
MIT Open Access Articles

Distributed Learning for Planning Under
Uncertainty Problems with Heterogeneous Teams

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ure, N. Kemal, Girish Chowdhary, Yu Fan Chen, Jonathan P. How, and John Vian.
“Distributed Learning for Planning Under Uncertainty Problems with Heterogeneous Teams.” J
Intell Robot Syst 74, no. 1–2 (November 19, 2013): 529–544.

As Published: http://dx.doi.org/10.1007/s10846-013-9980-x

Publisher: Springer Netherlands

Persistent URL: http://hdl.handle.net/1721.1/103618

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/103618
http://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Intelligent and Robotic Systems

Distributed Learning for Planning Under Uncertainty Problems with Heterogeneous
Teams

--Manuscript Draft--

Manuscript Number: JINT-D-13-00458

Full Title: Distributed Learning for Planning Under Uncertainty Problems with Heterogeneous
Teams

Article Type: Full/Regular paper

Keywords: Distributed Learning; Planning Under Uncertainty; Unmanned Aerial Systems.

Corresponding Author: Nazim Kemal Ure
Massachusetts Institute of Technology
Cambridge, Massachusetts UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Massachusetts Institute of Technology

Corresponding Author's Secondary
Institution:

First Author: Nazim Kemal Ure

First Author Secondary Information:

Order of Authors: Nazim Kemal Ure

Girish Chowdhary, Assistant Professor

Yu Fan Chen

Jonathan P. How, Professor

John Vian

Order of Authors Secondary Information:

Abstract: This paper considers the problem of multiagent sequential decision making under
uncertainty and incomplete knowledge of the state transition model. A distributed
learning framework, where each agent learns an individual model and shares the
results with the team, is proposed. The challenges associated with this approach
include choosing the model representation for each agent and how to effectively share
these representations under limited communication. A decentralized extension of the
model learning scheme based on the Incremental Feature Dependency Discovery
(Dec-iFDD) is presented to address the distributed learning problem. The
representation selection problem is solved by leveraging iFDD's property of adjusting
the model complexity based on the observed data. The model sharing problem is
addressed by having each agent rank the features of their representation based on the
model reduction error and broadcast the most relevant features to their teammates.
The algorithm is tested on the multiagent block building and the persistent search and
track missions. The results show that the proposed distributed learning scheme is
particularly useful in heterogeneous learning setting, where each agent learns
significantly different models. We show
through large-scale planning under uncertainty simulations and flight experiments with
state-dependent actuator and fuel-burn-rate uncertainty that our planning approach
can outperform planners that do not account for heterogeneity between agents.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Dear Editor,

We are excited to submit our paper "Distributed Learning for Planning Under Uncertainty Problems
with Heterogeneous Teams" to the Journal of Intelligent and Robotic Systems UAS Special Volume. We
would like to emphasize that this paper contains the following differences and enhancements from our
ICUAS'13 submission:

- The abstract and the introduction are completely revised and new references on distributed learning
are added.

- Figure 2, which shows the distributed learning framework is re-drawn to display interactions among
agents.

- The Dec-iFDD Algorithm is explained more thoroughly with additional figures and equations. (Section
3.1, 3.2 and 3.3)

- New results are added to the simulation section for a multiagent block building problem. (Section 4.2)

- New flight results are added to the flight results section for the 10 agent problem. (Section 5.1)

Please do let us know if you need any further information from us. We are looking forward to
making progress in having this paper appear in the JINT UAS Special Issue.

Best Regards

Cover Letter
Click here to download attachment to manuscript: Cover Letter.txt

http://www.editorialmanager.com/jint/download.aspx?id=77294&guid=352728ce-a1b6-43a6-b328-23e2a39230d6&scheme=1

Noname manuscript No.
(will be inserted by the editor)

Distributed Learning for Planning Under Uncertainty
Problems with Heterogeneous Teams

Scaling Up the Multiagent Planning with Distributed Learning
and Approximate Representations

N. Kemal Ure · Girish Chowdhary · Yu
Fan Chen · Jonathan P. How · John Vian

Received: date / Accepted: date

Abstract This paper considers the problem of multiagent sequential decision
making under uncertainty and incomplete knowledge of the state transition model.
A distributed learning framework, where each agent learns an individual model
and shares the results with the team, is proposed. The challenges associated with
this approach include choosing the model representation for each agent and how
to effectively share these representations under limited communication. A decen-
tralized extension of the model learning scheme based on the Incremental Fea-
ture Dependency Discovery (Dec-iFDD) is presented to address the distributed
learning problem. The representation selection problem is solved by leveraging
iFDD’s property of adjusting the model complexity based on the observed data.
The model sharing problem is addressed by having each agent rank the features of
their representation based on the model reduction error and broadcast the most
relevant features to their teammates. The algorithm is tested on the multiagent
block building and the persistent search and track missions. The results show that
the proposed distributed learning scheme is particularly useful in heterogeneous
learning setting, where each agent learns significantly different models. We show
through large-scale planning under uncertainty simulations and flight experiments
with state-dependent actuator and fuel-burn- rate uncertainty that our planning
approach can outperform planners that do not account for heterogeneity between
agents.

N. Kemal Ure
Massachusetts Institue of Technology E-mail: ure@mit.edu

Girish Chowdhary
Oklahoma State University E-mail: girish.chowdhary@okstate.edu

Yu Fan Chen
Massachusetts Institue of Technology E-mail: chenyuf2@mit.edu

Jonathan P. How
Massachusetts Institue of Technology E-mail: jhow@mit.edu

John Vian
Boeing Research and Technology E-mail: john.vian@boeing.com

PDF output of the Latex files
Click here to download Manuscript: paper.pdf

http://www.editorialmanager.com/jint/download.aspx?id=77293&guid=7d6e0fc5-6225-44fd-830f-6f3a88501611&scheme=1

2 N. Kemal Ure et al.

Keywords Distributed Learning · Planning Under Uncertainty · Unmanned
Aerial Systems

1 Introduction

Multiagent planning problems12 are ubiquitous in engineering, with applications
ranging from manufacturing13 to surveillance with Unmanned Aerial Vehicles
(UAVs)26. A common theme among such missions is the uncertainty that stems
from stochastic vehicle dynamics and external disturbances24. The planners devel-
oped to address such problems typically rely on models of the mission dynamics17,
but these models may not always be available and/or the available models might
be inaccurate, which can lead to poor performance1. A common solution is to
incorporate a model learning algorithm within the planning framework to address
this problem3 , but this coupled planning/learning problem is particularly chal-
lenging for the multi-agent systems19 due to exponential increase in the size of the
planning space with number of agents. This paper presents a decentralized learning
algorithm that decomposes the learning problem to be per agent, and enables the
agents to share the relevant models/features while accounting for communication
constraints. The main objective of the paper is to demonstrate that the developed
learning algorithm can be integrated within a planning framework to enable online
solution of large-scale multiagent planning problems with uncertain dynamics.

Markov Decision Processes (MDPs) provide a natural framework for solving
stochastic sequential decision making problems18. Many researchers have devel-
oped MDP formulations of robotic planning missions and used variety of tools
such as dynamic programming to generate optimal solutions11. However, these
exact methods usually do not scale well with the number of agents for the mul-
tiagent problems. Approximate Dynamic Programming (ADP) methods1 aim to
address the problem of solving such large-scale MDPs by employing approximate
representations of the value or policy functions, thereby trading-off the optimality
of the resulting plan with the computational efficiency. ADP methods have been
demonstrated to be a powerful set of tools for solving large-scale and/or continu-
ous planning problems4. In particular, the authors have applied ADP techniques
to solve UAV persistent search and track missions, and demonstrated the applica-
bility of the developed methods with flight results26,28,30.

The planning techniques based on solution of MDPs operate on the assump-
tion that the transition model of the MDP is available to the designer. To aid this
problem, researchers have integrated machine learning techniques and planning
algorithms to update the transition model of the MDP based on the observations
that are gathered by the agents through interactions with the mission environ-
ment. In particular, the Dyna algorithm22 and approximate versions23,32 have
been successful in planning with learned models for MDPs with unknown transi-
tion dynamics. One of the disadvantages of such methods is the requirement that
the features (also referred to as bases) of the approximate representation are fixed.
Selection of features is a difficult problems in itself, and recognized as one of the
most important challenges in ADP and Reinforcement Learning1,14. In the previ-
ous work, the authors have used the Incremental Dependency Discovery (iFDD)7

function approximation method to learn the transition models of MDPs27, which
incrementally expands the set of features used in the approximation architecture.

Title Suppressed Due to Excessive Length 3

The main advantage of the technique is allowing the complexity of the approxima-
tion architecture to be dynamically adjusted based on the observed interactions
with the environment, therefore relaxing the strict requirement on hand-coding a
fixed set of features.

Although the iFDD model learning algorithm was shown to be an effective
method for solving a variety of planning problems26,30, the algorithm’s conver-
gence rate slows down considerably for large-scale multiagent planning scenarios.
One possible solution to this challenge is to decompose the learning to be per agent
rather than operating in the joint state space of all agents, by using methods from
distributed learning6 and transfer learning15. Such methods accelerate the speed
of the learning process by sharing model parameters. However these techniques
have their own set of challenges, such as how to share learned model parameters
under limited communication. In particular, in the heterogeneous learning set-
ting16, where the agents are learning different models, sharing model information
may actually harm the overall system performance. Such heterogeneous team set-
tings are common in UAV missions, where the dynamics or the operational space
of each agent is different from each other.

Our previous work introduced the Dec-iFDD algorithm28, which decomposes
the problem to per agent to relax the computational complexity, and allows agents
to share features with each other to improve their corresponding models. Results
in that paper showed that the Dec-iFDD algorithm is more scalable compared to
its centralized variant and the feature sharing helps to improve the convergence
speed considerably. The main contribution of this paper is the presentation of the
Dec-iFDD algorithm in a more general setting rather than limit it’s applicability
to UAV health management problems, as well as additional simulations and flight
test results to show the applicability of the algorithm across different problems.
These additional results confirm that the Dec-iFDD is applicable to general multi-
agent learning problems. In addition, results verify the earlier results on how the
decentralized learning can be more beneficial than centralized learning when the
the team is heterogeneous.

The paper is organized as follows, Section 2 provides the definition of the
learning/planning problem, Section 3 introduces the Dec-iFDD algorithm. The
next section presents simulation results, for the multiagent block assembly prob-
lem and the UAV persistent search and track (PST) problem. Finally, Section 5
provides the flight results for a 10 mixed real/virtual agent implementation of the
PST mission1.

2 Problem Definition

The main problem we address in the paper is planning and distributed learning
with MDPs with uncertain transition models in cooperative multiagent setting.
Note that there has been significant amount of research in the game theory com-
munity for competitive scenarios9,31.

We assume that the uncertainty in the model can be represented by a parameter
p that can be factorized per agent, that is p = [p1, . . . , pn] where n is the number of
agents. Depending on the context of the problem, pi can be a scalar, a probability

1 Parts of this work was published before on28,29

4 N. Kemal Ure et al.

distribution or a mapping. The distributed learning problem involves development
of the estimation laws for pi, as well as the coordination plan for distribution of
the learned models across the team.

We make more formal definitions of the problem and our approach in Section 3.
Note that after the model is updated, the corresponding MDP must be solved by
a planning algorithm to generate a policy. This paper does not focus on the plan-
ning algorithms, however the authors have developed several multiagent planning
algorithms in the past for such problems20,26,30.

2.1 Motivating Problem: UAV Persistent Search and Track Missions (PST):

In this section we present the PST mission as a motivating example for a multia-
gent planning under uncertainty problem and how the decentralized learning can
be used to improve the planning performance. The goal of the mission is to find
an optimal policy to persistently perform surveillance on a group of targets with
limited endurance UAVs in the presence of uncertainty and both communication
and health constraints20, see Fig. 1.

The number of UAVs is denoted by nUAV, and each UAV’s individual state
consists of its location, fuel, actuator status, and sensor status. The full state
space is the combination of states for all UAVs. There are three available actions
for each UAV: {Advance,Retreat, Loiter}. The objective of the mission is to fly
to the surveillance region and perform find/track the targets, while ensuring that
a communication link with the base is maintained. The base is assumed to be
out of line-of-sight, therefore, a UAV needs to act as a communication relay to
maintain the link. If a UAV runs out of fuel (remaining charge in the battery),
it is assumed to be unable to continue the mission. It is difficult to estimate the
time for the battery to discharge due to uncertainties in the environment such as
external disturbances, and uncertainties in the mission such as the aggressiveness
of the targets to be pursued. Therefore, a probabilistic model is used to capture
the fuel burned while performing the mission: each UAV starts with 10 units of fuel
and is assumed to burn one unit for all actions with probability pnom and 2 units
with probability 1− pnom. This model allows designer to choose pnom to reflect the
uncertainty in the fuel burning dynamics for the given mission. Each UAV carries
an actuator and a sensor with probabilistically modeled failure rates. The sensor
and actuator of each UAV can fail on each step with probabilities pact and psns
correspondingly. A UAV with a failed sensor is assumed to be unable to perform
surveillance, and UAV with a failed actuator unable to perform surveillance or
communication. When a UAV returns to the base, it is refueled and all failures
are assumed repaired. We refer to the wellness of the sensor and actuator as the
health of the UAV.

The previous works on PST missions2,26,30 showed that having an accurate
health model of each agent is crucial to generate an efficient plan. In particular
such health models can be state-correlated, meaning that the uncertain parameter
for each agent pi is a mapping from the state space S to [0, 1]. For instance,
the nominal fuel burning probability may depend on the location of the UAV.
Assuming that this map is constant (state independent uncertainty) or ignoring
to update the parameter might negatively affect mission performance27.

Title Suppressed Due to Excessive Length 5

Base

Communication

Tasking
Congested

Environment

Fig. 1: Persistent Search and Track mission. Goal is to maintain persistent surveil-
lance of two targets, while maintaining a data link with the base by having a
capable UAV with loiter in the communication area.

There are two facets of the problem of learning such health models. First, when
the state space is large, representing pi(s) as a look-up table becomes infeasible and
an appropriate set of features should be selected for approximation. Although these
health models can be learned by each agent independently, due to fact that agents
operate in the same mission environment, sharing of relevant features might boost
the convergence of learning significantly. The second challenge is the development
of a feature sorting and sharing method under limited communication. In the next
subsection we give an overview of how these challenges were addressed.

2.2 An Overview of Our Approach

To address the problem of planning with learned models in large-scale heteroge-
neous teams, an integrated planning-learning approach was employed, displayed
in Figure 2. The basic idea of the framework is enabling each agent to have its own
decentralized learning algorithm (The Dec-iFDD algorithm developed in Section
3) and communicate these learned models across each other and to a planning
algorithm. The planning algorithm can be also decentralized depending on the
mission formulation and requirement. This framework was originally developed to
solve UAV Persistent Search and Track Mission with uncertain health dynamics28,
in this work we show that it is generalizable to a larger class of planning under
certainty problems.

The framework uses the linear function approximation represent the state-
correlated uncertainties,

p(s) ≈ p̄(s) = θTφ(s), (1)

where φ(s) is the feature set and θ is the weight vector. The challenge of finding a
good φ is handled by the iFDD algorithm’s ability to expand φ based on the ob-
served transitions7, hence the problem of determining model complexity is solved

6 N. Kemal Ure et al.

Decentralized
iFDD learner

Learned
model

Decentralized
iFDD learner

Learned
model

Planner

Learned
model

Decentralized
iFDD learner

Agent 1

Agent 2

Agent 3
. .
.

Agent n

World

actions

interactions

Fig. 2: The integrated planning and learning architecture used in this paper em-
ploys decentralized collaborative online learning (see Section 3) to learn the models
of mission dynamics. These learned models are fed to an planning algorithm. Ar-
rows in the figure indicate that the agents communicate with each other their
representations of the uncertainty.

internally. The Dec-iFDD algorithm sorts the features φi for each agent based
on their corresponding weights θi and allows each agent to only share their most
heavily weighted features. The maximum number of shared features can be tuned
based on the communication constraints. This sharing methodology addresses the
problem of model sharing with communication constraints and improves the con-
vergence speed of the planning performance. The next section presents the formal
presentation of the algorithm.

3 Decentralized Learning with Dec-iFDD

3.1 Background

3.1.1 Markov Decision Processes

The problem of sequential decision making under uncertainty is formulated as an
MDP, which is defined as the tuple

M = 〈S,A,Pass′ ,Rass′ , γ〉 ,

where S is the discrete state space, A is the discrete set of actions, Pass′ is the
state transition model that denotes the probability of transitioning to state s′

when action a is applied at state s. Rass′ is a known reward model representing the
reward for executing action a in state s and transitioning to state s′. γ ∈ [0, 1] is
the discount factor used to balance relative weights of current and future rewards.

Title Suppressed Due to Excessive Length 7

Only MDPs with discrete and finite state space are considered. A policy is a
mapping π : S → A from state to action space. Together with the initial state
s0, a policy forms a trajectory z = {s0, a0, r0, s1, a1, r1, · · · }. For each time-step
t, at = π(st), and both rt and st+1 are sampled from the reward and transition
models correspondingly. The value of each state-action pair under policy π is
defined as:

Qπ (s, a) = Eπ

[∞∑
t=0

γtrt

∣∣∣∣s0 = s, a0 = a

]
, (2)

which is the expected sum of discounted rewards obtained starting from state s,
taking action a and following the policy π thereafter. The optimal policy π∗ is
given by the solution of the following optimization problem:

π∗(s) = arg max
a

Qπ
∗
(s, a). (3)

3.1.2 Learning State-Dependent Uncertainties

Let p : S → [0, 1] denote the state dependent uncertainty function that needs
to be learned to model the uncertainty in the underlying MDP. For instance, in
the context of the PST mission p(s) can be the probability of burning nominal
amount of fuel in state s. Hence, in order to capture environment dynamics, this
correlation should be estimated. The uncertain parameter p, can be treated as
function that maps the state s ∈ S to a probability p(s) ∈ [0, 1],

p(s) = P (〈s, a, s′〉 ∈ E|s), (4)

where E is the event associated with the uncertain parameter. Events are sets of
state transitions that define the physical meaning behind the uncertain parameter,
such as sensor failure, fuel consumption and communication loss. A straightforward
approach to solve the parameter/model estimation problem would be treating each
p(s), s ∈ S differently, hence estimating |S| parameters concurrently. It is evident
that this approach easily becomes inefficient and even intractable when |S| is large.
This issue can be alleviated by introducing a linear function approximation:

p(s) ≈ p̂l(s) = φ>(s)θl, (5)

where p̂l (s) is the approximate representation at lth step and φ (s) is the vector
of features. Each component φj is a binary feature characterized by a mapping
from state to a binary value; φj (s) : s → {0, 1} , j = 1, ...,m, where m is the
total number of features and θl ∈ Rm is the weight vector at step l. A feature φj
is called active at state s if φj(s) = 1. Set of active features at state s is given
by A (s) = { j|φj (s) = 1}. The weight θ of the representation can be updated as
follows. At each step, new estimates are formed by updating θ by looping through
each observed state transition at that step. Let z be the observed trajectory of state
transitions at so, z = {(sl, al, sl

′
), l = 1, 2, ..., Nexec}, where Nexec is the length

of the trajectory. The steps l are referred to as learning steps. At each learning
step, θl is updated to θl+1 by processing the lth element of observed trajectory
z. Update is performed using gradient descent on the squared estimation error
1
2 [p(sl)− p̂(sl)]2. This results in an update law of the form,

θl+1 = θl + αl∆l(sl)φ(sl), (6)

8 N. Kemal Ure et al.

ϕ1

Initial

ϕ2

ϕ3

Discovered

ϕ1∧ϕ2∧ϕ3

Potential

ϕ2∧ϕ3

ϕ1∧ϕ2

Fig. 3: The discovery step of the iFDD algorithm, initial features are circles, con-
junctive features are rectangles. The relevance ∆(s) of a potential feature is the
filled part of the rectangle. Potential features are discovered if their relevance ∆(s)
reaches the discovery threshold ζ.7

where αl ∈ [0, 1] appropriate step-size parameter and ∆l(s) = ζ(s) − p̂(s) =
ζ(s)− φ(s)T θl. Here ζ(s) is an indicator function for the event induced by p, that

is ζ(s) = 1 if (s, a, s
′
) ∈ E and ζ(s) = 0 otherwise. Full derivation of the update

law in Eq. 6 can be found in27. Updates of this form are usually referred to as
Stochastic Gradient Descent (SGD)10.

3.2 Adaptive Feature Selection with iFDD

It is easy to see that selection of the feature vector in Eq. 5, is a key step in the
design process of the learning algorithm. Quality of the resulting approximation
depends strongly on the representation capability of these features4. Hence it
is desirable to add an additional loop to the learning process, which adaptively
adjusts the set of features based on the performance of the learning algorithm.

The iFDD method is an adaptive function approximation method for estimat-
ing value functions encountered in reinforcement learning problem. Results showed
that, when coupled with a value function update rule that is stable under func-
tion approximation (such as SARSA22), iFDD outperforms the existing methods
both in sparsity and planning performance. Ure27 extended the use of iFDD to
represent transition probabilities of MDPs. The basic idea of iFDD is to expand
the representation by adding conjunctions of the initial features based on an error
metric, thus reducing the error in parts of the state space where the feedback error
persists (see Fig. 3). The general outline of the algorithm is as follows: given a set of
initial binary features, when performing the update for state s ∈ z, a conjunction
set φc (s) = {φj (s) ∧ φk (s)| j, k ∈ A (s)} is formed. These features are referred to
as candidate features. If the sum of sampled estimation error ∆ (s) over active

Title Suppressed Due to Excessive Length 9

candidate features exceeds some pre-determined threshold ξ, these conjunctions
are added to set of features. Interested reader is directed to27 for further insight
on the implementation of the algorithm and analysis of its convergence properties.

3.3 The Dec-iFDD Algorithm

In many realistic scenarios the model of the uncertainty is not only state depen-
dent, but is also agent dependent. Let n represent the number of agents and let
pi(s) represent the state dependent uncertainty functions that needs to be learned
to model the uncertainty in the MDP of the ith agent. A naive generalization
of SGD-iFDD to the decentralized setting can be obtained by running a separate
SGD-iFDD for each UAV. In this setting, each UAV updates its own representation
based on the individual observations. This approach does not leverage the ability
of the agents to collaborate. In particular, even though the environment may affect
each agent in a different way the underlying features used to represent the envi-
ronment should be common, as the agents all operate in the same environment.
The main idea behind the Decentralized iFDD (Dec-iFDD) algorithm presented in
this subsection is increasing the efficiency in learning by allowing agents to share
the iFDD discovered features with each other under communication constraints.
The pseudocode of the Dec-iFDD algorithm is provided in Algorithm 1.

The line by line description of the Algorithm 1 is as follows, the algorithm
takes number of agents n, the set of binary features for each agent φinit and the
cap on shared features φcap as the input. At each step, agents interact with the
environment to receive observations (line 10), and then each agent applies the
standard iFDD algorithm independent of each other to update it’s current set of
features φi as well as the corresponding weights θi (line 11). When the current step
is a sharing step, each agent sorts it’s feature based on the weights (line 5), and
then the first φcap/n number of features with the largest weights are broadcast in
the network (line 6 and 7). Then all the agents update their feature set with the
broadcasted features and then set the weights for their new features (line 8).

There are two striking properties of the algorithm. First, note that the algo-
rithm only allows agents to share features and not the weights each other. This
is especially important for the heterogeneous teams, where the agents may share
common features due to operating in the same environment, but each feature is
weighted differently due to heterogeneity of the team. Secondly, the algorithm
takes the communication limits into consideration with capping the total num-
ber of shared features in the network by the parameter φcap, and forces agents
to only share the more heavily weighed features in their representations at each
sharing step. The implications of these two properties are shown in the following
simulations.

4 Simulation Results

4.1 The Simulation Setting and The Compared Approaches

For each multi-agent MDP, we consider the learning of a single state-correlated
uncertainty pi(s) per agent, where i = 1, .., n indexes the agents. For all missions

10 N. Kemal Ure et al.

Algorithm 1: Dec-iFDD Model Learning Algorithm

Input: Number of Agents n, Set Initial Binary Features φinit, Shared Feature Cap
φcap

Output: Estimated model p̂i for each agent i = 1, ..., n
1 Initialize φi = φinit Initialize θ

i = 0
2 foreach Step do
3 foreach Agent do
4 if Step = Sharing Step then
5 φ′i ← Sort Features(φi, φcap, θi)

6 Broadcast(φ′i)

7 φ+ ← Listen()

8 φi ← φi ∪ φ+, θi ← Update Theta(φi)

9 else
10 s, a, s′ ← Observe Transition

11 φi, θi ← Expand Representation(s, a, s′)

it is assumed that a nominal model pnom(s) and the underlying pi(s) for each
agent was generated by randomly perturbing this nominal model. A team is called
homogeneous, when the underlying pi(s) for each agent is within 5% limits of the
nominal model. A team is called heterogeneous, when the underlying pi(s) for each
agent is within 20% limits of the nominal model.

For both heterogeneous and homogeneous teams, we compare 4 different learn-
ing approaches. The centralized learner with homogeneity assumption assumes that
pi(s) are the same for all agents, and therefore concatenates observations from all
agents and processes these by the iFDD algorithm to generate a single model. Then
all agents plan using this single model. Alternative to the centralized learner, the
Dec-iFDD algorithm (Algorithm 1) with 3 different feature sharing caps (FSC),
{0, 10, 100}, was compared. Note that FSC= 0 corresponds to the case where each
agent learns completely independently and shares nothing with each other.

Two domains are inspected, the multi-agent block building problem, which is
the multi-agent extension of a classical AI problem and the PST mission, which
was used as the motivating problem at the Section 2. The main objective of these
simulation results is to show that, if the team is heterogeneous, the centralized
learning can actually hurt the performance and it is outperformed by distributed
learning approach.

4.2 Multiagent Block Building Problem

This problem formulation is motivated by classical blocksworld problem that ap-
pears as a benchmark in many different AI applications21. Problem consists of
picking up the blocks on a table and arranging them into a specific configuration,
usually a tower. The stochastic dynamics are introduced to the system though
pfall, which denotes the state-independent probability that a block may fall from
the top of the tower back to the table. This formulation of the problem have
been solved by many different planning algorithms in the past7. The authors have
formulated an alternate version of the problem27 with state-dependent pfall. In
this formulation, probability of the block falling down increases as the tower gets

Title Suppressed Due to Excessive Length 11

Fig. 4: The multiagent blocksworld problem with 4 agents. The baseline probability
model correlates the configuration and the probability of blocks falling

higher and decreases with the presence of adjacent blocks. The objective of the
planning/learning problem is to learn the structure of pfall(s) and build the optimal
block configuration.

This paper presents a decoupled multi-agent version of the blocksword problem
with state dependent uncertainty. As shown in Fig. 4, the problem consists of
coordinating n = 4 robotic arms for building the blocks. The dynamic of each
block building problem is completely decoupled from each other, thus the planning
can be performed independently. For this mission learning is executed at every 300
steps for each robot, and the MDP that corresponds to the learned models were
solved by using the value iteration algorithm1. All results are averaged over 30
runs.

The nominal model is given as follows. Let nslot be the number of blocks in the
destination slot, and nadj be the maximum number of blocks in adjacent towers.
Define p̄fall = 0.1× (nslot − nadj)2 + 0.1. Then pfall is calculated as:

pnomfall =

0 p̄fall 6 0 or nslot = 0
p̄fall 0 < p̄fall < 1

1 p̄fall > 1
.

The results for the homogeneous team is given in Fig. 5. Results show that the
centralized algorithm required ≈ 30% less number of steps to converge compared
to the Dec-iFDD algorithm with the largest FSC. It can be concluded that for this
homogeneous scenario, using the same weights θ and features φ for all the agents
resulted in a good approximation.

The results for the heterogeneous team are given in Fig. 6. The results show
that centralized learning algorithm is unable to converge in this case because
the algorithm generates a single model by processing all the observations, but the
underlying samples are generated by substantially different models. The Dec-iFDD
algorithm on the other hand, learns individual models for each agent and hence
the agents can adapt their plans to their specific models. In addition, as the FSC
increases, agents are able to share more relevant features with each other and the
convergence rate of the overall performance increases significantly.

12 N. Kemal Ure et al.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

steps

av
er

ag
e

cu
m

ul
at

iv
e

re
w

ar
d

Centralized
w/Homogeneity

Assumption

Dec−iFDD
FSC:100

Dec−iFDD
FSC:10

Dec−iFDD
FSC:0

Fig. 5: Comparison of centralized approach versus decentralized approaches with
different feature sharing caps (FSC) for the multiagent blocksworld scenario where
model perturbation is 5% from the nominal model

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

steps

av
er

ag
e

cu
m

ul
at

iv
e

re
w

ar
d

Dec−iFDD
FSC:100

Dec−iFDD
FSC:10

Dec−iFDD
FSC:100

Centralized
w/ Homogeneity

Assumption

Fig. 6: Comparison of centralized approach versus decentralized approaches with
different feature sharing caps (FSC) for the multiagent blocksworld scenario where
model perturbation is 20% from the nominal model

Title Suppressed Due to Excessive Length 13

Table 1: Baseline probability of actuator failure across different locations and fuel
levels.

Fuel Level

Location High Fuel Level Low Fuel Level
Base 0.0 0.0
Communication 0.05 0.1
Surveillance 0.2 0.3

Table 2: Baseline probability of nominal fuel rate across different locations and
health states.

Health

Location Healthy Sensor Fail Actuator Fail
Base 0.0 0.0 0.0
Communication 0.95 0.92 0.86
Surveillance 0.95 0.92 0.86
Surveillance (Windy) 0.90 0.80 0.75

4.3 Persistent Search and Track with UAVs

For simulations, a large scale PST simulation with 10 collaborating UAVs was
considered. It was assumed that the state-correlated actuator failure probability
pa(s)i and state-correlated nominal fuel burn rate for each agent i is unknown at
the beginning of the mission, and must be learned through interactions with the
environment. The baseline probability of actuator failure model that is used in
the simulations is given at Table 1 and the baseline nominal fuel burning rate is
given at Table 2. State-dependency of the fuel burning rate was motivated from
the possibility of having non-uniform wind in the mission environment and thus
each region induces a different fuel burning rate. Table 2 shows the probability of
incurring nominal fuel burn in the respective states. Non-nominal fuel burn rate
is set as twice the nominal fuel burn rate.

The Group Aggregate Dec-MMDP (GA-Dec-MMDP) algorithm26 was used to
replan after every model update. Similar to how the Dec-iFDD algorithm decom-
poses the learning problem to per agent, the Ga-Dec-MMDP planner decomposes
the planning problem per agent to enable online planning in large-scale multia-
gent missions. The development, and additional simulation and flight results for
the GA-Dec-MMDP algorithm are available26,28.

Figure 7 compares the cumulative cost performance of several instances of the
Dec-iFDD algorithm with different feature sharing caps for almost homogeneous
UAV team. In this case, it can be seen that as the cap on features to be shared
is increased, the performance of the algorithm approaches that of the centralized
algorithm. This result reinforces the intuition that the decentralized algorithm
can do no better than a centralized one when the agent models of uncertainty are
homogeneous. Figure 8 on the other hand, shows the performance of the Dec-iFDD
algorithm for the same set of feature caps but in a network of collaborating UAVs
with more heterogeneity (20% perturbation from a nominal model). In this case, it
can be seen that planning using the output of the decentralized algorithm results

14 N. Kemal Ure et al.

in much less cumulative cost, because the planner is able to adjust the plan to
suite the capability of each individual agent.

In order to demonstrate the proactive behavior of the resulting policy, two
different mission metrics were averaged over 100 simulation runs and results are
displayed on Table 3. It is seen that the proposed planning-learning approach leads
to policies with less number of total failures in the expense of commanding vehicles
to return to base more frequently. This behavior is due to ability of Dec-iFDD to
learn a specific model for each agent, opposed to centralized planner.

Finally, it is possible to compare feature sharing to an alternative approach
in which all observations are shared by estimating the average number of shared
features, in terms of communication cost. Let κ be the size of a message that can
be passed in the network, which corresponds to an single integer. Thus, each ini-
tial feature and a component of the state vector corresponds to messages of size
κ. The average number of features shared in the simulations were computed to
be ≈ 4.2κ. Hence the total load on the network is 4.2φcapκ, since he maximum
amount of features shared in the network is limited to φcap by Algorithm 1. In
the considered scenario, each observed state transition corresponds to 84κ sized
messages. Hence if n agents share observations instead of features, they would
need to send 84κn messages. For the simulation results presented above, number
of agents n = 10, thus the load on network for passing observations instead of
features is around 840κ. Hence, even with a feature sharing cap of 100, sharing
features require less load on network in terms of communication cost, compared to
sharing observations. In addition, it is seen that size of observations scale linearly
with number of agents, while the number of shared features is fixed for a constant
φcapf . Hence the designer can tune φcap solely based on the limits of the commu-
nication network, while direct sharing of measurements is limited by the size of
the observations and the number of agents in the scenario.

5 Flight Results

This section presents the results of an hour long indoor flight test on a large-
scale PST mission with 10 UAV agents, 10 recharge stations25,26, and several
other ground agents. Of the 10 UAV agents, 9 are simulated (referred to as vir-
tual agents) using physics based simulations, and 1 agent is physically present in
the experiment area (referred to as real agent). The experiment is conducted at
Aerospace Controls Lab (ACL) RAVEN testbed8, which is equipped with a Vicon

Table 3: Evaluation of averaged mission metrics for centralized planner with ho-
mogeneity assumption and coupled GA-Dec-MMDP Dec-iFDD planner with FSC
= 100.

Planner # Failures # Base Visits

Centralized Homogeneous 90.2 81.2

GA-Dec-MMDP with Dec-iFDD 55.1 125.4

Title Suppressed Due to Excessive Length 15

0 10 20 30 40 50 60 70

100

150

200

250

300

Time (min)

A
ve

ra
ge

 C
um

ul
at

iv
e

C
os

t

Dec−iFDD FSC:0

Dec−iFDD FSC:10

Dec−iFDD FSC:100

Centralized w/ Homogenuity Assumption

Fig. 7: Comparison of centralized approach versus decentralized approaches with
different feature sharing caps (FSC) for the PST scenario where the model per-
turbation is 5% from the nominal model. Results are averaged over 100 runs.

0 10 20 30 40 50 60 70

100

150

200

250

300

Time (min)

A
ve

ra
ge

 C
um

ul
at

iv
e

C
os

t

Centralized w/ Homogenuity Assumption

Dec−iFDD FSC:0

Dec−iFDD FSC:10

Dec−iFDD FSC:100

Fig. 8: Comparison of centralized approach versus decentralized approaches with
different feature sharing caps (FSC) for the PST scenario where the model per-
turbation is 20% from the nominal model. Results are averaged over 100 runs.

16 N. Kemal Ure et al.

Fig. 9: Visual representation of the test environment showing Base, Communica-
tion and Tasking areas. The real quadrotor is constrained to operate in the RAVEN
environment (right part of figure), and the rest of the team (9 quadrotors) operate
in the simulated area to the left. The recharge station is shown at the bottom.

Fig. 10: A box fan is hang from the ceiling to simulate the effect of localized wind.

motion capture system. Custom designed quadrotor UAVs and an autonomous
battery swap/recharge station25,26 are used.

5.1 Experiment I: Single Fan and State-Independent Fuel Burn Rate Learning

In order to verify the applicability of the decentralized learning and planning
approach developed in this paper, an additional scenario where each UAV has a
different state-dependent fuel burning rate was considered in experimental setting.
State-dependency of the fuel burning rate was motivated from the possibility of
having non-uniform wind in the mission environment and thus each region induces
a different fuel burning rate. Table 2 shows the probability of incurring nominal
fuel burn in the respective states. Else, the vehicle experiences twice the nominal
fuel burn.

Title Suppressed Due to Excessive Length 17

0 10 20 30 40 50 60

100

150

200

250

Time (min)

A
ve

ra
ge

 C
um

ul
at

iv
e

C
os

t

Fig. 11: Results from a large scale persistent mission experiment with 9 simulated
quadrotors and one physical quadrotor. A stochastic model of agent fuel burning
rate is learned using decentralized iFDD learning. It can be seen that as the fuel
burning model is learned better the cumulative mission cost is reduced.

To implement the effect of localized wind, a 20-inch diameter box fan was hung
from the ceiling in the RAVEN environment, as illustrated in Figure 10. On high
power setting, the box fan can produce a downward wind flow of approximately 5
m/s over a 0.25 m2 area. From combined on-board voltage and current reading,
the system can reliably distinguish between windy and non-windy region. Note
that the existence of a windy environment is not known to the planning-learning
algorithm a priori, learning the existence of the wind and its impact on the fuel
burning rate is the objective of the learning algorithm.

Results of the experiment averaged over 4 different runs is displayed in Fig-
ure 11. As the learning algorithm learns a better model for the fuel burning rate,
the performance of the policy produced by the planner for allocating UAVs be-
tween the base and surveillance locations improves. It can be seen that the planner
computes a more efficient policy using the continually improving model. In par-
ticular, UAVs in windy areas are returned back to base more frequently to ensure
that they do not run out of fuel and UAVs in non-windy areas are allowed to spend
more time in the surveillance area to accomplish more tasks.

5.2 Experiment II: Two Fans and State-Dependent Fuel Burn Rate Learning

The test environment is depicted in Fig. 9. The mission environment is separated
such that real and virtual agents do not cross each other’s operational spaces. The
actuator failure probabilities are set to the values used for the heterogeneous team
model described in the Section 4.3, and the nominal fuel burn rate probabilities for
all the virtual agents are set according to the heterogeneous team model described

18 N. Kemal Ure et al.

in the Section 4.3. The nominal fuel burn probability of the real agent is influenced
by the custom setup of vertical fans implemented in the experiment area (see
Figs. 12 and 13), which is explained later in this section. The GA-Dec-MMDP
planner26 is used to coordinate the 10 agents across the base, communication
and tasking areas, however the health models are not known to the planner, and
must be estimated during the experiment. Objective of the experiment is to show
that the Dec-iFDD algorithm succeeds in learning these models and the GA-Dec-
MMDP planner can lower the mission cost progressively.

The tasking area for the virtual agents is populated with randomly generated
tasks, which are represented by the colored dots in Fig. 9. Allocation of these tasks
among virtual agents are handled by the CBBA task allocation algorithm5.

The tasking environment for the real agent is shown in Figs. 12 and 13. As
depicted in these figures, the real agent has two static target observation tasks
(task 1 has a higher reward than task 2) and the agent must fly through a re-
gion with localized wind disturbances, created using two vertically aligned fans, in
order to perform the tasks. However the locations and the magnitude of the local-
ized wind disturbances are unknown to the agent a priori. The wind disturbances
generated by the fans significantly impact the battery life of the quadrotor, as can
be inferred from Fig. 14. The figure shows that flying under the wind (blue line)
results in approximately 17% more current drawn from the battery compared to
not flying under the wind (red line), thus it can be stated that flying under the
wind corresponds to higher battery discharge rate, which results in shorter flight
times before returning to base for battery swap. We would like to emphasize that
impact of the wind on the battery life of the agent is not known to the planner in
the beginning of the mission.

The tasking space of the real agent is separated into several grids, with each grid
inducing a different unknown fuel burn rate based on whether the fan above the
grid is active or not. Since the wind can appear and disappear during the mission,
it is more appropriate to model their effect probabilistically rather than having a
binary wind or no wind value for each grid. Hence, the probability of nominal fuel
burn rate pfuel is a function of the agent’s grid location. Therefore, pfuel can be
treated as a state-dependent uncertainty (see Section 3) and is learned here using
the iFDD algorithm. In the actual experiment, during the period where the real
agent is in the tasking area, the agent collects observations of battery usage at each
grid it had traveled to. When the agent returns to the base, the iFDD algorithm
processes this batch of observations to generate an estimate of pfuel(grid). This
process is referred to as one iteration of wind learning. After each wind learning
iteration, a dynamic programming algorithm is used to re-plan a trajectory that
minimizes the based on the current estimate of pfuel(grid) . The actual policy
that the agent implements is randomly chosen from the optimal policy obtained
from the DP algorithm or from a random policy, with the probability of choosing
random actions reducing over time . This is an ε-greedy approach (see22), with
ε = 0.2, designed to encourage exploration.

In the beginning of the mission, only the Fan 1 is on and the fan on the the
top of Task 1 (Fan 2) is turned off. Fig. 15 displays a sequence of selected tra-
jectories for the real agent during different stages of the learning process. At the
first wind learning iteration, the planner routes the agent towards the task with
the higher reward (Fig. 15a), during agents 3rd visit to the tasking area The Fan
2 is manually turned on unknown to the agent. It can be seen that the learning

Title Suppressed Due to Excessive Length 19

Fig. 12: View of the Task area of the real agent.

Fig. 13: View of the Task area of the real agent from Base.

algorithm identifies the non-zero probability of experiencing wind for this grid
(Fig. 15b). After taking more observations of the environment, the planner dis-
covers that doing Task 1 corresponds to higher probability of non-nominal fuel
burn rates and starts to route the agent towards Task 2 (Fig. 15c). After 10 wind
learning iterations, planner converges to a trajectory that has the least probability
of burning non-nominal fuels (Fig. 15d). The overall planning performance of the
whole team is presented in the average cumulative cost versus time plot on Fig.
16. These results are consistent with their simulation counterparts in Section 4.3,
in the sense that the Dec-iFDD algorithm learns the actuator failure and fuel burn
models across the team and the GA-Dec-MMDP planner is then able to provide

20 N. Kemal Ure et al.

Fig. 14: Compares the current drawn from the battery while flying under the fan
with current drawn while flying away from it.

(a) (b) (c) (d)

Fig. 15: Selected trajectories of the real agent during the wind learning process.
Purple grids, which are learned by the agent, correspond to grids with non-zero
probability of experiencing wind. 15a: After 1 wind learning iteration, 15b: After 3
wind learning iterations ,15c: After 7 wind learning iterations, 15d: After 10 wind
learning iterations

improved (lower) average cost. These flight experiment and simulation results ver-
ify the applicability of the GA-Dec-MMDP planner and the Dec-iFDD learner for
large-scale UAV missions with unknown health models and heterogeneous team
structure.

Title Suppressed Due to Excessive Length 21

0 10 20 30 40 50 60

100

150

200

250

Minutes

A
v
er

a
g
e

C
u
m

u
la

ti
v
e

C
o
st

Fig. 16: Average cost of the mission as the learning and replanning progresses for
the large-scale flight experiment

6 Conclusions

The paper presented an decentralized learning framework to address the problem
of model learning and sharing for large-scale multiagent missions. The developed
decentralized incremental feature dependency discovery (Dec-iFDD) algorithm
enables each agent to rank the features of their model and share the most relevant
features with their teammates under limited communication. The simulation and
the flight tests results show that, when there is significant heterogeneity in agents,
the integrated planning/learning framework that periodically re-plans using on-
line estimated models of agent uncertainty outperforms the alternative centralized
approach that assumes homogeneity in agents.

Acknowledgments

This research was generously supported by Boeing Research & Technology.

References

1. Bertsekas D (2005) Dynamic Programming and Optimal Control. Athena Sci-
entific

2. Bethke B, Bertuccelli LF, How JP (2008) Experimental demonstration of
adaptive MDP-based planning with model uncertainty. In: AIAA Guidance
Navigation and Control, Honolulu, Hawaii

3. Busoniu L, Babuska R, De Schutter B (2008) A comprehensive survey of mul-
tiagent reinforcement learning. Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, IEEE Transactions on 38(2):156–172

22 N. Kemal Ure et al.

4. Busoniu L, Babuska R, Schutter BD, Ernst D (2010) Reinforcement Learning
and Dynamic Programming Using Function Approximators. CRC Press

5. Choi HL, Brunet L, How JP (2009) Consensus-based decentralized auc-
tions for robust task allocation. IEEE Transactions on Robotics 25(4):912–
926, DOI 10.1109/TRO.2009.2022423, URL http://dx.doi.org/10.1109/

TRO.2009.2022423

6. Djuric P, Wang Y (2012) Distributed bayesian learning in multiagent sys-
tems: Improving our understanding of its capabilities and limitations. Signal
Processing Magazine, IEEE 29(2):65 –76, DOI 10.1109/MSP.2011.943495

7. Geramifard A, Doshi F, Redding J, Roy N, How J (2011) Online discovery of
feature dependencies. In: Getoor L, Scheffer T (eds) International Conference
on Machine Learning (ICML), ACM, pp 881–888

8. How JP, Bethke B, Frank A, Dale D, Vian J (2008) Real-time indoor au-
tonomous vehicle test environment. IEEE Control Systems Magazine 28(2):51–
64

9. Krishnamurthy V (2010) Quickest time herding and detection for optimal
social learning. arXiv preprint arXiv:10034972

10. Kushner HJ, Yin GG (2003) Convergence of indirect adaptive asynchronous
value iteration algorithms. Springer

11. LaValle S (2006) Planning Algorithms. Cambridge University Press
12. MacKenzie DC, Arkin R, Cameron JM (1997) Multiagent mission specification

and execution. Autonomous Robots 4(1):29–52
13. Monostori L, Váncza J, Kumara SR (2006) Agent-based systems for manufac-

turing. CIRP Annals-Manufacturing Technology 55(2):697–720
14. Painter-Wakefield C, Parr R (2012) Greedy algorithms for sparse reinforce-

ment learning. In: International Conference on Machine Learning (ICML),
ACM, pp 968–975

15. Pan SJ, Yang Q (2010) A survey on transfer learning. Knowledge and Data
Engineering, IEEE Transactions on 22(10):1345–1359

16. Panait L, Luke S (2005) Cooperative multi-agent learning: The state of the
art. Autonomous Agents and Multi-Agent Systems 11(3):387–434

17. Powell W (2007) Approximate Dynamic Programming: Solving the curses of
dimensionality. Wiley-Interscience, pp. 225–262

18. Puterman ML (1994) Markov decision processes
19. Redding JD (2012) Approximate multi-agent planning in dynamic and un-

certain environments. PhD thesis, Massachusetts Institute of Technology, De-
partment of Aeronautics and Astronautics, Cambridge MA

20. Redding JD, Toksoz T, Ure NK, Geramifard A, How JP, Vavrina M, Vian
J (2011) Persistent distributed multi-agent missions with automated bat-
tery management. In: AIAA Guidance, Navigation, and Control Conference
(GNC), (AIAA-2011-6480)

21. Russell S, Norvig P (2003) Artificial Intelligence: A Modern Approach, 2nd
Edition. Prentice-Hall, Englewood Cliffs, NJ

22. Sutton R, Barto A (1998) Reinforcement Learning, an Introduction. MIT
Press, Cambridge, MA

23. Sutton R, Szepesvári C, Geramifard A, Bowling M (2008) Dyna-style planning
with linear function approximation and prioritized sweeping. In: Proceedings
of the 25th International Conference on Machine Learning, Helsinki, Finland

http://dx.doi.org/10.1109/TRO.2009.2022423
http://dx.doi.org/10.1109/TRO.2009.2022423

Title Suppressed Due to Excessive Length 23

24. Thrun S, Burgard W, Fox D (2005) Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press

25. Toksoz T (2012) Design and Implementation of an Automated Battery Man-
agement Platform. Master’s thesis, Massachusetts Institute of Technology

26. Ure NK, Chowdhary G, Redding J, Toksoz T, How J, Vavrina M, Vian J (2012)
Experimental demonstration of efficient multi-agent learning and planning for
persistent missions in uncertain environments. In: Conference on Guidance
Navigation and Control, AIAA, Minneapolis, MN

27. Ure NK, Geramifard A, Chowdhary G, How JP (2012) Adaptive Planning for
Markov Decision Processes with Uncertain Transition Models via Incremental
Feature Dependency Discovery. In: European Conference on Machine Learning
(ECML), URL http://acl.mit.edu/papers/Ure12ECML.pdf

28. Ure NK, Chowdhary G, Chen CM Yu Fan, How JP, Vian J (2013) Decen-
tralized learning based planning multiagent missions in presence of actuator
failures. In: International Conference on Unmanned Aircraft Systems, IEEE,
Atlanta GA

29. Ure NK, Chowdhary G, Chen YF, How JP, Vian J (2013) Health-aware de-
centralized planning and learning for large-scale multiagent missions. In: Con-
ference on Guidance Navigation and Control, AIAA, Washington DC

30. Ure NK, Chowdhary G, How JP, Vavarina M, Vian J (2013) Health aware
planning under uncertainty for uav missions with heterogeneous teams. In:
Proceedings of the European Control Conference, Zurich, Switzerland, (to
appear)

31. Weibull JW (1997) Evolutionary game theory. MIT press
32. Yao H, Sutton RS, Bhatnagar S, Dongcui D, Szepesvári C (2009) Multi-step

dynamic planning for policy evaluation and control. In: NIPS, pp 2187–2195

http://acl.mit.edu/papers/Ure12ECML.pdf

LAtex docs + style files + bib files + pictures
Click here to download Compressed File: Ure13JINT.zip

http://www.editorialmanager.com/jint/download.aspx?id=77295&guid=d122bbc4-5b45-41f1-81be-9e58f7b6cace&scheme=1

