig routes can finish anywhere at
the end of the planning horizon.

In this context, the WRRP can be defined as follows. Given a set of wells
requesting maintenance and a heterogeneous fleet of rigs, the WRRP aims at
determining feasible routes for the rigs that minimize the sum of the produc-
tion losses at the wells over the next H time periods. A rig route is deemed
feasible if it starts at the rig’s initial position, it lasts at most H periods, and it
services only wells for which the rig is equipped. Multiple types of well services
and rigs with well-to-rig compatibility constraints are thus considered. A route
can end anywhere (typically, at the last visited well). Since the number of rigs
is usually insufficient to service all wells in the planning horizon, we can as-
sume that all rigs are used. Note also that the WRRP does not involve routing
costs as they are considered negligible compared to the high costs incurred by
the production losses.

The WRRP includes the traveling repairman problem (Tsitsiklis [26]) as
special case in the presence of a single rig and with a large planning hori-
zon. The traveling repairman problem is known to be NP-Hard from Sahni
and Gonzalez [22], and so is the WRRP. Literature on the WRRP with a
heterogeneous fleet is scarce. Aloise et al. [1] developed a variable neighbor-
hood search (VNS) heuristic that produced solutions which could potentially
reduce production losses worthing an estimated US $2,568,000 per year. Their
algorithm assumes, however, an infinite time horizon and assigns all requests
to rigs using a greedy heuristic that is explained in Section 3. To evaluate a
solution, the authors consider only the wells serviced within the horizon. Two
exact algorithms based on column generation were also proposed recently by
Duhamel et al. [8] and Ribeiro et al. [18]. Duhamel et al. [8] introduced three
mixed-integer linear models. The first model improves the schedule-based for-
mulation of Aloise et al. [1], the second one is based on an open vehicle routing
model, and the last one is a set covering model for which a column generation
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algorithm is proposed. The best results were obtained with the latter model
that allowed to solve to optimality instances with up to 4 rigs and 60 wells.
Ribeiro et al. [18] devised a branch-price-and-cut (BPC) algorithm that re-
lies on some of the most recent techniques proposed for the vehicle routing
problem with time windows. The authors succeeded to solve practical-sized
instances (with up to 10 rigs and 200 wells) in reasonable computational times
(less than one hour).

Various heuristics were also developed for variants of the WRRP. A tabu
search metaheuristic and an iterated local search heuristic were proposed by
Neves [15] for the homogeneous fleet WRRP with mandatory service at all
wells and deadlines. This variant was also studied by Ribeiro et al. [19] who
designed a clustering search heuristic and an adaptive large neighborhood
search heuristic, outperforming the results obtained by Neves [15].

For the homogeneous fleet WRRP with mandatory service at all wells and
time windows but without travel times (only service times are considered), four
heuristics were developed: a greedy randomized adaptive search procedure by
Costa [4], a dynamic mounting heuristic by Costa and Ferreira Filho [5], a
greedy randomized adaptive search procedure with path relinking by Pacheco
et al. [16], and a simulating annealing metaheuristic by Ribeiro et al. [20].

Even if the BPC algorithm of Ribeiro et al. [18] can solve real-sized in-
stances, it fails to produce good-quality feasible solutions within one hour of
computational time for certain tested instances. Our goal is, thus, to iden-
tify a heuristic algorithm that can yield high-quality solutions in reasonable
computational times for all instances. To do so, we first introduce three new
heuristics for the WRRP that are based on state-of-the-art methodologies: a
BPC heuristic, an adaptive large neighborhood search (ALNS) heuristic, and
a hybrid genetic algorithm (HGA). Then, we compare the results obtained by
these heuristics and the VNS heuristic of Aloise et al. [1] on the benchmark
WRRP instances proposed by Ribeiro et al. [18].

The remainder of this paper is structured as follows. Section 2 presents a
mathematical model for the WRRP. Section 3 summarizes the VNS heuristic
of Aloise et al. [1] while Section 4 describes the proposed BPC, ALNS and
HGA heuristics. Computational results are reported and discussed in Section
5, which also includes a brief conclusion.

2 Mathematical model

Ribeiro et al. [18] proposed two mathematical models for the WRRP, namely,
an arc-flow model and a set packing model that can be obtained from the first
model by applying the Dantzig-Wolfe decomposition principle. In this section,
we present the latter model on which the proposed BPC heuristic relies.

Consider a planning horizon represented by a finite set of disjoint time
periods of equal length (e.g., one hour) numbered from 1 to H . Let W be the
set of wells requiring maintenance, ℓi the production loss rate per period at
well i ∈ W , e.g., in m3/hour, and τi its service duration.
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Let K be the set of available rigs. Each rig k ∈ K is associated with an
equipment level ek ∈ N and the service at well i ∈ W requires an equipment
with minimum level e′

i ∈ N. A well-to-rig allocation is feasible if ek ≥ e′
i. We

denote by W k ⊆ W the subset of wells that can be maintained by rig k. Let
Rk be the set of feasible routes for rig k. With each route r ∈ Rk and each well
i ∈ W k, we associate a binary parameter ak

ir equal to 1 if route r visits well
i and to 0 otherwise. With each route r ∈ Rk, we also define a parameter vk

r

that indicates the sum of the loss saved at each well serviced along the route,
that is,

vk
r :=

∑

i∈W k

ℓi(Hak
ir − tkir),

where tkir is equal to the time period at which the service completes at well i
in route r if it services it and to 0 otherwise. Finally, for each rig k ∈ K and
each route r ∈ Rk, define a binary variable Y k

r indicating whether or not route
r for rig k is selected in the solution.

With this notation, the WRRP can be formulated as the following set
packing model:

Minimize H
∑

i∈W

ℓi −
∑

k∈K

∑

r∈Rk

vk
r Y k

r (1)

subject to:
∑

k∈K

∑

r∈Rk

ak
irY

k
r ≤ 1, ∀i ∈ W (2)

∑

r∈Rk

Y k
r = 1, ∀k ∈ K (3)

Y k
r ∈ {0, 1}, ∀k ∈ K, r ∈ Rk. (4)

The objective function (1) seeks to minimize the total production loss
that is computed as the difference between the maximal loss (if no wells are
maintained) and the sum of the losses saved by the rigs. The set packing
constraints (2) guarantee that each well is serviced at most once in the planning
horizon. The convexity constraints (3) ensure that one route is assigned to each
available rig. Finally, the variables are subject to binary requirements (4).

In practice, model (1)–(4) contains a very large number of variables, one
per feasible route for each rig. This difficulty can be overcome using column
generation as in the exact BPC algorithm of Ribeiro et al. [18] or in the BPC
heuristic developed in Section 4.1.

3 Variable neighborhood search

In this section we briefly describe the VNS heuristic of Aloise et al. [1] that
we implemented and tested in our computational experiments.

A VNS heuristic explores a sequence of neighborhoods of increasing size
(typically, nested) to search for improving solutions (Mladenović and Hansen
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[14], Hansen and Mladenović [9]). When such a solution is found, it returns
to the smallest neighborhood before continuing. Besides the neighborhoods, a
VNS heuristic involves: a procedure to generate an initial solution, a pertur-
bation strategy associated with the current neighborhood, and a local search
algorithm. It proceeds as follows. First, an initial solution s is constructed and
the best solution sbest found so far corresponds to s. Then, the main loop
starts. While a stopping condition criterion is not met (in our case, a maxi-
mum computational time), the current solution s is perturbed randomly using
a move allowed in the current neighborhood to generate a new solution s′.
Starting from s′, local search is applied to yield a solution s̄. If s̄ is not better
than sbest, a new iteration is started from s but using the next neighborhood.
Otherwise, the algorithm updates sbest, replaces s by s̄, and returns to the
smallest neighborhood before starting a new iteration.

We now review the key-elements implemented by Aloise et al. [1] for the
WRRP.

Initial solution. An initial solution is constructed using a greedy algorithm
that appends one well at a time to the current rig routes. More precisely, the
algorithm loops continuously over the routes and adds one well at each route
until all wells are inserted into a route without taking into account the horizon
length. Aloise et al. [1] suggest to select the well to insert as the well (not yet
scheduled) that yields the maximum production loss if inserted at the end of
the rig route. This criterion favors long travel times between two wells serviced
consecutively by the same rig. Preliminary computational experiments showed
that it is rather preferable to choose the well yielding the minimum production
loss. Consequently, we performed our tests using the latter criterion.

Local search. The local search procedure relies on the well swap moves within
the same route and between two routes. Each iteration stops at the first im-
proving solution found.

Perturbation. The algorithm uses nine different neighborhoods based on
well-known moves such as route swap between two rigs, well swap within the
same route or between two routes, and well reassignment from one rig to an-
other.

Objective function. The objective function is computed as the total produc-
tion loss within the horizon, considering that all wells scheduled for a mainte-
nance after the end of the horizon are not serviced.

4 BPC, ALNS and HGA heuristics for the WRRP

In this section we present the new heuristics that we propose for the WRRP,
namely, a BPC, an ALNS, and an HGA heuristic.
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4.1 BPC heuristic

The BPC heuristic is an adaptation of the exact BPC algorithm developed
by Ribeiro et al. [18]. A BPC algorithm (Barnhart et al. [3], Lübbecke and
Desrosiers [13], Desrosiers and Lübbecke [7]) is a branch-and-bound algorithm
in which the lower bounds are computed by column generation and cutting
planes are added to tighten the linear relaxations. Column generation is a well-
known mathematical programming technique able to solve linear programs
that involve a very large number of variables associated with combinatorial
objects such as paths in one or several networks. This iterative technique
solves at each iteration a restricted master problem and one or several sub-
problems. The restricted master problem corresponds to the linear relaxation
of the original model restricted to a relatively small subset of its variables.
The subproblems allow the identification of new variables (columns) to add to
the restricted master problem (variables with negative reduced costs) or they
prove that none exist. In the latter case, the algorithm stops with an optimal
linear relaxation solution. When this solution is fractional and the correspond-
ing node is not pruned, violated valid inequalities can be added to the model
or branching decisions can be imposed.

In the BPC algorithm of Ribeiro et al. [18], the master problem is given
by the linear relaxation of model (1)–(4). There is one subproblem per rig.
It corresponds to an elementary shortest path problem with an additional
constraint to limit route duration and a time-dependent objective function.
Given that this type of subproblem is NP-hard, the authors suggest to solve
a relaxation of it, namely, its ng-path relaxation (Baldacci et al. [2]) that
allows certain cycles. The shortest ng-path subproblems are solved using a
labeling algorithm. Because these subproblems may still be computationally
extensive, two heuristics are used to generate columns more rapidly. Indeed, at
each iteration, a tabu search column generator is invoked first. For each route
corresponding to a basic variable in the current restricted master problem
solution, tabu search is applied starting with this route (that has a zero reduced
cost) as an initial solution. Only two moves are considered: well insertion and
well removal. A very limited number of tabu search iterations (predefined
as a parameter Itabu

max) are performed for each initial route. When the tabu
search heuristic fails to find negative reduced cost columns, a heuristic labeling
algorithm is invoked. This heuristic is the same as the exact labeling algorithm
but it is applied on reduced-sized networks. These are obtained by keeping the
arcs with the current smallest reduced costs, that is, at most Amin incoming
and outgoing arcs at each node, see Ribeiro et al. [18] for details. When the
heuristic labeling algorithm fails, the exact labeling algorithm is called to
guarantee the exactness of the overall solution process.

To strengthen the linear relaxation at the root node of the search tree,
Ribeiro et al. [18] add the following subset-row inequalities (Jepsen et al. [10]):

∑

k∈K

∑

r∈Rk
Q

Y k
r ≤ 1, ∀Q ⊆ W such that |Q| = 3, (5)
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where Q is a subset of three wells and Rk
Q ⊆ Rk is the subset of routes servic-

ing at least two wells in Q. These inequalities are very efficient at tightening
the linear relaxation. On the other hand, they require modifying the struc-
ture of the subproblems to handle their dual variables and may yield highly
time-consuming subproblems. Whenever needed, Ribeiro et al. [18] impose
branching decisions on the total flow on an arc linking two wells.

From this exact BPC algorithm, we devise a BPC heuristic by modify-
ing the column generation procedure as well as the branching scheme. In the
column generation algorithm, most of the time is spent solving the subprob-
lems, especially when the exact labeling algorithm is invoked. Furthermore,
this exact algorithm is often applied only to prove the optimality of the cur-
rent restricted master problem solution, that is, most of the times it does not
succeed to generate negative reduced cost columns. Consequently, we propose
to use only the tabu search heuristic and the heuristic labeling algorithm to
generate columns. Given that these heuristics are quite fast, we use them to
solve the elementary shortest path version of the subproblems (rather than the
ng-path relaxation). This allows to yield better linear relaxation solutions. For
our computational tests, we use the following parameter setting: Itabu

max = 100
and Amin = 5.

Instead of exploring a complete search tree to derive an integer solution,
we use a diving strategy that alternates between solving a linear relaxation
and imposing permanent decisions until finding an integer linear relaxation
solution. Linear relaxations are solved heuristically by column generation as
discussed in the previous paragraph. When the solution of a linear relaxation
is fractional, two types of decisions can be imposed. First, if some Y k

r variables
take values above a given threshold (0.7 for our tests), all these variables are
fixed to 1. Second, when there are no such variables, we fix to 1 the total flow
on an arc between two wells. This arc is selected as the one with the highest
total fractional flow.

Our BPC heuristic also uses subset-row inequalities but more scarcely than
in the exact BPC algorithm to avoid increasing too much the time to solve
the subproblems by the labeling heuristic. In fact, violated subset-row cuts are
sought only when no Y k

r variables can be fixed. Furthermore, a cut is added
only if its violation exceeds a minimum threshold (set to 0.3 for our tests).

4.2 Adaptive large neighborhood search

Ropke and Pisinger [21] proposed the ALNS heuristic, which is an extension
of the large neighborhood search heuristic introduced by Shaw [23]. It uses
the ruin and recreate principle. The algorithm starts with an initial solution s
which is modified iteratively. At each ALNS iteration, the algorithm destroys
part of the current solution s and repairs it in a different way to generate a
new solution s′. This solution is accepted as the current solution according
to a criterion defined by a search paradigm such as simulated annealing. The
algorithm terminates when it satisfies a stopping criterion, which in our case
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is a maximum number of iterations (50,000 for our tests). Several destroy and
repair procedures can be considered throughout the algorithm. The pair of
destroy and repair procedures to use at each iteration is selected through an
adaptive probabilistic mechanism: the probability of selecting a given proce-
dure depends on how well it performed previously.

As mentioned in Section 1, Ribeiro et al. [19] developed an ALNS heuristic
for a variant of the WRRP that involves a homogeneous fleet of rigs and re-
quires servicing each well before a given deadline specific to the well. For this
paper, we tried to use a slightly modified version of this heuristic, considering
a common deadline (the end of the horizon) for all wells. Two modifications
of the repair phase were implemented to consider a heterogeneous fleet and to
allow unassigned wells. First, wells can only be inserted into the routes of the
rigs that are equipped to service them. Second, when attempting to insert a
well into a compatible route, the duration of the resulting route is verified to
ensure that it can be executed within the planning horizon. If this is not the
case, the insertion is rejected and, when no feasible insertion can be found,
the assignment of the well is left for the next ALNS iteration. This approach
provided poor results for the WRRP instances considered in this paper. There-
fore, we propose a new version of this heuristic that involves new destroy and
repair procedures as well as a local search post-optimization algorithm. Be-
sides, a different strategy is also adopted to define the simulated annealing
cooling rate in the solution acceptance criterion.

Initial solution. To construct an initial solution, we use the same procedure
as for the VNS heuristic (see Section 3). However, a well can be assigned to a
rig if and only if its maintenance can be completed within the time horizon.

Selection of destroy and repair procedures. At each iteration of the
ALNS algorithm, a destroy procedure is chosen to remove q wells from the
routes and a repair procedure is then applied to insert them back into the cur-
rent routes. The number q of wells to remove is a random variable that follows
a discrete uniform distribution on the interval [0.1|W |, 0.4|W |]. The destroy
and repair procedures, called hereafter removal and insertion procedures, are
described in Sections 4.2.1 and 4.2.2.

The choice of the removal and the insertion procedure is based on the
success of all the procedures in the previous iterations. More precisely, let
wp > 0 be a measure of how well a procedure p has performed in the past
iterations. Then, given P procedures with weights wp, procedure p is selected

with probability wp/
P
∑

j=1

wj .

The removal and insertion procedures are weighted independently as fol-
lows. The overall search is divided into disjoint segments of ϕ consecutive
ALNS iterations (in our tests, ϕ = 100). Initially, all procedures have the same
weight, say wp = 25 for p = 1, . . . , P . Then, after ϕ iterations, the weight wp

of each procedure p is updated considering a score πp that indicates how well
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the procedure has performed in this last segment. In our case, πp is first set
to 0 at the beginning of each segment. Then, when a pair of removal-insertion
procedures finds a new best solution in the current segment, their scores are
increased by δ1. When it finds a solution better than the current one, their
scores are increased by δ2. Finally, when it finds a non-improving solution that
is accepted, their scores are increased by δ3. For our tests, we used δ1 = 3,
δ2 = 2, and δ3 = 1.

Let ζp be the number of times that procedure p was chosen in the last seg-
ment. At the end of the segment, the weight wp of procedure p is updated as fol-
lows. If ζp = 0, then wp does not change. Otherwise, wp := (1 − η)wp+ηπp/ζp,
where η is the reaction factor defined by Ropke and Pisinger [21] that controls
how quickly the weights are adjusted according to the effectiveness of the pro-

cedures. For our tests, the value of η was set to 1 − (4 × 10−5)ϕ/Ialns
max ≈ 0.02,

where Ialns
max = 50,000 is the maximum number of ALNS iterations.

Acceptance criterion. The acceptance criterion is defined according to a
simulated annealing rule. At the ALNS iteration j, let c(s) and c(s′) be the
costs of the current solution s and the generated solution s′, respectively. If
c(s′) < c(s), then s′ is accepted as the new current solution. Otherwise, s′ is
accepted with a probability exp((c(s) − c(s′))/Tj), where Tj is the tempera-
ture at iteration j. The initial temperature T1 is set to one third of the cost of
the initial solution. Then, it cools down using the formula Tj = ρTj−1, where

ρ = (Tend/T1)
1/Ialns

max is the cooling rate. This rate has been chosen such that,
after Ialns

max iterations, the system reaches a frozen state corresponding to a tar-
get final temperature Tend that is equal to one twentieth of the initial solution
cost.

Local search. When the ALNS heuristic stops, a post-optimization local
search algorithm is applied on the final solution in the hope of improving it.
This local search heuristic involves the traditional operators used for vehicle
routing problems such as relocate, swap, 2-opt and 2-opt*. See Vidal et
al. [28] for more details. The local search is not highly time-consuming and
improves the solution quality in some cases.

4.2.1 Removal procedures

In this section, we describe the removal procedures used in our ALNS heuristic.
They are based on the ones proposed by Ropke and Pisinger [21] and Ribeiro
et al. [19], but adapted to the WRRP. Where applicable, let D be a set of
removed wells and let L be a set of wells not yet removed from the current
solution. Note that, when a well i is removed in a route between locations i−

and i+, then a modified route is obtained by connecting i− to i+.

Shaw removal. The general idea of a Shaw removal procedure (Shaw [23]) is
to remove wells that are somewhat similar. The degree of similarity between
two wells i and j is computed through a relatedness measure R(i, j), where a
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lower value corresponds to more similar wells. We use the following two Shaw
removal procedures.

The first procedure takes into account the absolute difference between the
production loss of the wells i and j in the current solution. The relatedness

measure is given by R (i, j) =
∣

∣

∣
ℓit

k1

i − ℓjt
k2

j

∣

∣

∣
, where tk1

i and tk2

j are the end of

service time periods at wells i and j, respectively, with k1, k2 ∈ K. Given a
solution s, a set of removed wells D and a set of not yet removed wells L, the
algorithm randomly selects a well w ∈ D, calculates the relatedness measure
between it and each well j ∈ L, and then sorts L in increasing order of the
relatedness measure. A well from L is removed and this process is repeated
until |D| = q.

The well to remove is selected in L according to a random procedure intro-
duced by Ropke and Pisinger [21] that we call the random well selection (RWS)
procedure. In the RWS procedure, a uniform random number u is drawn in
[0, 1] and the i-th well in L is selected where i =

⌈

u3 |L|
⌉

. This procedure is
used in several removal procedures.

The second Shaw removal procedure is based on travel times instead of
service completion times. The relatedness measure between i and j is given by
R(i, j) = tij , where tij is the travel time from well i to well j. The rest of the
procedure is identical to the previous one.

Random removal. This removal procedure simply removes q wells at ran-
dom from the routes in the current solution s. As mentioned by Ribeiro et al.
[19], this procedure tends to generate a poor set of removed wells, but it helps
diversifying the search.

Worst removal. This procedure removes wells with high production losses
in the current solution s. Let ProdLoss−(i, s) = c(s)− c−(i, s) be the produc-
tion loss caused by well i in current solution s, where c−(i, s) represents the
solution cost without well i in s. This procedure first sorts the wells accord-
ing to ProdLoss−(i, s), chooses one well to remove using the RWS procedure,
recomputes ProdLoss−(i, s) for the remaining wells, and repeats the process
until removing q wells.

Cluster removal. Given a rig route, this procedure splits it into two clus-
ters of wells where each cluster is defined by a criterion based on a connected
component of the underlying network. We applied the approach proposed by
Ropke and Pisinger [21] that defines the two clusters using the Kruskal’s al-
gorithm (Kruskal [12]) to find a minimal spanning tree. This algorithm starts
with isolated nodes and connects them iteratively until obtaining a spanning
tree. In our case, we stop the algorithm just before the last iteration when
there are two connected components. One of the resulting two clusters is cho-
sen at random and its wells are removed. With this procedure, the number of
removed wells might exceed q depending on the number of wells in the last
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cluster.

Neighbor graph removal. This procedure uses historical information to re-
move wells. This information is stored in a complete directed and weighted
graph, called the neighbor graph by Ropke and Pisinger [21]. The nodes in
this graph represent the wells and the initial positions of the rigs. The weight
of an arc (i, j) is the cost of the best solution found so far in which node i is
visited just before node j. When a new solution is found, these weights are
updated, if necessary. Given a current solution s, this removal procedure com-
putes a score for each well i by summing up the weights in the neighbor graph
of the arcs incident to i in solution s. The wells are then sorted in decreasing
order of their score and the RWS procedure is applied to find a well to remove.
The scores of the nodes adjacent to the removed node are recomputed before
selecting another node to remove.

Request graph removal. This is another procedure based on historical in-
formation which is stored this time on a complete but undirected graph, called
a request graph by Ropke and Pisinger [21]. The nodes are the same as in the
neighbor graph. The weight of an edge (i, j) is the number of times that wells
i and j have been served by the same rig in the B best solutions (top-B) ob-
served so far in the search (for our tests, B = 100). When a new top-B solution
is identified, the weights are adjusted according to the solutions entering and
leaving the top-B solutions. Given a well i, well j is considered more related
to i if it presents the largest edge weight in the current request graph. This
relatedness measure is used as in the Shaw removal procedure described above.

4.2.2 Insertion procedures

Here, we describe the three insertion procedures used in the ALNS algorithm
that are also derived from the ones proposed by Ropke and Pisinger [21] and
Ribeiro et al. [19]. Let D be the set of removed wells to which we append all
unserviced wells in the current solution s and consider the current destroyed
solution that consists of the set of modified routes obtained after the well re-
movals.

Basic greedy insertion. This greedy procedure inserts sequentially the wells
in D according to the reverse order of their removals. Given the current de-
stroyed solution, it inserts the current well in D into its best feasible position
in any of the routes. Feasibility is checked with respect to the planning horizon
H for every possible insertion.

Extensive greedy insertion. This greedy procedure also inserts sequentially
the wells in D but, at each iteration, it finds the best insertion of all wells re-
maining in D and selects the one that yields the largest cost decrease while
respecting the planning horizon H . This process is repeated until no more well



Heuristics for the workover rig routing problem 13

can be inserted.

Regret insertion. This procedure tries to improve the myopic behavior of
the greedy procedures. For each well i ∈ D, it computes a regret value equal
to the difference between the cost of two solutions in which the well is inserted
in its best or second best rig routes. The well i with the maximum regret value
is chosen to be inserted in the current destroyed solution. Ties are broken by
selecting the lowest cost insertion. This concept can be extended by considering
not only the cost difference defined above, but by also considering the cost
difference of inserting a well in its best, its 2nd-best, its 3rd-best, ..., or its
κth-best route, where κ is a user-defined parameter. In our experiments, we
used κ = |K|.

4.3 Hybrid genetic algorithm

This section introduces a hybrid genetic search with advanced diversity con-
trol for the WRRP. Contrasting with the most recent successful population-
based methods for vehicle routing problems (Prins [17], Vidal et al. [27]), the
proposed method does not rely on a giant-tour representation with a Split

algorithm. Instead, it exploits a route representation as a permutation of well
visits and delimiters representing specific rigs. One additional virtual rig is
used to model unserviced wells. The size of the solution representation is thus
S = |K| + |W | + 1. One such solution can be visualized on the top of Figure
1 (“Parent 1”). Rk corresponds to the start of the route for rig k and VR to
the virtual rig. The other indices are customers. This solution contains three
routes : rig R1 services wells 1 and 4, R2 services wells 3 and 6, and finally R3
services wells 8, 7 and 9. The other wells 2 and 5 are not serviced during the
planning horizon.

Iterative generation of individuals. The algorithm starts from an initial
population of µ solutions, generated by randomly assigning wells to rigs, ar-
ranging them in random order, and applying the local-improvement procedure
described below. Then, the method iteratively selects two parents by binary
tournament and applies an Ordered Crossover (OX) to generate a single off-
spring. This offspring undergoes the local-improvement procedure, a chromo-
some reorganization, and is added to the population.

The crossover OX is illustrated in Figure 1. Two integers α and β with α ≤
β are randomly selected following a uniform probability distribution in [1, S].
The sequence of wells and rigs of Parent 1, located between α and β, is directly
transcribed in the offspring. In the example, the sequence (R2,3,6,R3,8,7) is
transmitted. Parent 2 is then swept onward, considering first the positions
(β+1, . . . , S), and then (1, . . . , β). Any well or rig which is not already included
in the offspring is transmitted. These new elements are positioned after β,
coming back to the beginning of the offspring when the position S is reached.
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Fig. 1 Crossover OX on the complete solution representation

Finally, the wells located prior to the first rig, if any, are relocated at the
end of the last route, and any well which cannot be serviced by its assigned
rig is relocated in the virtual route after VR.

Solution cost. A solution s corresponds to a set of routes {r0, r1, . . . , r|K|},
where r0 is assigned to the virtual rig and route rk to rig k ∈ K. The first
element of route rk, denoted rk(1), corresponds to the rig initial location
whereas rk(i) denotes its i-th element. During the local search, the cost of
a solution s is computed as follows:

c(s) =
∑

k∈K

|rk|
∑

i=2

ℓrk(i)t
k
rk(i) +

|r0|
∑

i=2

ℓr0(i)H, (6)

where tki indicates the time period at which well i is serviced in the route for
rig k. The first term in (6) represents the sum of the production loss at the
serviced wells, whereas the second term is the penalty for the unserviced wells
that are assigned to the virtual route.

This definition allows for any well i to be serviced at a time period tki > H
(i.e., after the end of the planning horizon) for a cost of ℓit

k
i . Yet, relocating

such a well to the virtual route leads to a strict cost improvement, from ℓit
k
i

to ℓiH . This move is included in the proposed local-improvement procedure,
and thus any local optimum is guaranteed to not include a service completion
after the end of the planning horizon.

Local search. Any solution produced by the crossover is submitted to a local-
improvement procedure, based on the standard neighborhoods Relocate,
Swap, 2-opt, 2-opt*, and Cross limited to sequences of less than 2 wells.
We refer to Vidal et al. [28] for a thorough description of these standard vehicle
routing problem neighborhoods and pruning procedures. Moves are explored
in random order, any improving move being directly applied.

To evaluate each move in amortized constant time, we rely as in Vidal et al.
[29] on auxiliary data structures, pre-processed on subsequences of visits from
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the incumbent solution. Thus, for any sequence σ of a single or consecutive
visits in the incumbent solution, the method keeps track of:

T (σ): the duration to perform the visit sequence,
Λ(σ): the sum of the production loss rates in the sequence,
C(σ): the cost (production loss) of the sequence when starting at time 0,
E(σ): the maximum equipment level to service the wells in the sequence.

For a sequence containing a single well σ = (i), the duration equals the
well service time T (σ) = τi, the production loss parameters are given by
Λ(σ) = ℓi and C(σ) = τiℓi, and the service level is E(σ) = ei. Equations
(7)–(10), similar to Silva et al. [24], enable to obtain the same auxiliary data
structures for any longer subsequence σ ⊕ σ′ issued from the concatenation
of subsequences σ = (σu, . . . , σv) and σ′ = (σ′

w , . . . , σ′
x). These equations are

used for data structure pre-processing and move evaluations. The considered
local search moves are equivalent to a recombination of a bounded number of
sequences of visits of the incumbent solution, such that these equations are
applied a constant number of times for each move.

T (σ ⊕ σ′) = T (σ) + tσvσ′

w
+ T (σ′) (7)

Λ(σ ⊕ σ′) = Λ(σ) + Λ(σ′) (8)

C(σ ⊕ σ′) = C(σ) + Λ(σ′)(T (σ) + tσvσ′

w
) + C(σ′) (9)

E(σ ⊕ σ′) = max{E(σ), E(σ′)} (10)

where tσvσ′

w
denotes the travel time from σv to σ′

w .
The local-improvement procedure stops in a local minimum when all moves

have been successively tried without success. Any move leading to an incom-
patible pair of rig and well is rejected. Finally, moves are only attempted
between locations i and j (well or initial rig position) if j is among the Γ = 30
closest locations of i. The parameter Γ is usually called the granularity thresh-
old (Toth and Vigo [25]).

Chromosome reorganization. To maximize the chances of connecting re-
lated parts of the solution during the crossover operation, any solution issued
from the local search (and also during population initialization) is re-organized
to produce the chromosome representation. For each route rk, k ∈ K, the polar
angle Θ(rk) of the route barycenter is computed as

Θ(rk) = arctan

(

∑|rk|
i=1(y(i) − Y0)

∑|rk|
i=1(x(i) − X0)

)

, (11)

where (x(i), y(i)) are the coordinates of the i-th location in route rk, and
(X0, Y0) is the barycenter of the set of wells and rig initial locations. For the
virtual route, the computation is the same but the initial position of the vir-
tual rig is not counted (that is, the sums start at i = 2). The routes are
then ordered in the solution representation by increasing polar angle, starting
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from Θ = 0.

Population management. We adopt the diversity management strategy of
Vidal et al. [27], and thus integrate diversity measures directly in the individual
fitness evaluation. The biased fitness φP(s) of any individual s is a weighted
sum between its rank in the population P in terms of contribution to the
population diversity φdiv(s), evaluated as a Hamming distance to the others,
and its rank with respect to solution cost φcost(s). It is given by:

φP (s) = φcost(s) +

(

1 −
µelite

|P|

)

φdiv(s), (12)

where the parameter µelite governs the role of each criterion. This fitness
measure is used for both parent and survivor selections.

All individuals issued from the crossover operation and the local search
are directly included in the population. The population size is kept within
a range [µ, µ + λ] by operating a survivor selection phase when the maxi-
mum size of µ + λ is attained. During this phase, the λ worst individuals
are iteratively selected out. For our tests, we use the same parameter setting
(µelite, µ, λ) = (8, 25, 40) as in Vidal et al. [27].

Stopping criterion. The algorithm iterates until a maximum number Ihga
max =

500 consecutive iterations without improvement of the best solution is reached.
The best solution is then reported.

5 Computational experiments

The VNS, BPC, ALNS and HGA heuristics were coded in C++ and run on a
Linux PC equipped with an Intel Core i7-3770 processor clocked at 3.4 GHz.
For our main results, the algorithms were tested on the WRRP instances in-
troduced by Ribeiro et al. [18], i.e., a set of 80 instances of practical size
involving 100 or 200 wells, 5 or 10 rigs, a horizon length of H = 200 or
H = 300 time periods (10 instances for each possible parameter combination).
The horizon lengths H = 200 and H = 300 correspond to approximately
14 and 21 days, respectively. Only short maintenance services (cleaning and
stimulation) lasting between 2 and 10 periods are requested and the travel
times are computed as the Euclidean distances between the well locations. To
assess the scalability of the algorithms, additional instances involving differ-
ent numbers of rigs and wells, and different horizon lengths were also gener-
ated in a similar fashion as Ribeiro et al. [18]. All instances are available at
http://www.gerad.ca/~guyd/wrrp.html.

For all tests, all heuristics were executed 10 times with different random
seeds for each instance, except the BPC heuristic that was run once because it
is fully deterministic. In the following, we first report our main results before
presenting scalability results as well as sensitivity analysis results.

http://www.gerad.ca/~guyd/wrrp.html
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5.1 Main results

For our main computational experiments, we solve the instances of Ribeiro
et al. [18] using the four algorithms presented above. The detailed results
of these experiments can be found in the Appendix. Tables 1–4 (one table
per heuristic) summarize these results per group of instances with the same
parameter combination. These tables are split in two parts: the upper one for
instances with 100 wells and the bottom one with 200 wells. For each group
of 10 instances and each heuristic, these tables report:

– the instances characteristics (No. Wells/No. Rigs/Horizon);
– the number of best solutions found out of these instances (Best No.);
– the average computational time per run in seconds (Time);
– the average percentage of deviation of the cost of every solution with re-

spect to the best-known solution (DevEvery);
– the average percentage of deviation of the cost of the best solution (out of

10 runs) with respect to the best-known (DevBest).

Because a single deterministic run was executed for BPC, both average devi-
ations are the same and we only report DevEvery.

For a given instance, the deviation of a solution cost is computed as

Dev = 100 × (BKUB - UB) /BKUB,

where BKUB indicates the best-known solution value and UB is the considered
solution cost. Note that these values are negative because the constant term
in (1) (that is, the maximum total production loss if no maintenance was
performed in the horizon) has been removed from the cost computation. The
detailed solution values on each instance are provided in Tables 11–18 of the
Appendix. Out of the 80 best-known solution values, 66 optimal ones were
provided by the exact BPC algorithm of Ribeiro et al. [18] whereas 14 new
best-known values (in bold face in Tables 11–18) were found by HGA and
reasserted by ALNS (5) and BPC (4).

Table 1 Results for VNS

VNS
Combination Best (No.) Time (s) DevEvery (%) DevBest (%)

100/ 5/200 0 6.5 6.96 4.86
100/10/200 0 9.2 6.39 4.91
100/ 5/300 0 9.4 7.88 5.96
100/10/300 0 7.8 6.87 5.41
200/ 5/200 0 25.7 8.92 7.03
200/10/200 0 51.9 9.89 8.40
200/ 5/300 0 44.5 12.56 10.59
200/10/300 0 67.6 12.87 11.29
Average 0.00 27.83 9.04 7.31
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Table 2 Results for BPC

BPC
Combination Best (No.) Time (s) DevEvery (%)

100/ 5/200 10 0.5 0.00
100/10/200 9 2.3 0.00
100/ 5/300 4 30.7 0.08
100/10/300 5 23.9 0.02
200/ 5/200 9 14.1 0.01
200/10/200 8 27.9 0.03
200/ 5/300 8 296.7 0.00
200/10/300 2 815.6 0.28
Average 6.88 151.46 0.05

Table 3 Results for ALNS

ALNS
Combination Best (No.) Time (s) DevEvery (%) DevBest (%)

100/ 5/200 10 6.8 0.01 0.00
100/10/200 9 9.3 0.04 0.00
100/ 5/300 9 9.5 0.04 0.01
100/10/300 10 7.5 0.02 0.00
200/ 5/200 7 26.6 0.23 0.02
200/10/200 7 52.4 0.22 0.01
200/ 5/300 2 45.4 0.52 0.11
200/10/300 3 66.2 0.46 0.12
Average 7.13 27.96 0.19 0.03

Table 4 Results for HGA

HGA
Combination Best (No.) Time (s) DevEvery (%) DevBest (%)

100/ 5/200 10 5.7 0.00 0.00
100/10/200 10 4.8 0.01 0.00
100/ 5/300 10 5.5 0.00 0.00
100/10/300 10 4.3 0.00 0.00
200/ 5/200 10 26.5 0.01 0.00
200/10/200 10 26.7 0.02 0.00
200/ 5/300 10 26.7 0.06 0.00
200/10/300 10 21.1 0.06 0.00
Average 10.0 15.16 0.02 0.00

Regarding the quality of the solutions, HGA is the only heuristic that found
all the best solution values. It is followed by ALNS and BPC with 57 and 55
best solution values, respectively. None were found by VNS for which the
average deviation to the best solutions exceeds 9%, strongly dominated by the
other heuristics: HGA (0.02%), BPC (0.05%), and ALNS (0.19%). Given this
poor performance, the VNS heuristic is omitted from the subsequent analysis.
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For instances with a horizon H = 200, the average deviation is the same for
HGA and BPC at 0.01% but raises to 0.13% for ALNS. For instances with a
horizon H = 300, HGA average deviation at 0.03% dominates BPC (0.09%)
and ALNS (0.26%).

An analysis of the computational times provides a different angle as one can
argue that BPC is executed only once per instance whereas the best solutions
of HGA and ALNS required 10 runs. With this in mind, BPC is faster than 10
runs of HGA and ALNS on almost all instances except those with 200 wells
and H = 300. Still, remark that even a single run of HGA already leads to
solutions of higher average quality than those produced by the other methods.
It is thus possible to reduce the number of random runs to 5 or less without
compromising the quality of the best solutions. This would not be the case
for ALNS that yields relatively large average deviation for instances with 200
wells. Finally, observe how stable are the HGA computational times: around
5 seconds for instances with H = 200, and 25 seconds when H = 300.
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Fig. 2 Left: Number of instances whose computed solution cost is within a given deviation.
Right: Number of instances solved within a computational time.

For the three best heuristics (BPC, ALNS, and HGA), Figure 2 reports
the number of instances solved whose cost is within a given deviation (on the
left) and the number of instances solved within a computational time (on the
right). A logarithmic scale is used for time values. Instances with 100 or 200
wells are reported in different graphs, at the bottom and top, respectively. A
point (x, n(x)) in a graph means that n(x) solutions have been found by a
given method with a deviation (or a time) less than or equal to x. This figure
illustrates again that BPC and HGA find near-optimal solutions in most cases.
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On instances with 200 wells, a deviation larger than 0.5% is obtained only on
three runs for BPC, and never for HGA. From this figure, one can also remark
that the variance of the computational time for HGA and ALNS is very small.
For example, all instances with 200 wells are solved by HGA within 19 and 36
seconds. In comparison, the distribution of the computational times for BPC
is more spread: 15 instances are solved in less than 25 seconds, but more than
750 seconds are needed for 5 instances out of 40. This increased variability is
inherent in most mathematical-programming-based approaches because of the
use of pseudo-polynomial sub-procedures and branching. In contrast, a classic
metaheuristic based on local or large neighborhood search performs a polyno-
mial – usually quadratic – number of operations for each new solution, and
the number of solutions generated before reaching the termination criterion
grows almost linearly with problem size. Promising perspectives of research
involve blending these methods to circumvent the issue of the computational
time variability while achieving higher quality solutions.

5.2 Scalability

To assess the scalability of our proposed heuristics, we performed tests on
additional instances. In fact, we wanted to observe the impact of increasing
separately the number of wells, the number of rigs, and the horizon length on
the solution quality and the computational time. With the procedure of Ribeiro
et al. [18], we generated new instances involving 50, 150, 250, and 300 wells
(with 10 rigs and H = 200), involving 2, 4, 6, 8, and 12 rigs (with 200 wells and
H = 200), and involving H = 100, 150, 250, 350 (with 200 wells and 10 rigs).
For each combination (number of wells, number of rigs, and horizon length), 10
instances were generated. This set of instances was completed with instances
used for the main tests above, namely, those in combinations 100/10/200,
200/10/200, and 200/10/300.

All these instances were solved using BPC, ALNS, and HGA (10 runs
were executed by ALNS and HGA). The results of these tests are reported in
Tables 5–7, where Table 5 is dedicated to a varying number of wells, Table 6
to a variable number of rigs, and Table 7 to a variable horizon length. For each
instance set, we report the statistics Time, DevEvery, and DevBest described
in the previous section for each heuristic (except DevBest for BPC that is run
once for each instance).

These results indicate that an increase in any dimension (number of wells,
number of rigs, or horizon length) increases the average computational time of
BPC and ALNS. The increase rate is, however, more important for BPC that
has an exponential complexity, especially with respect to the horizon length.
As for HGA, the average computational time does not really vary with the
number of rigs and the horizon length. It increases though with the number
of wells at a rate similar to that of ALNS. Figure 3 summarizes the empirical
running time as a function of the number of rigs or wells, and of horizon length.
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Table 5 Results with a variable number of wells (10 rigs and H = 200)

BPC ALNS HGA
No. Wells DevEvery Time DevEvery DevBest Time DevEvery DevBest Time

(%) (s) (%) (%) (s) (%) (%) (s)

50 0.12 0.1 0.02 0.00 1.4 0.00 0.00 1.2
100 0.00 2.3 0.04 0.00 9.3 0.01 0.00 4.8
150 0.11 11.6 0.05 0.01 23.4 0.01 0.00 11.7
200 0.03 27.9 0.22 0.01 52.4 0.02 0.00 26.7
250 0.17 57.5 0.29 0.10 74.5 0.11 0.00 39.4
300 0.14 125.5 0.54 0.12 112.9 0.11 0.00 60.0

Table 6 Results with a variable number of rigs (200 wells and H = 200)

BPC ALNS HGA
No. Rigs DevEvery Time DevEvery DevBest Time DevEvery DevBest Time

(%) (s) (%) (%) (s) (%) (%) (s)

2 0.10 0.5 0.05 0.00 6.7 0.00 0.00 16.5
4 0.07 1.2 0.09 0.00 16.8 0.00 0.00 19.4
6 0.11 6.4 0.11 0.01 28.6 0.02 0.00 19.3
8 0.16 18.5 0.20 0.03 39.4 0.02 0.00 21.3
10 0.03 27.9 0.22 0.01 52.4 0.02 0.00 26.7
12 0.15 92.4 0.26 0.09 57.1 0.02 0.00 20.4

Table 7 Results with a variable horizon length (200 wells and 10 rigs)

BPC ALNS HGA
H DevEvery Time DevEvery DevBest Time DevEvery DevBest Time

(%) (s) (%) (%) (s) (%) (%) (s)

100 0.00 0.5 0.12 0.03 19.6 0.01 0.00 20.3
150 0.00 5.2 0.24 0.06 33.4 0.02 0.00 21.3
200 0.03 27.9 0.22 0.01 52.4 0.02 0.00 26.7
250 0.20 178.8 0.38 0.14 56.1 0.03 0.00 21.5
300 0.28 815.6 0.46 0.12 66.2 0.06 0.00 21.1
350 0.38 2568.4 0.44 0.16 57.4 0.02 0.00 18.3

Concerning solution quality, we observe that the performance of HGA re-
mains outstanding compared to the other two heuristics. The average quality
of the solutions it produces (column DevEvery) seems to slightly deteriorate
with an increase in the number of wells but does not really vary with the
other two dimensions. At the opposite, the quality of the solutions obtained
by BPC and ALNS clearly diminishes with an increase in any dimension. The
deterioration is, however, more important for ALNS.

5.3 Sensitivity analysis

To assess some of the main settings and components of BPC, ALNS, and HGA,
we also performed a sensitivity analysis on these settings and components. For
this purpose, we selected five of the largest instance sets used in our previous
tests, namely, those with combinations 200/10/200, 200/10/250, 200/10/300,
250/10/200, and 300/10/200, yielding a total of 50 instances. For each heuris-
tic, we solved these 50 instances (10 runs per instance for ALNS and HGA)
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Fig. 3 Running time as a function of the number of rigs or wells, and of horizon length.

Table 8 Sensitivity analysis results for BPC

Algorithm configuration DevEvery (%) Time (s)

Base (Itabu
max = 100, Amin = 5) 0.16 241.1

No tabu (Itabu
max = 0) 0.50 446.4

Itabu
max = 50 0.11 212.4

Itabu
max = 150 0.19 229.9

No heuristic labeling (Amin = 0) 0.77 39.0

Amin = 10 0.15 1005.1

No cuts 0.67 143.7

with different algorithm configurations including the one used for the previous
tests (denoted Base). The results of these experiments are given in Tables 8 –
10 that are discussed separately below.

For BPC, we tested the impact of three components: the use of the tabu
search column generator, the use of the heuristic labeling algorithm, and the
use of cuts. For the tabu search component, we considered four levels of usage
determined by Itabu

max , the maximum number of iterations per route: Itabu
max = 0

(No tabu), 50, 100 (Base), and 150. The results of Table 8 show that not using
the tabu search column generator at all is very bad to the performance of BPC,
both in terms of average computational time and solution quality. For these
instances, the configuration with Itabu

max = 50 outperforms the other on both
criteria. This setting was not use for our main tests because the parameter
values were adjusted using a different subset of instances. Finally, increasing
the maximum number of iterations per route to 150 does not help improv-
ing the average solution quality; in fact, compared to the Base configuration
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Table 9 Sensitivity analysis results for ALNS

Algorithm configuration DevEvery (%) DevBest (%) Time (s)

Base (0.1|W | ≤ q ≤ 0.4|W |, Ialns
max = 50, 000) 0.38 0.10 72.8

0.3|W | ≤ q ≤ 0.4|W | 0.35 0.11 89.1

0.1|W | ≤ q ≤ 0.6|W | 0.40 0.12 87.7

Ialns
max = 25, 000 0.53 0.15 35.3

Ialns
max = 75, 000 0.30 0.08 96.5

No post-optimization local search 0.41 0.14 65.7

Table 10 Sensitivity analysis results for HGA

Algorithm configuration DevEvery (%) DevBest (%) Time (s)

Base (Ihga
max = 500, (µELITE , µ, λ) = (8, 25, 40)) 0.06 0.00 32.3

(µELITE , µ, λ) = (4, 12, 20) 0.10 0.00 25.0

(µELITE , µ, λ) = (16, 50, 80) 0.05 0.00 45.5

Ihga
max = 250 0.09 0.00 25.1

Ihga
max = 1000 0.05 0.00 46.6

No advanced diversity control 0.25 0.02 21.7

(Itabu
max = 100), it deteriorates from DevEvery = 0.16% to 0.19%. One reason

that can explain this deterioration is a possible instability of the heuristic
branching process (a better linear relaxation solution does not guarantee a
better integer solution). Alternatively, with a higher number of tabu search
iterations per route, the heuristic labeling algorithm is, in general, invoked less
times. Given that heuristic labeling typically generates better columns (with
smaller reduced costs) than tabu search, there are less opportunities to gener-
ate these good columns. For the heuristic labeling component, we tested three
levels of usage determined by Amin, the minimum number of incoming and
outgoing arcs to keep at each node of the networks: Amin = 0 (No heuristic
labeling), 5 (Base), and 10. For this component, we observe that not using it
yields solutions of very poor quality (DevEvery = 0.77%) while using it with
networks whose sizes are not sufficiently reduced (Amin = 10 instead of 5)
considerably increases the average computational time (from 241.1 seconds to
1005.1). Finally, the results clearly highlight that using cuts is necessary to
achieve good quality solutions.

For ALNS, we also tested the impact of three algorithm features: the inter-
val in which the number of wells q to remove at each iteration is selected, the
total number of iterations to perform, and the use of the post-optimization
local search heuristic. The average results are reported in Table 9. For the
selection of the number of wells to remove, we observe that using the interval
[0.3|W |, 0.4|W |] (instead of [0.1|W |, 0.4|W |]) provides slightly better solutions
on average (DevEvery drops from 0.38% to 0.35%) but less good best solutions.
Indeed, this interval avoids using too small-sized neighborhoods that do not
offer much potential for improvements. On the other hand, it requires more
computational time than the base algorithm. Alternatively, using a wider in-
terval ([0.1|W |, 0.6|W |])) deteriorates the quality of the average solution and
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of the best solution. This can be explained by the fact that the repair pro-
cedures loose efficiency as the size of neighborhood grow. Consequently, it
becomes counterproductive to define too large neighborhoods beside being
more time-consuming. The results also show that increasing the total number
of iterations improves solution quality but requires more computational time.
Clearly, executing only 50,000 iterations for the results presented in the two
previous sections aimed at limiting computational time as better quality so-
lutions could have been obtained if more iterations would have been allowed
(for instance, setting Ialns

max = 75, 000 instead of 50,000 in the base heuristic
decreases DevEvery from 0.38% to 0.30% and DevBest from 0.10% to 0.08%).
Finally, we observe that the post-optimization local search procedure increases
the computational time by about 10% to decrease the percentage of deviation
from the best solution cost (DevEvery) by about 8% (from 0.41% to 0.38%).
In fact, the procedure succeeded to improve the solution in only 15 instances
(out of 50) but quite substantially in a few of them.

For HGA, we again tested the sensitivity of the algorithm to three compo-
nent settings: the size of the population, the maximum number of iterations
without improvement, and the use of an advanced diversity control utilized for
both parent selection and survivors selection. The results in Table 10 show that
decreasing population size (by halving the values of the parameters µELITE ,
µ, and λ) the average computational time is reduced whereas the average so-
lution quality is slightly deteriorated. Increasing it yields the inverse behavior.
Similarly, reducing the maximum number of iterations without improvement
Ihga
max from 500 to 250 obviously reduces average solution quality and compu-

tational time. Increasing it shows that average solution quality can be further
improved. Finally, removing the advanced diversity control (that is, removing
the second term in formula (12)) is highly detrimental to the performance of
HGA: DevEvery increases from 0.06 to 0.25. Without this feature, it is the only
time that HGA does not succeed to obtain the best-known solution over ten
runs for some instances. This feature is thus a key element in HGA which en-
ables a thorough exploration of a variety of high-quality and diverse solutions.

6 Conclusions

For the workover rig routing problem (WRRP) with a heterogenous fleet of
rigs and a finite planning horizon, this paper introduced three heuristic so-
lution algorithms: a branch-price-and-cut (BPC) heuristic, an adaptive large
neighborhood search (ALNS), and a hybrid genetic algorithm (HGA). The
solutions obtained by these heuristics were compared to those produced by
an existing variable neighborhood search (VNS). Our computational results
on existing instances from the literature indicate that HGA outperforms the
other heuristics on average and in most cases. It yields the best quality so-
lutions and the fastest computational times except for the smallest instances
that can be solved more rapidly by BPC. BPC also yields high-quality solu-
tions but with large computational times for the largest instances. For VNS
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and ALNS, the computational times are small (approximately one minute in
the worst case). The solution quality is very good for ALNS but very poor for
VNS. Furthermore, additional tests on newly generated instances show that
HGA is the most scalable of these heuristics with respect to the number of
wells, the number of rigs, and the horizon length.

As future research, our work suggests that combining HGA with BPC could
yield a powerful matheuristic. Furthermore, HGA could be exploited within
an exact BPC algorithm such as that of Ribeiro et al. [18] to compute proven
optimal solutions in very reasonable computational times. Finally, another
interesting research avenue is to study the dynamic version of the WRRP in
which rig routes can be modified dynamically as new maintenance requests are
issued. Indeed, dynamism is very important for oil companies as the production
of highly productive wells may decrease suddenly, in which case it might be
preferable to immediately revise the planned routes of the rigs in order to avoid
high losses. This dynamic WRPP requires the development of new solution
algorithms that would integrate stochastic components.
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A Detailed results

In this appendix, we report the detailed results of our computational experiments that were
summarized in Tables 1–4. There is one table per parameter combination (|W |, |K|, H). In
each table, the first column specifies the instance number (out of 10 instances). The next
column indicates the best-known solution value (BKUB). Out of these 80 upper bounds,
66 correspond to optimal solutions provided by the exact BPC algorithm of Ribeiro et al.
[18] and 14 are new best-known values (in bold face) obtained by HGA and reasserted by
ALNS (5) and BPC (4). For each heuristic, the tables report four columns (only three for
BPC): best solution value found over all runs (Best), average solution value (Avg), average
computational time in seconds (Time), and the average solution value deviation with respect
to BKUB in percentage (Dev) computed as Dev = 100 × (BKUB - Avg) /BKUB.
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Table 11 Results for instances with 100 wells, 5 rigs and H = 200

VNS BPC ALNS HGA
Inst. BKUB

Best Avg Time Dev Best Time Dev Best Avg Time Dev Best Avg Time Dev
(s) (%) (s) (%) (s) (%) (s) (%)

1 -32275 -29991 -29472 6.5 8.68 -32275 0.6 0.00 -32275 -32275 6.8 0.00 -32275 -32275 5.6 0.00
2 -29068 -28202 -27936 6.4 3.89 -29068 0.5 0.00 -29068 -29065 6.0 0.01 -29068 -29068 5.8 0.00
3 -28466 -26717 -26001 6.5 8.66 -28466 1.2 0.00 -28466 -28466 7.9 0.00 -28466 -28466 6.6 0.00
4 -27929 -26464 -26017 6.4 6.85 -27929 0.2 0.00 -27929 -27929 6.9 0.00 -27929 -27929 6.3 0.00
5 -26398 -25377 -24555 6.4 6.98 -26398 0.4 0.00 -26398 -26388 6.2 0.04 -26398 -26398 4.8 0.00
6 -26661 -25628 -25261 6.6 5.25 -26661 0.5 0.00 -26661 -26661 8.3 0.00 -26661 -26661 5.6 0.00
7 -26128 -24765 -23723 6.5 9.20 -26128 0.1 0.00 -26128 -26128 4.4 0.00 -26128 -26128 5.8 0.00
8 -32912 -31073 -30101 6.6 8.54 -32912 0.9 0.00 -32912 -32904 8.9 0.02 -32912 -32912 4.8 0.00
9 -26704 -25207 -24889 6.5 6.80 -26704 0.2 0.00 -26704 -26704 6.3 0.00 -26704 -26704 5.4 0.00

10 -33521 -32500 -31939 6.5 4.72 -33521 0.5 0.00 -33521 -33521 6.8 0.00 -33521 -33520 6.1 0.00
Avg -29006.2 -27592.4 -26989.4 6.5 6.96 -29006.2 0.5 0.00 -29006.2 -29004.1 6.8 0.01 -29006.2 -29006.1 5.7 0.00

Table 12 Results for instances with 100 wells, 10 rigs and H = 200

VNS BPC ALNS HGA
Inst. BKUB

Best Avg Time Dev Best Time Dev Best Avg Time Dev Best Avg Time Dev
(s) (%) (s) (%) (s) (%) (s) (%)

1 -52034 -50379 -48940 9.2 5.95 -52034 2.6 0.00 -52034 -52005 9.3 0.06 -52034 -52034 4.2 0.00
2 -46189 -44028 -43628 9.2 5.54 -46189 1.3 0.00 -46189 -46069 8.7 0.26 -46189 -46189 5.6 0.00
3 -47003 -43401 -42724 9.2 9.10 -47003 4.6 0.00 -47003 -47003 10.8 0.00 -47003 -47003 3.9 0.00
4 -46513 -44558 -44002 9.2 5.40 -46513 1.1 0.00 -46513 -46513 8.6 0.00 -46513 -46513 4.9 0.00
5 -47734 -45831 -44787 9.2 6.17 -47734 0.6 0.00 -47734 -47734 9.0 0.00 -47734 -47734 5.2 0.00
6 -41834 -39756 -39251 9.2 6.17 -41834 4.3 0.00 -41834 -41800 10.3 0.08 -41834 -41813 5.2 0.05
7 -44703 -43223 -42570 9.2 4.77 -44703 0.4 0.00 -44703 -44703 6.9 0.00 -44703 -44702 4.4 0.00
8 -51208 -48344 -47915 9.3 6.43 -51208 1.3 0.00 -51208 -51208 9.5 0.00 -51208 -51208 4.9 0.00
9 -45796 -43476 -42836 9.2 6.46 -45795 5.3 0.00 -45795 -45792 9.3 0.01 -45796 -45796 5.0 0.00

10 -51279 -47995 -47212 9.4 7.93 -51279 1.2 0.00 -51279 -51279 10.3 0.00 -51279 -51279 4.5 0.00
Avg -47429.3 -45099.1 -44386.5 9.2 6.39 -47429.2 2.3 0.00 -47429.2 -47410.6 9.3 0.04 -47429.3 -47427.1 4.8 0.01
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Table 13 Results for instances with 100 wells, 5 rigs and H = 300

VNS BPC ALNS HGA
Inst. BKUB

Best Avg Time Dev Best Time Dev Best Avg Time Dev Best Avg Time Dev
(s) (%) (s) (%) (s) (%) (s) (%)

1 -71487 -67008 -66505 9.3 6.97 -71487 3.2 0.00 -71487 -71477 9.8 0.01 -71487 -71487 5.4 0.00
2 -63737 -60143 -58393 9.3 8.38 -63735 8.6 0.00 -63737 -63736 8.1 0.00 -63737 -63737 7.0 0.00
3 -63641 -59602 -57926 9.4 8.98 -63519 130.8 0.19 -63641 -63619 11.2 0.03 -63641 -63641 6.5 0.00
4 -60144 -55426 -54605 9.4 9.21 -60131 16.0 0.02 -60144 -60112 9.7 0.05 -60144 -60136 5.9 0.01
5 -60598 -57873 -57441 9.3 5.21 -60334 15.1 0.44 -60598 -60505 9.0 0.15 -60598 -60597 6.4 0.00
6 -60081 -55871 -54801 9.5 8.79 -59997 65.4 0.14 -60029 -60029 12.1 0.09 -60081 -60065 5.8 0.03
7 -59372 -56743 -54127 9.3 8.83 -59369 5.4 0.01 -59372 -59372 5.4 0.00 -59372 -59372 4.0 0.00
8 -74611 -70163 -69301 9.5 7.12 -74611 23.1 0.00 -74611 -74581 12.3 0.04 -74611 -74611 5.0 0.00
9 -61860 -57035 -55745 9.3 9.89 -61860 4.0 0.00 -61860 -61860 8.9 0.00 -61860 -61860 3.8 0.00

10 -72805 -70061 -68821 9.4 5.47 -72805 35.2 0.00 -72805 -72805 9.2 0.00 -72805 -72805 5.0 0.00
Avg -64833.6 -60992.5 -59766.5 9.4 7.88 -64784.8 30.7 0.08 -64828.4 -64809.6 9.5 0.04 -64833.6 -64831.2 5.5 0.00

Table 14 Results for instances with 100 wells, 10 rigs and H = 300

VNS BPC ALNS HGA
Inst. BKUB

Best Avg Time Dev Best Time Dev Best Avg Time Dev Best Avg Time Dev
(s) (%) (s) (%) (s) (%) (s) (%)

1 -111649 -105263 -102799 7.8 7.93 -111649 9.7 0.00 -111649 -111649 7.7 0.00 -111649 -111649 3.7 0.00
2 -97802 -91016 -89987 7.8 7.99 -97789 12.5 0.01 -97802 -97793 7.2 0.01 -97802 -97800.7 4.4 0.00
3 -100913 -96408 -95002 7.8 5.86 -100898 58.0 0.01 -100913 -100913 7.8 0.00 -100913 -100913 4.5 0.00
4 -96886 -91514 -90444 7.8 6.65 -96886 8.9 0.00 -96886 -96871 7.7 0.02 -96886 -96886 4.5 0.00
5 -102631 -99087 -98146 7.8 4.37 -102631 5.7 0.00 -102631 -102626 7.4 0.00 -102631 -102631 3.9 0.00
6 -89949 -83927 -82181 8.0 8.64 -89948 67.5 0.00 -89949 -89949 8.4 0.00 -89949 -89949 4.5 0.00
7 -96842 -92404 -90208 7.7 6.85 -96737 7.1 0.11 -96842 -96804 6.0 0.04 -96842 -96842 4.0 0.00
8 -108731 -101492 -100140 7.8 7.90 -108613 37.8 0.11 -108731 -108715 7.3 0.01 -108731 -108731 4.5 0.00
9 -98843 -93986 -93154 7.7 5.76 -98843 25.5 0.00 -98843 -98702 8.0 0.14 -98843 -98821.8 5.1 0.02

10 -109304 -103685 -101881 7.8 6.79 -109304 6.6 0.00 -109304 -109299 7.7 0.00 -109304 -109304 3.9 0.00
Avg -101355.0 -95878.2 -94394.2 7.8 6.87 -101329.8 23.9 0.02 -101355.0 -101332.1 7.5 0.02 -101355.0 -101352.8 4.3 0.00
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Table 15 Results for instances with 200 wells, 5 rigs and H = 200

VNS BPC ALNS HGA
Inst. BKUB

Best Avg Time Dev Best Time Dev Best Avg Time Dev Best Avg Time Dev
(s) (%) (s) (%) (s) (%) (s) (%)

1 -40257 -38214 -36976 25.7 8.15 -40257 60.8 0.00 -40257 -40174 26.0 0.21 -40257 -40257 26.6 0.00
2 -35084 -29801 -29437 25.0 16.10 -35084 2.6 0.00 -35084 -34769 20.2 0.90 -35084 -35084 35.9 0.00
3 -40195 -38295 -37286 25.9 7.24 -40195 19.7 0.00 -40131 -40122 29.9 0.18 -40195 -40195 28.3 0.00
4 -40523 -38054 -37260 25.7 8.05 -40492 4.6 0.08 -40519 -40455 26.9 0.17 -40523 -40523 24.5 0.00
5 -40194 -36328 -35396 25.6 11.94 -40194 5.2 0.00 -40194 -40187 24.5 0.02 -40194 -40194 24.2 0.00
6 -42335 -39977 -39617 25.8 6.42 -42335 12.7 0.00 -42322 -42317 35.4 0.04 -42335 -42320 25.8 0.03
7 -33070 -31559 -30749 25.5 7.02 -33070 26.2 0.00 -33070 -33062 20.2 0.02 -33070 -33063 24.8 0.02
8 -39517 -36798 -36409 26.0 7.86 -39517 3.4 0.00 -39517 -39229 30.6 0.73 -39517 -39517 25.4 0.00
9 -45683 -42140 -41522 25.7 9.11 -45683 3.7 0.00 -45683 -45647 27.7 0.08 -45683 -45664 23.2 0.04

10 -38036 -36159 -35243 25.8 7.34 -38036 1.9 0.00 -38036 -38036 25.3 0.00 -38036 -38036 25.9 0.00
Avg -39489.4 -36732.5 -35989.5 25.7 8.92 -39486.3 14.1 0.01 -39481.3 -39399.8 26.6 0.23 -39489.4 -39485.4 26.5 0.01

Table 16 Results for instances with 200 wells, 10 rigs and H = 200

VNS BPC ALNS HGA
Inst. BKUB

Best Avg Time Dev Best Time Dev Best Avg Time Dev Best Avg Time Dev
(s) (%) (s) (%) (s) (%) (s) (%)

1 -67670 -61802 -60404 51.8 10.74 -67670 6.1 0.00 -67670 -67455 50.3 0.32 -67670 -67670 26.4 0.00
2 -61377 -55339 -54265 51.3 11.59 -61377 26.2 0.00 -61366 -61319 45.3 0.09 -61377 -61376 22.4 0.00
3 -66032 -59862 -59051 51.7 10.57 -66032 25.6 0.00 -65968 -65772 56.9 0.39 -66032 -65942 28.2 0.14
4 -67445 -61184 -60407 52.2 10.44 -67399 69.8 0.07 -67445 -67299 52.8 0.22 -67445 -67436 29.4 0.01
5 -72658 -68561 -67471 52.2 7.14 -72658 18.1 0.00 -72658 -72658 52.4 0.00 -72658 -72658 20.9 0.00
6 -67122 -61986 -61603 52.0 8.22 -67122 55.5 0.00 -67111 -66654 55.7 0.70 -67122 -67119 31.6 0.00
7 -60036 -54355 -52925 51.5 11.84 -60036 7.7 0.00 -60036 -59905 39.7 0.22 -60036 -60036 23.8 0.00
8 -60350 -57002 -55935 51.9 7.32 -60350 22.6 0.00 -60350 -60316 54.2 0.06 -60350 -60350 27.0 0.00
9 -79301 -72789 -71915 52.6 9.31 -79301 24.2 0.00 -79301 -79172 62.0 0.16 -79301 -79301 29.0 0.00

10 -61968 -55564 -54712 51.8 11.71 -61823 22.7 0.23 -61968 -61951 54.8 0.03 -61968 -61968 28.0 0.00
Avg -66395.9 -60844.4 -59868.8 51.9 9.89 -66376.8 27.9 0.03 -66387.3 -66250.1 52.4 0.22 -66395.9 -66385.5 26.7 0.02
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Table 17 Results for instances with 200 wells, 5 rigs and H = 300

VNS BPC ALNS HGA
Inst. BKUB

Best Avg Time Dev Best Time Dev Best Avg Time Dev Best Avg Time Dev
(s) (%) (s) (%) (s) (%) (s) (%)

1 -90317 -82385 -81650 44.5 9.60 -90317 41.1 0.00 -90301 -89678 44.6 0.71 -90317 -90317 26.5 0.00
2 -83684 -71222 -68499 44.1 18.15 -83684 28.4 0.00 -83640 -83066 35.5 0.74 -83684 -83308 31.5 0.45
3 -91981 -80689 -79531 44.7 13.54 -91981 32.4 0.00 -91806 -91482 50.6 0.54 -91981 -91981 27.6 0.00
4 -91917 -82239 -79066 44.7 13.98 -91911 147.0 0.01 -91901 -91652 45.9 0.29 -91917 -91917 23.7 0.00
5 -91757 -84210 -81643 44.6 11.02 -91757 296.9 0.00 -91757 -91434 42.3 0.35 -91757 -91757 24.2 0.00
6 –96136 -84740 -82257 44.8 14.44 –96136 1185.3 0.00 -95941 -95329 60.5 0.84 –96136 -96056 29.4 0.08
7 -76049 -68103 -67107 44.3 11.76 -76049 718.7 0.00 -76046 -76026 32.9 0.03 -76049 -75984 27.7 0.09
8 -89421 -80513 -79293 44.5 11.33 -89421 177.6 0.00 -89421 -89355 53.5 0.07 -89421 -89421 20.7 0.00
9 -99962 -89006 -87665 45.1 12.30 -99953 109.9 0.01 -99459 -98643 46.3 1.32 -99962 -99962 24.8 0.00

10 -86564 -79675 -78303 43.8 9.54 -86564 229.8 0.00 -86431 -86332 42.1 0.27 -86564 -86562 30.7 0.00
Avg -89778.8 -80278.2 -78501.4 44.5 12.56 -89777.3 296.7 0.00 -89670.3 -89299.7 45.4 0.52 -89778.8 -89726.5 26.7 0.06

Table 18 Results for instances with 200 wells, 10 rigs and H = 300

VNS BPC ALNS HGA
Inst. BKUB

Best Avg Time Dev Best Time Dev Best Avg Time Dev Best Avg Time Dev
(s) (%) (s) (%) (s) (%) (s) (%)

1 -148427 -130721 -128608 68.6 13.35 -148346 706.0 0.05 -148427 -147902 65.0 0.35 -148427 -148380.6 19.5 0.03
2 -138040 -124751 -122179 67.9 11.49 -137013 571.7 0.74 -137923 -137794 54.3 0.18 -138040 -137996.9 23.8 0.03
3 -149890 -132437 -130005 67.2 13.27 -149278 1016.0 0.41 -149651 -148910 73.8 0.65 -149890 -149652.5 22.2 0.16
4 -151996 -135637 -134469 67.3 11.53 -151996 400.5 0.00 -151996 -151477 69.5 0.34 -151996 -151912.4 20.8 0.06
5 -159150 -143746 -140367 67.7 11.80 -158972 436.1 0.11 -159020 -158813 63.7 0.21 -159150 -159150 20.5 0.00
6 -153497 -138154 -134175 67.2 12.59 -153496 700.4 0.00 -153496 -152108 71.9 0.90 -153497 -153497 20.1 0.00
7 -134005 -119723 -117532 67.9 12.29 -133930 393.1 0.06 -134005 -133648 44.5 0.27 -134005 -133990.3 19.1 0.01
8 -139587 -122282 -120769 67.4 13.48 -137883 995.4 1.22 -139112 -138815 70.1 0.55 -139587 -139424.9 22.9 0.12
9 -169910 -148248 -145555 68.3 14.33 -169910 2272.6 0.00 -169543 -169091 75.6 0.48 -169910 -169686.3 19.9 0.13

10 -143778 -124489 -122783 67.1 14.60 -143554 664.4 0.16 -143305 -142783 73.6 0.69 -143778 -143649.9 22.5 0.09
Avg -148828.0 -132018.8 -129644.2 67.6 12.87 -148437.8 815.6 0.28 -148647.8 -148134.1 66.2 0.46 -148828.0 -148734.1 21.1 0.06
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