
MIT Open Access Articles

When quantitative meets qualitative: enhancing OPM conceptual
systems modeling with MATLAB computational capabilities

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dori, Dov, Aharon Renick, and Niva Wengrowicz. “When Quantitative Meets Qualitative:
Enhancing OPM Conceptual Systems Modeling with MATLAB Computational Capabilities.”
Research in Engineering Design 27.2 (2016): 141–164.

As Published: http://dx.doi.org/10.1007/s00163-015-0209-9

Publisher: Springer London

Persistent URL: http://hdl.handle.net/1721.1/103795

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/103795

1

When Quantitative Meets Qualitative:

Enhancing OPM Conceptual Systems Modeling

with MATLAB Computational Capabilities

Dov Dori

Technion – Israel Institute of Technology

Haifa 32000, Israel
and

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

dori@mit.edu

Aharon Renick

Technion – Israel Institute of

Technology

Haifa 32000, Israel

adrenick@technion.ac.il

Niva Wengrowicz

Technion – Israel Institute of

Technology

Haifa 32000, Israel

nivawen@ technion.ac.il

Abstract—Conceptual modeling is an important initial stage in

the lifecycle of engineered systems. It is also highly

instrumental in studying existing unfamiliar systems—the

focus of scientific inquiry. Conceptual modeling

methodologies convey key qualitative system aspects, often at

the expense of suppressing quantitative ones. We present and
assess two approaches for solving this computational

simplification problem, defined below, by combining Object

Process Methodology (OPM), the new ISO/PAS 19450, with

MATLAB or Simulink without compromising the holism and

simplicity of the OPM conceptual model. The first approach,

AUTOMATLAB, expands the OPM model to a full-fledged

MATLAB-based simulation. In the second approach, OPM

Computational Subcontractor, computation-enhanced

functions replace low-level processes of the OPM model with

MATLAB or Simulink models. We demonstrate the OPM

Computational Subcontractor on a radar system computation.

Experimenting with students on a model of an online shopping
system with and without AUTOMATLAB has indicated

important benefits of employing this computation layer on top

of the native conceptual OPM model.

Keywords-Model-based Systems Engineering, Object-

Process Methodology, MATLAB, Simulink, Modeling and

Simulation, Conceptual Modeling

1. INTRODUCTION - CONCEPTUAL MODELING

A key stage in the early stages of architecting and design of a

new system or in understanding an existing one is its

conceptual modeling: creating a primarily-qualitative model,

which clearly specifies the system’s function (why it is

designed, what value is it expected to provide its beneficiaries

with—the utility aspect), its structure (what is the system made

of, how is the whole related to its parts—the structural

aspect), and its behavior (how the system operates and changes

over time and how objects in it are transformed to achieve its

function—the behavioral aspect). Similarly, when aiming to

research and fully understand existing systems, a conceptual

model of the system under study can be highly valuable

(Somekh et al, 2014). Different modeling methodologies and

languages, such as OPM (Dori, 2002) and SysML (Object

Management Group, 2012; Weilkiens, 2007), enable one to

conceptually model a system and simulate its behavior.

Holistic understanding is achieved by simplifying certain
aspects of the real system, such as its level of detail (Zeigler,

1976). One aspect that is often simplified in conceptual

modeling is the computational aspect of a system—the

mathematical entities that may govern the actions and

reactions of a system, the exact output of some actions, and

representation of random effects that determine the dynamics

of the system.

While this simplified, qualitative-only view of the system

helps in initial, overall comprehension of the system, it often

lacks important information, especially when the model is

simulated, making it necessary to explicitly express the

dynamic, time-varying aspect of the system. Moreover, while
making progress in the design or study of a system, simulation

of the system’s structure and behavior often becomes

mandatory to ascertain that the system meets the requirements

it is expected to fulfil. This is especially true for systems that

exhibit complex behavior, which might require representation

of non-deterministic aspects and advanced numerical

calculations that drive different actions, as well as

sophisticated quantitative decision-making processes.

Advancing from the conceptual model to an elaborate

simulation is therefore often critical for testing and validating

the system under design, or confirming theories regarding
systems under study.

In some cases, due to the human in the loop, the transition

from the modeling stage to the simulation stage can result in

errors or inaccuracies. Creating a simulation of the system can

be done by studying the model or the original system directly,

aiming to understand it, and building the simulation

accordingly. As long as the model-to-simulation transition

process involves human intervention, it is prone to mistakes

and inaccuracies. Moreover, such manual transitions can

mailto:dori@mit.edu
../../../../../../../../../AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/5O71T9FY/adrenick@technion.ac.il
mailto:nivawen@mit.edu

2

overlook insights gained during early stage of the conceptual

model.

2. THE COMPUTATIONAL SIMPLIFICATION PROBLEM

We define computational simplification as the simplification

of a conceptual model by elimination or reduction of its

computational aspects. This abstraction gives rise to the

computational simplification problem—the problem of lack of

complete model comprehension arising from a conceptual

model computational simplification. Conceptual systems

modeled in some of the modeling languages or methods
presented in the following sections, may suffer from this

problem. Other methods that enable modeling lower levels,

which include computational aspects, lack high-level

abstraction abilities, which are vital in conceptual models.

The computational simplification problem poses the challenge

of equipping system architects, designers, and domain experts

with the ability to incorporate computational modules into the

conceptual model in order to make it more complete. In this

paper we tackle this challenge by presenting and evaluating

possible solutions for this problem that expand Object Process

Methodology (OPM) with the capabilities of MATLAB and
Simulink.

As the design or study of a system progresses, elaborate

simulations are often created for examining the system in

operation. While in general a human in the loop may introduce

errors during the transition from the conceptual model to a

simulation, our approach provides for a MATLAB-based

simulation, which is created directly from the evolving OPM

model, avoiding the likely introduction of new errors, which,

given the early stage of their introduction, are often very

costly to correct.

3. OBJECT PROCESS METHODOLOGY

Object Process Methodology (OPM), the ISO/PAS 19450,

titled "Automation systems and integration – Object-Process

Methodology", is a conceptual modeling approach and

language that uses a single unifying bimodal graphical and

textual model. This single model captures the functional,
structural, and behavioral aspects of a system (Dori, 2002). An

OPM model consists of elements that are things and

relationships: stateful objects and processes that transform

them are the things, which are related by procedural and

structural relationships. Objects are the stateful components

the system is made of, while processes are things that

transform objects by creating or consuming them, or by

changing their state.

An OPM model is represented in two complementary

modalities: graphical and textual. A set of interconnected

Object Process Diagrams (OPDs) constitutes the graphical
representation of the model, while a corresponding set of

Object Process Language (OPL) paragraphs is the parallel

textual representation of the model. OPL is a subset of natural

English, which anyone with basic knowledge of English can

readily understand. Both representations are completely

interchangeable and convey the same information about the

model, appealing to “both sides of the brain” (Dori, 2008).

OPM models can be created with OPCAT (Dori et al., 2010), a

CASE tool for designing and testing OPM models. A

summary of OPM symbols and rules is presented in appendix

A. OPM is specified in Dori (2002; 2015). The ISO
standardization process of OPM is described by Blekhman et

al. (2011).

4. MATLAB & SIMULINK

MATLAB™ (MathWorks, 2011), short for Matrix Laboratory,
is a numerical computing environment developed by

MathWorks, which is widely used in various fields of

engineering and science. MTALAB has powerful built-in

library functions that serve a wide variety of uses. Groups of

functions for specific applications are collected in packages,

referred to as toolboxes. There are toolboxes for signal

processing, symbolic computation, control theory, simulation,

optimization, and many other fields. MATLAB also offers

easy graphical command interface, enabling visualization of

results immediately and conveniently.

Due to its wide array of function libraries and numerical
abilities, MATLAB is commonly employed to generate system

simulations, enabling users to perform mathematical

operations, such as solving differential equations,

implementing stochastic behavior, and manipulating multi-

dimensional arrays.

MATLAB has many advantages over conventional

programming languages such as C or FORTRAN, enabling it

to solve technical problems (Houcque, 2005). MATLAB is an

interactive system whose basic data element is an array that

does not require dimensioning, so the user can add and modify

elements dynamically as the program proceeds, without

defining them in advance. The software package has been
commercially available since 1984 and is now considered a

standard tool at most universities and industries worldwide.

While the commercial version is commonly used, there are

some free and open source MATLAB-compatible solutions,

including Octave, Scilab, and FreeMat (Sharma & Gobbert,

2010).

Simulink, a platform incorporated within MATLAB

(Mathworks, 2008), enables programming by means of a

graphical display – dragging and connecting predefined

blocks, placing them in different places, masking them, and

manipulating them. Moreover, Simulink introduces an ability
to incorporate Stateflow modules in a system simulation.

Simulink’s main addition to MATLAB is its graphical

environment that replaces the textual code-based view. Similar

to the original MATLAB environment, Simulink provides a

set of block libraries that are analogous to the MATLAB

library functions. Simulink has many block libraries, including

Math Operations, Model Verification, Ports & Subsystems,

Signal Routing, Sinks, and Sources. It is also possible to

define blocks by programming with MATLAB code.

Simulink’s graphical environment can serve as a means to

model a system, leveraging on the computational strength of

http://www.iso.org/iso/catalogue_detail.htm?csnumber=62274
http://www.mathworks.com/products/matlab/whatsnew.html
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/MathWorks

3

MATLAB. For starters, one can build a simulation of a system

represented in MATLAB by using Simulink, adding a

graphical representation to the simulation.

Although Simulink enables a graphical approach to the

simulation, it does not provide a complete solution to

conceptual modeling. Rather, it provides a graphical view of
the MATLAB code. The Simulink environment is limited to a

block diagram approach, representing each section or

subsystem as a separate block (box), which can be drilled into,

and can contain lower level subsystems as separate boxes.

This approach provides a structural view of a system, but it

does not capture the dynamics of the system, nor does it

represent relationships between the system and the

environment any more than a code-based simulation.

5. CONCEPTUAL MODELING LANGUAGES AND METHODS

5.1. UML and SysML

The Unified Modeling Language (UML) (Object Management

Group, 2011) is an object-oriented modeling language that

became the Object Management Group (OMG) standard for

software systems development in 1997. UML consists of a

model with 14 different views, represented by different kinds

of diagrams, many of which evolved from diagrams that were

in use during the early 1990’s. The fourteen UML views are
activity diagram, class diagram, communication diagram,

component diagram, composite structure diagram, deployment

diagram, interaction overview diagram, object diagram,

package diagram, profile diagram, sequence diagram, state

diagram, timing diagram, and use case diagram. These 14

views aim to convey different aspects of the system, its

structure, behavior, relationships, and change over time, so

that a system modeled by UML consists of related diagrams of

different kinds.

SysML, Systems Modeling Language (Object Management

Group, 2012) is a profile of UML designed to be more system-
centric, as opposed to the more software-centric design of

UML. SysML has retained seven of the 14 UML diagram

types, modifying some of them, and added two new ones—

requirements diagram and parametric diagram.

Comparing UML and SysML on one hand with OPM on the

other hand, a major difference that sticks out is the holism of

the model. UML and SysML require using at least a subset of

the 14 (in UML) or nine (SysML) diagram kinds to represent

the system. Conversely, OPM represents the system with an

interconnected hierarchical set of diagrams of a single kind—

Object-Process Diagram (OPD). This graphical representation

is accompanied by an equivalent set of Object-Process
Language (OPL) paragraphs that specifies the system in a

subset of natural English. Following this minimalism

principle, we aim to extend the computational power of OPM

while minimizing additional diagram kinds.

5.2. Modelica

Modelica (Mattsson & Elmqvist, 1997) is an object-oriented

equation-based modeling methodology. The Modelica

language defines and describes the system, its components,

structure, and behavior by a set of mathematical equations.

The Modelica methodology includes CASE tools for

designing Modelica models. These tools allow the user to

draw or import a scheme of the system, connecting the model

equations to the appropriate component on the scheme. Using
Modelica, one can decompose the model hierarchically,

simplifying the model and making it more understandable.

Another feature of Modelica is a large selection of model

libraries, offering predefined subsections of systems, sorted

into different fields (electrical, mechanical, aerospace, etc.),

which can be easily implemented as part of a model. Other

predefined libraries enable integration of numerical solutions

and stochastic behavior modules.

Modelica supports quantitative and stochastic aspects due to

its equation-based representation, allowing direct modeling of

the computational aspects of the system. Describing the

architecture of the modeled system using Modelica without the
equation-based representation is also possible. However,

describing the behavior of the system does require using the

mathematical representation, demanding a greater level of user

effort to comprehend the model in comparison to a simpler

representation of a system flow. Another somewhat limiting

aspect is that Modelica definitions are object-oriented,

confining the users to think in terms of the OO paradigm,

which emphasizes objects and system structure at the expense

of suppressing behavioral aspects and processes (“methods”)

as secondary to and owned by objects.

5.3. Play-in/Play-out

Play-in/Play-out (Harel and Marelly, 2003) is an approach for

modeling systems, specifically the reactions of the system

with the environment. Play-in/Play-out scenarios are “played

in” by the user modeling the system using the “Play-engine.”

Using an intuitive graphical user interface (GUI) that

represents the system, the modeler executes the various

actions that affect the system and its expected reactions. As

the system behavior is played in, the play-engine

automatically generates a set of Live Sequence Charts (LSCs),

specifying the behavior of the system.
After creating LSCs that cover the system’s permitted actions

and their result (and possibly forbidden actions), the model

can be “played out.” In the play-out mode, the user can apply

an action to the GUI and it will react according to the set of

rules defined by the LSCs. Playing out different scenarios can

help identify contradictions, undefined actions, and other

errors.

The play-engine allows specifying an event value as a function

that is predefined in the GUI code (using, for example, Visual

Basic). This option enables modeling complex systems, where

the result of an action is not as simple as a constant reaction,
but rather has quantitative aspects. The play-engine has also a

limited support of non-deterministic actions; one can define

more than a single possible reaction for each played-in action

and allocate a probability to each reaction.

4

While the Play-in/Play-out approach might seem to satisfy the

requirement of handling quantitative and stochastic aspects,

this is only partially correct, since this method is geared for

scenario-based modeling, emphasizing the behavioral aspects

of the system. The ability to model stochastic behavior with

the play-engine is limited, as non-uniform continuously
distributed probabilities and other forms of stochastic behavior

are difficult to define in a straightforward manner. While it is

possible to predefine functions as part of the GUI code in a

visual programming environment, the Play-in/Play-out method

lacks ability to directly incorporate quantitative aspects into

the model. Conversely, MATLAB enables direct access to

arrays and many toolboxes that provide for incorporating

quantitative and non-deterministic aspects.

5.4. MLDesigner

MLDesigner (Schultz et al., 2010) is an open environment for

UNIX or Linux systems used for designing and testing of

system architectures and their functions. An MLDesigner

model consists of a block diagram containing a variant of C++

code that represents the functionality of each block. Blocks

can be modified by editing their size, position, color, etc.

Many predefined code blocks are available, simplifying the
design and execution of a model. MLDesigner can partially

serve as a computational layer of a conceptual modeling

language, similar to one of the solutions suggested in this

work. A work in this direction has been presented by Schultz

et al. (2010), where an OPM-to-MLDesigner translation was

propose to add simulation capabilities to an OPM model.

The main advantage of the OPM-MLDesigner approach is the

simulation abilities that are built into the MLDesigner CASE

tool, which, for simple simulations, can be more convenient

than MATLAB. The OPM-MLDesigner approach has some

downsides: MLDesigner is not as widespread as MATLAB

and it is not Windows-compatible. The OPM-MLDesigner
approach aims to generate an MLDesigner model from the

OPM model by using OPL—the textual modality of the OPM

model—to generate an MLDesigner model, referred to as

MML. MML is not linked to the OPM model and OPCAT

simulation tool, and it does not affect the original OPM model.

In other words, the OPM-MLDesigner approach does not

improve OPM’s computational capabilities, but rather

generates the OPM model in a different language. As

MLDesigner focuses on processes, it does not have an entity

compatible with the OPM concept of object, making it

necessary to define dummy processes that play the role of
objects. This can substantially complicate the model.

5.5. Arena
Arena (Kelton et al., 2014) is a widely used, general purpose

simulation tool, which enables the user to build a visual model

of the system using a graphic editor, which is converted into

the SIMAN language. The modules of a system are

represented as boxes of different shapes, while lines represent
connections between modules and actions. The flow and

timing of each entity in the system is defined from its arrival

to its departure. Arena supports common functions and

mathematical operators, and allows the user to define new

models and behaviors by using external solutions, such as

Visual Basic.

An approach to designing simulations using OPM was
presented by Gilat (2002). This research focused on using

OPM to better specify and design a model of a given

simulation in order to improve its design and clarity. As a case

study, the approach was demonstrated using the Arena

simulation tool, where the advantages of connecting Arena

and OPM in various scenarios were shown in experiments. In

the Arena-OPM approach, the advantages of conceptual

modeling are utilized only during the simulation design stage,

but not in the simulation creation and operation stages. Since

we aim to improve both the model and its simulation by

incorporating the quantitative aspects into the model itself, the

Arena-OPM approach does not satisfy the requirement of a
combined conceptual and computational modeling

methodology.

5.6. Multi-Representation Architecture

Peak et al. (1998) proposed a Multi-Representation
Architecture (MRA) approach to integrating computer-aided

design (CAD) with computer-aided engineering (CAE), which

maps design and analysis models onto each other. They used

four information representations. One is the product model—

the master description of the product being designed, which

uses design tools. The three other representations are analysis

models that use solution tools at increasing levels of

abstraction. Our approach is different in that we focus initially

on the very early conceptual design phases, seeking for a

concept for a problem of fulfilling a required function that

delivers value to a beneficiary before delving into the

technical complexities of the particular solution.

5.7. A computational product model for conceptual

design using SysML; Improving PDM systems

Wölkl and Shea (2009) proposed a computational product

model for conceptual design using SysML. Their proposal
moves beyond geometry to integrating all the necessary

aspects for conceptual design. Using a case study on the

design of a passenger car’s luggage compartment cover, they

show that many different SysML diagram kinds are suitable

for formal modeling in mechanical concept design.

Accordingly, they proposed the creation and use of libraries

defining generic templates that raise efficiency in modeling.

Since SysML contains nine types of diagrams and OPM only

one, the complexity of the integrated approach using OPM as

the underlying conceptual modeling language is smaller.

Bergsjö et al. (2010), who investigate the need to formalize the

systems engineering processes for embedded systems at a
large automotive company, noted that formalization could be

developed by using a commercial Product Data Management

5

(PDM) system. They found that the company had an informal

work process that delegated responsibility to individual design

engineers with low level of enforcing formal reports and

deliverables. Based on this finding, they customized the PDM

system to work for two demonstrator cases focusing on

integration and workflow using Visual C# to automate the
design task in conjunction with the PDM system and

simulation software.

Indeed, a major obstacle in the lifecycle engineering of a

product or a system is the bumpy transition from conceptual,

qualitative high-level abstract architecture and design to

detailed, quantitative analysis of the design to ensure the

systems resilience, robustness, and other required features.

Our approach of integrating the qualitative high-level

conceptual stage with the quantitative one that follows it can

be considered a step in solving this problem.

6. RESEARCH MOTIVATION AND GOALS

A basic requirement of a modeling and simulation language is

expressiveness that provides for modeling the phenomena

encountered in the design of a system, such as non-linear,

multi-disciplinary, continuous or discrete flows. The models
must also be easy to create and reuse (Sinha et al., 2001).

Simplification of the computational aspect of a system, which

provides an accurate, quantitative representation of the

system’s behavior, might conceal some important information

about the system. Certain OPM models might be adversely

affected by this computational simplification problem.

Many of the modeling languages and methods presented in the

previous section provide conceptual models of the system

under development or study and enable some kind of

simulation. However, in most cases, either the level of the

quantitative aspect of the simulation is insufficient, or it is

achieved at the expense of sacrificing simplicity and generality
of the method and the resulting model.

MATLAB is a convenient tool for simulating complex

systems, but it does not have advanced abstract conceptual

modeling capabilities. Adding a numerical computational

layer to the conceptual modeling power of OPM provides for

simulating its behavior both qualitatively and quantitatively.

While OPM enables exporting a model as an XML file, JAVA

code and more, it does not fully integrate into common

development tools such as MATLAB. Exporting a MATLAB-

based representation of the OPM model allows one to express

the model so that a domain expert who uses MATLAB can
understand the system without knowledge of OPM.

A conceptual model must not be overly complex. In other

words, “The conceptual modeling mantra is one of developing

the simplest model possible to meet the objectives of the

simulation study” (Robinson, 2010). Figure 1 illustrates how

excessive levels of detail hamper model accuracy. At a certain

point, the increasing level of detail reduces the model accuracy

due to lack of knowledge on how to model such details. It is

thus clear that we would want a model to be as simple as

possible while still allowing sufficient accuracy and detail

required for the model objective.

Figure 1: Model and simulation accuracy vs. complexity (Robinson, 2008)

Although simple models are desirable, a simpler model

requires larger assumptions regarding the system, risking the

possibility of missing important aspects of the system (Davies

et al., 2003). Modeling a system with a solution such as

MATLAB or Simulink, without OPM, might thus be

problematic. Incorporating MATLAB and Simulink

representations, where required, into OPM enables model

simplification while avoiding the risk of over-simplification.

In view of this need, our research aims to alleviate the
computational simplification problem and bridge the gap

between the qualitative and the quantitative model aspects by

enhancing OPM with a MATLAB or Simulink-based

computational layer. We present and compare two approaches:

AUTOMATLAB—an OPM MATLAB Layer, and OPM

Computational Subcontractor.

7. AUTOMATLAB

In the AUTOMATLAB approach, a layer of MATLAB is

added on top of the OPM model. The OPM model of the

AUTOMATLAB-Based Simulating
1 system, shown in Figure 2 (the

graphical modality – Object-Process Diagram, OPD) and in

Figure 3 (the corresponding auto-generated textual modality –

Object-Process Language, OPL, paragraph), consists of three

main processes:

1. MATLAB Code Generating, which uses the graphical (OPD)
or textual (OPL) representation of the Original OPM Model.

The Simple MATLAB Code resulting from this stage specifies

the same system as the Original OPM Model does.

2. MATLAB Code Enhancing, where the user can add predefined

standard numerical OPM model snippets to enhance

computational aspects of interest as code in the MATLAB

file, creating the Enhanced MATLAB Code.

3. Enhanced Model Simulating, in which the OPM model,

enhanced with MATLAB code—the Enhanced MATLAB

Code—is simulated in OPCAT, resulting in the MATLAB-

Enhanced OPCAT Simulation.

1
 Boldface names indicate OPM model names of objects and processes.

6

Figure 2: OPM model of AUTOMATLAB – the graphic modality, Object-Process Diagram (OPD)

AUTOMATLAB-Based Simulating consists of MATLAB Code Generating,

MATLAB Code Enhancing, and Enhanced OPCAT Simulating.

AUTOMATLAB-Based Simulating exhibits Simple MATLAB Code,

Enhanced MATLAB Code, and Pre-Defined Data Bank.

AUTOMATLAB-Based Simulating zooms into MATLAB Code Generating,

MATLAB Code Enhancing, and Enhanced OPCAT Simulating, as well as

Pre-Defined Data Bank, Enhanced MATLAB Code, and Simple MATLAB

Code.

 MATLAB Code Generating requires either OPD or OPL.

 MATLAB Code Generating yields Simple MATLAB Code.

 MATLAB Code Enhancing requires Simple MATLAB Code and Pre-

 Defined Data Bank.

 MATLAB Code Enhancing yields Enhanced MATLAB Code.

 Enhanced OPCAT Simulating requires Enhanced MATLAB Code,

 MATLAB Compatible Compiler, and OPCAT CASE Tool.

 Enhanced OPCAT Simulating yields MATLAB-Enhanced OPCAT

 Simulation.

Original OPM model consists of OPL and OPD.
User handles MATLAB Code Enhancing.

Figure 3: OPM model of AUTOMATLAB – the textual modality, Object-

Process Language (OPL) paragraph that is compatible with and was

automatically generated from the OPD in Figure 2

In order to generate the AUTOMATLAB layer efficiently and

accurately during the MATLAB Code Generating stage, we define

the syntax and semantics of the various OPM constructs and

their MATLAB translations. This enables the modeler to add

to the original OPM model the computational aspects

expressed in OPM. As a first step, we have mapped the main

basic built-in MATLAB functions in the MATLAB

documentation (MathWorks, 2011) to their OPM model

equivalents. To distinguish these built-in functions from user-

created functions that may have different meanings, the

process names listed in Table 1 through Table 4 are added to

the list of OPM reserved words.

7

Table 1: Examples of AUTOMATLAB arithmetic operators

Symbol

Operator

OPM Process

Name

OPD

+

Addition

Adding

*

Multiplication

Multiplying

–

Subtraction

Subtracting

^

Exponentiation

Exponentiating

/

Division

Dividing

In order to minimize changes to the OPCAT tool, we generate

the code from an html file of the OPM model expressed in

OPL and exported from OPCAT. Processes, objects, values,
and relationships are identified from the OPL sentences. OPM

constructs are mapped into three matrices: process-to-process

relationships, object-to-object relationships, and process-to-

object relationships.

Table 2: Examples of AUTOMATLAB loops and control structures

Operator /

Process

Name

OPD

if then…else

switch

While

for

Each relationships is then translated into the appropriate code

segment in a separate MATLAB file called m file. For

example, as the first line in Figure 4 shows, a ‘requires’

relationships between a process A and object B means that B is

instrument for executing A, so in order for A to execute, B

must be present. This semantics is translated to the MATLAB

code segment in the m file listed in lines 2-4 of Figure 4.

Figure 4: The MATLAB code for the OPL sentence “A requires B.”

When other relationships are translated, the code will change

accordingly. For example, suppose that in addition to the

example in Figure 4, a ‘yields’ relationship exists between
process A and object C, which means that C results from

executing A. In that case, the code in Figure 4 will be altered

to the one shown in Figure 5.

8

Figure 5: The MATLAB code for the OPL sentences “A requires B.” and “A

yields C.”

Conveying only the information represented the original OPM

model, the MATLAB code generated by AUTOMATLAB is

simple and readily executable. When the OPM model does not

have the information needed to complete a legal code segment,
that piece is left commented. For example, we noted that the

process A requires B, but as long as A is an atomic process, i.e.,

there is no in-zoomed (drilled-down) view of the process A

specifying what A “does”, the use of B in function A remains

as a comment, as shown in line 5 in Figure 6. In a similar way,

all the process-to-process relationships (consists of, zooms

into, etc.), object-to-object relationships (consists of, exhibits,

is a, etc.) and process to object relationships (consumes,

requires, changes, etc.) are translated into corresponding code

segments that convey the same semantics as their OPM

counterparts.

Figure 6: The MATLAB code for the OPL sentences “A requires B.” and “A

yields C.” when A is atomic (does not have an in-zoomed view)

Table 3: AUTOMATLAB trigonometric & exponential functions

Operator /

Process

Name

Description OPD

acos
Inverse cosine; result in

radians

asin
Inverse sine; result in

radians

atan
Inverse tangent; result

in radians

cot
Cotangent of argument

in radians

sin
Sine of argument in

radians

tan
Tangent of argument in

radians

exp Exponential

log Natural logarithm

log10
Common (base 10)

logarithm

sqrt Square root

Table 4: AUTOMATLAB miscellaneous functions

Operator /

Process

Name

Description OPD

abs
Absolute value

factor

Returns a row

vector

containing the

prime factors

of input.

fft

Returns the

discrete

Fourier

transform

(DFT) of

vector x,

computed with

a fast Fourier

transform

(FFT)

algorithm

isempty

Determine

whether array /

variable is

empty (skips

block of code

if is empty)

rand

Uniformly

distributed

pseudorandom

numbers

size

returns the

sizes of each

dimension of

array

randn Normally distributed pseudorandom numbers

8. OPM COMPUTATIONAL SUBCONTRACTOR

One of the drawbacks of the AUTOMATLAB approach

presented above is that it allows the violation of the OPM

semantics by manipulating the MATLAB code in a way that

http://www.mathworks.com/help/techdoc/ref/exp.html
http://www.mathworks.com/help/techdoc/ref/log.html
http://www.mathworks.com/help/techdoc/ref/log10.html
http://www.mathworks.com/help/techdoc/ref/sqrt.html
http://www.mathworks.com/help/techdoc/ref/abs.html

9

renders the OPM model illegal. This implies that in order to

utilize the AUTOMATLAB approach correctly, one needs to

master the OPM semantics. To overcome this problem, we

have developed the OPM MATLAB Computational

Subcontractor (OPM/CS) as an alternative solution to

AUTOMATLAB for solving the computational simplification
problem.

In the OPM/CS architecture, MATLAB or Simulink act as a

"computational subcontractor" for the OPM model simulation:

Any process in an OPM model can now be in-zoomed to

expose a MATLAB code piece or a Simulink diagram instead

of the usual new self-similar OPD resulting from zooming into

a process. The OPM simulation execution runs normally until

it reaches a process that was in-zoomed by the computational

subcontractor and therefore contains a MATLAB code piece

or a Simulink diagram. At this point, the input to the process –

the existing objects and their states – are sent to the MATLAB

function or to the Simulink diagram, and the sub-simulation
function is called. The outcome of this sub-simulation defines

the outcome of the in-zoomed process, which might include

newly created objects, the state of an object upon exiting the

process, or a value of an attribute, and the OPCAT simulation

continues accordingly.

Figure 7: OPM Model of the OPM Computational Subcontractor-Based

Simulating system. Top: OPD. Bottom: Corresponding OPL paragraph

If the subcontracted process is a commonly used mathematical
function, the user does not need to create it in MATLAB or

Simulink, but rather mark it with the notation <<CS>> (short

for Computational Subcontractor). The in-zoomed process will

then contain the predefined function called from the library

presented in Table 1 through Table 4. In this case, the user

does not need to have any knowledge of MATLAB or

Simulink to use it as computational subcontractors. If the

process is in-zoomed by a user-defined function or diagram,

the process is linked to the appropriate MATLAB function or

Simulink diagram by specifying the folder in which the user-

defined function or diagrams are saved, using the same name

for both the OPM process and the MATLAB function or
Simulink diagram.

Computational Subcontractor-Based Simulating exhibits MATLAB
Subcontracted Models, Pre-Defined Data Bank, Simulink Subcontracted
Models, and OPCAT Simulation.
Computational Subcontractor-Based Simulating consists of Subcontracted
Models Creating, Enhanced Model Simulating, and OPCAT Simulating.
Computational Subcontractor-Based Simulating zooms into Subcontracted
Models Creating, OPCAT Simulating, and Enhanced Model Simulating, as well
as OPCAT Simulation, Simulink Subcontracted Models, Pre-Defined Data
Bank, and MATLAB Subcontracted Models.
Subcontracted Models Creating yields Simulink Subcontracted Models or
MATLAB Subcontracted Models.
OPCAT Simulating requires Original OPM model and OPCAT CASE Tool.
OPCAT Simulating yields OPCAT Simulation.
Enhanced Model Simulating requires OPCAT Simulation, MATLAB
Compatible Compiler, and Pre-Defined Data Bank.
Enhanced Model Simulating requires Simulink Subcontracted Models or
MATLAB Subcontracted Models.
Enhanced Model Simulating yields MATLAB & Simulink-Enhanced OPCAT
Simulation.
User handles Subcontracted Models Creating.

Figure 8: The automatically-generated text (in OPL – Object-Process

Language) that was created by OPCAT from the Object-Process Diagram

(OPD) in Figure 7

In contrast to AUTOMATLAB, the OPM semantics in

OPM/CS cannot be breached, since each called MATLAB

function or Simulink diagram exists only within the scope of a

single in-zoomed process, and it can only affect objects within

that scope. To ensure this, the use of global variables in the

subcontracted functions is not allowed.

OPM/CS contains three parts: the OPM model in OPCAT, The
MATLAB or Simulink models library, and an OPM/CS

Manager. The subcontractor manager supports both MATLAB

and Simulink as alternative subcontractors and the predefined

common functions in Table 1 through Table 4. The OPM/CS

Manager controls the bidirectional transactions between the

OPM and the MATLAB/Simulink environments. An OPD

describing the Architecture of OPM Computational

Subcontractor is presented in Figure 7. Figure 8 presents the

automatically-generated text (in OPL – Object-Process

Language) that was created by OPCAT from the Object-

Process Diagram (OPD) in Figure 7. The OPM/CS manager
runs in the MATLAB environment, and it calls the MATLAB

functions (expressed as m files) or Simulink diagrams

(expressed as mdl files) directly from this environment.

9. RADAR SEARCHING & TRACKING: A CASE STUDY

We present a case study that demonstrated the use of OPM/CS

for a search and tracking radar system. The OPM model of this

system is presented in Figure 9. The Searching process creates a

Detection output, which can be either 0 (no detection) or 1

(positive detection). If detection is achieved, the Tracking

process tracks the Target and creates a Track Output, and when

this process ends, either Detection Details Message or No Detection

Message is created.

10

Figure 9: Radar Searching & Tracking in-zoomed

In the in-zoomed Searching process in Figure 10, we see that it

consist of two subprocesses: Transmitting and Receiving &

Processing. Transmitting requires the radar characteristics

Transmitting Power [W], Gain TX [dB], and Wavelength [m].

Transmitting creates the RF signal. The process Receiving &

Processing, which requires the Target attributes and some of the

Radar attributes, consumes the RF signal.

Figure 10: SD1.1 - Searching in-zoomed

When running the OPM simulation of the model shown in

Figure 9, Searching creates detection in either the 1 state or the 0

state randomly, regardless of the Target and Radar attribute

values.

The received power of a target is described by the Radar

Equation 1 (Scolnik, 1980).

  LR

GGP
P rtt

r 43

2

4




(1)

In most cases, the Radar Equation is written in log 10 form

( X10log10 ), taking the following form in Equation 2.

LRGGPP rttr  4432  (2)

Here, Pr is the received power, Pt is the transmitted power, Gt

is the transmitter gain, Gr is the receiver gain, σ is the target

radar cross-section, λ is the radar wavelength, R is the target

distance, and L represents radar losses. If the ratio (or

difference, in the log form) between Pr and the level of noise is

above the signal-to-noise threshold, the target is detected.

An OPM model of the Radar Equation implementation for

Searching is complex and unintuitive due to OPM lack of
ability to represent formulae in a simple form. To visualize

this unnecessarily complicated view of the OPM model when

it comes to relatively simple equations, in Error!

Reference source not found. we show the OPM model

of Searching that implements the Radar Equation, where the

definitions for addition, subtraction, multiplication, common

log and the control structure ‘if then…else’ are taken from

Table 1 through Table 4.

Evidently, this OPM model for representing the relatively

simple radar equation is complicated. The in-zoomed content

of Searching can be replaced by the simpler MATLAB code in

Figure 11 or the corresponding Simulink diagram in Figure 12,

although each of them is also more complicated than the Radar
Equation (1), which is probably the most compact expression,

as it uses the mathematical conventions of multiplication (lack

of any symbol), exponentiation (as superscript), parentheses,

etc.

Figure 11: MATLAB code of the simple Radar Detection condition

11

Figure 12: A Simulink diagram of the Radar Detection condition

Applying OPM/CS, the OPCAT simulation arrives at the

Searching process. Then, the MATLAB code (Figure 11) or the

Simulink diagram (Figure 12) is called. It reads the data files

containing the inputs to the diagram, calculates the outcome,

and returns the appropriate output using the data files.

A demonstration of a successful detection, based on

computing Pr in the Radar Equation, is shown in Figure 14

through Figure 17. An important aspect of using MATLAB or

Simulink as a subcontractor for the OPM model is the ability

to change the level of complexity of the Simulink model

without changing the OPM model itself. For example, we can

replace the simple Simulink model in Figure 12 with the more

complex model presented in Figure 18. This more elaborate

model can be used instead of the model in Figure 12 without

altering the OPM model whatsoever, providing for further

simulation of the radar systems according to the designers'

needs.

Figure 13: OPM model of Searching that implements the Radar Equation demonstrating that at the computational level mathematical expressions and MATLAB is

preferable

12

Figure 14: The MATLAB-enhanced OPCAT simulation: The OPCAT

simulation calls the subcontracted Searching MATLAB function.

Figure 15: A call to the subcontracted Searching function with its input values

as an example of a message sent from OPCAT to MATLAB

Figure 16: The outcome message of the subcontracted function Searching with

Detection value set to 1 returned from MATLAB to OPCAT

Figure 17: The outcome of the subcontracted Searching function in MATLAB

with Detection value set to 1, causing the OPCAT simulation to proceed

accordingly.

Figure 18: A Simulink diagram of the full Radar simulation, Radar modulated

pulse signal (left scope) and SNR graph with positive detection (right scope)

10. EVALUATION OF AUTOMATLAB WITH HUMAN

SUBJECTS

An evaluation of the AUTOMATLAB approach was

conducted with human subjects in order to more thoroughly

assess its benefits and outcomes. The evaluation took place

during the spring semester 2013, at the Technion, Israel

Institute of Technology. A total of 12 undergraduate students

from the Faculty of Industrial Engineering and Management
who participated in the course Specification and Analysis of

Information Systems took part in the evaluation at the end of

the semester.

All students (N=12) had knowledge of OPM, as it was taught

throughout the semester as part of the course. Some students

(N1=5) had prior knowledge of MATLAB from previous

courses or work, while the rest (N2=7) had none or very little

knowledge of MATLAB. The students with prior knowledge

of MATLAB were the experimental group, while the rest

served as the control group. In order to extend our sample,

13

each student preformed the evaluation for two different data

sets, achieving a total of N
~

=24, with
1N

~
=10 and

2N
~ =14.

The evaluation was based on an OPM model of a Web Based

Grocery Shopping system, shown in Figure 19 through Figure
22, which had been created by students in the course. This

model, rather than a more technically-oriented model as the

radar Equation, was selected in order for students to focus on

the modeling of a familiar example from their daily lives and

not be distracted by the need to learn new material in physics

or engineering. The students who were not part of the group

that had created the model were briefed about the system and

its model.

Figure 19: Top-level, system diagram (SD) of the Web Based Grocery Shopping

system

Figure 20: SD1 - Web Based Grocery Shopping in-zoomed

The students were requested to analyze some potential factors

of a Web Based Grocery Shopping system called iBuy, which is

specified in the Scope & Requirements Document, and to use

the OPM model they had created, shown in Figure 19 through

Figure 22. The evaluation focused on the Shopping List Creating
process, which is shown in Figure 22: SD1.3 - Shopping List

Creating in-zoomed. There were two grocery shopping

datasets with different difficulty levels that students were

asked to handle: one of the Jerusalem shop and the other—of

the Tel-Aviv shop.

Figure 21: View 2 - User unfolded

14

Figure 22: SD1.3 - Shopping List Creating in-zoomed

Our research hypothesis was that using OPM with the

AUTOMATLAB approach would benefit the user in the
following ways:

1. Users of AUTOMATLAB will gain deeper, more accurate

understanding of the system’s computational and

quantitative aspects than users who used OPM without

AUTOMATLAB.

2. AUTOMATLAB users will understand the system’s

computational and quantitative aspects quicker than users

who used OPM without AUTOMATLAB.

3. AUTOMATLAB users will be more confident in their

understanding of the system’s computational and

quantitative aspects than users who used OPM without

AUTOMATLAB.
4. AUTOMATLAB users will understand the system’s

computational and quantitative aspects better, with less

difficulty, than who used OPM without AUTOMATLAB.

The different factors we analyzed referred mainly to the

Shopping List Creating process in the OPM model shown in

Figure 21. The students were requested to evaluate the answer

to four different questions, and answer a few questions

regarding their evaluation, confidence, difficulty, and the time

it took them to answer. The analysis was performed on two

data sets with different levels of difficulty. The first data set
was simpler in the sense that there were fewer customers, and

the behavioral model was simpler. For example, in the simple

data set, a customer starting as a regular user would either

purchase his/her entire shopping list as a regular user, or pay a

fee and become a premium user, whichever is cheaper for that

purchase. In the advanced data set, when a regular buyer has

the option to pay less if she or he becomes a premium user

(buyer), the buyer's behavior is stochastic: s/he might choose

to stay a regular user, pay a fee and become a premium user,

or cancel the entire purchase.
The students were asked to answer the following questions:
1. What type of customer is more profitable for the iBuy owner:

Regular user or Premium user?
2. What are the three most profitable products for the iBuy owner?
3. What is the premium user monthly fee that will maximize the

profit for the iBuy owner?
4. What is the premium user monthly fee that will make the amount

of items purchased by regular users and premium users equal?

For each answer, the students were then asked to explain how

they had deduced their answer, how accurate they thought

their answer was and why, how difficult it was to complete

their answer and why, and how long it took them to complete

their answer. Since our sample was not sufficient for accurate

statistical analysis, we combined qualitative analysis of the

evaluation with the statistical analysis.

The students were given data sets containing a list of items

sold by the Web Based Grocery Shopping system, monthly fee for
premium users, a list of customers, and potential shopping lists

for customers.

Identical questionnaires and data sets were given to both the

experimental and control groups. The questionnaire included

four main questions, such as "What are the three most

profitable products for the iBuy owner?" Each one of the four

questions was graded according to its correctness

(correct/incorrect). In addition, students were asked to rate on

a 1-5 Likert scale how accurate their answer is and how

difficult for them was it to obtain this answer. Finally, students

were asked to report about the time it took them to answer this

question.
The control group was allowed to answer the questions using

whatever tool they desire. The experimental group students

received the automatically-generated MATLAB code from the

AUTOMATLAB approach shown in Appendix B, Figure 23

15

through Figure 29, and were instructed to use it in order to

answer the four questions. The MATLAB code was intended

to help them gain better understanding of the model and to

serve as a basis for a simulation of the system, including

computational and stochastic aspects required to answer the

four questions.
The students from the experimental group who received the

AUTOMATLAB generated MATLAB code submitted their

code when answering the questionnaire. An example of the

Shopping List Creating enhanced code is presented in Appendix

B, Figure 29.

A total of 96 answers from 24 questionnaires were graded

according to their accuracy, and student explanations

regarding difficulty, confidence in the outcome accuracy, and
the time required to complete the assignment were analyzed

qualitatively. The number of questionnaires submitted from

each group is presented in Table 5.

Table 5: Amount of questionnaires submitted from each group

 Experimental Group Control Group

 Jerusalem

Data set

Tel-Aviv

Data set

Jerusalem

Data set

Tel-Aviv

Data set

Amount of

questionnaires: 5 5 7 7

We analyze the data from the evaluation for the three

variables: group (experimental or control), level (‘Jerusalem’ –

level-1 – the easy data set, or ‘Tel-Aviv’ – level-2 – the
difficult data set) and question (Q1, Q2, Q2, or Q4) using

multi-way repeated measures tests with two within-subjects

independent variables (level, question) and between-subjects

independent variable (group). The dependent variable, namely

grade, time, confidence in answer accuracy, and difficulty was

changed in each hypothesis test. Independent t-test and one-

way ANOVA with a Bonferroni correction served as our post-

hoc tests, where it was needed.

First hypothesis analysis

Our first hypothesis was that users of AUTOMATLAB will
gain deeper, more accurate understanding of the system’s

computational and quantitative aspects than users who used

OPM without AUTOMATLAB. In line with this hypothesis,

we found a significant main effect for group (F(1, 10) = 5.23,

p < .05, η2 = .34), indicating that students who used

 AUTOMATLAB scored higher (M = .71, SD = .05) than

students who answered the questions without

using AUTOMATLAB (M = .55, SD = .05). Likewise, there

was a significant main effect for level (F(1,10) = 5.99, p < .05,

η2 = .37), which means that the level-1 dataset yielded higher

grades (M = .72 , SD = .06) than level-2 (M = .54 , SD = .04).
Finally, we found a significant main effect for question (F(3,

30) = 6.15, p < .01, η2 = .38). Post-hoc analysis

using Bonferroni correction revealed that Q4's grades (M =

.29, SD = .10) were significantly lower than the grades of

Q1 (M = .81, SD = .07) and Q2 (M = .82, SD = .05). The

grades of Q3 (M = .60, SD = .12) did not differ significantly

from the rest of the questions. Significant interaction was

found between group and level (F(1,10) = 4.88, p < .05, η2 =

.33). In subsequent tests we found that this difference is due to

the interaction between group and level-2 (F(1,10) = 16.77, p

< .01, η2 = .62). The difference between the experimental and
control groups is mainly due to Q2 (t(10) = 3.04, p <.01)) and

Q3 (t(10) = 1.86, p <.05)), indicating that the grades of the

experimental group on Q2 (M = 1, SD = 0) were higher than

those of the control group (M = .55, SD = .39), and that the

grades of the experimental group in Q3 (M = .80, SD = .45)

were higher than the grades of the control group (M = .29, SD

= .49).

Second hypothesis analysis

Our second hypothesis was that AUTOMATLAB users will

understand the system’s computational and quantitative
aspects quicker than users who used OPM without

AUTOMATLAB.

The main effect for group (F(1,10) = .39, P > .05, η2 = .04)

was not significant, indicating that the experimental (M = 2.02

, SD = .53) and control groups (M = 1.59 , SD = .45) did not

significantly differ in the time required to solve the questions.

According to the hypothesis there was a significant main

effect for question (F(3, 30) = 11.87, p < .001, η2 = .54). Post-

hoc analysis using Bonferroni correction revealed that the time

needed to achieve an answer for Q1 (M = 3.4, SD = .56) was

significantly longer than the time needed for Q2 (M = 1.43,
SD = .37), Q3 (M = 1.12, SD = .39) and Q4 (M = 1.29, SD =

.42).

Third hypothesis analysis

Our third hypothesis was that AUTOMATLAB users will be

more confident in their understanding of the system’s

computational and quantitative aspects than users who used

OPM without AUTOMATLAB. The main effect for group

(F(1,10) = .62, P > .05, η2 = .06) was not significant, indicating

that the experimental and control groups did not significantly

differ in the confidence they had in the accuracy of their
results. These test results indicate in addition that there was a

significant main effect for question (F(3, 30) = 7.14, p = .001,

η2 = .42). Post-hoc analysis using Bonferroni correction

revealed that confidence in answers for Q1 (M = 4.41, SD =

.15) were significantly higher than the grades for Q3 (M =

3.36, SD = .22) and Q4 (M = 3.70, SD = .23). Confidence in

answers of Q2 (M = 3.96, SD = .18) did not differ

significantly from the rest of the questions.

Fourth hypothesis analysis

Our fourth hypothesis was that AUTOMATLAB users will

understand the system’s computational and quantitative

aspects better, with less difficulty, than who used OPM

without AUTOMATLAB. The multi-way repeated measures

16

test revealed that the main effect for group (F(1, 10) = 4.00, p

= .07, η2 = .29) has borderline significance. Since our

hypothesis is one-tailed, we can deduct a significant difference

between the groups, indicating that students who did not use

AUTOMATLAB indicated a higher level of difficulty (M =

3.27, SD = .25) than students who used AUTOMATLAB (M
= 2.5, SD = .29), suggesting that the experimental group

subjectively experienced a lower level of difficulty than the

control group when solving the questions.

The main effect for level (F(1,10) = .59, P > .05, η2 = .06) was

not significant, but significant interaction was found between

group and level (F(1,10) = 14.49, p < .005, η2 = .59). Follow-

up tests revealed significant interaction between group and

level-2 (t(10) = 3.09, p ≤.01) resulting from difference

between groups for Q2 in level-2 (t(10) = 2.71, p < .05) and

difference for Q4 in level-2 (t(10) = 2.72, p < .05) , as can be

seen in Table 6.

Table 6: Results of Continued tests for interaction between group and level

Experimental

group
Control group

 question mean std mean std t(10)

level-1

Q1 4.20 1.30 3.00 .82 1.972
a

Q2 2.80 .84 3.29 1.11 .82

Q3 2.20 1.10 2.43 1.27 .32

Q4 2.20 .84 3.43 .53 3.12
*

Total 11.40 3.29 12.14 2.12 .48

level-2

Q1 2.60 1.34 3.71 1.11 1.57

Q2 1.40 .55 3.14 1.35 2.71
*

Q3 2.60 1.82 3.57 .98 1.21

Q4 2.00 .71 3.57 1.13 2.72
*

Total 8.60 3.78 14.0 2.31 3.09
*

*
 P < .05

a
 Borderline significance was found, for apposite of hypothesis.

Our first hypothesis was that users of AUTOMATLAB will

gain deeper, more accurate understanding of the system’s

computational and quantitative aspects than users who used

OPM without AUTOMATLAB. The results indeed show that

the experimental group achieved higher accuracy levels than

the control group in our experiment. The experimental group

increase in accuracy was more significant for the more

complicated data set (Q2 and Q3), suggesting that the benefits

of AUTOMATLAB are more prominent for more complex

situations and needs.

Analysis of the explanations provided by the students when

submitting their answers suggests that the students in the

experimental group attempted to create a more accurate

simulation of the system behavior. One of the subjects noted:

“The calculation is performed in the MATLAB code… For

every customer I calculate the profit… Dealing with a

customer is one iteration of the function

‘ShopingListCreating’… The simulation results show…”

Students in the control group used other method (mainly

simple Excel spreadsheets or pen-and-paper calculations),

ignoring seemingly unnecessary aspects: “Didn't compare one

by one…”, “Response was relatively difficult since lots of

considerations came in and I needed to make assumptions”.

This is assumed to be the cause for the difference in accuracy

between their answers.

Our second hypothesis was that AUTOMATLAB users will

understand the system’s computational and quantitative

aspects quicker than users who used OPM without

AUTOMATLAB. The results did not show a conclusive

difference between the experimental and control groups. We

have seen that the time needed to answer Q1 was significantly

longer than the time needed for Q2 through Q4. For the

experimental group, we assume that the longer time required

to answer the first question is due to the need to enhance the

automatically generated MATLAB code when solving the first

question, and this code was later used to solve the rest of the

questions, as one student commented: “Calculations were very
similar to previous questions…”, “The code was already

prepared – only one function needed to be changed”.

Our third hypothesis was that AUTOMATLAB users will be

more confident in their understanding of the system’s

computational and quantitative aspects than users who used

OPM without AUTOMATLAB. The results received for this

hypothesis were not conclusive. No clear differences were
found for the different groups or datasets. Since the

experimental group students had limited level of experience

with MATLAB, perhaps some of their lack of confidence was

due to the tool being used and not due to lack of understanding

of the model. This may be a subject of a future research.

The fourth hypothesis was that AUTOMATLAB users will

understand the system’s computational and quantitative

aspects better and with less difficulty than those who used

OPM without AUTOMATLAB. The results indeed show that

the students who did not use AUTOMATLAB rated their

difficulty as higher.

Analysis of the students' explanations suggests that the
difficulty in the control group is associated mainly with the

challenge in representing the customer behavior model in

simple tools like Excel or handwritten calculations: “It took a

long time to get the calculations since I didn't know the

appropriate action in Excel.”, “I had to go over every buyer

and every product which is a lot of intersections!!!”.

Explanations of experimental group students for Q2-Q4

repeatedly mentioned using the previously created code as a

reason for low difficulty, supporting our hypothesis: “No

changes were needed from previous…”, “From the way I

implemented the solution of the answer in the first part… no
more changes had to be made.”

From both the statistical and qualitative analyses of the

evaluation we have seen that the AUTOMATLAB method

does indeed benefit the user in several ways. AUTOMATLAB

may improve the accuracy of understanding a system’s

quantitative aspects and decrease the difficulty of reaching

such understanding. Results regarding the time needed to

understand the quantitative aspects and user’s confidence

regarding her or his understanding are not significant,

probably due to the lack of participants' experience with the

17

MATLAB environment. This aspect should be tested with

more proficient participants in a future research.

11. CONCLUSION AND FUTURE RESEARCH

This research has tackled the problem of merging

computational aspects and capabilities into conceptual models

of systems, which are primarily qualitative in nature. Due to

the level of abstraction of conceptual models, their

computational capabilities are weak or missing altogether.

Some modeling and simulation methods that do provide the

computational aspects generally lack the high level of
abstraction required from a conceptual modeling language. For

example, Arena, a widely used discrete simulation software

tool (Kelton et al., 2014) discussed above, or ModelCenter,

which integrates simulation tools from various vendors, can be

used for this purpose, making it unnecessary to merge the

computational aspects into the system. However, the

abstraction power of OPM and its complexity management

mechanisms make it highly suitable for early-stage conceptual

modeling, so incorporating MATLAB's computational

capabilities into OPM for seamless transition from conceptual

to detailed design is highly desirable.
The computational simplification problem defined in this work

relates to the difficulty of incorporating quantitative aspects

into conceptual models, which focus primarily on key

qualitative aspects of the system. We presented two possible

solutions for this problem, based on expanding OPM to

combine MATLAB and Simulink. In the first,

AUTOMATLAB approach, we solve the computational

simplification problem by adding a parallel MATLAB-based

representation of the entire OPM model, which can be

augmented with any desired computational aspects in the

MATLAB representation. A major advantage of the

AUTOMATLAB approach is that the OPM model becomes an
integral part of the augmented MATLAB model, enabling it to

evolve and serve for increasingly more quantitative-oriented

simulations in downstream lifecycle stages of the system.

In the second, OPM/CS approach, we aim to solve the

computational simplification problem by augmenting the

capabilities of the OPM in-zooming mechanism. The

additional capability provides for the content of an in-zoomed

process to be replaced by a MATLAB function or a Simulink

model containing the necessary computational aspects. The

main advantages of the OPM/CS approach are (1) the

simplicity of the enhancement that uses an intuitive extension
of the OPM in-zooming mechanism, and (2) the preservation

of the original OPM conceptual model with its semantics.

The two approaches were demonstrated via examples and case

studies. An evaluation of the AUTOMATLAB approach was

conducted with human subjects, showing benefits of this

approach in terms of better system understanding. Results

regarding user confidence in system understanding and time

required to achieve such understanding were not conclusive,

perhaps due to the small sample. The statistical results were

supported by qualitative content analysis of the subjects'

responses to questions.

Both approaches have been designed and implemented with

forward compatibility to the future online OPM CASE tool,

and partial compatibility to the development version of the

current OPCAT. In a future OPM modeling tool, a large scale

test and comparison of AUTOMATLAB and OPM/CS should

be performed.

REFERENCES

[1] Dori, D. Object-Process Methodology – A Holistic Systems
Paradigm, Springer Verlag, Berlin, Heidelberg, New York,
2002.

[2] Dori, D. Model-Based Systems Engineering with OPM and
SysML. Springer, New York, 2015 (in press).

[3] Somekh, J., Haimovich, G., Guterman, A., Dori, D., and
Choder, M. Conceptual Modeling of mRNA Decay Provokes
New Hypotheses. PLOS ONE, Sept. 2014. PLoS ONE 9(9):

e107085. doi:10.1371/journal.pone.0107085.
[4] Dori, D. Words from Pictures for Dual Channel Processing: A

Bimodal Graphics-Text Representation of Complex Systems.
Communications of the ACM, 51(5), pp. 47-52, 2008.

[5] Dori, D., Linchevski, C., and Manor, R. OPCAT – A Software
Environment for Object-Process Methodology Based

Conceptual Modeling of Complex Systems. Proc. 1st
International Conference on Modeling and Management of
Engineering Processes, University of Cambridge, Cambridge,
UK, Heisig, P., Clarkson, J., and Vajna, S. (Eds.), pp. 147-151,
July 19-20, 2010.

[6] Houcque, D. Introduction to MATLAB for Engineering
Students. Northwestern University, Version 1.2, August 2005.

[7] Mattsson, S., Elmqvist, H. Modelica – An International Effort
to Design the Next Generation Modeling Language. 1997.

[8] Harel, D., Marelly, R. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-engine, Springer
Verlag, 2003.

[9] Schultz, M., Zerbe,V., and Marwedel, S. Using the Object
Process Methodology to Build Simulation Models, Proc.
3rdInternational Conference on Model-Based Systems
Engineering, Fairfax, VA, USA, 2010.

[10] Mathworks. MATLAB & SYMULINK. Version 8.6, 2015.
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf

[11] Kelton D.W., Sadowski R.P., and Sadowski D.A. Simulation
with Arena, 6th Edition. McGraw-Hill Professional, 2014.

[12] Gilat, T. A Framework for Simulation of Discrete Events
Systems Based on the Object-Process Methodology, Technion,
PhD thesis, 2002.

[13] Weilkiens, T. Systems Engineering with SysML/UML:
Modeling, Analysis, Design, 2007.

[14] Operational Semantics for OPM, Dov Dori, Ofer Strichman,
Valeria Perelman. March 2011, DRAFT.

[15] MathWorks Documentation Center MATLAB Functions, July
2011 http://www.mathworks.com/help/releases/R2009b/helpdesk.html

[16] OMG Unified Modeling Language (OMG UML)
Infrastructure, Version 2.4.1, Object Management Group,
August 2011.

[17] OMG Systems Modeling Language (OMG SysML), Version
1.3, Object Management Group, June 2012.

[18] B.P. Zeigler. Theory of Modeling and Simulation. Wiley, New
York. 1976

[19] R. Davies, P. Roderick and J. Raftery. The Evaluation of
Disease Prevention and Treatment using Simulation Models.
European Journal of Operational Research, 150, 53-66. 2003.

http://www.phoenix-int.com/modelcenter/integrate.php
http://www.amazon.com/gp/product/3540654712/sr=8-1/qid=1146053424/ref=sr_1_1/104-2484506-3323967?%5Fencoding=UTF8
http://www.amazon.com/gp/product/3540654712/sr=8-1/qid=1146053424/ref=sr_1_1/104-2484506-3323967?%5Fencoding=UTF8
http://www.amazon.com/gp/product/3540654712/sr=8-1/qid=1146053424/ref=sr_1_1/104-2484506-3323967?%5Fencoding=UTF8
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0107085
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0107085
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/releases/R2009b/helpdesk.html
http://www.omg.org/spec/UML/
http://www.omgsysml.org/

18

[20] R. Sinha, V.C. Liang, C.J.J. Paredis, and P.K. Khosla.
Modeling and Simulation Methods for Design of Engineering
Systems. Journal of Computing and Information Science in
Engineering. Vol. 1, pp. 84-91, 2001.

[21] S. Robinson. Conceptual Modeling for Simulation part I:

Definition and Requirements. Journal of the Operational
Research Society, Vol. 59, No. 3 (Mar., 2008), pp. 278-290

[22] S. Robinson. Conceptual Modeling for Simulation. Wiley
Encyclopedia of Operations Research and Management
Science, 2010.

[23] A. Maria. Introduction to Modeling and Simulation.
Proceedings of the 29th conference on winter simulation (WSC
'97). 1997.

[24] J. S. Carson, II. Introduction to Modeling and Simulation.
Proceedings of the 36th conference on winter simulation (WSC
'04). 2004.

[25] N. Sharma, and M.K. Gobbert, A comparative evaluation of
MATLAB, Octave, FreeMat, and Scilab for research and
teaching. 2010.

[26] Scolnik, M. Introduction to Radar Systems. New York,
NY:McGraw-Hill, 1980.

[27] Peak, R.S., Fulton, R.E., Nishigaki, I., and Okamoto, N.
Integrating Engineering Design and Analysis Using a Multi-
Representation Approach. Engineering with Computers 14, pp.
93-114, 1998.

[28] Blekhman, A., Dori, D. and Martin, R. Model-Based Standards
Authoring. Proc. 21st INCOSE International Symposium,
Denver, CO, USA, pp. 650-659, June 19-23, 2011.

[29] Wölkl, S., and Shea, K. A computational product model for

conceptual design using SysML. Proceedings of ASME
IDETC/CIE, San Diego, CA, USA, 2009.

[30] Bergsjö, D., Almefelt, L., Dinar, M., and Malmqvist, J.
Customizing Product Data Management for Systems
Engineering in an Informal Lean-Influenced Organization.
Systems Research Forum, 4(1), pp. 101-120, 2010.

19

APPENDIX A – OPM SUMMARY

1. Entities

Name Symbol OPL Definitions

T
h

in
g

s

Object

Process

B is physical.
(shaded rectangle)

C is physical and

environmental.
(shaded dashed

rectangle)

E is physical.
(shaded ellipse)

F is physical and

environmental.

(shaded dashed

ellipse)

An object is a thing

that exists.

A process is a thing

that transforms at

least one object.

Transformation is

object generation or

consumption, or

effect—a change in

the state of an

object.

State

A is s1.

B can be s1 or s2.

C can be s1, s2, or

s3.

s1 is initial.

s3 is final.

A state is situation

an object can be at

or a value it can

assume.

States are always

within the object

that owns them.

A state can be

initial, final, or

both.

2. Structural Links

Allowed Source-

to-Destination

connections

OPL Name Symbol

Object-Object

Process- Process

A consist of B.
Aggregation-

Participation

Object-Object

Object-Process

Process-Object

Process- Process

A exhibits B.
Exhibition-

Characterization

Object-Object

Process- Process

B is an A. (objects)

B is A. (processes)

Generalization-

Specialization

Object-Object

Process- Process

B is an instance of A.
Classification-

Instantiation

Object-Object

Process- Process

According to text

added by user

Tagged

structural links:

Unidirectional

Bidirectional

3. Fundamental Structural Links

Name Symbol OPL Semantics

Aggregation-

Participation

A consists of B

and C.

A is the whole, B

and C are parts.

A consists of B

and C.

Exhibition-

Characterizat

ion

A exhibits B,

as well as C. Object B is an

attribute of A and

process C is its

operation

(method).

A can be an object

or a process.

A exhibits B,

as well as C.

Generalizatio

n-

Specializatio

n

B is an A.

C is an A.
A specializes into

B and C.

A, B, and C can

be either all

objects or all

processes.

B is A.

C is A.

Classification

-Instantiation

B is an

instance of A.

C is an

instance of A.

Object A is the

class, for which B

and C are

instances.

Applicable to

processes too.

4. Tagged Structural Links

Name Symbol OPL

Unidirectional &

bidirectional

tagged structural

links

A relates to B.

(for unidirectional)

A and C are related.

(for bidirectional)

20

5. Procedural Enabling Links

Name Symbol
OPL

Semantics

Agent Link

A handles

B.

Denotes that object A

is a human operator

who triggers process

B.

Instrument

Link

B requires

A.

"Wait until" semantics:

Process B cannot

happen if object A

does not exist.

State-

Specified

Instrument

Link

B requires

s1 A.

"Wait until" semantics:

Process B cannot

happen if object A is

not at state s1.

6. Procedural Transforming Links

Name Symbol
OPL

Semantics

Consumption

Link

B consumes A.

Process B consumes

Object A.

State-Specified

Consumption

Link

B consumes s1

A.

Process B consumes

Object A when it is at

State s1.

Result Link

B yields A.

Process B creates

Object A.

State-Specified

Result Link

B yields s1 A.

Process B creates

Object A at State s1.

Effect Link

B affects A.

Process B changes the

state of Object A; the

details of the effect

may be added at a

lower level.

State-Specified

Effect Link

(Input-Output

Links Pair)

B changes A

from s1 to s2.

Process B changes the

state of Object A from

State s1 to State s2.

7. Procedural Links: Control Links

Name Symbol OPL
Semantics

Instrument

Event Link

A triggers B.

B requires A.

Generation of object

A is an event that

triggers process B. B

will start executing if

its precondition is

met. Since A is

instrument it will not

be affected by B.

State-

Specified

Instrument

Event Link

A triggers B.

when it enters

s1.

B requires s1

A.

Entering state s1 of

object A is an event

that triggers process

B. B will start

executing if its

precondition is met.

Since A is

instrument it will not

be affected by B.

Consumption

Event Link

A triggers B.

B consumes

A.

Generation of object

A is an event that

triggers process B. B

will start executing if

its precondition is

met, and if so it will

consume A.

State-

Specified

Consumption

Event Link

A triggers B

when it enters

s2.

B consumes s2

A.

Entering state s2 of

A is an event that

triggers process B. If

B is triggered, it will

consume A. B will

start executing if its

precondition is met,

and if so it will

consume A.

Condition

Link

B occurs if A

exists.

Existence of object

A is a condition for

the execution of B. If

A does not exist,

then B is skipped and

regular system flow

continues.

State-

Specified

Condition

Link

B occurs if A

is s1.

Existence of object

A at state s2 is a

condition for the

execution of B. If A

is not in s2, then B is

skipped and regular

system flow

continues.

Invocation

Link

B invokes C.

Execution

termination of

process B is an event

that triggers process

C. B yields a

temporary object that

is immediately

consumed by C and

therefore not be

shown explicitly in

the model.

Exception

Link

A triggers B

when it lasts

more than 4

seconds.

Process A has to be

assigned with

maximal acceptable

time duration, which,

if exceeded, triggers

process B.

21

Appendix B. MATLAB code generated automatically from the OPM processes of the iBuy System

Figure 23: MATLAB code generated from the process Shopping List Creating

Figure 24: MATLAB code generated from the process Item Choosing

22

Figure 25: MATLAB code generated from the process High Price Generating

Figure 26: MATLAB code generated from the process Low Price Generating

Figure 27: MATLAB code generated from the process Shopping Cost Updating

Figure 28: MATLAB code generated from the process Product Updating

23

Figure 29: Shopping List Creating enhanced code from AUTOMATLAB evaluation

