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Abstract Traditional models of bendable surfaces are

based on the exact or approximate invariance to defor-
mations that do not tear or stretch the shape, leaving
intact an intrinsic geometry associated with it. These

geometries are typically defined using either the short-
est path length (geodesic distance), or properties of heat

diffusion (diffusion distance) on the surface. Both mea-
sures are implicitly derived from the metric induced by

the ambient Euclidean space. In this paper, we depart
from this restrictive assumption by observing that a

different choice of the metric results in a richer set of
geometric invariants. We apply equi-affine geometry for
analyzing arbitrary shapes with positive Gaussian cur-

vature. The potential of the proposed framework is ex-
plored in a range of applications such as shape matching

and retrieval, symmetry detection, and computation of
Voroni tessellation. We show that in some shape anal-
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ysis tasks, equi-affine-invariant intrinsic geometries of-

ten outperform their Euclidean-based counterparts. We
further explore the potential of this metric in facial an-
thropometry of newborns. We show that intrinsic prop-

erties of this homogeneous group are better captured
using the equi-affine metric.

Keywords Equi-affine · affine · metric invariant ·
intrinsic geometry · shape analysis

1 Introduction

Many methods of shape analysis in computer vision,

graphics, and pattern recognition, model shapes as Rie-
mannian manifolds. Differential geometry provides a

broad arsenal of tools allowing to describe local and
global invariant properties of the shape and compute

similarity and correspondence between two given shapes.
Moreover, it is possible to represent metric structures

in different spaces that are convenient to work with.
One of the early efforts in this domain is of Schwartz

et al. [58], who proposed to study the surface of the

brain cortex by embedding it into the plane. This ap-
proach was further developed by Elad and Kimmel [27],

who showed that by finding the most isometric embed-
ding of a non-rigid 3D shape into a Euclidean space

with more than two dimensions, it is possible to undo
the deformations. The embedding was computed using
multidimensional scaling (MDS). The resulting canoni-

cal form representation allowed to compute shape sim-
ilarity invariant to inelastic deformations. Canonical

forms were used for different applications in deformable
shape analysis, ranging from texture mapping [26] to

face recognition [11,14], while embeddings into non-
Euclidean spaces (e.g., a sphere) were discussed in [10,

70].
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Fig. 1 Diffusion distances from the horse’s abdomen (colored red) are invariant under equi-affine stretching (middle) and
non-rigid deformations (left).

The introduction of canonical forms led to a num-
ber of follow-up papers, where shapes were represented

as metric spaces with some intrinsic (e.g. geodesic) dis-
tance metric, and their comparison involved the similar-
ity of the underlying metric spaces. Mémoli and Sapiro

[39] and Bronstein et al. [13,12] computed shape simi-
larity by discretizing the Gromov-Hausdorff metric [31].

In [12], an MDS-like optimization algorithm (branded
generalized MDS or GMDS) was introduced for the

computation of the Gromov-Hausdorff metric, and a
different optimization based on hierarchical graph la-

beling was used in [69]. Different metrics were studied in
[16,38] in the Gromov-Hausdorff framework for shape
matching and later on in [48,50] for the detection of

intrinsic symmetries of deformable shapes, modeled as
self-isometries.

In [7] Bérard et al. introduced the concept of embed-

ding the structure of a Riemannian manifold into the
eigen-structure of its Laplace-Beltrami operator. This
theoretical framework was later exploited by Rustamov

[55] who used the fact that it is possible to isometrically
embed surfaces into Euclidean spaces defined by the

eigenfunctions of the Laplace-Beltrami operator. Belkin
and Niyogi [6] realized that heat kernels extracted from

the Laplace-Beltrami operator can be used for quan-
tifying the distance between points in abstract mani-
folds. In this new geometry, the distance between two

points is expressed as the integrated difference between
two heat kernels each of which is centered about one

of the points. The diffusion geometry was later refined
and applied to manifold learning problems by Coifman

and Lafon [21] while Lévy [36] showed that significant
geometric information of a shape can be captured by

considering diffusion operators on its Riemannian man-

ifold. Properties of Laplacian eigenfunctions were later
used for intrinsic symmetry detection [45], and shape

matching [59].

The diffusion framework was found useful also for
the construction of local shape descriptors. Sun et al.

[65], and Gebal et al. [29] used the heat kernel of the
diffusion equation to construct multi-scale intrinsic de-

scriptors referred to as heat kernel signatures (HKS).
HKS descriptors were extended to textured shapes in

[34] and to volumetric data in [49]. Scale-invariant HKS
were proposed in [18]. These descriptors performed suc-
cessfully in large-scale shape retrieval applications [43,

17], using the bag of features [60] paradigm. Ovsjanikov
et al. [44] used HKS to find dense correspondence, while

Castellani et al. were using HKS [20] in brain analysis
applications.

A different approach for alignment was adopted within
the medical community, where a smooth velocity field is
found. Early attempts such as [3] addressed this prob-

lem but faced self folding of the grid. A later approach,
which became the standard for non rigid mapping, was

presented in [5]. In their scheme, a numerical procedure
called Large Deformation Diffeomorphic Metric Map-

ping (LDDMM) optimizes for the best diffeomorphism
between images by combining smoothness of the veloc-
ity field with a data term from the images. Another ap-

proach named SPHARM-PDM [63] rigidly aligns shapes
according to their spherical parameterization. It showed

good results on brain images, but is only relevant for
those with a spherical topology. In an entirely differ-

ent path, we encounter skeletal representations such as
[56], which can handle larger deformations, but limited

to coarse matching. An improved alignemnt which bet-
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ter handles reparameterization, as noted in [32], was
later addressed in [35].

The starting point of all the aforementioned meth-
ods is the model of a shape or shape space as a Rieman-

nian manifold. For example, MDS and GMDS frame-
works that are based on diffusion geometry rely on a

Laplace-Beltrami operator that is expressed through
the Riemannian metric. Local descriptors are also ex-

pressed through Riemannian structures defined on the
manifold. In the vast majority of cases, the standard
choice of a metric is the one induced by the embed-

ding of the shape. Such a metric is invariant to in-
elastic deformations of the shape and to global Eu-

clidean transformations, that is, rotations, reflections,
and translations. In this paper we show how to con-

struct a metric that is invariant to a larger group of
transformations. Besides theoretical importance, we ar-

gue that this invariance has many important applica-
tions in shape analysis (see, e.g., [30,34]).

Affine invariance was explored in the field of im-

age processing [2] more than twenty years ago, and
re-appeared in state of the art descriptors as ASIFT

affine-scale invariant feature transform [41], that are
used to successfully locate repeatable informative (in-

variant) features in images. We can find affine measures
in planar curves [19], flows [57,61], and structures [22]

while stability was the main topic of [4]. Here, we apply
the known equi-affine invariant quadratic form for sur-
faces with positive Gaussian curvature to less trivial ge-

ometric structures. Using the resulting metric, we show
its application to spectral shape analysis by deriving an

associated Laplace-Beltrami operator that is not just
invariant to bendings but also to equi-affine transfor-

mations. This, in turn, allows us to derive global affine-
invariant measures such as diffusion and commute-time
distances, as well as local equi-affine ones such as HKS.

The equi-affine metric was introduced by Blaschke
[8,64] as a theoretical framework for dealing with vol-

ume preserving linear transformations of R3 in which a
given two dimensional surface is embedded. We first ap-

plied equi-affine geometry to surfaces in [51,52], where
computational and numerical considerations were ex-

plored. Here, we present a somewhat more mature view
on using the equi-affine geometry for surface analy-
sis, new numerical procedures are discussed, a compact

derivation of the equi-affine quadratic form is provided,
as well as an alternative construction of the invariant

measures. We follow our brief exploration of exploiting
the diffusion geometry that was presented in a confer-

ence [51] for the construction of stable equi-affine in-
variant measures on which we elaborate in this journal

publication.

The rest of the paper is organized as follows. We be-
gin in Section 2 by describing the contribution of this

paper. In Section 3 we provide the mathematical back-
ground of Euclidean, Riemmannian, and Diffusion ge-

ometries, followed by Section 4 where we elaborate on
the equi-affine metric. Section 5 is dedicated to numeri-

cal aspects of the proposed framework, with several syn-
thetic experiments presented in Section 6. We explore
the potential of this metric for facial morphometry in

Section 7, and conclude the paper in Section 8.

2 Main contributions

This note contains the mathematical aspects of the

equi-affine metric first shown in [51,52]. The novelty
of this paper can be summarized as follows:

– New and self contained proof of the equi-affine quadratic
form in matrix formulation.

– Analysis of degenerate cases, when the metric is un-
defined or vanishes.

– New synthetic experiments, showing the advantages
of the equi-affine metric over the Euclidean one.

– Analysis of facial measurements in newborns. We
show the potential of the equi-affine metric for sta-
tistical geometric measurements in medical imaging.

3 Background

We model a surface (X, g) as a compact complete two
dimensional Riemannian manifold X with a metric ten-
sor g, evaluated on the tangent plane TxX of point x in

the natural base using the inner product 〈·, ·〉x : TxX×
TxX → R. We further assume that X is embedded into

E = R
3 by means of a regular map x : U ⊆ R

2 → R
3, so

that the metric tensor can be expressed in coordinates

as the coefficients of the first fundamental form

gij =

〈
∂x

∂ui
,
∂x

∂uj

〉
, (1)

where ui are the coordinates of U . The metric tensor
yields the arclength

dp2 = g11du1
2 + 2g12du1du2 + g22du2

2. (2)

Given a smooth scalar field f on the manifold, its
gradient grad f is the vector field satisfying f(x+dr) =

f(x) + 〈grad f(x), dr〉x for every infinitesimal tangent
vector dr ∈ TxX. The inner product 〈grad f(x), v〉x can

be interpreted as the directional derivative of f in the
direction v. A directional derivative of f whose direc-

tion at every point on X is defined by the values of a
vector field V on the manifold is called the Lie deriva-

tive of f along V . The Lie derivative of the manifold
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volume (area) form along a vector field V is called the
divergence of V , div V . The negative divergence of the

gradient of a scalar field f ,

Δf = −div grad f, (3)

is called the Laplacian of f . The operatorΔ is called the
Laplace-Beltrami operator, and it generalizes the stan-

dard notion of the Laplace operator to manifolds. Note
that we define the Laplacian with the negative sign to

conform to the computer graphics and computational
geometry convention.

Evaluating Δ in local coordinates for any metric g
holds an important part in this paper, as it bridges be-

tween local metric evaluation and global features of a
shape. A well known formulation of (3) in local coordi-

nates u = (u1, u2)
T is [23]

Δf =
1√

detG

∂T

∂u

(√
detGG−1 ∂

∂u
f

)
, (4)

where the sign is flipped to impose a semi-positive struc-

ture, and ∂
∂u = ( ∂

∂u1
, ∂
∂u2

)T and G = (gij) ∈ R
2×2. Be-

ing a positive self-adjoint operator, the Laplacian ad-
mits an eigendecomposition

Δφ = λφ (5)

with non-negative eigenvalues λ and corresponding or-
thogonormal eigenfunctions φ. Furthermore, due to the
assumption that our domain is compact, the spectrum

is discrete, 0 = λ1 < λ2 < · · · . In physics, (5) is known
as the Helmholtz equation representing the spatial com-

ponent of the wave equation. Thinking of our domain
as of a vibrating membrane (with appropriate boundary

conditions), the φi’s can be interpreted as natural vi-
bration modes of the membrane, while the λi’s assume
the meaning of the corresponding vibration frequencies.

In fact, in this setting the eigenvalues have inverse area
or squared spatial frequency units.

3.1 Extrinsic and intrinsic geometry

There exist two natural ways to measure distances on
X: First, one can simply consider X a subset of E

equipped with the standard Euclidean metric dE, and

measure the distance on X using the restricted Eu-
clidean metric dE|X×X . Under this metric, shortest paths

between points on X are straight lines, possibly not en-
tirely contained in X. Quantities expressed with it are

often referred to as the extrinsic geometry of the shape.

The second choice is to consider a path γ : [0, 1] →
X on the surface. By subdividing the interval [0, 1]
into n points 0 = t1 < t2 < · · · < tn = 1, one can

bound below the path length by the sum of the lengths

dE(γ(ti), γ(ti+1)). In this way, a length structure

L(γ) = sup
n,{t1,...,tn}

n−1∑
i=1

dE(γ(ti), γ(ti+1)) (6)

is constructed; a path is said rectifiable if the supremum
exists. If further γ = x(β) is the image of some path β
in the parametrization domain, its length on the surface

can be expressed in terms of the Riemannian structure
as

L(γ) =

∫ 1

0

√
g11β2

1(t) + 2g12β1(t)β2(t) + g22β2
2(t)dt,(7)

where βi is the partial derivative of β with respect to ui.

Being totally expressible in terms of the metric tensor,
the length structure L(γ) is said intrinsic; such quan-

tities are collectively called the intrinsic geometry of
X.

Using the length structure, one can define a metric

between two points x and x′ on X as the length of the
shortest path connecting between them,

dL(x, x
′) = inf

γ

γ(0)=x

γ(1)=x′

L(γ), (8)

which is called the induced or the geodesic metric. Geodesic
distances can be obtained as the viscosity solution to
the eikonal equation

‖∇d‖2 = 1 (9)

(i.e., the largest d satisfying ‖∇d‖2 ≤ 1) with bound-
ary condition at the source point d(x) = 0, where the

solution represents d(x′) = dL(x, x
′). In the past two

decades, several algorithms have been proposed for the

computation of geodesic distances, differing in accuracy
and complexity. In this study, we focus on a family of

simulated wavefront propagation algorithms called fast
marching [33]. While the complexity of the computation

of geodesic distance from a single point to the rest of the
points on the surface using fast marching isO(N logN),
N being the number of points, it was shown that lin-

ear complexity can be achieved without sacrificing the
linear order of approximation [66]. On parametric sur-

faces, fast marching can be carried out by means of a
raster scan and efficiently parallelized, which makes it

especially attractive for GPU-based computation [62,
68].

We conclude that a shape can be modeled as a met-

ric space equipped either with an extrinsic (restricted
Euclidean) or intrinsic (geodesic) metrics [15,37]. The

choice of the metric impacts dramatically on the result-
ing geometric properties. While the extrinsic geometry

is invariant only to rigid motion, its intrinsic counter-
part remains intact under inelastic deformations that

do not stretch or tear the surface. However, a major
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disadvantage of the geodesic metric is its extreme sen-
sitivity to topological changes. Even when localized to a

single point, topological noise greatly affects the short-
est paths on the manifold and, consequently, the in-

trinsic geometry they define. A way counter this phe-
nomenon is by replacing the notion of a shortest path

by some notion of an “average” path length. In what
follows, we briefly overview a construction of a family
of intrinsic geometries based on this principle.

3.2 Diffusion geometries

As a starting point, let us consider the heat equation
describing diffusion processes on manifolds, which in

our notation can be expressed as(
Δ+

∂

∂t

)
f(x, t) = 0 (10)

where f(x, t) is the distribution of heat on the manifold

at point x at time t. The initial condition is some ini-
tial heat distribution f0(x) at time t = 0, and bound-

ary conditions are applied in case the manifold has a
boundary.

The solution of the heat equation at time t can be
expressed as the application of the heat operator

f(x, t) =

∫
ht(x, y)f0(y)da(y) (11)

to the initial distribution. The kernel ht(x, y) of this
integral operator is called the heat kernel and it cor-

responds to the solution of the heat equation at point
x at time t with the initial distribution being a delta
function at point y. From the signal processing per-

spective, the heat kernel can be interpreted as a non
shift-invariant “impulse response”. It also describes the

amount of heat transferred from point x to point y af-
ter time t, as well as the transition probability density

from point x to point y by a random walk of length t.
According to the spectral decomposition theorem,

the heat kernel can be expressed as

ht(x, y) =
∑
i≥0

exp(−λit)φi(x)φi(y), (12)

where exp(−λt) can be interpreted as its “frequency

response” (note that with a proper selection of units
in (11), the eigenvalues λi assume inverse time or fre-
quency units). The bigger is the time parameter, the

lower is the cut-off frequency of the low-pass filter de-
scribed by this response and, consequently, the bigger

is the support of ht on the manifold. Since the Laplace-
Beltrami operator is an intrinsic geometric quantity,

its eigenfunctions and eigenvalues as well as the heat
kernel are invariant under isometric transformations of

the manifold.

The value of the heat kernel ht(x, x
′) can be inter-

preted as the transition probability density of a random

walk of length t from the point x to the point x′. This
allows to construct a family of intrinsic metrics known

as diffusion metrics,

d2t (x, x
′) =

∫
(ht(x, ·)− ht(x

′, ·))2 da (13)

=
∑
i>0

e−2λit(φi(x)− φi(x
′))2,

which measure the diffusion distance of the two points
for a given time t.

The parameter t can be given the meaning of scale,

and the family {dt} can be thought of as a scale-space
of metrics. It appears that by integrating d2t over all

scales, a scale-invariant version of (13) is obtained,

d2CT(x, x
′) =

∫ ∞

0

d2t (x, x
′)dt (14)

=
∑
i>0

1

2λi
(φi(x)− φi(x

′))2.

This metric is referred to as the commute-time distance
[46] and can be interpreted as the connectivity rate by

paths of any length.

The quantity

ht(x, x) =
∑
i≥0

exp(−λit)φ
2
i (x), (15)

sometimes referred to as the autodiffusivity function,
describes the amount of heat remaining at point x after

time t. Furthermore, for small values of t is it related
to the manifold curvature according to

ht(x, x) =
1

4πt
+

K(x)

12π
+O(t), (16)

whereK(x) denotes the Gaussian (in general, sectional)
curvature at point x.

In [65], Sun et al. showed that under mild techni-

cal conditions, the sequence {ht(x, x)}t>0 contains full
information about the metric of the manifold. The au-

thors proposed to associate each point x on the man-
ifold with a vector HKS(x) = (ht1(x, x), . . . , htn(x, x))
of the autodiffusivity functions sampled at some finite

set of times t1, . . . , tn. The authors dubbed such a fea-
ture descriptor as the heat kernel signature (HKS).

Several follow-ups extended these concepts and in-

clude scale-invariance [18,1], geometric-photometric re-
lation [34], and volumetric analysis [49], to say a few.

3.3 Isometries and symmetries

The metric model allows casting the problem of shape

similarity as similarity of metric structures. Two metric
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spaces (X, dX) and (Y, dY ) are said isometric if there
exists bijection g : X → Y such that dY ◦ (g× g) = dX .

Such a distance-preserving map is called an isometry.
Isometries form a group with the function composition

operation, denoted by Iso(d).
Clearly, the notion of isometry is metric-dependent.

Considering X and Y equipped with the extrinsic met-
ric, we will that they are isometric if they are congruent,
i.e., are related by a rigid motion X = i(Y ), i ∈ Iso(dE).

When an intrinsic metric dX on X is considered, the re-
sulting isometry group is usually richer, as a congruence

is, naturally, also a dX -isometry (in other words, the
group of congruences of X is a subgroup of the group of

its dX -isometries). However, for some objects these two
classes coincide, meaning that they have no incongru-

ent isometries. Such shapes are called rigid, and their
extrinsic geometry is completely defined by the intrinsic
one.

True isometries are merely a mathematical ideal-
ization not existing in practice due to imperfections in

measurement, representation, and deviations from the
perfectly inelastic model. A generalization of the notion

of isometry can be obtained by first defining a corre-
spondence C ⊂ X × Y as a set of pairs of points from

X and Y satisfying: 1) for every x ∈ X, there exists
(at least one) y ∈ Y such that (x, y) ∈ C; and, vice
versa, 2) for every y ∈ Y , there exists x ∈ X such that

(x, y) ∈ C. This notion generalizes the notion of a bi-
jective map between the space.

Suppose two pairs of points (x, y) and (x′, y′) are in
correspondence. Then, we can quantify the quality of

the correspondence by measuring to which extent the
distance between x and x′ measured on X using dX
matches the distance between the corresponding points

y and y′ measured on Y using dY ,

ε(x, y, x′, y′) = |dX(x, x′)− dY (y, y
′)|. (17)

This allows assigning a correspondence C the distortion

dis(C) = ‖ε‖Lp(C×C), (18)

where, for example, the L∞ norm

‖ε‖L∞(C×C) = sup
(x,y),(x′,y′)∈C

ε(x, y, x′, y′) (19)

can be used.

Minimizing the distortion over all possible corre-
spondences between X and Y yields a distance

D(X,Y ) =
1

2
inf
C

dis(C) (20)

between X and Y called the Gromov-Hausdorff dis-
tance. If the infimum is realized by some C∗, the lat-

ter is called aminimum distortion correspondence (note
that more than one minimum distortion correspondence

might exist if the shape possesses intrinsic symmetries).

Bronstein et al. [12] showed that the above distance can
be efficiently approximated using a generalized multi-

dimensional scaling (GMDS) algorithm.

A particular case of shape similarity is the similar-
ity of a shape to itself. The collection of self-isometries

or symmetries of (X, d) also forms a group under func-
tion composition. A metric space (X, d) is self-similar if

there exists a self-isometry on (X, d) (an isometry from
(X, d) to itself). Since this definition depends on the

choice of the metric, we distinguish between the group
of extrinsic symmetries Sym(X, dE) and that of intrin-
sic symmetries Sym(X, dX), where dX is an intrinsic

metric on X [48].

4 Affine invariance

In this section, we develop an equi-affine invariant met-
ric on arbitrary surfaces with positive Gaussian curva-

ture. We arrive at this result by first briefly reminding
the classical construction of the equi-affine arclength for
planar curves, and developing an equi-affine arclength

on convex surfaces in R
3, as first shown by Blaschke [8].

4.1 Planar curves

An affine transformation of the plane can be expressed
by six parameters as

Ax+ b =

(
a b
c d

)(
x
y

)
+

(
c
d

)
, (21)

where detA > 0. The area preserving affine group (also

called special or equi-affine) is defined by demanding
detA = 1, which leaves five degrees of freedom.

Let C : I ⊂ R → R
2 be a curve parameterized

by a parameter p over some interval I. One way to
construct an equi-affine arclength p is by asserting the

conservation of the area of the parallelogram formed by
the velocity and acceleration vectors of C(p),

|Cp × Cpp| = det(Cp, Cpp) = const. (22)

We construct the arclength as f(det(Cp, Cpp))dp, where
the function f is determined by demanding reparametriza-

tion invariance of p. For that goal, let ξ be a reparametriza-
tion of p such that p = ξ(q). We require

f(det(Cp, Cpp))dp = f(det(Cq, Cqq))dq. (23)

Using the chain rule,

Cq = Cpξ̇

Cqq = Cppξ̇
2 + Cpξ̈. (24)
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Hence,

det(Cq, Cqq) = det

((
ξ̇

ξ̈ ξ̇2

)
(Cp, Cpp)

)
(25)

= det

(
ξ̇

ξ̈ ξ̇2

)
· det(Cp, Cpp)

= ξ̇3 · det(Cp, Cpp). (26)

Combining (23) with dp = ξ̇dq yields

f(det(Cp, Cpp))dp = f(det(Cp, Cpp)ξ̇
3)
dp

ξ̇
, (27)

from where the equi-affine arclength is defined by

dv = det(Cp, Cpp)
1
3 dp. (28)

4.2 Quadratic form for curved surfaces

Let us now be given a two-dimensional surface X em-
bedded into R

3 by a regular embedding x : U ⊆ R
2 →

R
3. We repeat the construction of the equi-affine ar-

clength on the surface [64]. Let C(p) be a curve on X;

by the chain rule,

Cp = x1
du1

dp
+ x2

du2

dp
(29)

Cpp = x1
d2u1

dp2
+ x2

d2u2

dp2
+

x11

(
du1

dp

)2

+ 2x12
du1

dp

du2

dp
+ x22

(
du2

dp

)2

,

where, for brevity, we denote xi = ∂x
∂ui

and xij =
∂2x

∂ui∂uj
.

Fig. 2 An equi-affine local measurement for curves’ length
is the area of the parallelogram (left). For surfaces (right)
we obtain the metric elements as the volume of the paral-
lelepiped constructed by x1 and x2, and the corresponding
second derivatives. hij = det (x1,x2,x12).

Once again, we assert the conservation of the volume
of the parallelepiped formed by the vectors x1, x2 on

the surface and the acceleration vector Cpp (Figure 2),

Cpp · (x1 × x2) = det (x1,x2, Cpp) = const. (30)

Plugging (29) and using the fact that det(xi,xj,xi) =
0, yields the squared arclength

det (x1,x2, Cpp) dp
2 (31)

= det(x1,x2,x11du
2
1 + 2x12du1du2 + x22du

2
2)

=
(
h11du

2
1 + 2h12du1u2 + h22du

2
2

)
= duTHdu,

where hij = det(x1,x2,xij).

We again assert reparametrization invariance, this
time to a reparametrization of the surface. Let V ⊂ R

2

be some other parametrization domain, so that u =
ξ(v), where ξ : V → U , ξ(v) = (ξ(v), η(v))T, is a

reparametrization of the surface. Using the chain rule,
we obtain

yi =
∂x

∂vi
= x1ξi + x2ηi, (32)

where ξi =
∂u1

∂vi
and ηi =

∂u2

∂vi
. Similarly,

yij =
∂2x

∂vi∂vj
(33)

= x1ξij + x2ηij + x11ξiξj + x12(ξiηj + ξjηi) + x22ηiηj ,

where ξij = ∂2u1

∂vi∂vj
and ηij = ∂2u2

∂vi∂vj
. Substituting the

latter into the squared arclength (31) yields

det (y1,y2, Cpp) dp
2 = dvTH′dv

= duTJ−TH′J−1du, (34)

where J is the Jacobian of ξ and the elements of H′

are given by h′
ij = det(y1,y2,yij). In order to achieve

reparametrization arclength invariance we introduce a

function f operating on the determinant, for whichQ =
Hf(detH), and consequently

detQ = detH · f2(detH) =
detH′ · f2(detH′)

det2J
(35)

= det(J−TQ′J−1).

Using the fact that (y1,y2) = J(x1,x2), and the
identities

det(J(x1,x2),xij) = det J · det(x1,x2,xij) (36)

det(x1,x2, ax+ by) = (x1 × x2) · (ax+ by)

= a(x1 × x2) · x+ b(x1 × x2) · y)
= a det(x1,x2,x) + bdet(x1,x2,y),

we have

h′
ij = detJ(ξiξjdet(x1,x2,x11) +

(ξiηj + ξjηi)det(x1,x2,x12) + ηiηjdet(x1,x2,x22))

= detJ · ξTi Hξj , (37)
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where ξTi = (ξi, ηi). Hence,

det H′ = det2J ·
(
ξT1 Hξ1ξ

T
2 Hξ2 − ξT1 Hξ2ξ

T
1 Hξ2

)

= det2J ·
(
ξT1 H

(
ξ1ξ

T
2 − ξ2ξ

T
1

)
Hξ2

)

= det3J · ξT1 H
(

1
−1

)
Hξ2

= det3J · det(Hξ1,Hξ2)

= det4J · detH. (38)

Substituting the latter into (35) yields

detH · f2(detH) · det2J (39)

= det4J · detH · f2(det4J · detH),

which reduces to

f(detH) = detJ · f(det4J · detH) (40)

yielding an optional solution f(t) = t−1/4. We conclude
that the equi-affine arclength is given by the quadratic
fundamental form [64,61]

Q = H · det−1/4H, (41)

To avoid complex normalization, Su [64] suggested to

define f(t) = |t|−1/4, for which

Q = H · |detH|−1/4, (42)

and normalize the form by -1 if detH < 0, which leads
to an invariance in case the new parameters have a dif-

ferent orientation. In Figure 3, we depict a heat sig-
nature measured on a sphere originated from a single
source point, using the induced Euclidean metric and

the one created using Q defined above.

Fig. 3 Heat diffusion originated from one source on a sphere.
On the left we used the standard intrinsic metric induced by
the Euclidean metric of the embedding space, while on the
right the equi-affine metric was used. Heat propagation is
shown on the original mesh and after an affine transforma-
tion. For convenience of visualization, heat kernels are over-
laid onto the untransformed shape.

4.3 Equi-affine metric

In order to construct a metric we propose to project
the quadratic form (41) onto the space of positive defi-

nite matrices. A valid (pseudo-)metric is obtained in all
cases except where the surface has a positive Gaussian

curvature.
From the eigendecomposition of

H · |detH|−1/4
= UΓUT, (43)

where U is orthonormal and Γ = diag{γ1, γ2}, we com-

pose a new metric Q̄, such that

Q̄ = U|Γ|UT, (44)

is semi-positive definite and equi-affine invariant, where
|Γ| = diag{|γ1|, |γ2|}. Note that Γ can be complex. One

can think of this projection as a change of orientation.
For points with negative curvature the local metric

has one positive and one negative eigenvalues. In this
case we set the metric tensor to be zero. That is, such
regions would practically be ignored by the proposed

geometry. In the next section we elaborate on regular-
ization of hyperbolic and parabolic points.

Under the proposed approach, non-isometric sur-
faces can now be intrinsically indistinguishable, and

considered isometric. Let us provide a simple example
for clarity. We denote by Xa, Xb and Xc, three surfaces

Xa(u, v) =
(
u, v, u2 + v2

)
(45)

Xb(u, v) =
(
u, v,−u2 − v2

)
Xc(u, v) =

(
2u, v, u2 + v2

)
,

depicted in Figure 4.

Fig. 4 Three surfaces with similar equi-affine metrics.

A simple calculation reveals that the Euclidean met-

rics of the three surfaces are

Ga =

[
1 + 4u2 4uv
4uv 1 + 4v2

]
,

Gb =

[
1 + 4u2 4uv

4uv 1 + 4v2

]
,

Gc =

[
4 + 4u2 4uv

4uv 1 + 4v2

]
,

respectively. Not surprising Xa and Xb have similar
metrics, and consequently they are isometric in a con-

ventional manner, while Xc is not isometric to the rest.
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Evaluating the equi-affine quadratic forms involves the
following normalization

Qa =

[√
2 0

0
√
2

]
,

Qb =

[
−
√
2 0

0 −
√
2

]
,

Qc =

[√
2 0

0
√
2

]
.

Since we wish all three to be valid metrics while

maintaining meaningful geometric features, we project
the metrics onto semi-positive space, which yields

Q̄a = Q̄b = Q̄c =

[√
2 0

0
√
2

]
. (46)

We conclude the section by summarizing the main
result:

For surfaces with positive Gaussian curvature, Ḡ is
equi-affine invariant, positive-definite, and parameteri-

zation invariant metric.

4.4 Surfaces with parabolic and hyperbolic points

Projecting the metric onto a semi-positive definite sub-

space, as shown in (44), is insufficient for parabolic and
hyperbolic points, as we consider the metric to be zero

for both. At such points, the metric (44) should be re-

defined. Numerically, we assign (q̄ij) = εI = ε

(
1 0
0 1

)

metric, where ε is a small constant.
In order to justify this regularization, let us examine

the area measurement (determinant) of the proposed
metric near parabolic points. Since the surface normal

is

n̄ =
x1 × x2

||x1 × x2||
, (47)

and the second fundamental form coefficients are

bij = 〈xij , n̄〉 =
det (x1,x2,xij)√

det g
, (48)

we can write the equi-affine quadratic form as

Q =

(
det g

det b

) 1
4

b. (49)

This explains the problematic metric definition once the

Gaussian curvature vanishes, as indeed

K =
det b

det g
= 0. (50)

The local area of the equi-affine quadratic form can
be written as

detQ =

((
det g

det b

) 1
4

)2

det b =
√

det g det b, (51)

Fig. 5 The three neighboring triangles together with the
central one are unfolded onto the plane. The central triangle
is canonized into a right unit isosceles triangle while the rest
of its three neighboring triangles follow the same planar affine
transformation. Finally, the six surface coordinate values at
the vertices are used to interpolate a quadratic surface patch
from which the metric tensor is computed.

and consequently the determinant of the equi-affine pseudo-
metric becomes

det Q̄ =
√
det g| det b|. (52)

We infer that assuming b and g are bounded, the local

area is bounded and is well defined near points with zero
Gaussian curvature. Thus, regularization would solve
the degenerate cases introducing numerical inaccuracy

at the order of ε.

5 Numerical computation

5.1 Affine invariant metric

We represent the surface X as a triangular mesh, and
consider each triangular face with the three neighbor-

ing faces. The four triangles are unfolded to the plane
and transformed so that the central triangle becomes

the canonical simplex in the plane. This constructs a
local system of coordinates (Figure 5), in which three

quadratic functions describing a second-order patch are
fitted to the R

3 coordinates of the six triangle ver-
tices, and evaluated at the barycenter of the central

triangle (Algorithm 1). From the coefficients of these
second-order polynomials, the coefficients of the equi-

affine quadratic form are computed (Algorithm 2), and
projected onto the positive semi-definite cone.

5.2 Geodesics and fast marching

The computation of geodesic distances on a surface is

used by discretizing the viscosity solution to the eikonal
equation (9). Here, we adopt the family of fast march-

ing algorithms simulating the propagation of a wave-
front on the surface and recording its time of arrival

at different vertices. Fast marching methods resemble
in structure and properties the Dijkstra shortest path

algorithm, with the important difference that unlike in
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Algorithm 1: Equi-affine invariant metric dis-
cretization.

Input: 3× 6 matrix P of triangle vertex coordinates
in R

3 (each column Pi represents the
coordinates of a vertex, the first three columns
belonging to the central triangle).

Output: 6× 3 matrix of coefficients D

1 Flatten the triangles to a plane, such that each vertex
Pi becomes Qi ∈ R

2, and (i) the first vertex becomes
the origin, C1 = [0 0]T ; (ii) edge lengths are
preserved, d(Ci,Cj) = d(Pi,Pj) for all i and j; and
(iii) the orientation is unchanged,
sign(CT

i Cj) = sign(PT
i Pj).

2 Construct a new parameterization Ĉi = MCi, where

M = [C2 C3]
−1.

3 Calculate the coefficients D = N−1PT of each

coordinate polynomial, where u = Ĉi1, v = Ĉi2, and
N is a 6× 6 matrix with each row defined as
Ni = [1 u v uv u2 v2].

Algorithm 2: Equi-affine pre-metric coefficients
evaluation.

Input: Coefficient matrix D = (d1, . . . ,d6)T from
Algorithm 1.

Output: 2× 2 matrix Q with the equi-affine
quadratic form value at the barycenter of
the central triangle.

1 Construct

x1 = (d2, 2d5,d4)(1, u, v)
T

x2 = (d3, 2d6,d4)(1, u, v)
T

x11 = 2d5

x22 = 2d6

x12 = d4.

2 Evaluate the pre-metric tensor at (u, v) = (0.5, 0.5)

hij = det (x1,x2,xij)

3 Calculate the equi-affine pre-metric tensor as

Q = |h11h22 − h2
12|

− 1

4 ·H.

graphs, the path is not restricted to the edges and can
pass anywhere on the triangular faces of the mesh [33].

The numerical core of fast marching is the update step
by which the values of the distance map known at two

vertices of a triangle are propagated to the third one.

Typically, the geometry of the triangle itself is used
to simulate propagation of the wavefront with unit speed.

In our case, in order to enforce a different metric, we
modify the geometry of the triangle being updated such

that the Euclidean metric defined on it represents our
equi-affine invariant metric at that point.

Since the equi-affine invariant arclength is given by
dp2 = duTQdu, we can evaluate the equi-affine edges

length of each triangle with respect to the local coor-

dinates (0, 0), (1, 0) and (0, 1), yielding L2
1 = g11, L

2
2 =

g22, and L2
3 = g11 − 2g12 + g22.

5.3 Laplace-Beltrami Operator discretization

Many approaches to the discretization of the Laplace-
Beltrami operators have been proposed in the litera-
ture [67]. Here, we adopt the finite elements method

(FEM) discretization proposed in [25]. Given N points
and their triangulation we translate the eigendecompo-

sition of the Laplace-Beltrami operator (5) into a weak
form∫

ψkΔφda = λ

∫
ψkφda, (53)

with respect to some basis {ψk} spanning a (sufficiently
smooth) subspace of L2(X). Though, the basis func-
tions can be of any order, here we limit our attention

to linear ψk’s obtaining a zero value in k’s 1-ring and
one at k itself.

Substituting these functions into (53) and perform-
ing derivation by parts yields [23]∫
∂X

ψk
∂φ

∂n
ds−

∫
ψkΔφda =

∫
〈∇ψk,∇φ〉x da, (54)

where n is the direction of the exterior normal. Inserting
a vanishing Neumann boundary condition ∂φ(x)

∂n = 0,

∀x ∈ ∂X into (54) yields the well known formulation∫
ψkΔφda = −

∫
gij(∂iφ)(∂jψk) da = λ

∫
ψkφda.

Note, that ψk is no longer required to satisfy the bound-

ary condition, since it has become a part of the weak
formulation. For that reason, the Neumann boundary

condition is called a natural boundary condition, in con-
trast to the Dirichlet counterpart which is refereed to
as an essential boundary condition.

Next, we approximate the eigenfunction φ as a com-
bination of the ψl’s,

φ =
∑
l=1

αlψl, (55)

which yields∫
gij

(
∂i

∑
l

αlψl

)
(∂jψk) da

= −λ

∫
ψk

∑
l

αlψl da, (56)

or due to compactness,∑
l

αl

∫
gij(∂iψl)(∂jψk) da = −λ

∑
l

αl

∫
ψkψl da.(57)

Note that the latter integrals depend only on the ba-
sis functions ψk and the surface and can be therefore

precomputed.
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The last equation can be rewritten in a matrix form
as the generalized eigendecompositionAα = λBα solved

for the coefficients αl [54], where

akl =

∫
gij(∂iψl)(∂jψk) da,

bkl = −
∫

ψkψl da, (58)

are the elements of the matrices A and B, respectively.
A visualization of several eigenfunctions can be seen in

Figure 6.

6 Synthetic experiments

In this section, we show a few applications of our con-
struction in non-rigid shape retrieval, correspondence,

and partitioning. In all the applications, we compare
the proposed equi-affine-invariant metric and the stan-
dard Riemannian metric induced by the Euclidean em-

bedding.

6.1 Shape retrieval

The bag of features approach for shape retrieval (dubbed
as Shape Google) was shown in [43]. In this approach,

local shape descriptors (HKS) were quantized into a
“geometric vocabulary”, creating for each shape a dis-

tribution of words from the vocabulary (bag of fea-
tures). Comparing two bags of features allows to mea-

sure the similarity of the underlying shapes.

Here, we compared how Shape Google performs with

HKS descriptors obtained using different metrics. The
SHREC 2010 large-scale shape retrieval benchmark method-
ology [9] was used for evaluation. The dataset in the

benchmark consisted of two parts: 793 shapes from 13
shape classes with simulated transformation of differ-

ent types (Figure 8) and strengths (total 60 transfor-
mations per shape, used as queries) and the remaining

521 shapes used as the queried corpus. Transformations
classes affine and isometry+affine were added to the

original SHREC query set, representing, respectively,
equi-affine transformations of different strengths of the
null shape and its approximate isometries.

Retrieval was performed by matching 780 transformed
queries to the null shapes. Each query had one correct

corresponding null shape in the dataset. Scale-space
was sampled at six scales t = 1024, 1351, 1783, 2353,

3104, 4096. Bags of features were computed using soft
vector quantization with variance taken as twice the

median of all distances between cluster centers in a vo-
cabulary of 64 entries. Both the standard and the affine-

invariant Laplace-Beltrami operator discretization were

Fig. 7 Heat kernel signature ht(x, x) and diffusion metric
ball around a point on the head obtained using the stan-
dard (second and third columns, respectively) and the equi-
affine invariant (fourth and fifth columns, respectively) met-
rics. Two rows show a shape and its equi-affine transforma-
tion. For convenience of visualization, the heat kernels are
overlaid onto the untransformed shape. Plots below the fig-
ure show the corresponding metric distributions before and
after the transformation.

computed using finite elements, Heat kernels were ap-
proximated using the first smallest 100 eigenvectors and

eigenvalues. Examples of heat kernel signatures obtained
using two different metrics are shown in Figure 7.

Performance was evaluated using precision/recall char-
acteristic. Precision P(r) is defined as the percentage
of relevant shapes in the first r top-ranked retrieved

shapes.Mean average precision (mAP), defined as mAP =∑
r P(r) · rel(r), where rel(r) is the relevance of a given

rank, was used as a single measure of performance.
Intuitively, mAP is interpreted as the area below the

precision-recall curve. Ideal retrieval performance (mAP
= 100%) is achieved when all queries return relevant

first matches. Performance results were broken down
according to transformation class and strength.

Tables 1–2 show that the equi-affine version of Shape

Google is competitive to the one using the standard
(embedding-induced) metric, and exhibits nearly per-

fect retrieval results in the equi-affine transformations
class.

6.2 Voronoi tessellation

The second application we show is the partitioning of

non-rigid shapes. Voronoi tessellation is a partitioning
of (X, g) into disjoint open sets called Voronoi cells. A

set of k points (xi ∈ X)
k
i=1 on the surface defines the

Voronoi cells (Vi)
k
i=1 such that the i-th cell contains all

points on X closer to xi than to any other xj in the

sense of the metric g. In other words, a point x ∈ X
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Fig. 6 Three eigenfunctions (2nd, 3rd, and 5th) of the standard (first two rows) and the proposed equi-affine invariant (last
two rows) Laplace-Beltrami operators. The first and the third rows relate to the original shape, while the second and forth
rows to its equi-affine transformation. For convenience of visualization, eigenfunctions are overlaid onto the untransformed
shape.

Fig. 8 Examples of query shape transformations used in the shape retrieval experiment (left to right): null, isometry, topology,
affine, affine+isometry, sampling, local scale, holes, microholes, Gaussian noise, shot noise.

Table 1

Performance of Shape Google with equi-affine HKS descriptors.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 100.00 100.00 100.00 100.00 99.23
Affine 100.00 100.00 100.00 100.00 97.44
Iso.+Affine 100.00 100.00 100.00 100.00 100.00
Topology 96.15 94.23 91.88 89.74 86.79
Holes 100.00 100.00 100.00 100.00 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 94.74 82.39 73.97
Sampling 100.00 100.00 100.00 96.79 86.10
Noise 100.00 100.00 89.83 78.53 69.22
Shot noise 100.00 100.00 100.00 97.76 89.63

Table 2

Performance of ShapeGoogle with Euclidean HKS descriptors.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 100.00 100.00 100.00 100.00 100.00
Affine 100.00 86.89 73.50 57.66 46.64
Iso.+Affine 94.23 86.35 76.84 70.76 65.36
Topology 100.00 100.00 98.72 98.08 97.69
Holes 100.00 96.15 92.82 88.51 82.74
Micro holes 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 97.44 87.88 78.78
Sampling 100.00 100.00 100.00 96.25 91.43
Noise 100.00 100.00 100.00 99.04 99.23
Shot noise 100.00 100.00 100.00 98.46 98.77
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belongs the i’th cell if dX(x, xi) ≤ dX(x, xj) j �= i.
where dX : X × X → R is the distance map induced

by the Riemannian metric tensor g. Boundary points
which have a similar distance to more than one cen-

troid are considered to be in none or all the relevant
cells. Voronoi tessellations are ubiquitous in geometry

processing applications, and their definition is related
to the metric used.

In our experiment, we compared the standard met-

ric with the equi-affine metric for Voronoi tessellation
generation. For each choice of the metric, we computed

the associated Laplace-Beltrami operator and used its
eigenvector and eigenvalues to compute the diffusion

distance with a time scale t = 10. Thirteen points were
picked on the shape using the farthest point sampling

strategy, and tessellation was performed before and af-
ter applying an equi-affine transformation to the shape.
Figure 9 clearly shows the invariance of the resulting

tessellation in the case our metric is used.

Fig. 9 Voronoi cells generated by a fixed set of 13 points on
a shape undergoing an equi-affine transformation. We used
diffusion distances with t = 10. The standard (top) and the
equi-affine (bottom) metrics were used. Note that in the latter
case, the tessellation commutes with the transformation.

6.3 Non-rigid matching and intrinsic symmetry

As the last application, we show an archetypal problem

in shape analysis: intrinsic correspondence of two non-
rigid shapes, and its particular case of self-correspondence

(symmetry detection).
Two non-rigid shapes X,Y can be considered sim-

ilar if there exists an isometric correspondence C ⊂
X × Y between them, such that ∀x ∈ X there exists
y ∈ Y with (x, y) ∈ C and vice-versa, and dX(x, x′) =

dY (y, y
′) for all (x, y), (x′, y′) ∈ C, where dX , dY are

distance metrics on X,Y . In practice, no shapes are

truly isometric, and such a correspondence rarely ex-
ists; however, one can attempt finding a correspondence

minimizing the metric distortion.

We used the GMDS framework [12] to minimize
(20). In our experiment, we initialized the algorithm

manually (several heuristic algorithm can be used in-
stead [24,69,53]). As distances in the GMDS algorithm,

we used the geodesic distances computed using the stan-
dard and our equi-affine Riemannian metric.

Figures 10 and 11 show the correspondence between
different poses of an armadillo with and without equi-
affine stretching. It can be seen that correspondence

based on the the equi-affine metric performs better than
the Euclidean one in the presence of bendings as well

as equi-affine stretching.

Fig. 10 Correspondence between different poses using the
standard (first row) and the equi-affine (second row) metrics.
It is clear that the equi-affine metric performs better than the
Euclidean one in the presence of bendings. See for example
the enlarged red ball in the center of the body that represents
a corresponding point mapped from the original surface.

An intrinsic symmetry is a particular case of shape
correspondence with itself, defined as a minimum dis-

tortion self-embedding of a shape [47]. We used the
same GMDS algorithm with different initialization in
order to find the intrinsic reflective symmetry of the

armadillo shape (Figure 12).

7 Facial morphometry

Facial morphometry is important in a variety of applica-
tions, such as diagnosis of generic disorders [28], statis-

tical measurements of child grows [40], and construction
of facial masks [42]. Evaluating geometrical statistics of

bendable and stretchable shapes, such as the face, forces
us to align them within their ambient space. A coarse

correspondence between matching parts can be found
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Fig. 11 Correspondence between different poses after
stretching using the standard (second row) and the equi-affine
(third row) metrics. Results based on the equi-affine metric
are similar to Figure (10) while the Euclidean metric suffers
decrease in accuracy. See for example the enlarged balls that
represnt corresponding points in the limbs. For clarity we de-
picted the correspondence on the original shape, while a half
size model of the stretched shapes appear in the first row.

considering local features. In a facial domain, it trans-

lates to a nose-to-a-nose or an eye-to-an-eye and so on.
Usually, this calibration is performed using the albedo

(texture) of the facial images, as it is easier then using
geometry by itself. In order to provide a dense align-

ment of the geometry, many algorithms were proposed
in the last decade. All of them used the same assump-

tion that the shapes, and in our scenario the faces, are
almost isometric with relation to the Euclidean induced
metric. While this property is a good approximation for

the same face in different mimics, it is inaccurate when
aligning two different faces. To overcome this problem

some fiducials are aligned and a smoothness term com-
pensates for the stretches.

In this note, we argue that the equi-affine metric is

more robust to local stretches, hence it is better suited
for analyzing intrinsic geometric properties of faces,

specifically when dense alignment is required. We fur-
ther claim that diffusion distances, which are widely

used in the computer vision community, suffer from
time dependency but can still be used in medical appli-

cations using the equi-affine metric.

Fig. 12 Intrinsic symmetry of the armadillo shape using the
Euclidean (first row) and the equi-affine (second row) metrics.
It is clear that the equi-affine metric performs better than the
Euclidean one in the presence of bendings. See for example
the enlarged red ball in the center of the body that should
keep its location under perfect symmetry.

We scanned 50 newborn infants with a structured
light camera (Figure 13) and constructed a 5k mesh for

each child. We marked by hand different facial fiducials
(Figure 14) and evaluated the eigenvalues and eigen-

functions of the shapes given the Euclidean metric and
the equi-affine one.

We evaluated the diffusion distances from the tip of

the nose to the entire face in several time stamps as can
be seen in Figure 15. While every choice of time pro-
vides a different length measurement, it is unclear which

time is best for a given application. The equi-affine
based distances remain similar for small time shift, but

the Euclidean based distances alter dramatically. We
provide a quantitative assessment in Figure 16 where

we show the distances distribution for three different
times. In order to prove that claim, we evaluated the
distances between six different pre-marked facial fidu-

cials. For every pair (50 × 49) we measured the ratio
between those distances in a variety of time stamps,

and we present the results in Figure 17 and Table 4.
Even though choosing the correct time is unknown a

priori, the equi-affine distortion graph is strictly below
that of the Euclidean one. The time chosen for analy-

sis is the dynamic range for which diffusion distances
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represent well facial geometry. Smaller values provide
unstable results, while larger ones hardly provide mean-

ingful information. In Figure 16 we can see that in that
dynamic range the equi-affine distances contain mean-

ingful information and are better spread then the Eu-
clidean ones.

If the faces were globally affined then a global nor-

malization would be sufficient but this is not the case. In
table 3 we show the pairwise distortion error of straight
Euclidean distances between the facial fiducials after we

performed a global affine alignment. We witness differ-
ent distortions for different distances. Hence, faces can

not be aligned using one global affine transformation,
and using a local normalization, such as within the equi-

affine metric, is a better approach.

The advantages of the equi-affine metric are twofolds.
First, it is much more robust to the time chosen. Sec-
ond, the ratio is closer to one, which means that any

alignment algorithm which minimizes intrinsic proper-
ties will provide better results using the equi-affine met-

ric.

Fig. 13 Structured light scanner used to capture the facial
geometry of newborns in the hospital.

Fig. 14 Facial fiducials were marked by hand for evaluation
of local stretches between faces. The inner canthis (P2-3) dis-
tance is used for global scaling.

Fig. 15 Diffusion distances from the tip of the nose given
three different times: from left to right 0.10, 0.15 and 0.20. In
the first row we used the Euclidean metric and in the second
row the equi-affine metric. We can see that the equi-affine
metric is much more robust to small time shifts. Quantitative
results appear in Figure 16.

Table 3

Mean and standard deviation of 50 × 49 distance pairs
ratios after a global affine alignment was performed.

P2-3 P1-4 P6-7 P5-9 P1-6 P2-6
Mean 1.17 1.13 1.12 1.15 1.08 1.09
STD 0.39 0.65 0.23 0.21 0.19 0.10

Table 4

Diffusion distances ratios based on the Euclidean metric.

Time P2-3 P1-4 P6-7 P5-9 P1-6 P2-6
0.10 1.14 1.20 1.18 1.74 1.40 1.41
0.15 1.74 1.92 1.91 3.63 2.66 2.83
0.20 3.60 4.15 4.34 10.90 7.26 8.40

Diffusion distances ratios based on the equi-affine metric.

Time P2-3 P1-4 P6-7 P5-9 P1-6 P2-6
0.10 0.98 0.97 1.05 1.19 0.99 0.97
0.15 1.03 1.03 1.12 1.25 1.05 0.99
0.20 1.15 1.16 1.30 1.38 1.19 1.06

Next, we compared the quality of facial alignment

using the GMDS framework [13] given diffusion dis-
tances and commute time distances based on the Eu-
clidean and Equi-affine metric. In Table 5 we show the

distortion from ground truth of 45 comparisons between
10 faces. We define the error as the average Euclidean

intrinsic (geodesics) shifts of marked positions (1 to 9
from Figure 14). In addition, we scaled all models such

that the inner canthus distance will be 1. In the ma-
jority of the experiments the Equi-affine metric outper-

formed the Euclidean one in a significant manner. We
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Fig. 16 Histogram of diffusion distances measured from the tip of the nose (Figure 15) for three different times. We can see
that the equi-affine metric is more robust to time changes.

Fig. 17 A pairwise average ratios of diffusion distances between facial fiducials. We compared 6 different distances for every
pair from our 50 newborns. A 1-ratio means that the distances are almost the same. Due to local stretches the ratios are
different between graphs. As can be seen, the Euclidean based distances are less robust to the choice of time, are different
from pair to pair and have a higher variance then those measured with the equi-affine metric. We provide quantitative results
in Table 4.

summarize the results in Table 6. In average the Eu-

clidean metric showed more then 30 percentage distor-
tion over the Equi-affine using commute time distance,
and more then 120 percentage distortion for diffusion

distances with time 0.1. Choosing a longer time shown

even greater distortions.
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Table 5

Alignment distortion from ground truth using GMDS framework for 10 different faces (45 comparisons).
On the left we present the Euclidean based distortion, and on the right the Equi-affine.
The faces were normalized such that the inner canthus distance (points 2-3) is 1.
On the top table we used diffusion distances, and on the bottom commute time distances.

Diffusion distances t = 0.1

Euc/EA 1 2 3 4 5 6 7 8 9 10
1 0 / 0 0.55 / 0.22 0.33 / 0.17 0.63 / 0.11 0.37 / 0.08 0.35 / 0.13 0.61 / 0.14 0.45 / 0.13 0.63 / 0.44 0.37 / 0.14

2 0 / 0 0.30 / 0.24 0.62 / 0.12 0.36 / 0.14 0.36 / 0.16 0.61 / 0.15 0.46 / 0.28 0.61 / 0.34 0.37 / 0.18

3 0 / 0 0.43 / 0.11 0.36 / 0.23 0.35 / 0.17 0.61 / 0.17 0.46 / 0.13 0.64 / 0.37 0.37 / 0.17

4 0 / 0 0.45 / 0.07 0.35 / 0.11 0.61 / 0.09 0.46 / 0.12 0.57 / 0.29 0.36 / 0.18

5 0 / 0 0.33 / 0.15 0.61 / 0.20 0.42 / 0.24 0.59 / 0.39 0.38 / 0.29

6 0 / 0 0.07 / 0.16 0.46 / 0.13 0.62 / 0.31 0.35 / 0.17

7 0 / 0 0.41 / 0.28 0.60 / 0.37 0.37 / 0.22

8 0 / 0 0.13 / 0.40 0.37 / 0.12

9 0 / 0 0.46 / 0.37

10 0 / 0

Commute time distances

Euc/EA 1 2 3 4 5 6 7 8 9 10
1 0 / 0 0.20 / 0.14 0.26 / 0.16 0.27 / 0.18 0.24 / 0.17 0.25 / 0.21 0.21 / 0.14 0.19 / 0.13 0.43 / 0.37 0.26 / 0.18

2 0 / 0 0.16 / 0.19 0.23 / 0.14 0.25 / 0.17 0.25 / 0.17 0.24 / 0.16 0.22 / 0.18 0.35 / 0.22 0.30 / 0.20

3 0 / 0 0.24 / 0.18 0.26 / 0.17 0.26 / 0.26 0.36 / 0.18 0.31 / 0.17 0.37 / 0.34 0.22 / 0.20

4 0 / 0 0.18 / 0.17 0.36 / 0.23 0.31 / 0.13 0.32 / 0.16 0.31 / 0.27 0.26 / 0.20

5 0 / 0 0.22 / 0.21 0.20 / 0.17 0.20 / 0.20 0.26 / 0.36 0.26 / 0.18

6 0 / 0 0.18 / 0.16 0.18 / 0.12 0.36 / 0.31 0.27 / 0.13

7 0 / 0 0.17 / 0.17 0.41 / 0.38 0.31 / 0.16

8 0 / 0 0.23 / 0.24 0.23 / 0.12

9 0 / 0 0.22 / 0.26

10 0 / 0

Table 6

Mean/median distortions of GMDS alignment from table 5.
The faces were normalized according to the inner canthus.

Mean/Median Diffusion t = 0.1 Commute time
Euclidean 0.449/0.430 0.261/0.254
Equi-affine 0.203/0.170 0.199/0.182

8 Conclusions

We showed a practical construction of equi-affine dis-

tances on surfaces using Finite Elements, which grace-
fully handles the degenerate cases. This novel frame-

work allows us to disregard a local equi-affine distor-
tion without the need to estimate it during evaluation

of bendable surfaces.

The affine transformation can be local or global, and

act on either rigid or non-rigid shapes. In order to prove
robustness we showed how to compute the equi-affine
invariance to a wide range of state-of-the-art algorithms

designed for non-rigid shapes, and explored the poten-
tial of this metric in statistical analysis of facial mor-

phometry.

Additional research is required in both theoretical

and numerical aspects. The local metric computation
can be improved by a consistent higher order interpola-

tion. In addition we used first order scheme to calculate

the Laplace-Beltrami operator, which can be improved

using higher orders.

We only showed preliminary results of this metric

for medical applications, yet the potential is clear. A
limitation of the proposed metric is its sensitivity to
scale, in a followup paper we plan to marry the pro-

posed metric with the scale invariant one [1] and con-
struct an affine invariant metric that can also handle

scales.
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