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Abstract In continuous branch-and-bound algorithms, a very largaber of boxes near
global minima may be visited prior to termination. This soled cluster problem (Du and
Kearfott, 1994) is revisited and a new analysis is presemegl/ious results are confirmed,
which state that at least second-order convergence of tagatens is required to over-
come the exponential dependence on the termination taerawditionally, it is found that
there exists a threshold on the convergence order prerfattich can eliminate the clus-
ter problem completely for second-order relaxations. Tésslt indicates that, even among
relaxations with second-order convergence, behaviorandir-and-bound algorithms may
be fundamentally different depending on the pre-factoroAservative estimate of the pre-
factor is given fora BB relaxations.
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1 Introduction

It is well known that branch-and-bound algorithms for contius global optimization [5, 8]
can visit a large number of small boxes in the vicinity of alglbminimizer. This behavior
was first discussed by Du and Kearfott [4] in the context vl branch-and-bound meth-
ods and the authors coined the tectuster problenfor this phenomenon. They provided
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an analysis to establish an upper bound on the number of libaesannot be fathomed
by value dominance before the width of the boxes becomedeamtaén a user specified
tolerance. The authors were also the first to point out theoitapce of the convergence
order of the bounding method (see Definition 1) in mitigatihg cluster problem. Later,
Neumaier [13] provided a similar analysis: it considers pdrgllipsoidal region around an
unconstrained global minimizer, uses the determinanteHbssian at the global minimizer
instead of its smallest eigenvalue and introduces the ptiopality constant for the volume
of a hypersphere. Regardless, the result of the analysiwsilsisto Du and Kearfott [4] and
stresses the importance of the convergence order. The maalusion in these articles is
that, in the worst case, at least second-order convergemeeessary to overcome the clus-
ter problem. However, even with second-order convergetheenumber of boxes still has
exponential dependence on the problem dimension as Neuofaims in [13]. Recently,
Schobel and Scholz [15] studied the worst-case behaviorasfdh-and-bound algorithms
and gave an upper bound on the number of boxes needed forrgence that is very con-
servative.

If the minimizer coincides with the vertex of a box at somenpan the branch-and-
bound algorithm than an exponential number of boxes willtamnthis minimizer. The
analysis presented below assumes, however, that boxeegdaded so that the minimizer
is in the center of the box. Strategies such as back-boxifijgdilepsilon-inflation [10] can
potentially avoid the former case. Also, see the discussi¢b3, Ch. 15].

Here, the cluster problem is revisited and the analysidiisa@. In particular, it is shown
that the convergence order pre-factor is important: assgisecond-order convergence, the
exponential dependence on the problem dimension can béea/dithe pre-factor is suffi-
ciently small and the minimizer is always in the interior db@x in the branch-and-bound
tree. Thus, not all relaxations with second-order convergere equal in higher dimensions.
On the contrary, tightness of the relaxations, for whichghefactor is a good measure, is
very important. Also, it is demonstrated how to estimatephefactor conservatively for
theaBB relaxations [1, 2, 9].

2 Analysis of the cluster problem

It is assumed that the reader is familiar with branch-angkbloalgorithms for continuous
global optimization [5, 8] and the construction and use gfvex relaxations in such algo-
rithms [1, 2, 11, 16].

Assumption 1 SupposeD C R" is open,C C D is convex and letf : D — R be twice
differentiable orD. Suppose that* is theunique unconstrainedlobal minimum off on
C, so thatf (x*) = 0 and suppose furthermore that f (x*) is positive definite.

SupposeZ C R". The set of all interval subsetsf Z is denoted bylZ. The width of an
n-dimensional intervaX is defined asv(X) = max_1__n(X’ —x).

Definition 1 Let a continuous convex relaxation bon anyX e IC be given byfg": X —
R. The relaxations are said to hasenvergence orde > 1 if there existK > 0 such that

. _ . cVv < ﬁ .
[(ry)rgf(x) min fx'(x) <Kw(X)P, ¥XelC (1)

Note that convergence order is typically defined as the rdiffee of the width of the image
of X under the enclosure dfand the width of the image of underf [3, 12, 14]. However,
Definition 1 is more natural for the purpose of this paper deddifference is unimportant
for this argument.



Assumption 2 Let £ be the termination tolerance for the branch-and-boundrighgo and
assume the algorithm has found the upper bouH8D, = f(x*). Assume the algorithm
terminates at iteratiok whenU BDy — LBDy < €, whereLBDy is the current lower bound.

Lemma 1 Let X* € IC be such thax* € X*. If the bound given by Definition 1 is sharp for
all X € IC, then a necessary condition for termination of the braank-bound algorithm
is

€

1
X*) < (7) v 2
wiX) < (g @)
Proof At any iterationLBDy < minkex+ fgY (x) <UBD holds. Thus, a necessary condition

for termination idJ BDg — minyex: ¥ (x) < €. In the worst case, the bound on the underes-
timation by the relaxation in (1) is exact so that

— min fcv — mi — min f&v _ * ﬁ.
UBDy )@;(Qfx*(x) )I(’\g)l(l‘lf(x) g(gfx (x) = Kw(X*)

Therefore, the algorithm terminates onlyﬁf/v(x*)ﬁ <e. O

The following arguments adopt the convention that a nédefathomed by value dom-
inance only when migp.¢ f£'(x) > UBDx. In this situation, the stack is interpreted as rep-
resenting the subset @ that can possibly contain global minima. This conventioesio
not change the number of nodes processed by the brancheamd+algorithm, it will only
affect the number of nodes remaining on the stack at terioimat

Lemma 2 Defined = (%)% and consider any nod¥ e IC with wWX) < &. Introduce the
following partition of C:

A={xeC: f(x)—f(x*) > e},

B={xeC: f(x)—f(x") <e}.
Then, any nod& c A will be fathomed by value dominance.

Proof Suppose thak C A so that ming f(X) —UBDyx = min, ¢ f(x) — f(x*) > €. By
construction ofX, even in the worst case, Eq. (1) implies that

minf (x) —min f£¥(x) < K&F =e. (3)
xeX xeX
Since
min fZ¥(x) > min fg(x) — & > UBDy
xeX xeX
it follows thatX will be fathomed by value dominance. a

Note that this result indicates that any notie Awill be fathomed when or before(X) =
0. Onthe other hand, consider a notisuch thaiX N B # 0 andw(X) = & with J as defined
in Lemma 2. FronK NB # 0,

min f(x) —UBDx=minf(x) — f(x*) < ¢

xeX xeX
so that in the worst case (3)

infv(x) —
E(T;I)[(] fg'(x) —UBDx < 0.

In the worst case, such nodes will not be fathomed by valuermse.

Any nodeX containingx* will have XN B # 0. In Lemma 1 it was argued that, when
the convergence order bound is sharp, the node contaxiingust have width less than or
equal tod to guarantee termination. That is, in the worst c&must be covered by nodes
with w(X) = 6 and none of them will be fathomed by value dominance.



2.1 Refinement of Neumaier's argument for a bound on the nuofli®oxes necessary to
coverB

Next, the number of boxes of width required to coveB is estimated. This argument
will follow the idea presented by Neumaier [13]. Sintés twice differentiable ak* and
x* € intC, it follows that

f(x)— f(x*) = %(xfx*)TDZf(x*)(xfx*)+r(x7x*),
so thatB is given by
B= {x eC: %(x—x*)TDZf(x*)(x—x*)+r(x—x*) < s}. (4)

(4) describes a nearly hyperellipsoidal region wheix — x*)| < €. This approximation
becomes increasingly better for smallebecausgr(x — x*)| — 0 ase€ — 0. Neumaier
[13] compares the volume inside the hyperellipsddwith the volume of a box to bound
the number of boxe8! that cover the interior of the hyperellipsoid from below.oge
A = det(0?f(x*)). Since

V(g,nA) = V,Q det|:<|:|2;ix*))1:| - (Zj)n7

wherey, = ﬁ‘ﬁ [7], it follows that

22
viena) ” —vnKm/ e(3-5), 5)

5“

This argument is valid only when boxes are able to approxerttad volume inside the hy-
perellipsoid well. Moreover, as — o, y, — 0 [6, 7]. For constanfl andg, it follows that
V — 0 asn — . Thus, this argument suggests that the cluster problemaHmappear for
sufficiently largen for any fixedK, 3, andA.

Consider the volume inside a slightly smaller hyperelligday replacinge in (4) with
€ — & where 0< & < ¢. Itis easy to show that

E n
1—E> —1 as n— oo,

V(e,n,A)-V(e—&,nA)
V(e,n,A) =1 (

For higher dimensions, nearly all of the volume inside thedrgllipsoid is close to its
surface and thus it is also distributed in space (net,concentrated at the center). The
estimate forN, which was obtained by comparing volumes as suggested byn@) not
lead to accurate results. A different analysis is necessary



2.2 A new analysis of the cluster problem

A new argument for the number of boxes of widllrequired to cover the volume inside
the hyperellipsoid will be given. In particular, two cases will be consideredehé-irst, the
simpler case of a hypersphere (i/82f (x*) = 1) will be treated. Second, the results are then
generalized to the case of a hyperellipsoid.

Assumption 3 Assume that there exists only one béwisited by the branch-and-bound
algorithm such thaw(X) = d andx* € X. Furthermore, assume thditis in the center oK.

Note that ifx* is in the interior of the box, but not in the center, then itllwkcome neces-

.....

analysis instead.
For easier notation, a translated coordinate systeax — x* will be used hereafter, in
which the considered approximation®fis the volume inside an hyperellipsoid is given by

~ 1
B= {y: gyTsz(O)y < 1}.

Denote éboxcentered ayo with width w by O (yo) = {y : Iy — Yoll» < $}-
2.2.1 Case 1: Hypersphere

Lemma 3 Suppose thaf?f(x*) =1 and let r= /2¢.

(@) If d > 2r, then let N= 1.
(b) If 2= > &> 2 where me N, m< n,2< m< 18, then let

Jm1 v
m-1 /n m-—9
_ |
N = iZ 2 (i)+2n {—9 -‘

[ (2

Then, N is an upper bound on the number of boxes with wid#dguired to coveB.

(c) Otherwise let

Proof By definition, B = {y: £yTly = LyTy < 1} describes the region inside a hyper-
sphere about the origin with radius= v/2¢.

(a) Suppose thal > 2r. One finds immediately tha = 1 sincey € B impliesy € [5(0)
as||y|le < |lyll2@andd > 2r.

(b) Suppose that £ m< 18 andd > 2—\/%1 Place a box with widtld at the center of the
hypersphere. Leg be anyn-vector whose components are 0 exdeyftthe entries which
areig. Such arg represents thén —i)-faces of the hypercube. In particular, eah
is the midpoint of such a face and it is well known thatradimensional hypercube has
F(ni)=2 () of these. Henceg is representative df (n,i) directions.

It will be argued that, in addition to the central box, placi single box along each of
theey,. .., ey directions is sufficient to covds.



(@ o

Fig. 1: lllustration of different cases for a circle wheresdad regions show boxes required
to coverB

(©

If 5> \Z}then Z_em ¢ B. Ifé_f, 5femeD5(O)andals 5\FemeaB As

a consequence, faces lower than the- m)-face need not be considered as they do not
intersect the hypersphere whereas additional boxes mysabed in the direction of all
faces from thén— m-1)-face up to theén— 1)-face to coveB.

Setd = 2L, the width of the smallest permissible box. Next, consitiershortest dis-

= f,

tance from \/e, which is a point on the surface of the hypersphere, to thacaiof
. d _

the central box in theo-norm: £ Nk Auivis ﬁ. When this distance is smaller than

then one box suffices to cover the remaining parts of the Ispbere in they direction.
This holds true for any=2,...,mandm < 18. Whenm > 9, then two boxes must be
placed in each of the, directions, however.

Otherwise, the central region inside the hypersphemaatzbe covered by a single box.
Instead, a number of boxes that grows exponentially withnecessary to fill the central

region. Additional boxes must be placed along the coordimaes so tha = m" +
2nm-1 [ (r — ﬁﬂ wheremis the smallest integer so thad > % Thus, the result
follows. ad

Note that the number of boxes presented for the second casarima 3 isO(n™1).

Also, while it is possible to construct tighter boundsNrfor the casem > 18, it becomes
much more involved. In particular, it becomes necessaryaoepmore than one box in the
g, i > 1direction, which complicates the geometry. Roughly spegkhese boxes will only
touch each other in a lower dimensional face leaving parBwicovered, hence, requiring
additional boxes.

The different cases are illustrated fo= 2 andm= 2 in Figure 1.

2.2.2 Case 2: Hyperellipsoid

The results in Lemma 3 will now be generalized to a hypersdiig by dropping the as-
sumption thaf1? f (x*) = I.

Theorem 1 LetA; > 0 be the smallest eigenvalue@f f (x*) and r= , /%.

@)

If & > 2r or, equivalently, if

then let N= 1.



Fig. 2: lllustration of different cases for an ellipse wheeshed regions show boxes required
to coverB

(b) Suppose thVa% >0> %] where me N, m< n, 2 < m< 18or, equivalently,

T (@) 2 e
(m—1A; = K/~ vVmAy

Then let

(c) Otherwise, let

111, 171 111, 1
N:{ZKﬁe(? B)Alz-‘ qzméé 2

1 001 1y _1
+2n {(\/2—1)@3(27&1 ZD .
Then, N is an upper bound on the number of boxes with wid#guired to coveB.
Proof Suppose € B so thaty 02 (0)y < 2¢. By Rayleigh’s principle,
0< Ay'y <y'0?f(0)y < 2¢
so thatA;yTy < 2¢. Thus,B C {z : %sz < 1}, the volume inside a hypersphere with radius

r= w/2£/\1*1. Hence, Lemma 3 with = 1/28/\fl can be applied and it provides an upper
bound forN. O

The different cases are illustrated for= 2 andm= 2 in Figure 2.

3 Discussion of Theorem 1

Studying the expressions derived aboveNiotwo characteristics are noteworthy:

— the variation ofN with € depends on the value gfand
— the influence oK on the behavior oN.

Both will be discussed in more detail. First, consider thectional dependence of on
for different3.



Case N

K<h 1
Mok<h 1+2n
%1<K§3A—1 14 2m
3 8 2 4.3
S <K<LF 1+3n-3n"+3n

K>:9§1 [2 K)qﬂnflgz K)\ll:—‘-&-Zn[(ﬁ—l)\/ﬁllD

Table 1: Summary of results for number of boxes required w@B when = 2

1. Whenf = 1 andK not necessarily small, theN O (%)g The number of boxes re-
quired to cover the hyperellipsoid will grow rapidly as thengergence toleranceis
decreased—the well-known cluster problem.

2. Wheng = 2, thenN is independent of for any value ofK, i.e., the number of boxes
required to cover the hyperellipsoid is insensitiveto

3. Whenp = 3 andK not necessarily small, thex 0 €8, and the number of boxes re-
quired to cover the hyperellipsoid will decrease with dasiege. Note that this does
not necessarily mean that the total number of nodes reqtargdrmination decreases
with the tolerance, because this analysis only estimatesuimber of nodes to cove

which itself decreases in size ass decreased.

These observations agree with the results found in thetites [4, 13].

Second, assume th@t= 2 and focus on how parametrizes the behavior Nf Table 1
summarizes these results for the cse 2. WhenK is sufficiently small, i.e.K < ’\—81, the
cluster problem is completely abseht£ 1). Recall thafA; denotes the smallest eigenvalue
of 0?f(x*). WhenA; is small, this bound may only hold fd¢ < 1. Depending on the
magnitude ofK, N is polynomial (of varying degree) in. For example, whei < %1,
thenN grows linearly with problem size and whéh < %1 the number of boxes grows
guadratically withn. Both cases are remarkable as they suggest a fundameriffdhgat
behavior of different relaxations with second-order cogeace each depending on these
thresholds foK. Prior analyses of the cluster problem [4, 13] stop shorkpfieitly drawing
this conclusion.

4 Estimating the convergence order pre-factoK

In light of the discussion above, it is interesting not omyetermine the convergence order
of different relaxations but also to estimate the pre-faktoHere,a BB relaxations [1, 2, 9]
will be considered as a simple illustration.

In the most general caseBB relaxations off on X € IC are defined as

1900 = £00-+ 3 ex(X) 0 ~x)¢' ~x)

whereq;(X) are non-negative reals that are sufficiently large to gueeaconvexity offg"
on X. Different methods have been proposed to calculafé, 9] anda;(X) can be updated
as X changes. Regardless of the method, an upper bounid oan be obtained by the
following result.



Theorem 2 ConsideraBB relaxations of f and suppose C is an interval. &tet max—;
whereq; has been calculated on C. Thgh= 2 and K< %an.

n Qi

Proof It is easy to see that, for an € IC,

min f (x) — min () = min f (x) — min (f(x) +iiai o —x)(x’ Xi))
< [(r;i;lf(x) —rxr;iQf(x) - Q’éigiai(xiL —x) (& —x)

i=
C wo@))z 1 2
=Y a (7 < —an(w(X))“.
ISICYE
Thus, it follows thai3 = 2 and thaK = %an is a conservative estimate of the pre-factan

In Section 3 it was remarked thiit< %1 must hold for a second-order relaxation in or-
der to prevent the exponential growthMfvith n. For a BB relaxations this condition trans-
lates toa < %nl. Recall thatA; > 0 is the smallest eigenvalue Br?f(x*), not the smallest
eigenvalue of 12f on C. Note also that Theorem 2 does not indicate whetriBB relax-
ations can achieve this criterion. Furthermore, the ressgtimes that; does not change
with X.

Suppose now that we construct a neven each interval visited. A note-worthy feature
of aBB relaxations is thatr(X') > a(X?) for intervalsX!, X? such thatX* > X2. Hence,
whena is re-computed for eacK' in a sequence of nested intervals, the corresponding
sequencéa'}, and thus also the sequence of pre-facféts}, is monotonically decreasing.
This explains the behavior reported in [3, Figures 1, 2]d&B relaxations with variable
a. Itis not possible, however, to argue that in generaj li;a' = 0, which would imply a
super-quadratic order of convergence, see [3, Figure 3 tmunter-example.

Lastly, note thatr BB relaxations coincide witfi on X whena (X) = 0 so that the lower
bound is exact in this case.

5 Conclusion

The analysis of the cluster problem has been revisited énglper. Prior results that reveal
the dependence of the cluster problem on the convergenee @@hd the termination tol-
erancee have been verified. Furthermore, even for relaxations @ith2, the new analysis
indicates fundamentally different scaling behavior dejpeg on the value oK, the pre-
factor in the convergence order. Thus, tighter relaxatt@mslead to dramatic improvements
in mitigating the cluster problem.
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