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Abstract This work analyzes the initial value problem in ordinary differential
equations with a parametric lexicographic linear program (LP) embedded. The
LP is said to be embedded since the dynamics depend on the solution of the LP,
which is in turn parameterized by the dynamic states. This problem formulation
finds application in dynamic flux balance analysis, which serves as a modeling
framework for industrial fermentation reactions. It is shown that the problem
formulation can be intractable numerically, which arises from the fact that the
LP induces an effective domain that may not be open. A numerical method is
developed which reformulates the system so that it is defined on an open set. The
result is a system of semi-explicit index-one differential algebraic equations, which
can be solved with efficient and accurate methods. It is shown that this method
addresses many of the issues stemming from the original problem’s intractability.
The application of the method to examples of industrial fermentation processes
demonstrates its effectiveness and efficiency.

Keywords ordinary differential equations · linear programs · lexicographic
optimization · dynamic flux balance analysis
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1 Introduction

The focus of this work is the initial value problem (IVP) in ordinary differential
equations (ODEs) with a parametric lexicographic linear program (LP) embedded.
The LP is said to be “embedded” because the vector field depends on the solution
of the lexicographic LP, which is in turn parametrized by the dynamic states. See
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§2 for a formal problem statement. The consideration of a lexicographic LP affords
a lot of modeling flexibility while simultaneously enforcing a well-defined problem.
This work focuses on the situations in which this problem can be numerically
intractable and when this intractability can be difficult to detect a priori. The
main contribution of this work is to develop a numerical method for the solution
of this problem which is accurate, efficient, and robust despite these difficulties.

The situations of interest include applications to the modeling of industrial fer-
mentation processes. This modeling framework is known as dynamic flux balance
analysis (DFBA) [14,16,18]. In its basic form, differential equations describe the
evolution of the concentrations of biomass and various metabolites of interest, such
as glucose or ethanol. These equations depend on the metabolism of the microbial
population, which is modeled by a parametric LP. The microbes’ growth rate and
uptake of resources are taken from the solution set of this LP.

One issue is that the LP may not have a singleton solution set. This means
that quantities that are needed to define the dynamics of the overall system are
not uniquely defined. This may lead some modelers to treat the resulting dynamic
model as a differential inclusion instead. However, the ultimate goal of most re-
search in DFBA and the motivation of this work is to obtain a numerical approxi-
mation of the solution of the dynamic problem. The idea often followed in related
problems is to simulate a specifically chosen measurable selection [7,13,36]. The
lexicographic LP provides a way to do exactly this by allowing the modeler to
minimize or maximize various quantities in a hierarchical (or lexicographic) order
over the solution set of the base LP model of the cellular metabolism. By minimiz-
ing or maximizing these quantities, a unique value for each is obtained. In essence,
a specifc measurable selection is chosen, and the proposed method can calculate
this very efficiently. The result is that the method reduces the ambiguity of the
simulation results.

Another difficulty in simulating a dynamic system with an LP embedded relates
to the fact that the embedded LP can be infeasible, which could induce a closed
domain of definition for the dynamic system (referred to as the “domain issue”).
For typical numerical integration methods for IVPs in ODEs, this is a serious
issue. Certain computations that are performed by the integration method, such
as predictor steps, corrector iterations, or the calculation of Jacobian information
by finite differences, require the evaluation of the dynamics at states that are near
the current computed solution. When the computed solution is near the boundary
of this domain of definition, these states might not be in this domain, and the
result is that the numerical integrator cannot obtain the necessary information
and may fail, or produce incorrect results.

Consequently, our attention goes to hybrid systems theory, where different
“modes” are defined on possibly closed domains [4,12]. Typically the dynamics in
those modes are trivially extended outside the domain; as in [4,12], for instance,
the definition of the dynamics on an open set is given as part of the problem
statement. The challenge here is defining such an extension. Thus parametric linear
programming results become important [11]. This subject is concerned with the
computation of the set of values that the right-hand side of the LP constraints
can take and still yield a nonempty feasible set. Using results from this literature,
an appropriate extension of the domain of definition of the right-hand side of the
ODEs is defined. Conceptually this is similar to some parametric programming
algorithms, such as those in [27].
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Inspired by these results, a method is developed which redefines the system
locally as index-one differential-algebraic equations (DAEs) with an open domain.
The contribution of this work is the application of the parametric LP results and
hybrid systems theory to the problem of ODEs with an LP embedded; this results
in a powerful and implementable numerical method which is more flexible, efficient,
and accurate than previous methods. Mature methods for the solution of DAEs can
be used (adaptive time-stepping and error control can be used, corrector iterations
defined, Jacobians are easy to obtain analytically or by finite differences). Further,
the consideration of lexicographic LPs is a novel extension. This work’s ability to
handle the lexicographic LP in an efficient manner is a nontrivial development.

DFBA is considered in [14–16,21,33], and so these papers deal with a problem
similar to the one considered here. The work in [14–16] deals with experimental val-
idation of these models, but does not consider specific numerical issues. Meanwhile,
[33] applies a differential variational inequality (DVI) formulation, and solves it
with a uniform discretization in time, similarly to some time-stepping methods.
This approach involves the solution of a large optimization problem (a variational
inequality or mixed complementarity problem) to determine the solution trajectory
all at once [1,30], and so it is very different from numerical integration methods
such as the method proposed. Further, it will be seen (see §6) that ODEs with
LPs embedded can be extremely stiff, which motivates the proposed developments
and the ability to use numerical integration methods with adaptive time steps. The
work in [21] reformulates the problem as a DAE system by replacing the embedded
LP with its KKT conditions. Because of the potential for a nonunique solution set,
the result is that the reformulated DAE is high-index. The subsequent need to use
specialized solvers for such systems also motivates the current developments, in
which an index-one DAE is obtained. As mentioned, more established numerical
integration methods can be used. Finally, the aforementioned references have not
explored the domain issue as it relates to DFBA, which is a significant source of
numerical intractability of the ODEs with LP embedded problem. The use of a
lexicographic LP distinguishes this work as well.

The rest of this work is organized as follows. Section 2 introduces notation and
necessary concepts and formally states the problem. Section 3 provides motivating
discussion and an example which highlights some of the difficulties inherent in the
problem formulation. Section 4 considers existence and uniqueness results for the
solutions of the ODE. In the context of this work, this serves as more motivation
for the numerical developments. Section 5 represents the main contribution of this
work, and states the proposed algorithm for solving the ODE with LP embedded
problem, which includes a specific method for solving the lexicographic LP. Section
6 applies the algorithm to models of industrial fermentation processes using DFBA.

Finally, some general notation is introduced; notation specific to a section is
introduced at the beginning of that section. The transposes of a vector v and
matrix M are denoted vT and MT, respectively. The jth component of a vector
v is vj and the jth column of a matrix M is mj . A vector of zeros and a vector
of ones whose dimension will be implied from context will be denoted by 0 and 1,
respectively. In equalities between vectors hold componentwise. Some statements
will hold at almost every t ∈ I (i.e. except on a subset of Lebesgue measure zero),
which will be abbreviated a.e. t ∈ I.
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2 Problem statement and preliminaries

The formal problem statement is as follows. Let Dt ⊂ R, Dx ⊂ R
nx and Dq ⊂ R

nq

be nonempty open sets. Let f : Dt × Dx × Dq → R
nx , b : Dt × Dx → R

m, A ∈
R

m×nv , and ci ∈ R
nv for i ∈ {1, . . . , nq} be given. First, let R = R∪{−∞}∪{+∞}.

Let q̂ : R
m → R

nq be such that

q̂1(d) = inf
v∈Rnv

cT
1 v

s.t. Av = d, (1)

v ≥ 0,

and for i ∈ {2, . . . , nq},

q̂i(d) = inf
v∈Rnv

cT
i v

s.t.




A

cT
1

...

cT
i−1


v =




d
q̂1(d)

...
q̂i−1(d)


 , (2)

v ≥ 0.

Subsequently, define

F ≡ {d ∈ R
m : −∞ < q̂i(d) < +∞, ∀i ∈ {1, . . . , nq}} , (3)

K ≡ b−1(F ).

Note that K ⊂ Dt × Dx.
The focus of this work is an initial value problem in ODEs: given a t0 ∈ Dt

and x0 ∈ Dx, we seek an interval [t0, tf ] = I ⊂ Dt, and absolutely continuous
function x : I → Dx which satisfy

ẋ(t) = f (t,x(t),q(t,x(t))) , a.e. t ∈ I, x(t0) = x0, (4)

where q : K → R
nq : (t, z) 7→ q̂(b(t, z)). Such an I and x are called a solution of

(4).
Linear program (2) is called the ith-level LP; it is an optimization problem

over the solution set of the (i − 1)th-level LP, where the first-level LP is given by
(1). Together, these LPs are called a lexicographic linear program, using the ter-
minology from [35] (further background on lexicographic optimization is presented
in §5.3). Note that any solution of the nth

q -level LP must also be a solution of the

ith-level LP, i ∈ {1, . . . , nq − 1}.
Proposition 1 establishes an important topological property of F , the domain

of q̂.

Proposition 1 Assume F defined in (3) is nonempty. Then

F = {Av ∈ R
m : v ≥ 0} ,

and thus it is closed.
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Proof Choose any d ∈ F . It follows that q̂1(d) is finite, which implies that the
first-level LP is feasible for d; i.e. Av = d for some v ≥ 0. Thus F ⊂ {Av : v ≥ 0}.

Conversely, since F is nonempty, there exists d∗ ∈ R
m such that q̂i(d

∗) is finite
for each i. Consequently, q̂1(d

∗) = max
{
(d∗)Tw : ATw ≤ c1

}
; i.e. the dual of the

first-level LP is feasible and has a bounded solution. Note that the dual is feasible
for any value of d (its feasible set is invariant). Thus, using duality results such
as those in Table 4.2 of [5], q̂1(d) is finite for all d such that the first-level LP is
feasible (i.e. for any d ∈ {Av : v ≥ 0}).

Next, assume that q̂i−1(d) is finite for any d ∈ {Av : v ≥ 0}. Since q̂i(d
∗) is

finite, a similar argument establishes that q̂i(d) is finite for any d ∈ {Av : v ≥ 0}.
Proceeding by induction, one has that for each i ∈ {1, . . . , nq}, q̂i(d) is finite for
any d ∈ {Av : v ≥ 0}. Thus {Av : v ≥ 0} ⊂ F and, combined with the inclusion
above, equality follows. ⊓⊔

3 Domain issues

This section demonstrates how domain issues are manifested as numerical compli-
cations by applying the “direct” method to a simple instance of (4). To understand
this from a theoretical view, note that any solution of (4) must satisfy (t,x(t)) ∈ K,
a.e. t ∈ I, otherwise q(t,x(t)) is undefined on a set of nonzero measure, and con-
sequently Eqn. (4) does not hold. Consequently, even though Dt ×Dx is nonempty
and open, the effective domain of definition of the system, K, may not be either
of those.

3.1 Direct method

For this concrete example, the direct method refers to solving (4) by using a
standard numerical integrator and calling an LP solver directly from the function
evaluation subroutine to determine the dynamics. This approach can be made
quite efficient, especially as it can rely on established commercial codes for the
numerical integration and LP solution. Unfortunately, it can also be unreliable.
Consider the following example:

ẋ(t) = f (x(t), q(x(t))) =

[
1

x2(t)q(x(t)) − (x2(t))
2 + 2x1(t)

]
,

x(0) = 0,

where q(z) = min
v∈R

v

s.t. z2
1 ≤ v ≤ z2.

The first thing to note is that the LP is feasible only if z ∈ K = {z : z2
1 ≤ z2}.

Although this is a closed set, one can verify that x(t) = (t, t2) is a solution;
x(0) = (0, 0), q(x(t)) = t2, and f (x(t), q(x(t))) = (1, 2t) = ẋ(t). Consider now
what happens when applying an explicit Euler step. Let x̃(t) be the numerical
estimate of the solution at t. Then for h > 0 and x̃(0) = x(0),

x̃(0 + h) = x̃(0) + hf (x̃(0), q(x̃(0)))

= 0 + h(1, 0) = (h, 0).
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One sees that x̃(h) /∈ K. Thus when attempting to evaluate q(x̃(h)) for the next
step, one encounters an infeasible LP, and the numerical method fails.

Although explicit Euler is a very simple method, the explicit Euler step is often
a part of more sophisticated integration methods; the second stage derivative of an
explicit Runge-Kutta method is evaluated after taking an explicit Euler step, and
the initial predictor of many linear multistep predictor-corrector methods is given
by an explicit Euler step [23]. Meanwhile, numerical integration methods which
do not involve an explicit Euler step will often involve an implicit Euler step; this
includes the backwards differentiation formulas (BDF) and semi-implicit Runge-
Kutta methods [23]. For the example above, an implicit method may work, but
there is nothing intrinsic to an implicit method that avoids the domain issue (see
Appendix B for a counterexample). In fact, implicit methods have more oppor-
tunities to fail when simulating ODEs with an LP embedded. Implicit methods
typically must solve nonlinear equations by a fixed-point or Newton iteration.
Since f and thus q must be evaluated at each point produced by the iteration, the
sequence of iterates must be in K, which need not hold in general. Further, obtain-
ing Jacobian information by finite differences provides another point of potential
failure, as the perturbed states may not be in K.

3.2 DVI Time-stepping method

Time-stepping methods refer to a class of numerical methods for solving an initial-
value DVI [1,2,30,40]. The solution set of an LP is equivalent to the solution set
of its KKT conditions, and the KKT conditions are a type of complementarity
problem or variational inequality. Thus ODEs with an LP embedded are a special
case of a DVI, and one could potentially apply a time-stepping method to (4).
However, as the essential step in these methods is the solution of a system of
equations with conditions that are equivalent to the embedded LP having an
optimal solution, they do not differ in a meaningful way from the direct method
previously mentioned. For a concrete example, see Appendix B.

4 Existence of solutions

This section presents some results for the existence and uniqueness of solutions of
(4). The following theorem presents what is essentially an a posteriori check for
existence.

Theorem 1 Suppose q̂E : R
m → R

nq is an extension of q̂ (i.e. q̂E is defined on
all of R

m and q̂E restricted to F equals q̂), b(·, z) is measurable for all z ∈ Dx,
b(t, ·) is continuous for a.e. t ∈ Dt, and there exist an interval IE = [t0, t

E
f ] and

absolutely continuous function x : IE → Dx which are a solution of the IVP

ẋ(t) = f
(
t,x(t), q̂E (b(t,x(t)))

)
, a.e. t ∈ IE , x(t0) = x0. (5)

Letting S(t) = {s ∈ [t0, t] : (s,x(s)) /∈ K}, if (t0,x0) ∈ K and

tf = sup
{
t ∈ IE : λ (S(t)) = 0

}
,
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then I = [t0, tf ] and x restricted to I are a solution of IVP (4). Furthermore, this
is the largest interval on which x is a solution of (4).

Proof Since x is continuous, the composite function bx = b(·,x(·)) : IE → R
m is

measurable (see Lemma 1 in §1 of [10]). By Proposition 1, the complement of F in
R

m, F C , is open, so SE = b−1
x (F C) is measurable. Then one has λ(S(t)) =∫

[t0,t]
χSE (s)ds, where χSE is the indicator function of SE. This implies that

λ(S(·)) is continuous and increasing.
Thus, λ(S(tf )) = 0 and so for almost every t ∈ I, (t,x(t)) ∈ K and therefore

b(t,x(t)) ∈ F . So q(t,x(t)) = q̂E(b(t,x(t))) for almost every t ∈ I, which com-
bined with (5) implies x satisfies (4) for almost every t ∈ I, and thus is a solution.
The second claim follows easily; for t′ > tf , λ(S(t′)) > 0 and so Eqn. (4) cannot
be satisfied for almost every t ∈ [t0, t

′]. ⊓⊔

Refer to Eqn. (5) as the “extended ODE.” Note that the interval I in Theorem 1
could be degenerate, i.e. t0 = tf . This leads to a somewhat trivial solution. Ruling
out this case requires something akin to the sufficient conditions for existence from
viability-type results, for instance Theorem 1.2.1 of [3].

The characterization of tf given in Theorem 1 is not in a particularly useful
form. The next result alleviates this under stricter assumptions on b.

Corollary 1 Suppose there is a solution IE = [t0, t
E
f ], x of the extended ODE (5).

Let S(t) = {s ∈ [t0, t] : (s,x(s)) /∈ K} and tf = sup{t ∈ IE : λ(S(t)) = 0}.
Assume that for any t ∈ Dt, there exists an interval [t1, t2) ⊂ Dt such that [t1, t2) ∋
t and b is continuous on [t1, t2) × Dx. Then tf = inf{t ∈ IE : (t,x(t)) /∈ K}.

Proof For a contradiction, assume tf > inf{t ∈ IE : (t,x(t)) /∈ K}, that is, there
exists a t∗ ∈ IE such that t∗ < tf and (t∗,x(t∗)) /∈ K. By assumption, there is an
interval [t1, t2) ∋ t∗ on which b is continuous. Without loss of generality, assume
t2 < tf . Then since x, as a solution of the extended ODE, is continuous, b(·,x(·))
is continuous on [t∗, t2), and b(t∗,x(t∗)) /∈ F . By Proposition 1, the complement
of F , F C , is open, so b(·,x(·))−1(F C) is open in [t∗, t2) and nonempty. Thus there
exists t∗∗ ∈ (t∗, t2) such that b(t,x(t)) /∈ F for all t ∈ [t∗, t∗∗). This implies that
λ(S(t∗∗)) > 0. But as in the proof of Theorem 1, λ(S(·)) is increasing on IE , and
so tf ≤ t∗∗, which contradicts t∗∗ < t2 < tf .

Now, assume tf < inf{t ∈ IE : (t,x(t)) /∈ K}. This implies that there exists
a t∗ > tf such that (t,x(t)) ∈ K for all t < t∗, and so λ(S(t∗)) = 0. But this
contradicts the definition of tf as a supremum. ⊓⊔

Corollary 1 says that, under the appropriate conditions on b, a solution of the
extended ODE ceases to be a solution of the original system (4) at the first time
the solution trajectory leaves K. Intuitively this makes sense, but this intuition
can lead to trouble for the numerical method as demonstrated in §3; just because
one cannot find a solution of the LP at a specific step in the numerical procedure
does not mean that a solution no longer exists. Care must be taken when applying
Corollary 1.

Since (t, z) 7→ f
(
t, z, q̂E(b(t, z))

)
is defined on Dt ×Dx, an open set, standard

existence and uniqueness results can now be applied to the extended ODE. The
main concern is whether one can define an appropriate extension q̂E . In fact, one
can define a Lipschitz continuous extension.
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Proposition 2 There exists a Lipschitz continuous function q̂E : R
m → R

nq such
that q̂E restricted to F equals q̂, the solution of the lexicographic linear program
(1)-(2).

Proof If F is empty the result is trivial. Otherwise, assume without loss of gener-
ality, that the first k1 = rank(A) rows of A are linearly independent and let Ã1 ∈
R

k1×nv be a matrix formed from the first k1 rows of A. Define dE
1 : R

m → R
k1 as

d 7→ (d1, d2, . . . , dk1
). Then

q̂1(d) = min{cT
1 v : Ã1v = dE

1 (d),v ≥ 0} (6)

for all d ∈ F . Since F is nonempty, it follows that the dual of LP (6) has a
nonempty feasible set. Furthermore, by the discussion in §5.2 of [5], {pj ∈ R

k1 :
1 ≤ j ≤ n1}, the set of vertices of the feasible set of the dual of LP (6), is nonempty
and q̂1(d) = max{pT

j dE
1 (d) : 1 ≤ j ≤ n1} for d ∈ F . However, this is perfectly

well-defined and Lipschitz continuous for all d ∈ R
m, so let

q̂E
1 : d 7→ max{pT

j dE
1 (d) : 1 ≤ j ≤ n1}.

Then assume full row rank Ãi ∈ R
ki×nv and Lipschitz continuous q̂E

i and
dE

i : R
m → R

ki have been constructed such that q̂E
i restricted to F equals q̂i and

{v : Ãiv = dE
i (d),v ≥ 0} equals the feasible set of the ith-level LP for all d ∈ F .

If ci and the rows of Ãi are linearly independent, let ki+1 = ki +1, Ãi+1 =

[
Ãi

cT
i

]
,

and dE
i+1 : d 7→ (dE

i (d), q̂E
i (d)); otherwise let ki+1 = ki, Ãi+1 = Ãi, and dE

i+1 :
d 7→ dE

i (d). Then

q̂i+1(d) = min{cT
i+1v : Ãi+1v = dE

i+1(d),v ≥ 0} (7)

for all d ∈ F . Similarly to the induction basis, let {pj ∈ R
ki+1 : 1 ≤ j ≤ ni+1} be

the nonempty set of vertices of the feasible set of the dual of LP (7); then let

q̂E
i+1 : d 7→ max{pT

j dE
i+1(d) : 1 ≤ j ≤ ni+1}.

Then q̂E
i+1 is also Lipschitz continuous, and when restricted to F it equals q̂i+1.

Proceeding by induction, one obtains the desired Lipschitz continuous extension
q̂E . ⊓⊔

For completeness, a local existence and uniqueness result for the extended
ODE is stated. Furthermore, the assumptions of the following result provide basic
conditions under which the extended ODE is numerically tractable. Weakening
the assumptions to allow f to be measurable with respect to time can be done by
following results in Ch. 1 of [10].

Proposition 3 Assume

1. q̂E(b(t0,x0)) ∈ Dq,
2. there exists t1 > t0 such that b is continuous on [t0, t1)×Dx and f is continuous

on [t0, t1) × Dx × Dq, and
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3. there exist open neighborhoods Nx ∋ x0 and Nq ∋ q̂E(b(t0,x0)), constants
Lb ≥ 0, Lf ≥ 0, such that for all t ∈ [t0, t1), z1, z2 ∈ Nx, and p1,p2 ∈ Nq

‖b(t, z1) − b(t, z2)‖ ≤ Lb‖z1 − z2‖,

‖f(t,z1,p1) − f(t, z2,p2)‖ ≤ Lf (‖z1 − z2‖ + ‖p1 − p2‖).

Then a unique solution of the IVP (5) exists.

Proof By Prop. 2, one can assume q̂E is Lipschitz continuous with constant Lq,
so qE = q̂E ◦ b is continuous on [t0, t1) × Dx and satisfies

∥∥∥qE(t, z1) − qE(t, z2)
∥∥∥ ≤ LqLb‖z1 − z2‖.

Since qE is continuous, one can assume without loss of generality that qE(t, z) ∈
Nq for all (t, z) ∈ [t0, t1) × Nx. Thus,

∥∥∥f(t, z1,q
E(t, z1)) − f(t, z2,q

E(t, z2))
∥∥∥ ≤ Lf (1 + LqLb)‖z1 − z2‖.

Therefore one can apply Thm. 2.3 of Ch. II of [26] to the mapping (t, z) 7→
f(t, z, qE(t, z)) and conclude that there exists a tEf > t0 and continuous func-

tion x on [t0, t
E
f ] which are a solution of (5). ⊓⊔

5 Numerical developments

This section discusses the numerical method that has been developed for the effi-
cient and reliable integration of ODEs with LP embedded. First, notation specific
to this section and background from linear programming are introduced in §5.1.
Then the overall numerical integration routine is introduced in §5.2. This method
depends on a specific way to solve the lexicographic LP (1)-(2), which is described
in §5.3.

5.1 Notation and background

Consider a vector v ∈ R
n and a matrix M ∈ R

p×n. For an index set J =
{j1, . . . , jnJ

} ⊂ {1, . . . , n}, let vJ = (vj1
, . . . , vjnJ

) and similarlyMJ =
[
mj1

. . . mjnJ

]
.

Similar notation applies to vectors and matrices that already have a subscript.
For instance, ci,j is the jth component of the vector ci, and for some index set
J ⊂ {1, . . . , nv}, ci,J is the vector formed from the components of ci correspond-
ing to J . In Algorithm 2 and Theorem 2 matrices Ai, i ∈ {1, . . . , nq}, will be
constructed. It will be useful to think of their columns as indexed by some set Pi.
Thus, for j ∈ Pi and J ⊂ Pi, the jth column of Ai is denoted ai,j, and Ai,J is
the matrix formed from the columns of Ai corresponding to J . The cardinality of
a set J is card(J).

The following linear programming background will be helpful, which draws
freely from the first four chapters of [5]. Consider the first-level LP as a prototype
for standard-form LPs parameterized by the right-hand side of the constraints:

q̂1(d) = inf
{
cT
1 v : v ∈ R

nv ,Av = d,v ≥ 0
}

. (8)
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The following assumption will hold in this and subsequent sections. It is a standard
assumption of the simplex method, upon which the proposed numerical develop-
ments are based.

Assumption 1 The matrix A is full row rank.

The concept of a basis is introduced. A basis B is a subset of {1, . . . , nv} with
m = card(B). An optimal basis is one which satisfies

A−1
B d ≥ 0, (9)

cT
1 − cT

1,BA−1
B A ≥ 0T. (10)

A basis which satisfies (9) is primal feasible, while one that satisfies (10) is dual
feasible. Thus, a basis is optimal if and only if it is primal and dual feasible. The
invertible matrix AB is the corresponding basis matrix. A basis also serves to
describe a vector v ∈ R

nv ; the components of the vector corresponding to B, vB ,
are given by vB = A−1

B d, and the rest are zero, i.e. vj = 0, j /∈ B. If the basis B
is optimal, then the vector v which it describes is in the optimal solution set of
the first-level LP. Thus, q̂1(d) = cT

1 v = cT
1,BvB . The variables vB are called the

basic variables. The vector cT
1 − cT

1,BA−1
B A is the vector of reduced costs. It is

clear that perturbations in d do not affect dual feasibility of a basis. Thus, a basis
is optimal for all d such that the basic variables are nonnegative.

5.2 Solution algorithm

Theorem 1, Corollary 1, and Proposition 3 indicate how one should approach
calculating a solution of IVP (4): solve the extended ODE (5) and detect the
earliest time that the solution trajectory leaves K, indicated by the infeasibility
of the embedded LP at a point on the solution trajectory. In general terms, this
is the approach taken in the following numerical method. Under the assumptions
of Proposition 3, broad classes of numerical integration methods are convergent
for the extended ODE (5), including linear multistep and Runge-Kutta methods
[23]. However, there is still the issue that one needs to detect the earliest time
that the solution trajectory leaves K accurately and reliably. As indicated by the
examples in §3, one cannot merely rely on detecting an infeasible embedded LP,
as this could occur during a corrector iteration or be due to poor integration error
control. The following method addresses these issues.

The essence of the method is easily understood when nq = 1, in which case the
dynamics only depend on the optimal objective value of a single LP parameterized
by its right-hand side. If one solves the embedded LP at the initial conditions with
any method which finds an optimal basis B, then for as long as B is optimal, one
can obtain the optimal basic variables by solving the system ABuB(t) = b(t,x(t))
for uB(t), from which one obtains q1(t,x(t)) = cT

1,BuB(t). Meanwhile, B is optimal
for as long as the basic variables are nonnegative, i.e. uB(t) ≥ 0. Consequently,
the general idea is to reformulate the system as DAEs, where the basic variables
uB have been added as algebraic variables, and employ event detection to detect
when the value of a basic variable crosses zero. Once a basic variable crosses zero,
a new optimal basis is found by re-solving the LP, and the procedure is repeated.
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For the time being suppose that a δ-optimal basis B is acceptable; that is to
say that A−1

B b(t,x(t)) > −δ1. To guarantee the detection of when B ceases to be
δ-optimal, one needs to use a feasibility tolerance ǫ < δ when solving the embedded
LP. Then, the initial values of the basic variables satisfy

uB(t0) ≥ −ǫ1 > −δ1.

Consequently, uB(t0) + δ1 is strictly positive. If B ceases to be δ-optimal, then
for some index j, the value uj(t) + δ will cross zero, which can be detected
quite accurately with event detection algorithms [31]. The following DAEs, while
uB(t) > −δ1, are integrated numerically:

ẋ(t) − f(t,x(t), cT
1,BuB(t)) = 0,

ABuB(t) − b(t,x(t)) = 0.

Since AB is nonsingular, it is clear from inspection that this is a semi-explicit
index-one system of DAEs, and amenable to many numerical integration methods.

Of course, ǫ is a small, but positive, number, and so δ must be as well. Con-
sequently, one has to ask whether it actually is acceptable for the basis B to
be merely δ-optimal. Since the goal is to calculate a solution of the extended
ODE, one needs to ensure that for a δ-optimal basis B, q̂B

1 (d) = cT
1,BA−1

B d is

an accurate approximation of q̂E
1 (d). Indeed it is. For a dual feasible basis B, let

FB = {d ∈ R
m : A−1

B d ≥ 0}, thus FB is the subset of F on which B is primal
feasible and so also optimal. Let FB,δ = {d ∈ R

m : A−1
B d ≥ −δ1}, thus FB,δ is

the set on which B is δ-optimal. Now assume d ∈ FB,δ and let v = A−1
B d. Con-

struct ṽ such that ṽi = max{vi, 0}, thus ṽ ≥ 0. Let d̃ = ABṽ ∈ FB. Note that

‖v− ṽ‖∞ ≤ δ, thus ‖d− d̃‖∞ ≤ ‖AB‖∞δ. Since q̂B
1 = q̂E

1 on FB , q̂B
1 (d̃) = q̂E

1 (d̃).
Consequently,

|q̂B
1 (d) − q̂E

1 (d)| ≤ |q̂B
1 (d) − q̂B

1 (d̃)| + |q̂B
1 (d̃) − q̂E

1 (d)|

= |q̂B
1 (d) − q̂B

1 (d̃)| + |q̂E
1 (d̃) − q̂E

1 (d)|

≤ ‖cT
1,BA−1

B ‖2‖d − d̃‖2 + Lq‖d − d̃‖2

≤ Mδ,

where the second to last inequality follows from the Lipschitz continuity of q̂E
1 .

Note that M is finite and can be chosen so that the inequality holds for any choice
of B, since there are a finite number of dual feasible bases. Thus, the error in
approximating q̂E

1 using a δ-optimal basis must go to zero as δ goes to zero.
The failure to find a δ-optimal basis at a particular value of b(t,x(t)) simply

implies that (t,x(t)) /∈ K. If a δ-optimal basis does not exist, then certainly an
optimal basis does not exist, which means that b(t,x(t)) /∈ F implying (t,x(t)) /∈
K, and so by Corollary 1, the calculated solution is no longer a solution of (4).
However, since the test of whether b(t,x(t)) /∈ F is only performed as part of
the determination of a new optimal basis, after the old one has stopped being
δ-optimal, this is a much more reliable indication that the solution cannot be
continued.

To generalize this method to the case nq > 1 the overall structure remains
unchanged. This is because it is possible to find a basis B which is optimal for the
first-level LP and which describes a point which is in the optimal solution set of
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the ith-level LP, for all i. Then q̂(d) = (cT
1,BA−1

B d, . . . , cT
nq ,BA−1

B d) for all d such
that B is optimal for the first-level LP. This idea is proved in Theorem 2 and the
method for determining the appropriate basis is summarized in Algorithm 2, both
presented in §5.3.

The numerical method in the general case is summarized in Algorithm 1. An
empty basis set returned by Algorithm 2 serves as a flag that b(t,x(t)) /∈ F and
that the solution cannot be continued. The convergence of Algorithm 1 (as δ and
step size tend to zero) is guaranteed if the numerical method used to integrate the
DAE system (11) is convergent for the extended ODE (5), which, as mentioned
earlier, includes broad classes under the assumptions of Proposition 3. This follows
from simple arguments for the convergence of methods for semi-explicit index-one
DAEs; see for instance §3.2.1 of [6]. Overall, Algorithm 1 produces an approxi-
mation of the solution of the extended ODE, and gives a reliable and accurate
indication of when this solution is no longer a solution of the original system (4).

Algorithm 1 Overall solution method for the IVP (4)

Require: δ > ǫ > 0, tf > t0

t̃← t0, x̃← x0

loop

B ← B∗(b(t̃, x̃), ǫ) (See Algorithm 2)
if B = ∅ then

Terminate.
end if

Solve AB ũB = b(t̃, x̃) for ũB .
Set qB : u 7→ (cT

1,Bu, . . . , cT
nq ,Bu).

while ũB > −δ1 do

Update
(
t̃, x̃, ũB

)
by integrating the following DAE system with an appropriate

method:

ẋ(t) − f(t, x(t), qB(uB(t))) = 0, (11)

ABuB(t) − b(t, x(t)) = 0.

if t̃ ≥ tf then

Terminate.
end if

end while

end loop

An implementation of Algorithm 1 has been coded incorporating DAEPACK
[39] component DSL48E for the numerical integration of the DAE and event de-
tection. DSL48E uses a BDF method and the sparse unstructured linear algebra
code MA48 [9], and so is appropriate for the numerical integration of stiff systems;
these features will be indispensable in the solution of DFBA models in §6. Mean-
while, the event detection algorithm is an accurate and efficient method developed
in [31]. A code employing CPLEX implements Algorithm 2. This implementation
of the algorithms has been named DSL48LPR.
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5.3 Lexicographic optimization

An inefficient way to try to generalize the basic idea behind Algorithm 1 to nq > 1
would be to calculate an optimal basis for each level LP, disregarding the connec-
tions between the levels.

However, by exploiting the relationship between the individual levels in the
lexicographic LP, it in fact suffices to determine a single optimal basis for the
first-level LP (1) to calculate some element of the solution set of the ith-level LP
for each i. Theorem 2 formalizes this and its proof provides a constructive method
of finding the appropriate basis. The construction is summarized in Algorithm 2.

The benefit of Algorithm 2 is that it allows one to use standard primal simplex.
That is, any pivot selection rules can be used, and so one can rely on a commercial
implementation of primal simplex to implement Algorithm 2, and then degeneracy
and cycling are not a concern. Modifications of the simplex algorithm (“lexico-
graphic simplex”) have been presented in Ch. 3 of [19], §10.5 of [38], and [20,22,
32] to solve lexicographic LPs. These methods are similar in effect to Algorithm
2. In contrast, these methods either do not consider the parametric results needed
here, require specific pivot selection rules, or do not consider degeneracy or cycling.

Theorem 2 Assume that d ∈ F . Then there exists a basis B∗
1 that is optimal for

the first-level LP (1) and

q̂(d) =
(
cT
1,B∗

1
A−1

B∗

1
d, . . . , cT

nq ,B∗

1
A−1

B∗

1
d
)

. (12)

Further, this relation holds for all d such that B∗
1 is optimal for the first-level LP.

Proof Existence and construction of the appropriate basis proceed by induction;
again, the construction is summarized in Algorithm 2. At each induction step a
special “projected” LP is constructed and optimized. The reason behind consid-
ering this projected LP is that we can draw conclusions about the pivots taken
when optimizing it with primal simplex. This allows us to argue about the form of
the optimal basis. It is suggested that the reader study the results in Appendix A
before proceeding.

First introduce some notation. Ai denotes a specifically constructed matrix.
For some index set J , the matrix AJ

i is the matrix equaling Ai with those columns
corresponding to J set to 0.

Fix d ∈ F to the value of interest. For an induction basis, let B1 be any
optimal basis for the first-level LP (1), n1 = nv, m1 = m, P1 = {1, . . . , nv},
N1 = ∅, A1 = A and d1(d) = d. An optimal tableau for the first-level LP is

A−1
1,B1

[
d1 A1

]
=

[
A−1

B1
d A−1

B1

(
AN1

P1

)]
.

For the ith induction step assume the following:

1. Assume for k ∈ {2, . . . , i}, nk−1 ≥ nk, mk−1 ≤ mk, Nk−1 ⊂ Nk, and for
k ∈ {1, . . . , i}, Pk = {1, . . . , nk}, Nk ⊂ Pk, Ak ∈ R

mk×nk and dk : F → R
mk .

Consider the kth “projected” LPs, for k ∈ {1, . . . , i}

qP
k (d) = min

v∈R
nk

cT
k,Pk

v

s.t. Akv = dk(d), (13)

v ≥ 0.
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Algorithm 2 Method for determining optimal basis for lexicographic LP (1)-(2)

Require: d ∈ R
m, ǫ > 0

P1 ← {1, . . . , nv}
n1 ← nv, N1 ← ∅

A1 ← A, d1 ← d

Solve first-level LP with absolute feasibility tolerance ǫ:

q∗
1 = inf

v∈Rn
cT
1 v

s.t. Av = d,

v ≥ 0.

if −∞ < q∗
1 < +∞ then

Determine optimal basis B1 for first-level LP.
else

B∗(d, ǫ)← ∅

Terminate.
end if

i← 1
while i < nq do

if ci,j − cT
i,Bi

A
−1
i,Bi

ai,j > 0,∀j ∈ Pi\Bi then

B∗(d, ǫ)← B1

Terminate.
end if

if cT
i,Pi
− cT

i,Bi
A

−1
i,Bi

Ai = 0T then

Pi+1 ← Pi

ni+1 ← ni, Ni+1 ← Ni

Ai+1 ← Ai, di+1 ← di

else

Choose j ∈ Pi such that ci,j − cT
i,Bi

A
−1
i,Bi

ai,j > 0.

Pi+1 =
{
k ∈ Pi : ci,k − cT

i,Bi
A

−1
i,Bi

ai,k = 0
}
∪ {j}

ni+1 ← card(Pi+1), Ni+1 ← Ni ∪ {j}

Ai+1 ←

[
cT

i,Pi+1

Ai,Pi+1

]
, di+1 ←

[
q∗
i

di

]

end if

Solve (i+1)th projected LP with primal simplex using initial basis B1∪Ni+1 and absolute
feasibility tolerance ǫ:

q∗
i+1 = inf

v∈R
ni+1

cT
i+1,Pi+1

v

s.t. Ai+1v = di+1,

v ≥ 0.

if −∞ < q∗
i+1 < +∞ then

For (i + 1)th projected LP, optimal basis is Bi+1 = B̃1 ∪Ni+1.

B1 ← B̃1

else

B∗(d, ǫ)← ∅

Terminate.
end if

i← i + 1
B∗(d, ǫ)← B1

end while

return B∗(d, ǫ)
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2. Assume that the ith-level LP (2) is equivalent to the ith projected LP in the
sense of Definition 1 in Appendix A.

3. Assume the bases B1, and for k ∈ {2, . . . , i}, Bk = Nk ∪ B1 are optimal for
the first-level and kth projected LPs, respectively. Also assume that for k ∈
{1, . . . , i−1}, ck,j −cT

k,Bk
A−1

k,Bk
ak,j > 0 for each j ∈ (Pk\Pk+1)∪ (Nk+1\Nk),

and ck,j − cT
k,Bk

A−1
k,Bk

ak,j = 0 for each j ∈ Pi\Bi.

4. Assume that the tableau for the ith projected LP resulting from the basis Bi

is

A−1
i,Bi

[
di(d) Ai

]
=

[
0 Ei

A−1
B1

d A−1
B1

(
ANi

Pi

)
]

,

where Ei is a (mi − m1) × ni matrix constructed from the rows of the ni × ni

identity matrix that correspond to elements of Ni. Recall that the left-most
column of the above tableau is typically called the “zeroth” column.

There are three cases when constructing the next LP. In the first case, consider
the reduced costs for the ith projected LP determined from the basis Bi from
assumption 3. If each reduced cost corresponding to a nonbasic variable is positive
(i.e. ∀j ∈ Pi\Bi, ci,j − cT

i,Bi
A−1

i,Bi
ai,j > 0), then the point described by the basis

Bi is the unique optimal solution point for the ith projected LP [5]. By assumption
of equivalence, the solution set of the ith-level LP is also a singleton; let this point
be v∗ ∈ R

nv . Combined with assumption 4, the only nonzero components of v∗

are those corresponding to B1, so we have cT
1 v∗ = cT

1,B1
A−1

B1
d. Of course, by the

nature of the lexicographic LP, v∗ must be an optimal solution point of the kth-
level LP, for all k ∈ {1, . . . , nq}, and so letting B∗

1 = B1 we have that Eqn. (12)
holds.

For the other two cases, a higher-level LP must be considered. Our aim is to
construct the (i + 1)th projected LP

qP
i+1(d) = min

v∈R
ni+1

cT
i+1,Pi+1

v

s.t. Ai+1v = di+1(d), (14)

v ≥ 0.

In the second case, if cT
i,Pi

− cT
i,Bi

A−1
i,Bi

Ai = 0T, then cT
i,Pi

and the rows of

Ai are linearly dependent, and so the constraint cT
i,Pi

v = qP
i (d) is redundant (it

is satisfied everywhere in the feasible set of the ith projected LP). Let ni+1 = ni,
mi+1 = mi, Pi+1 = Pi, Ni+1 = Ni, Ai+1 = Ai and di+1 = di. The basis
Bi+1 = Bi is primal feasible for the (i + 1)th projected LP. To help establish
that induction assumption 3 will hold for the (i + 1)th step, note that we trivially
have ci,j − cT

i,Bi
A−1

i,Bi
ai,j > 0 for each j ∈ (Pi\Pi+1) ∪ (Ni+1\Ni), and ci,j −

cT
i,Bi

A−1
i,Bi

ai,j = 0 for each j ∈ Pi+1\Bi+1. The resulting tableau is the same

form as in assumption 4. It is clear that the feasible set of the (i + 1)th projected
LP is the solution set of the ith projected LP; by the induction assumption of
equivalence and Lemma 1 in Appendix A, we have that the (i+1)th projected LP
is equivalent to the (i + 1)th-level LP.

In the third case, if there is a j ∈ Pi such that ci,j − cT
i,Bi

A−1
i,Bi

ai,j > 0, then
let

Pi+1 =
{

k ∈ Pi : ci,k − cT
i,Bi

A−1
i,Bi

ai,k = 0
}

∪ {j}.
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Let ni+1 be the number of elements in Pi+1 and assume without loss of generality
that Pi+1 = {1, . . . , ni+1} (the variables could be re-ordered as necessary). Let
mi+1 = mi + 1, Ni+1 = {j} ∪ Ni and Bi+1 = Ni+1 ∪ B1. Note that Bi+1 =
{j} ∪ Ni ∪ B1, and since Bi = Ni ∪ B1, we have Bi+1 = {j} ∪ Bi. From Lemma 2
in Appendix A, we have that Bi+1 is primal feasible for the (i + 1)th projected
LP. Since the basic variables of the ith projected LP have corresponding reduced
costs that are zero, from the definition of Pi+1 we have Bi+1 ⊂ Pi+1 so this is a
well-defined basis. To help establish that induction assumption 3 will hold for the
(i+1)th step, note that by construction of Pi+1, Bi+1, and Ni+1, the jth reduced
cost of the ith projected LP is positive for all j ∈ (Pi\Pi+1) ∪ (Ni+1\Ni), and the
jth reduced cost is zero for all j ∈ Pi+1\Bi+1. Let

Ai+1 =

[
cT

i,Pi+1

Ai,Pi+1

]
and di+1 : d 7→

[
qP
i (d)
di(d)

]
.

By the construction of the index set Pi+1, we have that

cT
i,Pi+1

− cT
i,Bi

A−1
i,Bi

Ai,Pi+1

ci,j − cT
i,Bi

A−1
i,Bi

ai,j

is the jth unit vector in R
ni+1 (denoted eT

j ), and so by Lemma 2 in Appendix A,

the resulting tableau for the (i + 1)th projected LP is

[
0 eT

j

A−1
i,Bi

di(d) A−1
i,Bi

(
Ai,Pi+1

− ai,je
T
j

)
]

=

[
0 eT

j

A−1
i,Bi

di(d) A−1
i,Bi

(
A

{j}
i,Pi+1

)
]

. (15)

What is important to note is that the last mi rows of (15) form the first ni+1 + 1
columns of the tableau in assumption 4, except with the jth column equal to 0.
Thus, tableau (15) is equal to

[
0 Ei+1

A−1
B1

d A−1
B1

(
A

Ni+1

Pi+1

)
]

. (16)

Similarly to the previous case, in this case the (i + 1)th-level and projected
LPs are equivalent. To see this, note that the feasible set of the (i+1)th projected
LP (14) is equivalent to the solution set of the ith projected LP by Lemma 3
in Appendix A. By the induction assumption of equivalence and Lemma 1 in
Appendix A, the equivalence of the (i + 1)th-level and projected LPs follows.

We now optimize the (i+1)th projected LP (however it was constructed). The
reason behind considering the projected LPs is that we can assert that after a
primal simplex pivot, the new basis is B′

i+1 = Ni+1 ∪ B′
1, where B′

1 is an optimal
basis for the first-level LP. We also assert that B′

k = Nk ∪ B′
1 is optimal for the

kth projected LP for all k ≤ i. Further, the tableau retains the same form, and
the reduced costs of the first-level and the kth projected LPs do not change:

cT
k,Pk

− cT
k,Bk

A−1
k,Bk

Ak = cT
k,Pk

− cT
k,B′

k
A−1

k,B′

k
Ak (17)

for all k ≤ i. Since d ∈ F and the (i+1)th-level and projected LPs are equivalent,
the primal simplex algorithm must terminate. At this point we will have optimal



Solution of ODEs with lexicographic LP embedded 17

bases B∗
k = Nk ∪ B∗

1 , for the kth projected LP, for all k ≤ i + 1, where B∗
1 is

optimal for the first-level LP.
To see this, consider the specifics of a primal simplex pivot. Under any pivoting

rule, let the index of the pivot column chosen be pc ∈ Pi+1\Bi+1. Note that the
first mi+1 − m1 elements of the pth

c column of the tableau (16) are zero. So to

determine the pivot row we only need to consider the pth
c column of A−1

B1

(
A

Ni+1

Pi+1

)
,

but this in fact equals A−1
B1

apc
. This means that whatever basis element is chosen

to exit the basis Bi+1 is the same element that would exit the basis B1 if we
applied the primal simplex algorithm to the first-level LP and had chosen the pth

c

column as the pivot column. By assumption 3, the pth
c reduced cost of the first-level

LP (given by B1) is zero, and so this leads us to the conclusion that by following
the pivot rules of the primal simplex algorithm applied to the (i + 1)th projected
LP, we are in fact executing acceptable pivots of the primal simplex algorithm
applied to the first-level LP. Further, the discussion in Appendix A establishes
that the reduced costs of the first-level LP will remain the same after the pivot
(i.e. Eqn. (17) holds for k = 1). Consequently, we obtain the new primal feasible
basis B′

i+1 = Ni+1 ∪ B′
1 for the (i + 1)th projected LP, where B′

1 is still optimal
for the first-level LP.

Similar reasoning establishes that these pivots are also acceptable primal sim-
plex pivots applied to the kth projected LP, for all k. By the induction assump-
tion 3, the pth

c reduced cost of the kth projected LP is zero, and so again all
the reduced costs retain the same value after the pivot and Eqn. (17) holds for
k ∈ {2, . . . , i − 1}. By construction of Pi+1, the pth

c reduced cost of the ith pro-
jected LP is zero, and so a similar conclusion holds for k = i. Again, this means
B′

k = Nk ∪ B′
1 is optimal for the kth projected LP.

Further, the tableau for the (i + 1)th projected LP after this pivot operation
has the same form as tableau (16) (just with B′

1 replacing B1). This is because
the pivot operation is executed by multiplying the tableau (from the left) by a
mi+1 × mi+1 matrix of the form

[
Ii 0T

i

0i Q1

]
,

where Q1 is an invertible m1 × m1 matrix, Ii is the (mi+1 − m1) × (mi+1 − m1)
identity matrix, and 0i is a m1 × (mi+1 − m1) matrix of zeros. If the index of the
pivot row is pr, then Q1A

−1
B1

apc
equals the the (pr − (mi+1 − m1))

th unit vector
in R

m1 . This achieves the overall effect of the pivot operation, which is to change
the pth

c column (of tableau (16)) into the pth
r unit vector in R

mi+1 .
Therefore, when the simplex method terminates for the (i+1)th projected LP,

we will have an optimal basis B∗
k = Nk ∪ B∗

1 for the kth projected LP, for all
k ∈ {1, . . . , i + 1}, where B∗

1 is optimal for the first-level LP. All the induction
assumptions hold for the (i+1)th step; equivalence and the form of the tableau have
already been established, and induction assumption 3 holds because of how the
(i+ 1)th projected LP was constructed and the reduced costs of the kth projected
LPs are the same with the new bases B∗

k .
Proceeding by induction, it follows that we can obtain an optimal basis for

the nth
q projected LP, B∗

nq
= Nnq

∪ B∗
1 , where B∗

1 is an optimal basis for the
first-level LP (1). The basis B∗

nq
describes the point v∗; by equivalence and the

nature of the lexicographic LP, this point is in the solution set of the ith-level
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LP (2) for all i. Again by assumption 4, the only nonzero components of v∗ are
those corresponding to B∗

1 , so we have cT
i v∗ = cT

i,B∗

1
A−1

B∗

1
d for all i. So we have

that Eqn. (12) holds.
We now establish the final claim that Eqn. (12) holds for all d such that B∗

1

is optimal. The reasoning follows from the previous argument, although formally
a separate induction argument is needed. The essence of the argument is that the
basis B∗

i = Ni ∪ B∗
1 is optimal for the corresponding projected LP as defined

earlier for all d such that B∗
1 is optimal for the first-level LP. This is because

dual feasibility for each basis does not change, while the form of the tableau
from induction assumption 4 indicates that primal feasibility of B∗

1 implies primal
feasibility of B∗

i . Further, if the ith-level and projected LPs are equivalent for
all d such that B∗

1 is optimal, then the (i + 1)th-level and projected LPs are
equivalent for all d such that B∗

1 is optimal. This follows from application of
Lemma 1 and, if necessary, Lemma 3 in Appendix A, which indicates that null
variables remain null variables for all d such that B∗

i is optimal. Combined with
the previous observation, this means that the (i + 1)th-level and projected LPs
are equivalent for all d such that B∗

1 is optimal. If the construction terminated
early after determining that the ith projected LP has a unique solution, then this
projected LP has a unique solution for as long as the basis B∗

i is optimal, which
again holds for all d such that B∗

1 is optimal. The conclusion of the induction
argument is that for all d such that B∗

1 is optimal, it describes a point in the
solution set of each projected LP, and by equivalence, a point in the solution set
of each level of the lexicographic LP (1)-(2). ⊓⊔

6 Examples

The simple example from §3 is reconsidered to clarify the qualitative difference be-
tween Algorithm 1 and the previously mentioned direct and time-stepping meth-
ods. Then, two examples based on dynamic flux balance analysis are presented.
In §6.2, a model of batch fermentation displaying domain issues is presented. This
example also demonstrates a significant numerical difference between the perfor-
mance of Algorithm 1 and the direct method. In §6.3, a model of batch fermen-
tation is presented in which a non-unique solution set of the embedded LP is
encountered. The LP is reformulated as a lexicographic LP to resolve the non-
uniqueness to obtain a better-defined and more numerically tractable problem.

6.1 Robustness for simple example

Consider once more the simple example from §3.1. The solution estimate after an
explicit Euler step (of stepsize h) is still x̃(h) = (h, 0). As in §3.1, x̃(h) /∈ K = {z :
z2 ≥ z2

1}. However, in contrast with the direct method, this is not a complication;
at any time t, the system of equations to be solved for the DAE reformulation
from Algorithm 1 is

x̃(t + h) − x̃(t) − hf(x̃(t), qB(ũB(t))) = 0,

ABũB(t) − b(x̃(t)) = 0,
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where qB is defined as in Algorithm 1. Whatever the choice of the basis B is,
uB(t) and qB are well defined and the system of equations has a solution. This
is a significant qualitative difference between Algorithm 1 and the direct or time-
stepping methods.

Of course, this qualitative difference translates to a noticeable difference in
numerical performance. When the solution is at the (numerical) boundary of K,
only Algorithm 1 can guarantee that an approximate solution can be continued. As
demonstrated by the next example, this can lead to an unmistakable difference in
the quality of the numerical solution. Specifically, the direct method fails or gives
an incorrect indication of when the solution of the extended ODE is no longer a
solution of the original system (4).

6.2 E. coli fermentation

Batch and fed-batch fermentation reactions are important industrial processes
for the production of valuable chemicals such as ethanol. This example consid-
ers a model of a fermentation reactor consisting of the dynamic mass balances
of the reactor coupled to a genome-scale network reconstruction of the E. coli
metabolism presented in [14]. Using information gleaned from genomic analysis,
E. coli ’s metabolism can be modeled as a network of reactions that must satisfy
simple stoichiometric constraints. Analysis and construction of such a network
is called flux balance analysis (FBA) [28]. However, this network is often under-
determined; the fluxes of the different substrates and metabolites can vary and
still produce a system that satisfies the stoichiometric constraints. Thus, one as-
sumes that fluxes will be such that some cellular objective is maximized. Most
often, the production of biomass is chosen as the cellular objective to maximize,
and in general it is a reasonable choice [29]. The result, then, is in fact a system
that has the same form as (4). The simulation represents the initial phase of batch
operation of the fermentation reactor under aerobic growth on glucose and xylose
media. No ethanol production during aerobic conditions is observed; this phase is
used to increase the biomass. Thus, the concentration of ethanol is omitted from
the dynamics.

6.2.1 Model

The dynamic mass balance equations of the extracellular environment of the batch
reactor are

ẋ(t) = µ(t)x(t),

ġ(t) = −ug(t)x(t), (18)

ż(t) = −uz(t)x(t),

where x(t) = (x(t), g(t), z(t)) is the vector of biomass, glucose and xylose concen-
trations, respectively, at time t. The uptake kinetics for glucose, xylose and oxygen
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are given by the Michaelis-Menten kinetics

ug(t) = ug,max
g(t)

Kg + g(t)
, (19)

uz(t) = uz,max
z(t)

Kz + z(t)

1

1 + g(t)
Kig

, (20)

uo(t) = uo,max
o(t)

Ko + o(t)
, (21)

where ug,max, uz,max, uo,max, Kg, Kz, Ko, and Kig are known constant parame-
ters. It is assumed that the oxygen concentration in the reactor, o(t), is controlled
and therefore a known value. Meanwhile, the growth rate µ(t) is determined from
the metabolic network model of the E. coli bacterium iJR904 [34], which is avail-
able online [37]. The model consists of 625 unique metabolites, 931 intracellular
fluxes, 144 exchange fluxes and an additional flux representing the biomass gener-
ation as growth rate µ(t). The flux balance model is an LP of the form

µ(t) = min
v∈Rnv

cTv (22)

s.t. Sv = 0,

vgext
= ug(t),

vzext
= uz(t),

voext
= uo(t),

vLB ≤ v ≤ vUB ,

where nv is the number of fluxes, nm is the number of metabolites, S ∈ R
nm×nv

is the stoichiometry matrix of the metabolic network, µ(t) is the growth rate
and vLB and vUB are the lower and upper bounds on the fluxes. The metabolic
network is connected to the extracellular environment through the exchange fluxes
for glucose, xylose and oxygen vgext

, vzext
and voext

, respectively, which are given by
equations (19)-(21). After putting the LP (22) in standard form and assuring that
it satisfies Assumption 1, the LP has 749 constraints and 2150 primal variables.

6.2.2 Simulation results

The solution of the system (18) - (22) was calculated by the DSL48LPR imple-
mentation of Algorithm 1 and, for comparison, by the direct method, which was
implemented with DSL48E (without any events) with the function evaluator call-
ing CPLEX.

All numerical parameter values including the initial conditions are according to
[14]. The time evolution of the dynamic states is shown in Figure 1. First glucose,
as the preferred carbon source, is consumed. After glucose has been depleted, at
around 7h, the optimal basis changes and xylose becomes the main carbon source.
The final batch time is determined by the glucose and xylose concentrations. The
simulation stops when glucose and xylose concentration are equal to zero (around
8.2h); at this point, the LP is infeasible and so by Corollary 1 the solution ceases
to exist. This makes sense physically, since with no carbon source the E. coli stop
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growing and begin to die; cell death is not a phase that the flux balance model
can really predict and so the simulation must stop.

When simulating the system with DSL48E and CPLEX, the simulation fails
at the point when the E. coli switches from glucose to xylose metabolism. This
is clear when examining the primal variables (the fluxes) in Figure 2. The values
of the primal variables change quite rapidly (however they are still continuous).
This indicates that the system (18) - (22) is stiff. Stiff dynamics combined with
the numerical manifestation of domain issues as discussed in §3 cause the direct
method to fail. In contrast, DSL48LPR manages to integrate past the change in
metabolism and more accurately indicate when the solution fails to exist.
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6.2.3 Computational times

This example also provides a good chance to compare the computational times
for various solution methods. The time required by DSL48LPR and by various
forms of the direct method to complete the simulation are compared in Table
1. The direct method was implemented using various different LP algorithms,
and this can impact the solution time quite strongly. DSL48LPR is fast, both
on the interval [0, 7]h and on the whole simulation interval. Meanwhile, DSL48E
embedding CPLEX fails to complete the entire simulation, but the computational
time to run the simulation to the point of failure can vary quite a lot. Using dual
simplex with an advanced basis is the fastest, and competitive with DSL48LPR.
This follows from the fact that using a dual feasible basis to warm start dual
simplex is very similar to the basic algorithm of DSL48LPR. While this basis is
also optimal, CPLEX only needs to solve a linear system to determine the values
of the primal variables given the new value of the right-hand side vector. It should
be noted that, to the authors’ knowledge, this use of dual simplex has not been
proposed before for the solution of ODEs with LPs embedded.

The other LP algorithms, however, increase the simulation time. Neglecting
that a dual feasible basis is available and using full (Phase I and Phase II) simplex
is slower, followed by a barrier method (most likely the primal-dual path following
algorithm, see §9.5 of [5]). Although interior point methods for LPs are praised for
their polynomial solution time, it is an unwise choice in this context. Comparable
to a nonlinear solve in at least 2000 variables, it incurs much more overhead,
likely because it is factoring the necessary matrices more often than DSL48E is
factoring the Jacobian within DSL48LPR. Further, it is possible that there are
issues initializing the algorithm, since the previous solution point may be infeasible
after a perturbation of the value of b; consequently, the algorithm again lacks
advanced starting point information which slows it down considerably.

Table 1 Computational times (averaged over 50 runs performed on a 32-bit Linux virtual
machine allocated a single core of a 3.07 GHz Intel Xeon CPU) and integration statistics for
solving Eqns. (18)-(22) with various methods. The “*” symbol indicates that the method failed
before finishing the simulation.

DSL48E embedding CPLEX
Method DSL48LPR Dual Simplex Full Simplex Barrier Method

CPU time, full simula-
tion (s)

1.196 * * *

CPU time, on [0, 7]h (s) 1.004 0.436 2.799 4.772

Integration steps on
[0, 7]h

408 125 125 125

Jacobian evaluations on
[0, 7]h

169 53 53 53

Error test failures on
[0, 7]h

30 22 22 22

Convergence test fail-
ures on [0, 7]h

0 11 11 11
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6.3 Yeast fermentation

Normally, the solution sets of flux-balance models are not singletons [25]. Consider
a second dynamic flux balance simulation of fed-batch fermentation using Saccha-
romyces cerevisiae. Besides ethanol, as the main metabolic product of interest,
other by-products, such as glycerol, can be analyzed. A non-unique glycerol flux
is predicted by the metabolic network reconstruction iND750 [8] of S. cerevisiae
under anaerobic growth conditions [16]. In order to determine the range of the
glycerol flux during batch fermentation, this example utilizes a lexicographic LP
to determine a maximum and then minimum glycerol flux at the optimal growth
rate.

This model has been considered in [17] for the production of ethanol by fed-
batch fermentation of S. cerevisiae. The dynamics are

v̇(t) = d(t),

ġ(t) = −ug(t)x(t) + d(t)(gin − g(t))/v(t),

ẋ(t) = ub(t)x(t) − d(t)x(t)/v(t), (23)

ė(t) = ue(t)x(t) − d(t)e(t)/v(t),

ḣ(t) = uh(t)x(t) − d(t)h(t)/v(t),

where v(t) is the total volume in the reactor, d(t) is the dilution rate, and g(t),
x(t), e(t) and h(t) are the concentrations of glucose, biomass, ethanol and glycerol
respectively, in the reactor. Meanwhile, gin is the constant glucose inlet concen-
tration, ug is again given by (19), and ub(t), ue(t), uh(t) are given by

ub(t) = max
v

vb

s.t. Av = b(g(t), e(t), o(t)), (24)

v ≥ 0,

ue(t) = max
v

ve

s.t. Av = b(g(t), e(t), o(t)),

vb = ub(t), (25)

v ≥ 0,

and

uh(t) = max
v

vh

s.t. Av = b(g(t), e(t), o(t)),

ve = ue(t), (26)

vb = ub(t),

v ≥ 0.

The LP (24) is obtained by transforming a flux balance model for yeast in a
similar manner to what was done in the previous example; (24) is connected to
the extracellular environment via the Michaelis-Menten equations (19) and (21),
and then put into standard form. Note that (ub(t), ue(t), uh(t)) is the solution to
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a lexicographic LP. After maximizing the growth rate, the optimal growth rate
is added as a constraint and the resulting program is optimized with respect to
ethanol flux. This optimal ethanol flux is again added as a constraint and then
glycerol flux is maximized. The result is that these three fluxes are now uniquely
defined and the problem (23) is well-defined. It is more difficult to address the non-
uniqueness of the glycerol flux when solving (23) with the direct method; even if it
is considered it requires the solution of extra LPs which can be costly. Meanwhile,
a lexicographic LP provides a more straightforward way to enforce uniqueness,
which reduces the ambiguity of the simulation results.

The parameter values for the simulation can be found in [17]. The simulation
presents an aerobic-anaerobic operation. The aerobic to anaerobic switch occurs
at 7.7h, after which a range of glycerol flux rates are possible. This leads to a max-
imum and minimum possible glycerol concentration; the discrepancy is called the
production envelope [25]. To determine this envelope, a second simulation in which
glycerol flux is instead minimized in (26) is performed. This simulation shows no
glycerol production throughout the batch reaction. At the end of the simulations,
the difference between the maximum and minimum glycerol concentrations is 3.71
g/L, where the concentrations of nutrients and metabolites are on the order of 10
g/L throughout the simulation. Clearly, a non-unique solution of the LP can have
a significant impact on the overall solution of the dynamic system. The results are
seen in Fig. 3.
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7 Conclusions

This work has analyzed the initial value problem in ordinary differential equa-
tions with a parametric lexicographic linear program embedded. This problem
finds application in dynamic flux balance analysis, which is used in the modeling
of industrial fermentation reactions. This work has proposed a numerical method
which has distinct advantages over other applicable methods. These advantages
allow the method to be successfully applied to examples of DFBA, and achieve
unambiguously improved approximate solutions to these examples. The current
implementation of the proposed method proves very successful in the motivat-
ing application of DFBA. Furthermore, the method is flexible and allows various
numerical integration routines to be applied.

Acknowledgements The authors thank Novartis Pharmaceuticals as part of the Novartis-
MIT Center for Continuous Manufacturing for funding this research.

A Supporting results for lexicographic optimization

This section presents some definitions, results, and discussion to support the proof of Theo-
rem 2, which deals with finding a specific optimal basis for the lexicographic LP.

Definition 1 Equivalence.

1. Two sets S1 ⊂ R
n1 and S2 ⊂ R

n2 with n1 ≤ n2 are equivalent if n1 < n2 and S2 =
S1 × {0}, or n1 = n2 and S2 = S1.

2. Two linear programs are equivalent if their solution sets are equivalent.

Intuitive results regarding equivalence follow.

Lemma 1

1. Assume n1 ≤ n2 ≤ n3. Let Fi ⊂ R
ni for i ∈ {1, 2, 3}. If sets F1 and F2 are equivalent

and F2 and F3 are equivalent, then F1 and F3 are equivalent.
2. If two sets F1 ∈ R

n1 and F2 ∈ R
n2 with n1 ≤ n2 are equivalent, then the linear programs

min{cTv : v ∈ F1} and min{ĉTv : v ∈ F2}

are equivalent, where ĉ = (c, c̃) for any c ∈ R
n1 and c̃ ∈ R

n2−n1 .

For the next two results refer to the lexicographic LP

q(d) = inf
{
cTv : Mv = d, v ≥ 0

}
, (27)

q̂(d) = inf
{
ĉTv : Mv = d, cTv = q(d), v ≥ 0

}
. (28)

The next result establishes the form of the simplex tableau for the two-level lexicographic
LP. Strictly speaking, tableau (29) below is missing the “zeroth” row of reduced costs for the
second-level LP (28); for simplicity it is omitted.

Lemma 2 Consider the lexicographic LP (27)-(28). Let B be a dual feasible basis for the

first-level LP (27), and assume that the jth reduced cost is positive (cj − cT
BM

−1
B mj > 0).

For all d such that B is optimal for the first-level LP, the simplex tableau for the second-level

LP (28) resulting from the basis B̂ = {j} ∪ B is

[
cj cT

B
mj MB

]−1 [
q(d) cT

d M

]
=




0
c
T−c

T
BM

−1
B

M

cj−cT
B

M
−1
B

mj

M−1
B d M−1

B

(
M−mj

c
T−c

T
BM

−1
B

M

cj−c
T
B

M
−1
B

mj

)


 . (29)
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Proof The proof proceeds by using Schur complements to form the inverse of

[
cj cT

B
mj MB

]
,

performing the matrix multiplication, and simplifying, noting that cT
BM

−1
B d = q(d) for all d

such that M
−1
B d ≥ 0. ⊓⊔

The concept of a “null variable” is important to the proof of Theorem 2, which is defined
as a variable which is zero everywhere in the feasible set of an LP. It is clear that removing a
null variable and the corresponding parameters (components of the cost vector and columns
of the constraint matrix) yields an equivalent LP. The next result states a way to identify null
variables in the second-level LP (28).

Lemma 3 Consider the lexicographic LP (27)-(28). Let B be a dual feasible basis for the first-

level LP (27), and assume that the jth reduced cost is positive (cj − cT
BM−1

B mj > 0). For all
d such that B is optimal for the first-level LP, vj = 0 for all v feasible in the second-level
LP (28).

Proof The result follows from the “null variable theorem” in §4.7 of [24]; this states that vj

is a null variable for a general standard-form LP (27) if and only if there exists a nonzero
p such that pTd = 0, pTM ≥ 0T, and the jth component of pTM is strictly greater than
zero. Applying this result to the second-level LP (28), the result follows from inspection of the

tableau (29); the first row of

[
cj cT

B
mj MB

]−1

serves as the appropriate p. ⊓⊔

Finally, some aspects of the primal simplex algorithm are noted. If one has a optimal basis
already, but a different optimal basis is sought, a pivot could be forced in the sense that, while
the ith reduced cost is zero, the ith column is chosen as the pivot column. If the ith reduced
cost is zero, but the pivot operation is carried out in the standard way, a new primal feasible
basis is obtained for which the reduced costs are the same as the old basis, and so the new
basis is also optimal. This is because the reduced costs are updated in a pivot operation by
adding a multiple of the pivot row to the reduced costs (the zeroth row of the tableau) so that
the ith entry of the zeroth row is zero. But, if the ith reduced cost is already zero, no changes
to the zeroth row are made, and so the reduced costs retain the same values.

B Domain issues and time-stepping

This section presents an example demonstrating that time-stepping methods such as those
mentioned in §3.2 still suffer from domain issues. More generally, this example shows that
implicit integration methods also suffer from domain issues.

Consider an example similar to the one in §3.1:

x(0) = 0, ẋ(t) = f (x(t), q(x(t))) =

[
1

x2(t)q(x(t)) − (x2(t))2 + 2x1(t)

]
, (30)

where q(z) = min{v : z2 ≤ v ≤ z2
1}.

The embedded LP is feasible only if x ∈ K = {z : z2 ≤ z2
1}, a closed, nonconvex set. Note that

x(t) = (t, t2) is a solution. Letting b(z) = (z2
1 ,−z2) and rewriting q in terms of the embedded

LP’s dual, one has

q(z) = max{b(z)Tw : w ≤ 0, w1 − w2 = 1}.

Letting W denote the feasible set of the above (dual) LP, this is equivalent to finding w∗ ∈W

such that (w−w∗)T(−b(z)) ≥ 0, ∀w ∈ W . This is a parametric variational inequality and is
denoted VI(W,−b(z)). This requires the dynamics to be rewritten as

f (x(t), q(x(t))) =

f̂(x(t), u(t)) =

[
1

x2(t)
(
(x1(t))2u1(t) − x2(t)u2(t)

)
− (x2(t))2 + 2x1(t)

]
,
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where u(t) is the solution of VI (W,−b(x(t))). Given h > 0, an implicit time-stepping scheme
takes the form

x̃(t + h) = x̃(t) + hf̂ (x̃(t + h), ũ(t + h)) , (31)

ũ(t + h) solves VI (W,−b(x̃(t + h))) .

Typically this implicit system is solved as the equivalent variational inequality VI(R2 ×W,gt)
where

gt(z, v) =




z1 − x̃1(t) − h

z2 − x̃2(t) − h(z2
1z2v1 − z2

2v2 − z2
2 + 2z1)

−z2
1

z2




(see for instance [30]). However, again letting x̃(0) = x(0) = 0, the initial variational inequality
VI(R2 ×W,g0) does not have a solution for any choice of h.

To see this, assume, for a contradiction, that a solution exists. Then there is a (z∗, v∗) ∈
R

2 ×W such that

(z1 − z∗
1 )(z∗

1 − h) + (z2 − z∗
2 )

(
z∗
2 − h((z∗

1 )2z∗
2v∗

1 − (z∗
2 )2v∗

2 − (z∗
2 )2 + 2z∗

1 )
)
+

(v1 − v∗
1)(−(z∗

1 )2) + (v2 − v∗
2)(z∗

2 ) ≥ 0, (32)

for all (z, v) ∈ R
2 ×W . First note that z∗

1 = h, otherwise one could always find a z1 ∈ R such
that the inequality (32) did not hold. Similarly, one must have

z∗
2 = h

(
(z∗

1 )2z∗
2v∗

1 − (z∗
2 )2v∗

2 − (z∗
2 )2 + 2z∗

1

)
. (33)

Using this in inequality (32), one obtains

(v1 − v∗
1 )(−h2) + (v2 − v∗

2 )(z∗
2 ) ≥ 0,

for all (z, v) ∈ R
2 ×W . For any v ∈ W , one can write v2 = v1 − 1. Then one gets

(v1 − v∗
1 )(−h2) + (v1 − 1− (v∗

1 − 1))(z∗
2 ) ≥ 0,

which yields
(v1 − v∗

1 )(z∗
2 − h2) ≥ 0,

for all v1 ≤ 0, where v∗
1 ≤ 0 and z∗

2 ∈ R satisfy

hv∗
1(z∗

2 )2 + (1− h3v∗
1 )z∗

2 − 2h2 = 0 (34)

(which is obtained from Eqn. (33) via the substitutions z∗
1 = h and v∗

2 = v∗
1 − 1).

One can now analyze three cases:

1. z∗
2 > h2 : However, if this was the case, then whatever the value of v∗

1 , one could always
find a v′

1 < v∗
1 which then implies (v′

1 − v∗
1)(z∗

2 − h2) < 0, which is a contradiction.
2. z∗

2 < h2 : However, if this was the case, one must have v∗
1 = 0, otherwise there exists a v′

1
such that v∗

1 < v′
1 ≤ 0 which then implies that (v′

1 − v∗
1 )(z∗

2 − h2) < 0. Thus, assuming
v∗
1 = 0, use Eqn. (34) to check the value of z∗

2 . However, that yields z∗
2 = 2h2, which

contradicts z∗
2 < h2.

3. z∗
2 = h2 : However, if this was the case, one can use Eqn. (34) to check the consistency of

values. This yields
h5v∗

1 + h2 − h5v∗
1 − 2h2 = 0 =⇒ −h2 = 0,

which contradicts h > 0.

Thus, it follows that there does not exist a point (z∗, v∗) ∈ R
2 ×W which solves VI(R2 ×

W,g0).
Note that the implicit time-stepping scheme (31) is equivalent to the direct method ap-

plying an implicit Euler step to the original system (30). Thus, the failure of the system (31)
to have a solution indicates that the direct method, even with an implicit integration routine,
also fails.
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