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Abstract In continuous branch-and-bound algorithms, a very large number of boxes near
global minima may be visited prior to termination. This so-called cluster problem (Du and
Kearfott, 1994) is revisited and a new analysis is presented. Previous results are confirmed,
which state that at least second-order convergence of the relaxations is required to over-
come the exponential dependence on the termination tolerance. Additionally, it is found that
there exists a threshold on the convergence order pre-factor which can eliminate the clus-
ter problem completely for second-order relaxations. Thisresult indicates that, even among
relaxations with second-order convergence, behavior in branch-and-bound algorithms may
be fundamentally different depending on the pre-factor. A conservative estimate of the pre-
factor is given forαBB relaxations.
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1 Introduction

It is well known that branch-and-bound algorithms for continuous global optimization [5, 8]
can visit a large number of small boxes in the vicinity of a global minimizer. This behavior
was first discussed by Du and Kearfott [4] in the context of interval branch-and-bound meth-
ods and the authors coined the termcluster problemfor this phenomenon. They provided
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an analysis to establish an upper bound on the number of boxesthat cannot be fathomed
by value dominance before the width of the boxes becomes smaller then a user specified
tolerance. The authors were also the first to point out the importance of the convergence
order of the bounding method (see Definition 1) in mitigatingthe cluster problem. Later,
Neumaier [13] provided a similar analysis: it considers a hyperellipsoidal region around an
unconstrained global minimizer, uses the determinant of the Hessian at the global minimizer
instead of its smallest eigenvalue and introduces the proportionality constant for the volume
of a hypersphere. Regardless, the result of the analysis is similar to Du and Kearfott [4] and
stresses the importance of the convergence order. The main conclusion in these articles is
that, in the worst case, at least second-order convergence is necessary to overcome the clus-
ter problem. However, even with second-order convergence,the number of boxes still has
exponential dependence on the problem dimension as Neumaier claims in [13]. Recently,
Schöbel and Scholz [15] studied the worst-case behavior of branch-and-bound algorithms
and gave an upper bound on the number of boxes needed for convergence that is very con-
servative.

If the minimizer coincides with the vertex of a box at some point in the branch-and-
bound algorithm than an exponential number of boxes will contain this minimizer. The
analysis presented below assumes, however, that boxes can be placed so that the minimizer
is in the center of the box. Strategies such as back-boxing [17] or epsilon-inflation [10] can
potentially avoid the former case. Also, see the discussionin [13, Ch. 15].

Here, the cluster problem is revisited and the analysis is refined. In particular, it is shown
that the convergence order pre-factor is important: assuming second-order convergence, the
exponential dependence on the problem dimension can be avoided if the pre-factor is suffi-
ciently small and the minimizer is always in the interior of abox in the branch-and-bound
tree. Thus, not all relaxations with second-order convergence are equal in higher dimensions.
On the contrary, tightness of the relaxations, for which thepre-factor is a good measure, is
very important. Also, it is demonstrated how to estimate thepre-factor conservatively for
theαBB relaxations [1, 2, 9].

2 Analysis of the cluster problem

It is assumed that the reader is familiar with branch-and-bound algorithms for continuous
global optimization [5, 8] and the construction and use of convex relaxations in such algo-
rithms [1, 2, 11, 16].

Assumption 1 SupposeD ⊂ R
n is open,C ⊂ D is convex and letf : D → R be twice

differentiable onD. Suppose thatx∗ is theunique unconstrainedglobal minimum of f on
C, so that∇ f (x∗) = 0 and suppose furthermore that∇2 f (x∗) is positive definite.

SupposeZ ⊂ R
n. The set of all interval subsetsof Z is denoted byIZ. The width of an

n-dimensional intervalX is defined asw(X) = maxi=1,...,n(xU
i −xL

i ).

Definition 1 Let a continuous convex relaxation off on anyX ∈ IC be given byf cv
X : X →

R. The relaxations are said to haveconvergence orderβ ≥ 1 if there existsK > 0 such that

min
x∈X

f (x)−min
x∈X

f cv
X (x) ≤ Kw(X)β

, ∀X ∈ IC. (1)

Note that convergence order is typically defined as the difference of the width of the image
of X under the enclosure off and the width of the image ofX under f [3, 12, 14]. However,
Definition 1 is more natural for the purpose of this paper and the difference is unimportant
for this argument.
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Assumption 2 Let ε be the termination tolerance for the branch-and-bound algorithm and
assume the algorithm has found the upper bound,UBDk = f (x∗). Assume the algorithm
terminates at iterationk whenUBDk −LBDk ≤ ε, whereLBDk is the current lower bound.

Lemma 1 Let X∗ ∈ IC be such thatx∗ ∈ X∗. If the bound given by Definition 1 is sharp for
all X ∈ IC, then a necessary condition for termination of the branch-and-bound algorithm
is

w(X∗) ≤
( ε

K

)
1
β

. (2)

Proof At any iterationLBDk ≤ minx∈X∗ f cv
X∗(x) ≤ UBDk holds. Thus, a necessary condition

for termination isUBDk −minx∈X∗ f cv
X∗(x) ≤ ε. In the worst case, the bound on the underes-

timation by the relaxation in (1) is exact so that

UBDk − min
x∈X∗ f cv

X∗(x) = min
x∈X∗ f (x)− min

x∈X∗ f cv
X∗(x) = Kw(X∗)β

.

Therefore, the algorithm terminates only ifKw(X∗)β ≤ ε. ⊓⊔
The following arguments adopt the convention that a nodeX̃ is fathomed by value dom-

inance only when minx∈X̃ f cv
X̃

(x) > UBDk. In this situation, the stack is interpreted as rep-
resenting the subset ofC that can possibly contain global minima. This convention does
not change the number of nodes processed by the branch-and-bound algorithm, it will only
affect the number of nodes remaining on the stack at termination.

Lemma 2 Defineδ =
( ε

K

)
1
β and consider any nodẽX ∈ IC with w(X̃) ≤ δ . Introduce the

following partition of C:

A = {x ∈ C : f (x)− f (x∗) > ε},

B = {x ∈ C : f (x)− f (x∗) ≤ ε}.

Then, any nodẽX ⊂ A will be fathomed by value dominance.

Proof Suppose that̃X ⊂ A so that minx∈X̃ f (x) −UBDk = minx∈X̃ f (x) − f (x∗) > ε. By
construction ofX̃, even in the worst case, Eq. (1) implies that

min
x∈X̃

f (x)−min
x∈X̃

f cv
X̃ (x) ≤ Kδ β = ε. (3)

Since

min
x∈X̃

f cv
X̃ (x) ≥ min

x∈X̃
fX̃(x)− ε > UBDk

it follows thatX̃ will be fathomed by value dominance. ⊓⊔
Note that this result indicates that any nodeX̃ ⊂ A will be fathomed when or beforew(X̃) =
δ . On the other hand, consider a nodeX̃ such thatX̃∩B 6= /0 andw(X̃) = δ with δ as defined
in Lemma 2. FromX̃ ∩B 6= /0,

min
x∈X̃

f (x)−UBDk = min
x∈X̃

f (x)− f (x∗) ≤ ε

so that in the worst case (3)
min
x∈X̃

f cv
X̃ (x)−UBDk ≤ 0.

In the worst case, such nodes will not be fathomed by value dominance.
Any nodeX̃ containingx∗ will have X̃ ∩ B 6= /0. In Lemma 1 it was argued that, when

the convergence order bound is sharp, the node containingx∗ must have width less than or
equal toδ to guarantee termination. That is, in the worst case,B must be covered by nodes
with w(X̃) = δ and none of them will be fathomed by value dominance.
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2.1 Refinement of Neumaier’s argument for a bound on the number of boxes necessary to
coverB

Next, the number of boxes of widthδ required to coverB is estimated. This argument
will follow the idea presented by Neumaier [13]. Sincef is twice differentiable atx∗ and
x∗ ∈ intC, it follows that

f (x)− f (x∗) =
1
2
(x−x∗)T∇2 f (x∗)(x−x∗)+ r(x−x∗),

so thatB is given by

B =

{

x ∈ C :
1
2
(x−x∗)T∇2 f (x∗)(x−x∗)+ r(x−x∗) ≤ ε

}

. (4)

(4) describes a nearly hyperellipsoidal region when|r(x − x∗)| ≪ ε. This approximation
becomes increasingly better for smallerε because|r(x − x∗)| → 0 asε → 0. Neumaier
[13] compares the volume inside the hyperellipsoid,V, with the volume of a box to bound
the number of boxesN that cover the interior of the hyperellipsoid from below. Denote
∆ ≡ det(∇2 f (x∗)). Since

V(ε,n,∆) = γn

√

√

√

√det

[

(

∇2 f (x∗)
2ε

)−1
]

= γn

√

(2ε)n

∆
,

whereγn = π
n
2

Γ ( n
2+1) [7], it follows that

N ≈ V(ε,n,∆)

δ n =
γn

√

(2ε)n

∆
( ε

K

)
n
β

= γnK
n
β

√

2n

∆
εn
(

1
2− 1

β

)

. (5)

This argument is valid only when boxes are able to approximate the volume inside the hy-
perellipsoid well. Moreover, asn → ∞, γn → 0 [6, 7]. For constant∆ andε, it follows that
V → 0 asn→ ∞. Thus, this argument suggests that the cluster problem should disappear for
sufficiently largen for any fixedK, β , and∆ .

Consider the volume inside a slightly smaller hyperellipsoid by replacingε in (4) with
ε −ξ where 0< ξ ≪ ε. It is easy to show that

V(ε,n,∆)−V(ε −ξ ,n,∆)

V(ε,n,∆)
= 1−

√

(

1− ξ
ε

)n

→ 1 as n → ∞.

For higher dimensions, nearly all of the volume inside the hyperellipsoid is close to its
surface and thus it is also distributed in space (i.e.,not concentrated at the center). The
estimate forN, which was obtained by comparing volumes as suggested by (5), may not
lead to accurate results. A different analysis is necessary.
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2.2 A new analysis of the cluster problem

A new argument for the number of boxes of widthδ required to cover the volume inside
the hyperellipsoidB will be given. In particular, two cases will be considered here. First, the
simpler case of a hypersphere (i.e.,∇2 f (x∗) = I ) will be treated. Second, the results are then
generalized to the case of a hyperellipsoid.

Assumption 3 Assume that there exists only one boxX̃ visited by the branch-and-bound
algorithm such thatw(X̃) = δ andx∗ ∈ X̃. Furthermore, assume thatx∗ is in the center of̃X.

Note that ifx∗ is in the interior of the box, but not in the center, then it will become neces-
sary to use an apparent box widthδ ′ ≡ 2mini=1,...,n{x̃U

i −x∗
i ,x

∗
i − x̃L

i } ≤ δ in the following
analysis instead.

For easier notation, a translated coordinate systemy = x−x∗ will be used hereafter, in
which the considered approximation ofB as the volume inside an hyperellipsoid is given by

B̃ =

{

y :
1
2ε

yT∇2 f (0)y ≤ 1

}

.

Denote aboxcentered aty0 with width ω by �ω(y0) ≡ {y : ‖y−y0‖∞ ≤ ω
2 }.

2.2.1 Case 1: Hypersphere

Lemma 3 Suppose that∇2 f (x∗) = I and let r=
√

2ε.

(a) If δ ≥ 2r, then let N= 1.
(b) If 2r√

m−1
> δ ≥ 2r√

m where m∈ N, m≤ n, 2 ≤ m≤ 18, then let

N =
m−1

∑
i=0

2i
(

n
i

)

+2n

⌈

m−9
9

⌉

.

(c) Otherwise let

N =

⌈

2r

δ
√

2

⌉n−1
(

⌈

2r

δ
√

2

⌉

+2n

⌈

r − r√
2

δ

⌉)

.

Then, N is an upper bound on the number of boxes with widthδ required to coverB̃.

Proof By definition, B̃ =
{

y : 1
2ε yTIy = 1

2ε yTy ≤ 1
}

describes the region inside a hyper-
sphere about the origin with radiusr =

√
2ε.

(a) Suppose thatδ ≥ 2r. One finds immediately thatN = 1 sincey ∈ B̃ impliesy ∈ �δ (0)
as‖y‖∞ ≤ ‖y‖2 andδ ≥ 2r.

(b) Suppose that 1< m ≤ 18 andδ ≥ 2r√
m. Place a box with widthδ at the center of the

hypersphere. Letei be anyn-vector whose components are 0 excepti of the entries which
are± δ

2 . Such anei represents the(n− i)-faces of the hypercube. In particular, eachei

is the midpoint of such a face and it is well known that ann-dimensional hypercube has
F(n, i) ≡ 2i

(n
i

)

of these. Hence,ei is representative ofF(n, i) directions.
It will be argued that, in addition to the central box, placing a single box along each of
thee1, . . . ,em directions is sufficient to cover̃B.
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Fig. 1: Illustration of different cases for a circle where dashed regions show boxes required
to coverB̃

If δ >
2r√
m then 2r

δ
√

mem 6∈ B̃. If δ = 2r√
m, then 2r

δ
√

mem ∈ �δ (0) and also 2r
δ
√

mem ∈ ∂ B̃. As

a consequence, faces lower than the(n−m)-face need not be considered as they do not
intersect the hypersphere whereas additional boxes must beplaced in the direction of all
faces from the(n−m+1)-face up to the(n−1)-face to coverB̃.
Setδ = 2r√

m, the width of the smallest permissible box. Next, consider the shortest dis-

tance from 2r
δ
√

i
ei , which is a point on the surface of the hypersphere, to the surface of

the central box in the∞-norm: r√
i
− δ

2 = r√
i
− r√

m. When this distance is smaller thanδ ,
then one box suffices to cover the remaining parts of the hypersphere in theei direction.
This holds true for anyi = 2, . . . ,m andm≤ 18. Whenm> 9, then two boxes must be
placed in each of thee1 directions, however.

(c) Otherwise, the central region inside the hypersphere cannot be covered by a single box.
Instead, a number of boxes that grows exponentially withn is necessary to fill the central
region. Additional boxes must be placed along the coordinate axes so thatN = mn +

2nmn−1
⌈

1
δ

(

r − r√
2

)⌉

wherem is the smallest integer so thatmδ ≥ 2r√
2
. Thus, the result

follows. ⊓⊔

Note that the number of boxes presented for the second case inLemma 3 isO(nm−1).
Also, while it is possible to construct tighter bounds onN for the casem> 18, it becomes
much more involved. In particular, it becomes necessary to place more than one box in the
ei , i > 1 direction, which complicates the geometry. Roughly speaking, these boxes will only
touch each other in a lower dimensional face leaving parts ofB̃ uncovered, hence, requiring
additional boxes.

The different cases are illustrated forn = 2 andm= 2 in Figure 1.

2.2.2 Case 2: Hyperellipsoid

The results in Lemma 3 will now be generalized to a hyperellipsoid by dropping the as-
sumption that∇2 f (x∗) = I .

Theorem 1 Let λ1 > 0 be the smallest eigenvalue of∇2 f (x∗) and r=
√

2ε
λ1

.

(a) If δ ≥ 2r or, equivalently, if
( ε

K

)
1
β ≥ 2

√

2ε
λ1

,

then let N= 1.
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Fig. 2: Illustration of different cases for an ellipse wheredashed regions show boxes required
to coverB̃

(b) Suppose that 2r√
m−1

> δ ≥ 2r√
m where m∈ N, m≤ n, 2 ≤ m≤ 18or, equivalently,

2
√

2ε
√

(m−1)λ1
>

( ε
K

)
1
β ≥ 2

√
2ε√

mλ1
.

Then let

N =
m−1

∑
i=0

2i
(

n
i

)

+2n

⌈

m−9
9

⌉

.

(c) Otherwise, let

N =

⌈

2K
1
β ε( 1

2− 1
β )λ− 1

2
1

⌉n−1(⌈

2K
1
β ε( 1

2− 1
β )λ− 1

2
1

⌉

+2n

⌈

(
√

2−1)K
1
β ε( 1

2− 1
β )λ− 1

2
1

⌉)

.

Then, N is an upper bound on the number of boxes with widthδ required to coverB̃.

Proof Supposey ∈ B̃ so thatyT∇2 f (0)y ≤ 2ε. By Rayleigh’s principle,

0 ≤ λ1yTy ≤ yT∇2 f (0)y ≤ 2ε

so thatλ1yTy ≤ 2ε. Thus,B̃⊂
{

z : λ1
2ε zTz ≤ 1

}

, the volume inside a hypersphere with radius

r =
√

2ελ−1
1 . Hence, Lemma 3 withr =

√

2ελ−1
1 can be applied and it provides an upper

bound forN. ⊓⊔

The different cases are illustrated forn = 2 andm= 2 in Figure 2.

3 Discussion of Theorem 1

Studying the expressions derived above forN, two characteristics are noteworthy:

– the variation ofN with ε depends on the value ofβ and
– the influence ofK on the behavior ofN.

Both will be discussed in more detail. First, consider the functional dependence ofN on ε
for differentβ .
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Case N

K ≤ λ1
8 1

λ1
8 < K ≤ λ1

4 1+2n
λ1
4 < K ≤ 3λ1

8 1+2n2

3λ1
8 < K ≤ λ1

2 1+ 8
3n−3n2 + 4

3n3

...
...

K >
9λ1
4

⌈

2
√

Kλ−1
1

⌉n−1(⌈

2
√

Kλ−1
1

⌉

+2n

⌈

(
√

2−1)
√

Kλ−1
1

⌉)

Table 1: Summary of results for number of boxes required to cover B̃ whenβ = 2

1. Whenβ = 1 andK not necessarily small, thenN ∝
(

1
ε
)

n
2 . The number of boxes re-

quired to cover the hyperellipsoid will grow rapidly as the convergence toleranceε is
decreased—the well-known cluster problem.

2. Whenβ = 2, thenN is independent ofε for any value ofK, i.e., the number of boxes
required to cover the hyperellipsoid is insensitive toε.

3. Whenβ = 3 andK not necessarily small, thenN ∝ ε
n
6 , and the number of boxes re-

quired to cover the hyperellipsoid will decrease with decreasingε. Note that this does
not necessarily mean that the total number of nodes requiredfor termination decreases
with the tolerance, because this analysis only estimates the number of nodes to coverB,
which itself decreases in size asε is decreased.

These observations agree with the results found in the literature [4, 13].
Second, assume thatβ = 2 and focus on howK parametrizes the behavior ofN. Table 1

summarizes these results for the caseβ = 2. WhenK is sufficiently small, i.e.,K ≤ λ1
8 , the

cluster problem is completely absent (N = 1). Recall thatλ1 denotes the smallest eigenvalue
of ∇2 f (x∗). Whenλ1 is small, this bound may only hold forK ≪ 1. Depending on the
magnitude ofK, N is polynomial (of varying degree) inn. For example, whenK ≤ λ1

4 ,

thenN grows linearly with problem size and whenK ≤ 3λ1
8 the number of boxes grows

quadratically withn. Both cases are remarkable as they suggest a fundamentally different
behavior of different relaxations with second-order convergence each depending on these
thresholds forK. Prior analyses of the cluster problem [4, 13] stop short of explicitly drawing
this conclusion.

4 Estimating the convergence order pre-factorK

In light of the discussion above, it is interesting not only to determine the convergence order
of different relaxations but also to estimate the pre-factor K. Here,αBB relaxations [1, 2, 9]
will be considered as a simple illustration.

In the most general case,αBB relaxations off onX ∈ IC are defined as

f cv
X (x) = f (x)+

n

∑
i=1

αi(X)(xL
i −xi)(x

U
i −xi)

whereαi(X) are non-negative reals that are sufficiently large to guarantee convexity off cv
X

onX. Different methods have been proposed to calculateαi [1, 9] andαi(X) can be updated
as X changes. Regardless of the method, an upper bound onK can be obtained by the
following result.
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Theorem 2 ConsiderαBB relaxations of f and suppose C is an interval. Letα ≡ maxi=1,...,n αi

whereαi has been calculated on C. Then,β = 2 and K≤ 1
4αn.

Proof It is easy to see that, for anyX ∈ IC,

min
x∈X

f (x)−min
x∈X

f cv
X (x) = min

x∈X
f (x)−min

x∈X

(

f (x)+
n

∑
i=1

αi(x
L
i −xi)(x

U
i −xi)

)

≤ min
x∈X

f (x)−min
x∈X

f (x)−min
x∈X

n

∑
i=1

αi(x
L
i −xi)(x

U
i −xi)

=
n

∑
i=1

αi

(

w(Xi)

2

)2

≤ 1
4

αn(w(X))2
.

Thus, it follows thatβ = 2 and thatK = 1
4αn is a conservative estimate of the pre-factor.⊓⊔

In Section 3 it was remarked thatK ≤ 9λ1
4 must hold for a second-order relaxation in or-

der to prevent the exponential growth ofN with n. ForαBB relaxations this condition trans-
lates toα ≤ 9λ1

n . Recall thatλ1 > 0 is the smallest eigenvalue of∇2 f (x∗), not the smallest
eigenvalue of∇2 f on C. Note also that Theorem 2 does not indicate whetherαBB relax-
ations can achieve this criterion. Furthermore, the resultassumes thatαi does not change
with X.

Suppose now that we construct a newα on each interval visited. A note-worthy feature
of αBB relaxations is thatα(X1) ≥ α(X2) for intervalsX1, X2 such thatX1 ⊃ X2. Hence,
when α is re-computed for eachXl in a sequence of nested intervals, the corresponding
sequence{α l}, and thus also the sequence of pre-factors{K l}, is monotonically decreasing.
This explains the behavior reported in [3, Figures 1, 2] forαBB relaxations with variable
α. It is not possible, however, to argue that in general liml→∞ α l = 0, which would imply a
super-quadratic order of convergence, see [3, Figure 3] fora counter-example.

Lastly, note thatαBB relaxations coincide withf onX whenα(X) = 0 so that the lower
bound is exact in this case.

5 Conclusion

The analysis of the cluster problem has been revisited in this paper. Prior results that reveal
the dependence of the cluster problem on the convergence order β and the termination tol-
eranceε have been verified. Furthermore, even for relaxations withβ = 2, the new analysis
indicates fundamentally different scaling behavior depending on the value ofK, the pre-
factor in the convergence order. Thus, tighter relaxationscan lead to dramatic improvements
in mitigating the cluster problem.
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