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Abstract

The Structural Maintenance of Chromosomes (SMC) complexes are associated with

transcriptional enhancers, promoters and insulators, where they contribute to the control of gene

expression and genome structure. We review here recent insights into the interlinked roles of SMC

complexes in gene expression and genome architecture. Among these, we note evidence that SMC

complexes play important roles in the regulation of genes that control cell identity. We conclude

by reviewing diseases associated with SMC mutations.

SMC complexes

The Structural Maintenance of Chromosome (SMC) complexes are ring-shaped protein

complexes that can link two DNA molecules (Figure 1) [1,2]. These complexes can

accommodate two nucleosome-bound DNA molecules within the ring, although other

mechanisms have been proposed for the ability of these complexes to link DNA [2–5]. SMC

complexes are composed of two SMC subunits that act as long coiled-coil arms, a kleisin

subunit that bridges the gap between the arms, and one or two heat repeat-containing

subunits [1]. This general subunit composition is conserved from the single bacterial SMC

complex through the various complexes found in vertebrates. Mammalian cells possess

multiple SMC complexes with varied functions, which include mitotic cohesin, meiotic

cohesin, condensin I, condensin II, and the SMC5/SMC6 DNA repair complex [6,7].

Bacteria possess a single SMC complex that functions in chromosome partitioning and

proper nucleoid structure [8,9]. Eukaryotic SMC complexes were first shown to play

important roles in chromosome maintenance during the cell cycle; cohesin maintains sister

chromatid cohesion and condensin contributes to the compaction of chromosomes during

mitosis [1,2,10,11]. Cohesin and condensin were later found to have roles in gene expression

and interphase chromatin organization, which is the focus of this review.
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SMC-mediated control of gene expression

Early evidence that SMC complexes make functional contributions to gene regulation came

from studies of gene expression and dosage compensation in yeast, D. melanogaster and C.

elegans [12,13]. In yeast, cohesin was found to be involved in the silencing of

heterochromatin [14,15]. Reduction of cohesin levels by as much as 80% caused defects in

transcription, but had little effect on normal sister chromatid cohesion and chromosome

segregation, suggesting that normal levels of cohesin are especially important for gene

control [16,17]. In flies, the cohesin loading protein Nipped-B was found to contribute to

gene activation [18] and disruption of cohesin was shown to affect expression of hundreds

of genes, leading to developmental deficits [16,19,20]. Condensin mutations were found to

alter the position effect variegation of reporter genes in D. melanogaster [21]. Dosage

compensation in C. elegans was also found to be controlled by SMC complexes. The C.

elegans Dosage Compensation Complex (DCC), which differs from the canonical condensin

complex by a single subunit [22,23], was shown to be targeted to the two X chromosomes of

hermaphrodites, where it caused a 50% reduction in transcription from genes on each of

these chromosomes [24,25].

In vertebrates, cohesin, condensin I and condensin II have been shown to be associated with

transcriptionally active enhancers and promoters and appear to contribute to stable enhancer-

promoter DNA looping [26–31]. Among these SMC complexes, the genome-wide

occupancy and function of cohesin is best studied, and these studies have led to the

following model for gene activation. During transcription initiation, DNA-binding

transcription factors bind to enhancer elements and recruit a variety of cofactors, including

the Mediator coactivator, which in turn binds RNA polymerase II at promoter sites, forming

an enhancer-promoter DNA loop (Figure 2) [32–35]. The SMC-loading factor NIPBL binds

Mediator and loads cohesin at these sites [28,36]. The enhancer-promoter loops mediated by

cohesin occur at genes important for cell identity [27,37]. Once loaded at promoters, the

cohesin ring is able to translocate along DNA, possibly due to the action of transcribing

RNA Polymerase [38,39]. A substantial fraction of cohesin is also associated with CTCF-

bound regions of the genome [28,40], and this may be a consequence of NIPBL-dependent

loading of cohesin at promoters followed by translocation to CTCF sites, or NIPBL-

independent loading of cohesin at CTCF sites. Some of these cohesin-associated CTCF sites

interact with regulatory elements and facilitate gene activation, while others are found at the

boundary elements of topological domains, where they function as insulators, thus

preventing the spread of an active transcriptional state beyond the boundary [40–53].

Vertebrates have two condensin complexes that associate sequentially with chromosomes

during the cell cycle, show distinct patterns of binding to mitotic chromosomes and play

different roles in chromosome architecture [54–57]. Condensin II is present in the nucleus

throughout the cell cycle and is required for chromosome condensation during early

prophase [55,57]. Condensin I, which is excluded from the nucleus during interphase, is

loaded onto chromosomes during prometaphase, when it is required for complete removal of

cohesin from chromosome arms, chromosome shortening and normal metaphase progression

[55,57,58]. The condensins are thought to encircle DNA and act as a clamp during

condensation, thereby providing structural integrity to segregating chromosomes [1,12,59–
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61]. Low-resolution imaging suggests that condensin I and II occupy discrete domains that

cover the length of mitotic chromosomes [55–57]. However, recent high-resolution ChIP-

seq studies show that condensin I and II occupy the same regions of the genome with both

complexes present at enhancers, promoters, centromeres and telomeres, and absent from

heterochromatic regions [26,31]. Loading of the condensin complexes at actively transcribed

genes depends, like cohesin, on the function of the SMC-loading factor NIPBL [26,62].

Regulation of SMC complexes at genes

Regulation of SMC loading and unloading at the enhancer-promoter interface is almost

certainly a highly dynamic process, but is not yet well understood. Contact with the

activation domains of transcription factors causes a modification in the structure of the

Mediator complex that is thought to enhance NIPBL binding to Mediator, and this may be

an underlying mechanism that regulates cohesin loading [63]. The functions of SMC

complexes in sister chromatid cohesion can be regulated by phosphorylation, acetylation and

sumoylation of their subunits, but it is not yet clear whether these modifications also play

roles in gene regulation [64,65].

Cohesin removal is also important for normal gene expression [66]. Removal of SMC

complexes from DNA is thought to occur through two different mechanisms, one that

operates predominantly in chromosome arms and the other in centromeric DNA [67].

During the cell cycle, most cohesin molecules are removed from chromosome arms in

prophase via the action of WAPL [66,68]. In WAPL-depleted cells, cohesin occupancy at

transcription starts sites is altered and expression of many genes is changed [66]. Recent

studies suggest that WAPL mediates a transient opening of the cohesin ring at the SMC3/

kleisin interface [69–71]. The second mechanism of cohesin release occurs during anaphase

when sister chromatid cohesion is lost and cohesin molecules are released from centromeres

via proteolytic cleavage by Separase [72,73].

SMC complexes in control of cell identity

Super-enhancers are large clusters of transcriptional enhancers that drive expression of the

key genes that control and define cell identity [26,27,74,75]. These domains are associated

with genes encoding master transcription factors and other key proteins that play important

roles in the biology of these cells. The importance of these domains is emphasized by the

observation that sequence variation associated with a broad spectrum of diseases is

especially enriched in the super-enhancers of disease-relevant cell types [27,76]. Super-

enhancers contain unusually high levels of Mediator and SMC complexes; based on ChIP-

seq reads, 20–40% of the Mediator, cohesin and condensin II protein associated with

enhancers in murine embryonic stem cells is bound to the ~230 superenhancers [26,74].

Furthermore, knockdown of mediator, cohesin and condensin II causes a disproportionate

loss of transcription of super-enhancer-associated genes [26,74]. These results indicate that

transcriptional control of key cell identity genes is especially dependent on Mediator and

SMC complexes.
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SMC contributions to chromosome structure

Chromosomes are organized into a hierarchy of structures, ranging from DNA loops such as

enhancer-promoter loops, to topological domains that appear to average ~0.8 Mb, to

chromosome compartments and territories [46,77–80]. The formation of enhancer-promoter

DNA loops at active genes (Figure 2), as well as other loops involving CTCF, produce one

level of chromosome organization that is facilitated by SMC complexes. As might be

expected, such DNA loops are unique to cell state and change during differentiation and

reprogramming [81–84]. These DNA loops are also thought to be dynamic within individual

cells [77]. In contrast, topological domains are shared by the different cell types of an

organism, conserved across species, and their boundaries contain insulators [46,85]. The

expression of genes within a topological domain is generally correlated [77,86–88]. Since

the boundaries of topological domains contain CTCF sites, and cohesin is found associated

with such sites, it seems likely that cohesin contributes to the structure of topological

domains. However, there are conflicting views on this subject, as one recent study detected

few changes in topological domain organization upon loss of cohesin, while another study

using a higher resolution analysis in a different cell type observed global changes in domain

organization [89,90]. It is not yet clear whether the SMC complexes contribute to

chromosome compartments, which consist of multiple topological domains, or chromosome

territories, which consist of multiple chromosome compartments [77,91,92].

The condensin complexes are thought to contribute to chromosome compaction, which can

be viewed as another level of chromosome organization [93–95]. Evidence in D.

melanogaster and in mammalian cells suggest that SMC complexes are generally associated

with transcriptionally active euchromatin and are present at much lower levels within

heterochromatin [26,28,96,97]. This is consistent with evidence that these complexes are

loaded on chromosome arms by the transcription initiation apparatus, and suggests that the

mechanisms involved in gene repression in heterochromatin do not rely on SMC complexes.

SMC mutations and disease

Defects in cohesin and condensin can lead to genome disorganization, cell cycle delay,

altered transcription and cell death [11,26,28,55–57,65,93,98–100]. Mutations in cohesin

and its regulatory proteins cause a broad spectrum of developmental diseases termed

cohesinopathies [101,102]. In Cornelia de Lange Syndrome, for example, patients have

mutations in the cohesin subunits SMC1 and SMC3, as well as the SMC-loading factor

NIPBL [103–105]. Mutations in the cohesin acetyltransferase ESCO2 can cause the related

Roberts Syndrome [106,107]. Mutations in SMC proteins are also found in some cancers.

Mutations in the cohesin subunit STAG2 frequently occur in a range of tumor types

including urothelial bladder cancer and glioblastoma multiforme, while mutations in SMC3

are associated with acute myeloid leukemia and may contribute to its pathogenesis [108–

112]. Mutations in two condensin subunits, SMC2 and SMC4, are found in pyothorax-

associated lymphoma [113]. Condensin becomes overexpressed in Wnt-activated

hyperplastic cells allowing for rapid proliferation [114]. It is likely that these cohesin and

condensin defects result in the loss of long-range interactions between regulatory elements

and their genes, leading to misregulation of cell type-specific gene expression programs.
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Conclusions

The loading and unloading of SMC complexes at transcriptional regulatory elements links

the control of gene expression to the control of chromosome structure. Proper expression of

genes that control cell identity is especially dependent on the functions of SMC complexes,

and mutations in the SMC complexes cause diseases associated with a loss of cell identity.

Thus, improved understanding of the roles of SMC complexes in gene regulation,

chromosome structure and cell identity should advance our understanding of the

relationships between these important processes and the mechanisms involved in the

cohesinopathies and cancer.
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Figure 1.
Subunit composition of the mammalian SMC complexes cohesin, condensin I and condensin

II.
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Figure 2.
Model for loading and translocation of SMC complexes during transcription. Transcription

factors bind to enhancers and recruit the Mediator coactivator, NIPBL, and RNA

Polymerase. NIPBL loads the SMC complexes at these regulatory elements where they

contribute to the formation or stability of the enhancer-promoter DNA loop. Transcription

elongation may facilitate translocation of SMC complexes to other regions of the

chromosome.
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