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Abstract—Conceptual modeling is an important initial stage in 

the lifecycle of engineered systems. It is also highly 

instrumental in studying existing unfamiliar systems—the 

focus of scientific inquiry. Conceptual modeling 

methodologies convey key qualitative system aspects, often at 

the expense of suppressing quantitative ones. We present and 
assess two approaches for solving this computational 

simplification problem, defined below, by combining Object 

Process Methodology (OPM), the new ISO/PAS 19450, with 

MATLAB or Simulink without compromising the holism and 

simplicity of the OPM conceptual model. The first approach, 

AUTOMATLAB, expands the OPM model to a full-fledged 

MATLAB-based simulation. In the second approach, OPM 

Computational Subcontractor, computation-enhanced 

functions replace low-level processes of the OPM model with 

MATLAB or Simulink models. We demonstrate the OPM 

Computational Subcontractor on a radar system computation. 

Experimenting with students on a model of an online shopping 
system with and without AUTOMATLAB has indicated 

important benefits of employing this computation layer on top 

of the native conceptual OPM model. 

Keywords-Model-based Systems Engineering, Object-

Process Methodology, MATLAB, Simulink, Modeling and 

Simulation, Conceptual Modeling 

1.  INTRODUCTION - CONCEPTUAL MODELING   

A key stage in the early stages of architecting and design of a 

new system or in understanding an existing one is its 

conceptual modeling: creating a primarily-qualitative model, 

which clearly specifies the system’s function (why it is 

designed, what value is it expected to provide its beneficiaries 

with—the utility aspect), its structure (what is the system made 

of, how is the whole related to its parts—the structural 

aspect), and its behavior (how the system operates and changes 

over time and how objects in it are transformed to achieve its 

function—the behavioral aspect). Similarly, when aiming to 

research and fully understand existing systems, a conceptual 

model of the system under study can be highly valuable 

(Somekh et al, 2014). Different modeling methodologies and 

languages, such as OPM (Dori, 2002) and SysML (Object 

Management Group, 2012; Weilkiens, 2007), enable one to 

conceptually model a system and simulate its behavior. 

Holistic understanding is achieved by simplifying certain 
aspects of the real system, such as its level of detail (Zeigler, 

1976). One aspect that is often simplified in conceptual 

modeling is the computational aspect of a system—the 

mathematical entities that may govern the actions and 

reactions of a system, the exact output of some actions, and 

representation of random effects that determine the dynamics 

of the system.  

While this simplified, qualitative-only view of the system 

helps in initial, overall comprehension of the system, it often 

lacks important information, especially when the model is 

simulated, making it necessary to explicitly express the 

dynamic, time-varying aspect of the system. Moreover, while 
making progress in the design or study of a system, simulation 

of the system’s structure and behavior often becomes 

mandatory to ascertain that the system meets the requirements 

it is expected to fulfil. This is especially true for systems that 

exhibit complex behavior, which might require representation 

of non-deterministic aspects and advanced numerical 

calculations that drive different actions, as well as 

sophisticated quantitative decision-making processes. 

Advancing from the conceptual model to an elaborate 

simulation is therefore often critical for testing and validating 

the system under design, or confirming theories regarding 
systems under study. 

In some cases, due to the human in the loop, the transition 

from the modeling stage to the simulation stage can result in 

errors or inaccuracies. Creating a simulation of the system can 

be done by studying the model or the original system directly, 

aiming to understand it, and building the simulation 

accordingly. As long as the model-to-simulation transition 

process involves human intervention, it is prone to mistakes 

and inaccuracies. Moreover, such manual transitions can 

mailto:dori@mit.edu
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overlook insights gained during early stage of the conceptual 

model. 

2. THE COMPUTATIONAL SIMPLIFICATION PROBLEM 

We define computational simplification as the simplification 

of a conceptual model by elimination or reduction of its 

computational aspects. This abstraction gives rise to the 

computational simplification problem—the problem of lack of 

complete model comprehension arising from a conceptual 

model computational simplification. Conceptual systems 

modeled in some of the modeling languages or methods 
presented in the following sections, may suffer from this 

problem. Other methods that enable modeling lower levels, 

which include computational aspects, lack high-level 

abstraction abilities, which are vital in conceptual models.  

The computational simplification problem poses the challenge 

of equipping system architects, designers, and domain experts 

with the ability to incorporate computational modules into the 

conceptual model in order to make it more complete. In this 

paper we tackle this challenge by presenting and evaluating 

possible solutions for this problem that expand Object Process 

Methodology (OPM) with the capabilities of MATLAB and 
Simulink.  

As the design or study of a system progresses, elaborate 

simulations are often created for examining the system in 

operation. While in general a human in the loop may introduce 

errors during the transition from the conceptual model to a 

simulation, our approach provides for a MATLAB-based 

simulation, which is created directly from the evolving OPM 

model, avoiding the likely introduction of new errors, which, 

given the early stage of their introduction, are often very 

costly to correct. 

3. OBJECT PROCESS METHODOLOGY 

Object Process Methodology (OPM), the ISO/PAS 19450, 

titled "Automation systems and integration – Object-Process 

Methodology", is a conceptual modeling approach and 

language that uses a single unifying bimodal graphical and 

textual model. This single model captures the functional, 
structural, and behavioral aspects of a system (Dori, 2002). An 

OPM model consists of elements that are things and 

relationships: stateful objects and processes that transform 

them are the things, which are related by procedural and 

structural relationships. Objects are the stateful components 

the system is made of, while processes are things that 

transform objects by creating or consuming them, or by 

changing their state.  

An OPM model is represented in two complementary 

modalities: graphical and textual. A set of interconnected 

Object Process Diagrams (OPDs) constitutes the graphical 
representation of the model, while a corresponding set of 

Object Process Language (OPL) paragraphs is the parallel 

textual representation of the model. OPL is a subset of natural 

English, which anyone with basic knowledge of English can 

readily understand. Both representations are completely 

interchangeable and convey the same information about the 

model, appealing to “both sides of the brain” (Dori, 2008). 

OPM models can be created with OPCAT (Dori et al., 2010), a 

CASE tool for designing and testing OPM models. A 

summary of OPM symbols and rules is presented in appendix 

A. OPM is specified in Dori (2002; 2015). The ISO 
standardization process of OPM is described by Blekhman et 

al. (2011). 

4. MATLAB & SIMULINK 

MATLAB™ (MathWorks, 2011), short for Matrix Laboratory, 
is a numerical computing environment developed by 

MathWorks, which is widely used in various fields of 

engineering and science. MTALAB has powerful built-in 

library functions that serve a wide variety of uses. Groups of 

functions for specific applications are collected in packages, 

referred to as toolboxes. There are toolboxes for signal 

processing, symbolic computation, control theory, simulation, 

optimization, and many other fields. MATLAB also offers 

easy graphical command interface, enabling visualization of 

results immediately and conveniently.  

Due to its wide array of function libraries and numerical 
abilities, MATLAB is commonly employed to generate system 

simulations, enabling users to perform mathematical 

operations, such as solving differential equations, 

implementing stochastic behavior, and manipulating multi-

dimensional arrays.  

MATLAB has many advantages over conventional 

programming languages such as C or FORTRAN, enabling it 

to solve technical problems (Houcque, 2005). MATLAB is an 

interactive system whose basic data element is an array that 

does not require dimensioning, so the user can add and modify 

elements dynamically as the program proceeds, without 

defining them in advance. The software package has been 
commercially available since 1984 and is now considered a 

standard tool at most universities and industries worldwide. 

While the commercial version is commonly used, there are 

some free and open source MATLAB-compatible solutions, 

including Octave, Scilab, and FreeMat (Sharma & Gobbert, 

2010).  

Simulink, a platform incorporated within MATLAB 

(Mathworks, 2008), enables programming by means of a 

graphical display – dragging and connecting predefined 

blocks, placing them in different places, masking them, and 

manipulating them. Moreover, Simulink introduces an ability 
to incorporate Stateflow modules in a system simulation. 

Simulink’s main addition to MATLAB is its graphical 

environment that replaces the textual code-based view. Similar 

to the original MATLAB environment, Simulink provides a 

set of block libraries that are analogous to the MATLAB 

library functions. Simulink has many block libraries, including 

Math Operations, Model Verification, Ports & Subsystems, 

Signal Routing, Sinks, and Sources. It is also possible to 

define blocks by programming with MATLAB code. 

Simulink’s graphical environment can serve as a means to 

model a system, leveraging on the computational strength of 

http://www.iso.org/iso/catalogue_detail.htm?csnumber=62274
http://www.mathworks.com/products/matlab/whatsnew.html
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/MathWorks
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MATLAB. For starters, one can build a simulation of a system 

represented in MATLAB by using Simulink, adding a 

graphical representation to the simulation.  

Although Simulink enables a graphical approach to the 

simulation, it does not provide a complete solution to 

conceptual modeling. Rather, it provides a graphical view of 
the MATLAB code. The Simulink environment is limited to a 

block diagram approach, representing each section or 

subsystem as a separate block (box), which can be drilled into, 

and can contain lower level subsystems as separate boxes. 

This approach provides a structural view of a system, but it 

does not capture the dynamics of the system, nor does it 

represent relationships between the system and the 

environment any more than a code-based simulation. 

5. CONCEPTUAL MODELING LANGUAGES AND METHODS 

5.1. UML and SysML 
 

The Unified Modeling Language (UML) (Object Management 

Group, 2011) is an object-oriented modeling language that 

became the Object Management Group (OMG) standard for 

software systems development in 1997. UML consists of a 

model with 14 different views, represented by different kinds 

of diagrams, many of which evolved from diagrams that were 

in use during the early 1990’s. The fourteen UML views are 
activity diagram, class diagram, communication diagram, 

component diagram, composite structure diagram, deployment 

diagram, interaction overview diagram, object diagram, 

package diagram, profile diagram, sequence diagram, state 

diagram, timing diagram, and use case diagram. These 14 

views aim to convey different aspects of the system, its 

structure, behavior, relationships, and change over time, so 

that a system modeled by UML consists of related diagrams of 

different kinds. 

SysML, Systems Modeling Language (Object Management 

Group, 2012) is a profile of UML designed to be more system-
centric, as opposed to the more software-centric design of 

UML. SysML has retained seven of the 14 UML diagram 

types, modifying some of them, and added two new ones—

requirements diagram and parametric diagram.  

Comparing UML and SysML on one hand with OPM on the 

other hand, a major difference that sticks out is the holism of 

the model. UML and SysML require using at least a subset of 

the 14 (in UML) or nine (SysML) diagram kinds to represent 

the system. Conversely, OPM represents the system with an 

interconnected hierarchical set of diagrams of a single kind—

Object-Process Diagram (OPD). This graphical representation 

is accompanied by an equivalent set of Object-Process 
Language (OPL) paragraphs that specifies the system in a 

subset of natural English. Following this minimalism 

principle, we aim to extend the computational power of OPM 

while minimizing additional diagram kinds. 

 

5.2. Modelica 

Modelica (Mattsson & Elmqvist, 1997) is an object-oriented 

equation-based modeling methodology. The Modelica 

language defines and describes the system, its components, 

structure, and behavior by a set of mathematical equations. 

The Modelica methodology includes CASE tools for 

designing Modelica models. These tools allow the user to 

draw or import a scheme of the system, connecting the model 

equations to the appropriate component on the scheme. Using 
Modelica, one can decompose the model hierarchically, 

simplifying the model and making it more understandable. 

Another feature of Modelica is a large selection of model 

libraries, offering predefined subsections of systems, sorted 

into different fields (electrical, mechanical, aerospace, etc.), 

which can be easily implemented as part of a model. Other 

predefined libraries enable integration of numerical solutions 

and stochastic behavior modules. 

Modelica supports quantitative and stochastic aspects due to 

its equation-based representation, allowing direct modeling of 

the computational aspects of the system. Describing the 

architecture of the modeled system using Modelica without the 
equation-based representation is also possible. However, 

describing the behavior of the system does require using the 

mathematical representation, demanding a greater level of user 

effort to comprehend the model in comparison to a simpler 

representation of a system flow. Another somewhat limiting 

aspect is that Modelica definitions are object-oriented, 

confining the users to think in terms of the OO paradigm, 

which emphasizes objects and system structure at the expense 

of suppressing behavioral aspects and processes (“methods”) 

as secondary to and owned by objects.  

 
5.3. Play-in/Play-out 

  

Play-in/Play-out (Harel and Marelly, 2003) is an approach for 

modeling systems, specifically the reactions of the system 

with the environment. Play-in/Play-out scenarios are “played 

in” by the user modeling the system using the “Play-engine.” 

Using an intuitive graphical user interface (GUI) that 

represents the system, the modeler executes the various 

actions that affect the system and its expected reactions. As 

the system behavior is played in, the play-engine 

automatically generates a set of Live Sequence Charts (LSCs), 

specifying the behavior of the system. 
After creating LSCs that cover the system’s permitted actions 

and their result (and possibly forbidden actions), the model 

can be “played out.” In the play-out mode, the user can apply 

an action to the GUI and it will react according to the set of 

rules defined by the LSCs. Playing out different scenarios can 

help identify contradictions, undefined actions, and other 

errors.  

The play-engine allows specifying an event value as a function 

that is predefined in the GUI code (using, for example, Visual 

Basic). This option enables modeling complex systems, where 

the result of an action is not as simple as a constant reaction, 
but rather has quantitative aspects. The play-engine has also a 

limited support of non-deterministic actions; one can define 

more than a single possible reaction for each played-in action 

and allocate a probability to each reaction. 
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While the Play-in/Play-out approach might seem to satisfy the 

requirement of handling quantitative and stochastic aspects, 

this is only partially correct, since this method is geared for 

scenario-based modeling, emphasizing the behavioral aspects 

of the system. The ability to model stochastic behavior with 

the play-engine is limited, as non-uniform continuously 
distributed probabilities and other forms of stochastic behavior 

are difficult to define in a straightforward manner. While it is 

possible to predefine functions as part of the GUI code in a 

visual programming environment, the Play-in/Play-out method 

lacks ability to directly incorporate quantitative aspects into 

the model. Conversely, MATLAB enables direct access to 

arrays and many toolboxes that provide for incorporating 

quantitative and non-deterministic aspects. 

 

5.4. MLDesigner  
 

MLDesigner (Schultz et al., 2010) is an open environment for 

UNIX or Linux systems used for designing and testing of 

system architectures and their functions. An MLDesigner 

model consists of a block diagram containing a variant of C++ 

code that represents the functionality of each block. Blocks 

can be modified by editing their size, position, color, etc. 

Many predefined code blocks are available, simplifying the 
design and execution of a model. MLDesigner can partially 

serve as a computational layer of a conceptual modeling 

language, similar to one of the solutions suggested in this 

work. A work in this direction has been presented by Schultz 

et al. (2010), where an OPM-to-MLDesigner translation was 

propose to add simulation capabilities to an OPM model. 

The main advantage of the OPM-MLDesigner approach is the 

simulation abilities that are built into the MLDesigner CASE 

tool, which, for simple simulations, can be more convenient 

than MATLAB. The OPM-MLDesigner approach has some 

downsides: MLDesigner is not as widespread as MATLAB 

and it is not Windows-compatible. The OPM-MLDesigner 
approach aims to generate an MLDesigner model from the 

OPM model by using OPL—the textual modality of the OPM 

model—to generate an MLDesigner model, referred to as 

MML. MML is not linked to the OPM model and OPCAT 

simulation tool, and it does not affect the original OPM model. 

In other words, the OPM-MLDesigner approach does not 

improve OPM’s computational capabilities, but rather 

generates the OPM model in a different language. As 

MLDesigner focuses on processes, it does not have an entity 

compatible with the OPM concept of object, making it 

necessary to define dummy processes that play the role of 
objects. This can substantially complicate the model. 

 

5.5. Arena 
Arena (Kelton et al., 2014) is a widely used, general purpose 

simulation tool, which enables the user to build a visual model 

of the system using a graphic editor, which is converted into 

the SIMAN language. The modules of a system are 

represented as boxes of different shapes, while lines represent 
connections between modules and actions. The flow and 

timing of each entity in the system is defined from its arrival 

to its departure. Arena supports common functions and 

mathematical operators, and allows the user to define new 

models and behaviors by using external solutions, such as 

Visual Basic. 

An approach to designing simulations using OPM was 
presented by Gilat (2002). This research focused on using 

OPM to better specify and design a model of a given 

simulation in order to improve its design and clarity. As a case 

study, the approach was demonstrated using the Arena 

simulation tool, where the advantages of connecting Arena 

and OPM in various scenarios were shown in experiments. In 

the Arena-OPM approach, the advantages of conceptual 

modeling are utilized only during the simulation design stage, 

but not in the simulation creation and operation stages. Since 

we aim to improve both the model and its simulation by 

incorporating the quantitative aspects into the model itself, the 

Arena-OPM approach does not satisfy the requirement of a 
combined conceptual and computational modeling 

methodology. 

 

5.6. Multi-Representation Architecture 

 
Peak et al. (1998) proposed a Multi-Representation 
Architecture (MRA) approach to integrating computer-aided 

design (CAD) with computer-aided engineering (CAE), which 

maps design and analysis models onto each other. They used 

four information representations. One is the product model—

the master description of the product being designed, which 

uses design tools. The three other representations are analysis 

models that use solution tools at increasing levels of 

abstraction. Our approach is different in that we focus initially 

on the very early conceptual design phases, seeking for a 

concept for a problem of fulfilling a required function that 

delivers value to a beneficiary before delving into the 

technical complexities of the particular solution.   
 

5.7. A computational product model for conceptual 

design using SysML; Improving PDM systems 
 

Wölkl and Shea (2009) proposed a computational product 

model for conceptual design using SysML. Their proposal 
moves beyond geometry to integrating all the necessary 

aspects for conceptual design. Using a case study on the 

design of a passenger car’s luggage compartment cover, they 

show that many different SysML diagram kinds are suitable 

for formal modeling in mechanical concept design. 

Accordingly, they proposed the creation and use of libraries 

defining generic templates that raise efficiency in modeling. 

Since SysML contains nine types of diagrams and OPM only 

one, the complexity of the integrated approach using OPM as 

the underlying conceptual modeling language is smaller.  

Bergsjö et al. (2010), who investigate the need to formalize the 

systems engineering processes for embedded systems at a 
large automotive company, noted that formalization could be 

developed by using a commercial Product Data Management 
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(PDM) system. They found that the company had an informal 

work process that delegated responsibility to individual design 

engineers with low level of enforcing formal reports and 

deliverables. Based on this finding, they customized the PDM 

system to work for two demonstrator cases focusing on 

integration and workflow using Visual C# to automate the 
design task in conjunction with the PDM system and 

simulation software.  

Indeed, a major obstacle in the lifecycle engineering of a 

product or a system is the bumpy transition from conceptual, 

qualitative high-level abstract architecture and design to 

detailed, quantitative analysis of the design to ensure the 

systems resilience, robustness, and other required features. 

Our approach of integrating the qualitative high-level 

conceptual stage with the quantitative one that follows it can 

be considered a step in solving this problem. 

6. RESEARCH MOTIVATION AND GOALS 

A basic requirement of a modeling and simulation language is 

expressiveness that provides for modeling the phenomena 

encountered in the design of a system, such as non-linear, 

multi-disciplinary, continuous or discrete flows. The models 
must also be easy to create and reuse (Sinha et al., 2001). 

Simplification of the computational aspect of a system, which 

provides an accurate, quantitative representation of the 

system’s behavior, might conceal some important information 

about the system. Certain OPM models might be adversely 

affected by this computational simplification problem. 

Many of the modeling languages and methods presented in the 

previous section provide conceptual models of the system 

under development or study and enable some kind of 

simulation. However, in most cases, either the level of the 

quantitative aspect of the simulation is insufficient, or it is 

achieved at the expense of sacrificing simplicity and generality 
of the method and the resulting model.  

MATLAB is a convenient tool for simulating complex 

systems, but it does not have advanced abstract conceptual 

modeling capabilities. Adding a numerical computational 

layer to the conceptual modeling power of OPM provides for 

simulating its behavior both qualitatively and quantitatively. 

While OPM enables exporting a model as an XML file, JAVA 

code and more, it does not fully integrate into common 

development tools such as MATLAB. Exporting a MATLAB-

based representation of the OPM model allows one to express 

the model so that a domain expert who uses MATLAB can 
understand the system without knowledge of OPM. 

A conceptual model must not be overly complex. In other 

words, “The conceptual modeling mantra is one of developing 

the simplest model possible to meet the objectives of the 

simulation study” (Robinson, 2010). Figure 1 illustrates how 

excessive levels of detail hamper model accuracy. At a certain 

point, the increasing level of detail reduces the model accuracy 

due to lack of knowledge on how to model such details. It is 

thus clear that we would want a model to be as simple as 

possible while still allowing sufficient accuracy and detail 

required for the model objective. 

 
Figure 1: Model and simulation accuracy vs. complexity (Robinson, 2008) 

 

Although simple models are desirable, a simpler model 

requires larger assumptions regarding the system, risking the 

possibility of missing important aspects of the system (Davies 

et al., 2003). Modeling a system with a solution such as 

MATLAB or Simulink, without OPM, might thus be 

problematic. Incorporating MATLAB and Simulink 

representations, where required, into OPM enables model 

simplification while avoiding the risk of over-simplification. 

In view of this need, our research aims to alleviate the 
computational simplification problem and bridge the gap 

between the qualitative and the quantitative model aspects by 

enhancing OPM with a MATLAB or Simulink-based 

computational layer. We present and compare two approaches: 

AUTOMATLAB—an OPM MATLAB Layer, and OPM 

Computational Subcontractor. 

7. AUTOMATLAB 

In the AUTOMATLAB approach, a layer of MATLAB is 

added on top of the OPM model. The OPM model of the 

AUTOMATLAB-Based Simulating
1 system, shown in Figure 2 (the 

graphical modality – Object-Process Diagram, OPD) and in 

Figure 3 (the corresponding auto-generated textual modality – 

Object-Process Language, OPL, paragraph),  consists of three 

main processes:  

1. MATLAB Code Generating, which uses the graphical (OPD) 
or textual (OPL) representation of the Original OPM Model. 

The Simple MATLAB Code resulting from this stage specifies 

the same system as the Original OPM Model does.  

2. MATLAB Code Enhancing, where the user can add predefined 

standard numerical OPM model snippets to enhance 

computational aspects of interest as code in the MATLAB 

file, creating the Enhanced MATLAB Code.  

3. Enhanced Model Simulating, in which the OPM model, 

enhanced with MATLAB code—the Enhanced MATLAB 

Code—is simulated in OPCAT, resulting in the MATLAB-

Enhanced OPCAT Simulation. 

  

                                                             
1
 Boldface names indicate OPM model names of objects and processes. 
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Figure 2: OPM model of AUTOMATLAB – the graphic modality, Object-Process Diagram (OPD)

 

 
AUTOMATLAB-Based Simulating consists of MATLAB Code Generating, 

MATLAB Code Enhancing, and Enhanced OPCAT Simulating. 

AUTOMATLAB-Based Simulating exhibits Simple MATLAB Code, 

Enhanced MATLAB Code, and Pre-Defined Data Bank. 

AUTOMATLAB-Based Simulating zooms into MATLAB Code Generating, 

MATLAB Code Enhancing, and Enhanced OPCAT Simulating, as well as 

Pre-Defined Data Bank, Enhanced MATLAB Code, and Simple MATLAB 

Code. 

            MATLAB Code Generating requires either OPD or OPL. 

            MATLAB Code Generating yields Simple MATLAB Code. 

            MATLAB Code Enhancing requires Simple MATLAB Code and Pre-  

            Defined Data Bank. 

            MATLAB Code Enhancing yields Enhanced MATLAB Code. 

            Enhanced OPCAT Simulating requires Enhanced MATLAB Code,  

            MATLAB Compatible Compiler, and OPCAT CASE Tool. 

            Enhanced OPCAT Simulating yields MATLAB-Enhanced OPCAT  

            Simulation.  

Original OPM model consists of OPL and OPD. 
User handles MATLAB Code Enhancing. 

Figure 3: OPM model of AUTOMATLAB – the textual modality, Object-

Process Language (OPL) paragraph that is compatible with and was 

automatically generated from the OPD in Figure 2 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
In order to generate the AUTOMATLAB layer efficiently and 

accurately during the MATLAB Code Generating stage, we define 

the syntax and semantics of the various OPM constructs and 

their MATLAB translations. This enables the modeler to add 

to the original OPM model the computational aspects 

expressed in OPM. As a first step, we have mapped the main 

basic built-in MATLAB functions in the MATLAB 

documentation (MathWorks, 2011) to their OPM model 

equivalents. To distinguish these built-in functions from user-

created functions that may have different meanings, the 

process names listed in Table 1 through Table 4 are added to 

the list of OPM reserved words. 
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Table 1: Examples of AUTOMATLAB arithmetic operators 

Symbol 

Operator 

 

 

OPM Process 

Name 

OPD 

+ 

Addition 

 

 

Adding 

 

* 

Multiplication 

 

 

 

Multiplying 

 

–  

Subtraction 

 

 

 

Subtracting 

 

^ 

Exponentiation 

 

Exponentiating 

 

/ 

Division 

 

 

 

Dividing 

 

 

In order to minimize changes to the OPCAT tool, we generate 

the code from an html file of the OPM model expressed in 

OPL and exported from OPCAT. Processes, objects, values, 
and relationships are identified from the OPL sentences. OPM 

constructs are mapped into three matrices: process-to-process 

relationships, object-to-object relationships, and process-to-

object relationships. 

Table 2: Examples of AUTOMATLAB loops and control structures 

Operator / 

Process 

Name 

OPD 

if then…else 

 

switch 

 

While 

 

for 

 

 

Each relationships is then translated into the appropriate code 

segment in a separate MATLAB file called m file. For 

example, as the first line in Figure 4 shows, a ‘requires’ 

relationships between a process A and object B means that B is 

instrument for executing A, so in order for A to execute, B 

must be present. This semantics is translated to the MATLAB 

code segment in the m file listed in lines 2-4 of Figure 4. 

 

 
Figure 4: The MATLAB code for the OPL sentence “A requires B.”  

 

When other relationships are translated, the code will change 

accordingly. For example, suppose that in addition to the 

example in Figure 4, a ‘yields’ relationship exists between 
process A and object C, which means that C results from 

executing A. In that case, the code in Figure 4 will be altered 

to the one shown in Figure 5. 
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Figure 5: The MATLAB code for the OPL sentences “A requires B.” and “A 

yields C.”  

 

Conveying only the information represented the original OPM 

model, the MATLAB code generated by AUTOMATLAB is 

simple and readily executable. When the OPM model does not 

have the information needed to complete a legal code segment, 
that piece is left commented. For example, we noted that the 

process A requires B, but as long as A is an atomic process, i.e., 

there is no in-zoomed (drilled-down) view of the process A 

specifying what A “does”, the use of B in function A remains 

as a comment, as shown in line 5 in Figure 6. In a similar way, 

all the process-to-process relationships (consists of, zooms 

into, etc.), object-to-object relationships (consists of, exhibits, 

is a, etc.) and process to object relationships (consumes, 

requires, changes, etc.) are translated into corresponding code 

segments that convey the same semantics as their OPM 

counterparts. 

 

 
Figure 6: The MATLAB code for the OPL sentences “A requires B.” and “A 

yields C.” when A is atomic (does not have an in-zoomed view) 

 

Table 3: AUTOMATLAB trigonometric & exponential functions 

Operator / 

Process 

Name 

Description OPD 

acos 
Inverse cosine; result in 

radians 

 

asin 
Inverse sine; result in 

radians 

atan 
Inverse tangent; result 

in radians 

cot 
Cotangent of argument 

in radians 

sin 
Sine of argument in 

radians 

tan 
Tangent of argument in 

radians 

exp Exponential 

log Natural logarithm 

log10 
Common (base 10) 

logarithm 

sqrt Square root 

 

Table 4: AUTOMATLAB miscellaneous functions 

Operator / 

Process 

Name 

Description OPD  

abs 
Absolute value 

 

factor 

Returns a row 

vector 

containing the 

prime factors 

of input. 

 

fft 

Returns the 

discrete 

Fourier 

transform 

(DFT) of 

vector x, 

computed with 

a fast Fourier 

transform 

(FFT) 

algorithm 
  

isempty 

Determine 

whether array / 

variable is 

empty (skips 

block of code 

if is empty)  

rand 

Uniformly 

distributed 

pseudorandom 

numbers 

 

size 

returns the 

sizes of each 

dimension of 

array 

 

randn Normally distributed pseudorandom numbers 

 

8. OPM COMPUTATIONAL SUBCONTRACTOR 

One of the drawbacks of the AUTOMATLAB approach 

presented above is that it allows the violation of the OPM 

semantics by manipulating the MATLAB code in a way that 

http://www.mathworks.com/help/techdoc/ref/exp.html
http://www.mathworks.com/help/techdoc/ref/log.html
http://www.mathworks.com/help/techdoc/ref/log10.html
http://www.mathworks.com/help/techdoc/ref/sqrt.html
http://www.mathworks.com/help/techdoc/ref/abs.html


9 

 

renders the OPM model illegal. This implies that in order to 

utilize the AUTOMATLAB approach correctly, one needs to 

master the OPM semantics. To overcome this problem, we 

have developed the OPM MATLAB Computational 

Subcontractor (OPM/CS) as an alternative solution to 

AUTOMATLAB for solving the computational simplification 
problem. 

In the OPM/CS architecture, MATLAB or Simulink act as a 

"computational subcontractor" for the OPM model simulation: 

Any process in an OPM model can now be in-zoomed to 

expose a MATLAB code piece or a Simulink diagram instead 

of the usual new self-similar OPD resulting from zooming into 

a process. The OPM simulation execution runs normally until 

it reaches a process that was in-zoomed by the computational 

subcontractor and therefore contains a MATLAB code piece 

or a Simulink diagram. At this point, the input to the process – 

the existing objects and their states – are sent to the MATLAB 

function or to the Simulink diagram, and the sub-simulation 
function is called. The outcome of this sub-simulation defines 

the outcome of the in-zoomed process, which might include 

newly created objects, the state of an object upon exiting the 

process, or a value of an attribute, and the OPCAT simulation 

continues accordingly.  

 

 
Figure 7: OPM Model of the OPM Computational Subcontractor-Based 

Simulating system. Top: OPD. Bottom: Corresponding OPL paragraph 

If the subcontracted process is a commonly used mathematical 
function, the user does not need to create it in MATLAB or 

Simulink, but rather mark it with the notation <<CS>> (short 

for Computational Subcontractor). The in-zoomed process will 

then contain the predefined function called from the library 

presented in Table 1 through Table 4. In this case, the user 

does not need to have any knowledge of MATLAB or 

Simulink to use it as computational subcontractors. If the 

process is in-zoomed by a user-defined function or diagram, 

the process is linked to the appropriate MATLAB function or 

Simulink diagram by specifying the folder in which the user-

defined function or diagrams are saved, using the same name 

for both the OPM process and the MATLAB function or 
Simulink diagram. 

Computational Subcontractor-Based Simulating exhibits MATLAB 
Subcontracted Models, Pre-Defined Data Bank, Simulink Subcontracted 
Models, and OPCAT Simulation. 
Computational Subcontractor-Based Simulating consists of Subcontracted 
Models Creating, Enhanced Model Simulating, and OPCAT Simulating. 
Computational Subcontractor-Based Simulating zooms into Subcontracted 
Models Creating, OPCAT Simulating, and Enhanced Model Simulating, as well 
as OPCAT Simulation, Simulink Subcontracted Models, Pre-Defined Data 
Bank, and MATLAB Subcontracted Models. 
Subcontracted Models Creating yields Simulink Subcontracted Models or 
MATLAB Subcontracted Models. 
OPCAT Simulating requires Original OPM model and OPCAT CASE      Tool. 
OPCAT Simulating yields OPCAT Simulation. 
Enhanced Model Simulating requires OPCAT Simulation, MATLAB  
Compatible Compiler, and Pre-Defined Data Bank. 
Enhanced Model Simulating requires Simulink Subcontracted Models or 
MATLAB Subcontracted Models. 
Enhanced Model Simulating yields MATLAB & Simulink-Enhanced OPCAT 
Simulation.  
User handles Subcontracted Models Creating. 
 

Figure 8: The automatically-generated text (in OPL – Object-Process 

Language) that was created by OPCAT from the Object-Process Diagram 

(OPD) in Figure 7 

 

In contrast to AUTOMATLAB, the OPM semantics in 

OPM/CS cannot be breached, since each called MATLAB 

function or Simulink diagram exists only within the scope of a 

single in-zoomed process, and it can only affect objects within 

that scope. To ensure this, the use of global variables in the 

subcontracted functions is not allowed. 

OPM/CS contains three parts: the OPM model in OPCAT, The 
MATLAB or Simulink models library, and an OPM/CS 

Manager. The subcontractor manager supports both MATLAB 

and Simulink as alternative subcontractors and the predefined 

common functions in Table 1 through Table 4. The OPM/CS 

Manager controls the bidirectional transactions between the 

OPM and the MATLAB/Simulink environments. An OPD 

describing the Architecture of OPM Computational 

Subcontractor is presented in Figure 7. Figure 8 presents the 

automatically-generated text (in OPL – Object-Process 

Language) that was created by OPCAT from the Object-

Process Diagram (OPD) in Figure 7. The OPM/CS manager 
runs in the MATLAB environment, and it calls the MATLAB 

functions (expressed as m files) or Simulink diagrams 

(expressed as mdl files) directly from this environment. 

9. RADAR SEARCHING & TRACKING: A CASE STUDY 

We present a case study that demonstrated the use of OPM/CS 

for a search and tracking radar system. The OPM model of this 

system is presented in Figure 9. The Searching process creates a 

Detection output, which can be either 0 (no detection) or 1 

(positive detection). If detection is achieved, the Tracking 

process tracks the Target and creates a Track Output, and when 

this process ends, either Detection Details Message or No Detection 

Message is created. 
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Figure 9: Radar Searching & Tracking in-zoomed 

 

In the in-zoomed Searching process in Figure 10, we see that it 

consist of two subprocesses: Transmitting and Receiving & 

Processing. Transmitting requires the radar characteristics 

Transmitting Power [W], Gain TX [dB], and Wavelength [m]. 

Transmitting creates the RF signal. The process Receiving & 

Processing, which requires the Target attributes and some of the 

Radar attributes, consumes the RF signal. 

 
Figure 10: SD1.1 - Searching in-zoomed 

 

When running the OPM simulation of the model shown in 

Figure 9, Searching creates detection in either the 1 state or the 0 

state randomly, regardless of the Target and Radar attribute 

values.  

The received power of a target is described by the Radar 

Equation 1 (Scolnik, 1980). 

 

  LR

GGP
P rtt

r 43

2

4




 

(1) 

In most cases, the Radar Equation is written in log 10 form 

(  X10log10  ), taking the following form in Equation 2. 

LRGGPP rttr  4432   (2) 

Here, Pr is the received power, Pt is the transmitted power, Gt 

is the transmitter gain, Gr is the receiver gain, σ is the target 

radar cross-section, λ is the radar wavelength, R is the target 

distance, and L represents radar losses. If the ratio (or 

difference, in the log form) between Pr and the level of noise is 

above the signal-to-noise threshold, the target is detected.  

 

An OPM model of the Radar Equation implementation for 

Searching is complex and unintuitive due to OPM lack of 
ability to represent formulae in a simple form. To visualize 

this unnecessarily complicated view of the OPM model when 

it comes to relatively simple equations, in Error! 

Reference source not found. we show the OPM model 

of Searching that implements the Radar Equation, where the 

definitions for addition, subtraction, multiplication, common 

log and the control structure ‘if then…else’ are taken from 

Table 1 through Table 4. 

 

Evidently, this OPM model for representing the relatively 

simple radar equation is complicated. The in-zoomed content 

of Searching can be replaced by the simpler MATLAB code in 

Figure 11 or the corresponding Simulink diagram in Figure 12, 

although each of them is also more complicated than the Radar 
Equation (1), which is probably the most compact expression, 

as it uses the mathematical conventions of multiplication (lack 

of any symbol), exponentiation (as superscript), parentheses, 

etc. 

 

 
Figure 11: MATLAB code of the simple Radar Detection condition 
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Figure 12: A Simulink diagram of the Radar Detection condition 

 

 

 

 

 

Applying OPM/CS, the OPCAT simulation arrives at the 

Searching process. Then, the MATLAB code (Figure 11) or the 

Simulink diagram (Figure 12) is called. It reads the data files 

containing the inputs to the diagram, calculates the outcome, 

and returns the appropriate output using the data files.  

 
A demonstration of a successful detection, based on 

computing Pr in the Radar Equation, is shown in Figure 14 

through Figure 17. An important aspect of using MATLAB or 

Simulink as a subcontractor for the OPM model is the ability 

to change the level of complexity of the Simulink model 

without changing the OPM model itself. For example, we can 

replace the simple Simulink model in Figure 12 with the more 

complex model presented in Figure 18. This more elaborate 

model can be used instead of the model in Figure 12 without 

altering the OPM model whatsoever, providing for further 

simulation of the radar systems according to the designers' 

needs. 
 

 

 

 

 
 

Figure 13: OPM model of Searching that implements the Radar Equation demonstrating that at the computational level mathematical expressions and MATLAB is 

preferable  
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Figure 14: The MATLAB-enhanced OPCAT simulation: The OPCAT 

simulation calls the subcontracted Searching MATLAB function. 
 

 

 
Figure 15: A call to the subcontracted Searching function with its input values 

as an example of a message sent from OPCAT to MATLAB 

 

 
Figure 16: The outcome message of the subcontracted function Searching with 

Detection value set to 1 returned from MATLAB to OPCAT  

 

 
Figure 17: The outcome of the subcontracted Searching function in MATLAB 

with Detection value set to 1, causing the OPCAT simulation to proceed 

accordingly. 

 

 

 
Figure 18: A Simulink diagram of the full Radar simulation, Radar modulated 

pulse signal (left scope) and SNR graph with positive detection (right scope) 

 

10. EVALUATION OF AUTOMATLAB WITH HUMAN 

SUBJECTS 

An evaluation of the AUTOMATLAB approach was 

conducted with human subjects in order to more thoroughly 

assess its benefits and outcomes. The evaluation took place 

during the spring semester 2013, at the Technion, Israel 

Institute of Technology. A total of 12 undergraduate students 

from the Faculty of Industrial Engineering and Management 
who participated in the course Specification and Analysis of 

Information Systems took part in the evaluation at the end of 

the semester. 

All students (N=12) had knowledge of OPM, as it was taught 

throughout the semester as part of the course. Some students 

(N1=5) had prior knowledge of MATLAB from previous 

courses or work, while the rest (N2=7) had none or very little 

knowledge of MATLAB. The students with prior knowledge 

of MATLAB were the experimental group, while the rest 

served as the control group. In order to extend our sample, 
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each student preformed the evaluation for two different data 

sets, achieving a total of N
~

=24, with 
1N

~
=10 and 

2N
~ =14. 

The evaluation was based on an OPM model of a Web Based 

Grocery Shopping system, shown in Figure 19 through Figure 
22, which had been created by students in the course. This 

model, rather than a more technically-oriented model as the 

radar Equation, was selected in order for students to focus on 

the modeling of a familiar example from their daily lives and 

not be distracted by the need to learn new material in physics 

or engineering. The students who were not part of the group 

that had created the model were briefed about the system and 

its model.  
 

 
Figure 19: Top-level, system diagram (SD) of the Web Based Grocery Shopping 

system 

 

 
Figure 20: SD1 - Web Based Grocery Shopping in-zoomed

 

 

The students were requested to analyze some potential factors 

of a Web Based Grocery Shopping system called iBuy, which is 

specified in the Scope & Requirements Document, and to use 

the OPM model they had created, shown in Figure 19 through 

Figure 22. The evaluation focused on the Shopping List Creating 
process, which is shown in Figure 22: SD1.3 - Shopping List 

Creating in-zoomed. There were two grocery shopping 

datasets with different difficulty levels that students were 

asked to handle: one of the Jerusalem shop and the other—of 

the Tel-Aviv shop.  

 
Figure 21: View 2 - User unfolded 
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Figure 22: SD1.3 - Shopping List Creating in-zoomed 

 

 

Our research hypothesis was that using OPM with the 

AUTOMATLAB approach would benefit the user in the 
following ways: 

1. Users of AUTOMATLAB will gain deeper, more accurate 

understanding of the system’s computational and 

quantitative aspects than users who used OPM without 

AUTOMATLAB. 

2. AUTOMATLAB users will understand the system’s 

computational and quantitative aspects quicker than users 

who used OPM without AUTOMATLAB. 

3. AUTOMATLAB users will be more confident in their 

understanding of the system’s computational and 

quantitative aspects than users who used OPM without 

AUTOMATLAB. 
4. AUTOMATLAB users will understand the system’s 

computational and quantitative aspects better, with less 

difficulty, than who used OPM without AUTOMATLAB. 

 

The different factors we analyzed referred mainly to the 

Shopping List Creating process in the OPM model shown in 

Figure 21. The students were requested to evaluate the answer 

to four different questions, and answer a few questions 

regarding their evaluation, confidence, difficulty, and the time 

it took them to answer. The analysis was performed on two 

data sets with different levels of difficulty. The first data set 
was simpler in the sense that there were fewer customers, and 

the behavioral model was simpler. For example, in the simple 

data set, a customer starting as a regular user would either 

purchase his/her entire shopping list as a regular user, or pay a 

fee and become a premium user, whichever is cheaper for that 

purchase. In the advanced data set, when a regular buyer has 

the option to pay less if she or he becomes a premium user 

(buyer), the buyer's behavior is stochastic: s/he might choose 

to stay a regular user, pay a fee and become a premium user, 

or cancel the entire purchase. 
The students were asked to answer the following questions: 
1. What type of customer is more profitable for the iBuy owner: 

Regular user or Premium user? 
2. What are the three most profitable products for the iBuy owner? 
3. What is the premium user monthly fee that will maximize the 

profit for the iBuy owner? 
4. What is the premium user monthly fee that will make the amount 

of items purchased by regular users and premium users equal? 

For each answer, the students were then asked to explain how 

they had deduced their answer, how accurate they thought 

their answer was and why, how difficult it was to complete 

their answer and why, and how long it took them to complete 

their answer. Since our sample was not sufficient for accurate 

statistical analysis, we combined qualitative analysis of the 

evaluation with the statistical analysis.  

The students were given data sets containing a list of items 

sold by the Web Based Grocery Shopping system, monthly fee for 
premium users, a list of customers, and potential shopping lists 

for customers. 

Identical questionnaires and data sets were given to both the 

experimental and control groups. The questionnaire included 

four main questions, such as "What are the three most 

profitable products for the iBuy owner?" Each one of the four 

questions was graded according to its correctness 

(correct/incorrect). In addition, students were asked to rate on 

a 1-5 Likert scale how accurate their answer is and how 

difficult for them was it to obtain this answer. Finally, students 

were asked to report about the time it took them to answer this 

question. 
The control group was allowed to answer the questions using 

whatever tool they desire. The experimental group students 

received the automatically-generated MATLAB code from the 

AUTOMATLAB approach shown in Appendix B, Figure 23 
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through Figure 29, and were instructed to use it in order to 

answer the four questions. The MATLAB code was intended 

to help them gain better understanding of the model and to 

serve as a basis for a simulation of the system, including 

computational and stochastic aspects required to answer the 

four questions. 
The students from the experimental group who received the 

AUTOMATLAB generated MATLAB code submitted their 

code when answering the questionnaire. An example of the 

Shopping List Creating enhanced code is presented in Appendix 

B, Figure 29. 

A total of 96 answers from 24 questionnaires were graded 

according to their accuracy, and student explanations 

regarding difficulty, confidence in the outcome accuracy, and 
the time required to complete the assignment were analyzed 

qualitatively. The number of questionnaires submitted from 

each group is presented in Table 5. 

Table 5: Amount of questionnaires submitted from each group 

 Experimental Group Control Group 

 Jerusalem 

Data set 

Tel-Aviv 

Data set 

Jerusalem 

Data set 

Tel-Aviv 

Data set 

Amount of 

questionnaires: 5 5 7 7 

 

We analyze the data from the evaluation for the three 

variables: group (experimental or control), level (‘Jerusalem’ – 

level-1 – the easy data set, or ‘Tel-Aviv’ – level-2 – the 
difficult data set) and question (Q1, Q2, Q2, or Q4) using 

multi-way repeated measures tests with two within-subjects 

independent variables (level, question) and between-subjects 

independent variable (group). The dependent variable, namely 

grade, time, confidence in answer accuracy, and difficulty was 

changed in each hypothesis test. Independent t-test and one-

way ANOVA with a Bonferroni correction served as our post-

hoc tests, where it was needed. 

 

First hypothesis analysis 

 

Our first hypothesis was that users of AUTOMATLAB will 
gain deeper, more accurate understanding of the system’s 

computational and quantitative aspects than users who used 

OPM without AUTOMATLAB. In line with this hypothesis, 

we found a significant main effect for group (F(1, 10) = 5.23, 

p < .05, η2 = .34), indicating that students who used 

 AUTOMATLAB scored higher (M = .71, SD = .05) than 

students who answered the questions without 

using AUTOMATLAB (M = .55, SD = .05). Likewise, there 

was a significant main effect for level (F(1,10) = 5.99, p < .05, 

η2 = .37), which means that the level-1 dataset yielded higher 

grades (M = .72  , SD = .06) than level-2 (M = .54 , SD = .04). 
Finally, we found a significant main effect for question (F(3, 

30) = 6.15, p < .01, η2 = .38). Post-hoc analysis 

using Bonferroni correction revealed that Q4's grades (M = 

.29, SD = .10) were significantly lower than the grades of 

Q1 (M = .81, SD = .07) and Q2 (M = .82, SD = .05). The 

grades of Q3 (M = .60, SD = .12) did not differ significantly 

from the rest of the questions. Significant interaction was 

found between group and level (F(1,10) = 4.88, p < .05, η2 = 

.33). In subsequent tests we found that this difference is due to 

the interaction between group and level-2 (F(1,10) = 16.77, p 

< .01, η2 = .62). The difference between the experimental and 
control groups is mainly due to Q2 (t(10) = 3.04, p <.01)) and 

Q3 (t(10) = 1.86, p <.05)), indicating that the grades of the 

experimental group on Q2 (M = 1, SD = 0) were higher than 

those of the control group (M = .55, SD = .39), and that the 

grades of the experimental group in Q3 (M = .80, SD = .45) 

were higher than the grades of the control group (M = .29, SD 

= .49). 

 

Second hypothesis analysis 

 

Our second hypothesis was that AUTOMATLAB users will 

understand the system’s computational and quantitative 
aspects quicker than users who used OPM without 

AUTOMATLAB. 

The main effect for group (F(1,10) = .39, P > .05, η2 = .04) 

was not significant, indicating that the experimental (M = 2.02 

, SD = .53) and control groups (M = 1.59 , SD = .45) did not 

significantly differ in the time required to solve the questions. 

According to the hypothesis there was a significant main 

effect for question (F(3, 30) = 11.87, p < .001, η2 = .54). Post-

hoc analysis using Bonferroni correction revealed that the time 

needed to achieve an answer for Q1 (M = 3.4, SD = .56) was 

significantly longer than the time needed for Q2 (M = 1.43, 
SD = .37), Q3 (M = 1.12, SD = .39) and Q4 (M = 1.29, SD = 

.42). 

 

Third hypothesis analysis 

 

Our third hypothesis was that AUTOMATLAB users will be 

more confident in their understanding of the system’s 

computational and quantitative aspects than users who used 

OPM without AUTOMATLAB. The main effect for group 

(F(1,10) = .62, P > .05, η2 = .06) was not significant, indicating 

that the experimental and control groups did not significantly 

differ in the confidence they had in the accuracy of their 
results. These test results indicate in addition that there was a 

significant main effect for question (F(3, 30) = 7.14, p = .001, 

η2 = .42). Post-hoc analysis using Bonferroni correction 

revealed that confidence in answers for Q1 (M = 4.41, SD = 

.15) were significantly higher than the grades for Q3 (M = 

3.36, SD = .22) and Q4 (M = 3.70, SD = .23). Confidence in 

answers of Q2 (M = 3.96, SD = .18) did not differ 

significantly from the rest of the questions. 

 

Fourth hypothesis analysis 

 
Our fourth hypothesis was that AUTOMATLAB users will 

understand the system’s computational and quantitative 

aspects better, with less difficulty, than who used OPM 

without AUTOMATLAB. The multi-way repeated measures 
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test revealed that the main effect for group (F(1, 10) = 4.00, p 

= .07, η2 = .29) has borderline significance. Since our 

hypothesis is one-tailed, we can deduct a significant difference 

between the groups, indicating that students who did not use 

AUTOMATLAB indicated a higher level of difficulty (M = 

3.27, SD = .25)  than students who used AUTOMATLAB (M 
= 2.5, SD = .29), suggesting that the experimental group 

subjectively experienced a lower level of difficulty than the 

control group when solving the questions. 

The main effect for level (F(1,10) = .59, P > .05, η2 = .06) was 

not significant, but significant interaction was found between 

group and level (F(1,10) = 14.49, p < .005, η2 = .59). Follow-

up tests revealed significant interaction between group and 

level-2 (t(10) = 3.09, p ≤.01) resulting from difference 

between groups for Q2 in level-2 (t(10) = 2.71, p < .05) and 

difference for Q4 in level-2 (t(10) = 2.72, p < .05) , as can be 

seen in Table 6. 

Table 6: Results of Continued tests for interaction between group and level 

  
Experimental 

group 
Control group  

 question mean std mean std t(10) 

level-1 

Q1 4.20 1.30 3.00 .82 1.972
a
 

Q2 2.80 .84 3.29 1.11 .82 

Q3 2.20 1.10 2.43 1.27 .32 

Q4 2.20 .84 3.43 .53 3.12
*
 

Total 11.40 3.29 12.14 2.12 .48 

level-2 

Q1 2.60 1.34 3.71 1.11 1.57 

Q2 1.40 .55 3.14 1.35 2.71
*
 

Q3 2.60 1.82 3.57 .98 1.21 

Q4 2.00 .71 3.57 1.13 2.72
*
 

Total 8.60 3.78 14.0 2.31 3.09
*
 

*
 P < .05 

a
 Borderline significance was found, for apposite of hypothesis. 

Our first hypothesis was that users of AUTOMATLAB will 

gain deeper, more accurate understanding of the system’s 

computational and quantitative aspects than users who used 

OPM without AUTOMATLAB. The results indeed show that 

the experimental group achieved higher accuracy levels than 

the control group in our experiment. The experimental group 

increase in accuracy was more significant for the more 

complicated data set (Q2 and Q3), suggesting that the benefits 

of AUTOMATLAB are more prominent for more complex 

situations and needs. 

Analysis of the explanations provided by the students when 

submitting their answers suggests that the students in the 

experimental group attempted to create a more accurate 

simulation of the system behavior. One of the subjects noted: 

“The calculation is performed in the MATLAB code… For 

every customer I calculate the profit… Dealing with a 

customer is one iteration of the function 

‘ShopingListCreating’… The simulation results show…”  

Students in the control group used other method (mainly 

simple Excel spreadsheets or pen-and-paper calculations), 

ignoring seemingly unnecessary aspects: “Didn't compare one 

by one…”, “Response was relatively difficult since lots of 

considerations came in and I needed to make assumptions”. 

This is assumed to be the cause for the difference in accuracy 

between their answers. 

Our second hypothesis was that AUTOMATLAB users will 

understand the system’s computational and quantitative 

aspects quicker than users who used OPM without 

AUTOMATLAB. The results did not show a conclusive 

difference between the experimental and control groups. We 

have seen that the time needed to answer Q1 was significantly 

longer than the time needed for Q2 through Q4. For the 

experimental group, we assume that the longer time required 

to answer the first question is due to the need to enhance the 

automatically generated MATLAB code when solving the first 

question, and this code was later used to solve the rest of the 

questions, as one student commented: “Calculations were very 
similar to previous questions…”, “The code was already 

prepared – only one function needed to be changed”.  

Our third hypothesis was that AUTOMATLAB users will be 

more confident in their understanding of the system’s 

computational and quantitative aspects than users who used 

OPM without AUTOMATLAB. The results received for this 

hypothesis were not conclusive. No clear differences were 
found for the different groups or datasets. Since the 

experimental group students had limited level of experience 

with MATLAB, perhaps some of their lack of confidence was 

due to the tool being used and not due to lack of understanding 

of the model. This may be a subject of a future research. 

The fourth hypothesis was that AUTOMATLAB users will 

understand the system’s computational and quantitative 

aspects better and with less difficulty than those who used 

OPM without AUTOMATLAB. The results indeed show that 

the students who did not use AUTOMATLAB rated their 

difficulty as higher. 

Analysis of the students' explanations suggests that the 
difficulty in the control group is associated mainly with the 

challenge in representing the customer behavior model in 

simple tools like Excel or handwritten calculations: “It took a 

long time to get the calculations since I didn't know the 

appropriate action in Excel.”, “I had to go over every buyer 

and every product which is a lot of intersections!!!”. 

Explanations of experimental group students for Q2-Q4 

repeatedly mentioned using the previously created code as a 

reason for low difficulty, supporting our hypothesis: “No 

changes were needed from previous…”, “From the way I 

implemented the solution of the answer in the first part… no 
more changes had to be made.” 

From both the statistical and qualitative analyses of the 

evaluation we have seen that the AUTOMATLAB method 

does indeed benefit the user in several ways. AUTOMATLAB 

may improve the accuracy of understanding a system’s 

quantitative aspects and decrease the difficulty of reaching 

such understanding. Results regarding the time needed to 

understand the quantitative aspects and user’s confidence 

regarding her or his understanding are not significant, 

probably due to the lack of participants' experience with the 
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MATLAB environment. This aspect should be tested with 

more proficient participants in a future research. 

11. CONCLUSION AND FUTURE RESEARCH 

This research has tackled the problem of merging 

computational aspects and capabilities into conceptual models 

of systems, which are primarily qualitative in nature. Due to 

the level of abstraction of conceptual models, their 

computational capabilities are weak or missing altogether. 

Some modeling and simulation methods that do provide the 

computational aspects generally lack the high level of 
abstraction required from a conceptual modeling language. For 

example, Arena, a widely used discrete simulation software 

tool (Kelton et al., 2014) discussed above, or ModelCenter, 

which integrates simulation tools from various vendors, can be 

used for this purpose, making it unnecessary to merge the 

computational aspects into the system. However, the 

abstraction power of OPM and its complexity management 

mechanisms make it highly suitable for early-stage conceptual 

modeling, so incorporating MATLAB's computational 

capabilities into OPM for seamless transition from conceptual 

to detailed design is highly desirable.  
The computational simplification problem defined in this work 

relates to the difficulty of incorporating quantitative aspects 

into conceptual models, which focus primarily on key 

qualitative aspects of the system. We presented two possible 

solutions for this problem, based on expanding OPM to 

combine MATLAB and Simulink. In the first, 

AUTOMATLAB approach, we solve the computational 

simplification problem by adding a parallel MATLAB-based 

representation of the entire OPM model, which can be 

augmented with any desired computational aspects in the 

MATLAB representation. A major advantage of the 

AUTOMATLAB approach is that the OPM model becomes an 
integral part of the augmented MATLAB model, enabling it to 

evolve and serve for increasingly more quantitative-oriented 

simulations in downstream lifecycle stages of the system. 

In the second, OPM/CS approach, we aim to solve the 

computational simplification problem by augmenting the 

capabilities of the OPM in-zooming mechanism. The 

additional capability provides for the content of an in-zoomed 

process to be replaced by a MATLAB function or a Simulink 

model containing the necessary computational aspects. The 

main advantages of the OPM/CS approach are (1) the 

simplicity of the enhancement that uses an intuitive extension 
of the OPM in-zooming mechanism, and (2) the preservation 

of the original OPM conceptual model with its semantics. 

The two approaches were demonstrated via examples and case 

studies. An evaluation of the AUTOMATLAB approach was 

conducted with human subjects, showing benefits of this 

approach in terms of better system understanding. Results 

regarding user confidence in system understanding and time 

required to achieve such understanding were not conclusive, 

perhaps due to the small sample. The statistical results were 

supported by qualitative content analysis of the subjects' 

responses to questions. 

Both approaches have been designed and implemented with 

forward compatibility to the future online OPM CASE tool, 

and partial compatibility to the development version of the 

current OPCAT. In a future OPM modeling tool, a large scale 

test and comparison of AUTOMATLAB and OPM/CS should 

be performed. 
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APPENDIX A – OPM SUMMARY 

1. Entities 

Name Symbol OPL  Definitions  

T
h

in
g

s  

 
 

Object 

 
 

 

Process 

 

B is physical. 
(shaded rectangle)  

C is physical and 

environmental. 
(shaded dashed 

rectangle)  

E is physical. 
(shaded ellipse)  

F is physical and 

environmental. 

(shaded dashed 

ellipse)  

An object is a thing 

that exists.  

A process is a thing 

that transforms at 

least one object.  

Transformation is 

object generation or 

consumption, or 

effect—a change in 

the state of an 

object.  

State 

 

A is s1.  

B can be s1 or s2.  

C can be s1, s2, or 

s3.  

s1 is initial.  

s3 is final.  

A state is situation 

an object can be at 

or a value it can 

assume.  

States are always 

within the object 

that owns them.  

A state can be 

initial, final, or 

both.  

 

 

2. Structural Links 

Allowed Source-

to-Destination 

connections 

OPL Name Symbol 

Object-Object 

Process- Process  

A consist of B.  
Aggregation-

Participation  
 

Object-Object 

Object-Process 

Process-Object 

Process- Process  

A exhibits B.  
Exhibition- 

Characterization  
 

Object-Object 

Process- Process  

B is an A. (objects) 

B is A. (processes)  

Generalization- 

Specialization  
 

Object-Object 

Process- Process  

B is an instance of A.  
Classification-

Instantiation  
 

Object-Object 

Process- Process  

According to text 

added by user  

Tagged 

structural links: 

Unidirectional 

Bidirectional  

 

 

 

 

3. Fundamental Structural Links  

Name  Symbol OPL  Semantics  

Aggregation-

Participation 

  

 

A consists of B 

and C.  

A is the whole, B 

and C are parts.  

 

A consists of B 

and C.  

Exhibition- 

Characterizat

ion 

  

 

A exhibits B, 

as well as C.  Object B is an 

attribute of A and 

process C is its 

operation 

(method).  

A can be an object 

or a process.  

 

A exhibits B, 

as well as C.  

Generalizatio

n- 

Specializatio

n 

  

 

B is an A.  

C is an A.  
A specializes into 

B and C.  

A, B, and C can 

be either all 

objects or all 

processes.  

 

B is A.  

C is A.  

Classification

-Instantiation 

  

 

B is an 

instance of A.  

C is an 

instance of A.  

Object A is the 

class, for which B 

and C are 

instances.  

Applicable to 

processes too.  

 

4. Tagged Structural Links  

Name  Symbol  OPL  

Unidirectional & 

bidirectional  

tagged structural 

links  
 

A relates to B.  

(for unidirectional)  

A and C are related.  

(for bidirectional)  
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5. Procedural Enabling Links 

Name  Symbol  
OPL  

Semantics  

 

Agent Link  

 

A handles 

B.  

Denotes that object A 

is a human operator 

who triggers process 

B.   

Instrument 

Link  
 

B requires 

A.  

"Wait until" semantics: 

Process B cannot 

happen if object A 

does not exist.   

State-

Specified  

Instrument 

Link  
 

B requires 

s1 A.  

"Wait until" semantics: 

Process B cannot 

happen if object A is 

not at state s1.   

 

6. Procedural Transforming Links    

Name Symbol 
OPL 

Semantics 

Consumption 

Link 
 

B consumes A.  

Process B consumes 

Object A. 

State-Specified 

Consumption 

Link  

B consumes s1 

A.  

Process B consumes 

Object A when it is at 

State s1. 

Result Link 

 

B yields A.  

Process B creates 

Object A. 

State-Specified  

Result Link 

 

B yields s1 A.  

Process B creates 

Object A at State s1. 

Effect Link 

 

B affects A.  

Process B changes the 

state of Object A; the 

details of the effect 

may be added at a 

lower level.  

State-Specified 

Effect Link 

(Input-Output 

Links Pair) 

 

B changes A 

from s1 to s2.  

Process B changes the 

state of Object A from 

State s1 to State s2. 

 

7. Procedural Links: Control Links  

Name Symbol OPL  
Semantics  

Instrument 

Event Link 
 

A triggers B.  

B requires A.  

Generation of object 

A is an event that 

triggers process B. B 

will start executing if 

its precondition is 

met. Since A is 

instrument it will not 

be affected by B.  

State-

Specified 

Instrument 

Event Link  

A triggers B. 

when it enters 

s1. 

B requires s1 

A.  

Entering state s1 of 

object A is an event 

that triggers process 

B. B will start 

executing if its 

precondition is met. 

Since A is 

instrument it will not 

be affected by B.  

Consumption 

Event Link 
 

A triggers B.  

B consumes 

A.  

Generation of object 

A is an event that 

triggers process B. B 

will start executing if 

its precondition is 

met, and if so it will 

consume A.  

State-

Specified 

Consumption 

Event Link 
 

A triggers B 

when it enters 

s2.  

B consumes s2 

A.  

Entering state s2 of 

A is an event that 

triggers process B. If 

B is triggered, it will 

consume A. B will 

start executing if its 

precondition is met, 

and if so it will 

consume A.  

Condition 

Link 
 

B occurs if A 

exists.  

Existence of object 

A is a condition for 

the execution of B. If 

A does not exist, 

then B is skipped and 

regular system flow 

continues.  

State-

Specified 

Condition 

Link 
 

B occurs if A 

is s1.  

Existence of object 

A at state s2 is a 

condition for the 

execution of B. If A 

is not in s2, then B is 

skipped and regular 

system flow 

continues.  

Invocation 

Link 

 

B invokes C.  

Execution 

termination of 

process B is an event 

that triggers process 

C. B yields a 

temporary object that 

is immediately 

consumed by C and 

therefore not be 

shown explicitly in 

the model.  

Exception 

Link 

 

A triggers B 

when it lasts 

more than 4 

seconds.  

Process A has to be 

assigned with 

maximal acceptable 

time duration, which, 

if exceeded, triggers 

process B.  

 



21 

 

Appendix B. MATLAB code generated automatically from the OPM processes of the iBuy System 

 
Figure 23: MATLAB code generated from the process Shopping List Creating 

 
 

 
Figure 24: MATLAB code generated from the process Item Choosing 
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Figure 25: MATLAB code generated from the process High Price Generating 

 

 
Figure 26: MATLAB code generated from the process Low Price Generating 

 

 
Figure 27: MATLAB code generated from the process Shopping Cost Updating 

 

 
Figure 28: MATLAB code generated from the process Product Updating 
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Figure 29: Shopping List Creating enhanced code from AUTOMATLAB evaluation 

 
 


