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ABSTRACT: Hemispherical asymmetry in core dynamics induces degree-1 pressure variations at the 

core mantle boundary (CMB), which in turn deforms the overlaying elastic mantle, at the same time 

keeps center of mass of the whole Earth stationary in space. We develop a systematic procedure to deal 

with the degree-1 CMB pressure loading. We find by direct calculation a surprisingly negative load 

Love number h1=-1.425 for vertical displacement. Further analysis indicates that the negative h1 cor-

responds to thickening above the positive load that defies intuition that pressure inflation pushes over-

laying material up and thins the enveloping shell. We also redefine the pressure load Love numbers in 

general to enable comparison between the surface mass load and the CMB pressure load for the whole 

spectrum of harmonic degrees. We find that the gravitational perturbations from the two kinds of loads 

at degrees n>1 are very similar in amplitude but opposite in sign. In particular, if the CMB pressure 

variation at degree 2 is at the level of ~1 hpa/yr (1 cm water height per year), it would perturb the vari-

ation of Earth’s oblateness, known as the J2, at the observed level.  

 
INTRODUCTION 

Advances in analyzing teleseismic waves and 
normal modes have shown evidences of Eastern- 
Western hemispherical asymmetry in material proper-
ties at the top of the Earth’s inner core (e.g., Monne-
reau et al., 2010; Irving et al., 2009; Niu and Wen, 
2001). There are two competing hypotheses in the at-
tempt to explain this hemispherical asymmetry. The 
“lopsided growth” model (Monnereau et al., 2010) 
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proposes an apparent translation caused by material 
crystallization in the Western Hemisphere of the inner 
core and, at the same time, melting in the Eastern He-
misphere. On the other hand, the “decentering” me-
chanism (Vamos and Suciu, 2011) suggests that the 
spherically symmetrical inner core is simply off the 
geometric center towards the east in the equatorial 
plane by tens of kilometers. A third hypothesis relates 
to predicted models of solidification and melting of 
the inner core from CMB heat flux (Gubbins et al., 
2011). Regardless of its details, the physical cause of 
the hemispherical symmetry of the inner core has to 
be consequentially in association with the dynamic 
processes in the fluid outer core and the mantle (e.g., 
Olson and Deguen, 2012; Buffet, 1996; Wahr and de 
Vries, 1989).  

From geodetic prospective, hemispherical 
asymmetry in the Earth’s interior can be viewed as a 
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background field, since its evolution is most likely in 
geological time scales. Observational evidences for 
tangible decadal variation in the core motion is asso-
ciated with the flow at the upper reach of the outer 
core, which have been established based on the simi-
larities between the decadal variation of the west drift 
of the magnetic field and the decadal variation of the 
Earth’s rotation rate commonly known as variation in 
the length of day (Dumberry and Bloxham, 2004; 
Jackson et al., 1993). By “frozen flux” approximation 
(e.g., Roberts and Scott, 1965), the magnetic lines of 
force move along with the fluid parcels at the top 
reach of the outer core underneath the core mantle 
boundary (CMB). Thus, inversions for the core flow 
near the CMB and consequently geostrophic pressure 
variations underneath the CMB can be made from ob-
servations of the magnetic field (e.g., Fang et al., 1996; 
Gire and Le Mouël, 1990). 

It is reasonable to assume that the magneto-   
hydrodynamic convection in the outer core dynami-
cally decouples with the thermally driven convection 
in the mantle, because of the markedly different in 
characteristic time scales between the fluid core con-
vection and the mantle convection (Kuang and Blox-
ham, 1997; Glatzmaier and Roberts, 1995). The dy-
namically decoupled mantle can be treated as an elas-
tic shell, passively deforming in response to CMB 
pressure variations. Previous investigations on mantle 
deformation induced by CMB pressure loading (e.g., 
Greff and Le Mouël, 2004; Fang et al., 1996) have 
ignored the hemispherical asymmetry, i.e., the degree- 
1 component in spherical harmonic decomposition of 
the deformation field. One of the objectives of this 
work is to develop a new theory for degree-1 CMB 
pressure loading under the framework of the classical 
load Love numbers (Farrell, 1972; Longman, 1962).  

The degree-1 loading in quasi-static elastic prob-
lems distinguishes itself by the rise, among all inde-
pendent solutions, of a rigid shift that produces no 
strain and consequently makes the strain boundary 
conditions ill-conditioned. For surface mass loading, 
the degree-1 problem is solved originally by (Farrell, 
1972), and later on perfected by Saito (1974) and 
Dahlen (1976). The key ingredient of the degree-1 so-
lution is to impose additional constraint by specifying 
the reference frame of choice. As it turns out, the   

degree-1 loading by the CMB pressure it not a simple 
extension of Farrell’s solution (Farrell, 1972), because 
the core-mantle coupling is a process of internal ad-
justment of the Earth system, while in the surface 
loading problems the Earth as a whole adjusts the ex-
ternal loading. Interesting dynamic issues arises from 
the internal adjustments. In this article, we limit our 
discussions at the phenomenological level by present-
ing the generally physical consideration and mathe-
matical procedure for treating the degree-1 loadings 
from the outer surface and from the CMB. In an earli-
er work (e.g., Fang et al., 1996) the Love numbers for 
the CMB loading for harmonic degrees n>1 are intro-
duced in an ad hoc fashion. Here we streamline the 
general theory so that comparison could be made be-
tween the surface mass loading and the CMB pressure 
loading. This comparison allows us to further expose 
the peculiarity of the degree-1 loading by the CMB 
pressure.  

As mentioned earlier, we treat the mantle as a 
self-gravitating, non-rotating, isotropic, and laterally 
homogeneous elastic shell specified by the PREM 
(Dziewonski and Anderson, 1981), which is passively 
deforming by the CMB pressure variation. In a sepa-
rate investigation Dumberry and Bloxham (2004) ar-
gue that the CMB pressure variation not only perturbs 
the mantle but also perturbs the entire Earth including 
the core itself. This model in essence is to treat the ap-
plied CMB pressure variation as external sources 
completely foreign to the Earth. In our case, however, 
the CMB pressure variation arises from the motion of 
the core itself. Strictly speaking, motions in the mantle 
and the core are dynamically coupled. Our elastic 
shell model is a simplification of the coupled dynamic 
process. Validation of this simplification is shown in 
the APPENDIX. The key point is that if the entire core 
is dynamically adjusting to the prescribed CMB pres-
sure variation, then an additional pressure perturbation 
will arise at the CMB due to the dynamic adjustment 
by the bulk of the fluid core. As a result, the total of 
the CMB pressure variation is no longer that pre-
scribed at the CMB. But the “observed” CMB pres-
sure by geostrophic inversion from the observed secu-
lar variation of the magnetic field can only be unders-
tood as the total of the CMB pressure variation (see 
APPENDIX) (e.g., Fang et al., 1996; Gire and Le 
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Mouël, 1990).  
Technically, the terms spherical layer, spherical 

surface, or layer are always referred to being concen-
tric with the outer surface of the Earth. The terms 
pressure or pressure anomaly always refer to the 
non-hydrostatic increments.  
 
GREEN FUNCTIONS FOR THE PRESSURE 
LOADS 

We interchangeably use Ω and colatitude-    
longitude (θ,φ) for positions on the surface of a unit 
sphere in a geocentric frame. Specifically, we will 
choose the Combined Center of Mass of the Whole 
Earth (CCMWE), including the mantle and the core as 
our reference frame. For the purpose of comparability, 
we readdress the conventional surface mass load 
problem (Longman, 1962) as the mass-related surface 
pressure (MRSP) load, with the load mass described 
by an equivalent pressure. A pressure distribution over 
a layer of radius r, called an r-layer, is always pro-
jected onto the surface of a unit sphere, thus, a pres-
sure distribution on the outer surface of radius a and 
on the CMB of radius b are both written as p(Ω) or 
p(θ,φ). Surface displacement, u, and gravitational 
perturbation, φ, due to an arbitrary pressure load, 
p(Ω), on an r-layer can be represented by Green func-
tions (U,Φ) 

        

(1) 

The radius variable, r, in the left subscript of the 
Green functions specifies the r-layer of the pressure 

load, while the r2 term arises from the area element 
of the r-layer. It is understood that the Green function 
technique advocated by Longman (1962) is not ne-
cessary for load problems. Nonetheless, the method 
does have the advantage of clarity and historical con-
tinuity. 

Denote by T the stress tensor within the solid 
earth. The stress boundary condition for the Green 
functions on the r-layer of load is  

               (2) 

where ˆ r  is the unit radial vector and δr the Dirac δ 
function on the r-layer. The boundary condition (2) is 
valid for the outer surface load downward as well as 
for the internal pressure load upward, since the normal 
of an internal r-layer, as the boundary of the upper 
part of the mantle, is −ˆ r . The function δr can be writ-
ten in spherical harmonics 

 

(3) 

where Pn are the un-normalized Legendre polyno-
mials.   

Combined with the spherical symmetry of the 
assumed Earth model (PREM), the axial symmetry of 
the impulse load (3) allows us to load the r-layer on 
the North Pole. In this particular setting, Ω'=0, α=θ 
and the impulse load (3) is independent of the angular 
order, m. The gravity-sensitive poloidal components 
that are relevant for the tidal problems are (e.g., Mel-
chior, 1978; Longman, 1962) 

                                   (4) 

where the un-normalized harmonics,Ynm, are in the form 

Ynm (θ,ϕ) = Pnm (cosθ)sin mϕ m =1,L, n
Ynm (θ,ϕ) = Pnm (cosθ)cosmϕ m = −n, − (n −1),L,−1, 0                                     

(5) 

Note, the Earth model PREM is inverted from 
seismic data, and the frequency, ω, of the fluctuation 
in the CMB pressure is very low compared to that of 
seismic normal modes, we follow the classic tidal 

theory (e.g., Melchior, 1978; Longman, 1962) and 
consider the static deformation of a self-gravitating 
elastic mantle shell, i.e., ω→0. The linearized elasto-  
gravitational operator for the Green function spectrum 
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(Unm, Vnm, Φnm) has become classic since Alterman et 
al. (1959). There are six independent solutions raised 
by the second order ordinary differential equations on 
(Unm, Vnm, Φnm). When the deformation of the whole 
earth is considered, three of the six solutions are 
eliminated inside the inner core as required by regu-
larity at the origin. Since we explicitly treat the mantle 
as a dynamically independent system passively de-
forming by the CMB pressure, the elasto-gravitational 
operator of Alterman et al. (1959) in our case is con-
fined to the spherical mantle shell, starting at the CMB. 
Therefore, there is no regularity required at the origin 
of the coordinates, and all six independent solutions 
have to be incorporated in solving for the Love num-
bers. Six boundary conditions, three at the CMB, b, 
and three at the surface, a, will be given in detail be-
low to match the six independent solutions.   

The elasto-gravitational operator in the mantle 
shell domain preserves the symmetry properties as in 
the whole-earth domain. Most noticeably, the operator 
is independent of the angular order, m, as a result of 
spherical symmetry. If the source terms (the loading 
from outside and within) in the boundary conditions 
are independent of m as is the case of our Green func-
tions, then, the radial components in (4) are indepen-
dent of m. We have in this situation the degenerate 
solution (Un, Vn, Φn) instead of (Unm, Vnm, Φnm). If the 
source terms in the boundary conditions are 
m-dependent, then, the m-dependent solution (Unm, 
Vnm, Φnm) is proportional to a common factor of the 
source terms. Particularly, if the boundary conditions 
contain only a single source term, say, ψnm, then, the 
solution can be written as 

Unm ,Vnm,Φnm( ) =ψnm Un ,Vn,Φn( )          (6) 

where (Un, Vn, Φn) is the solution obtained by setting 
ψnm =1. Analytical (for special cases) and numerical 

solutions for various problems, mostly in 
three-solution approaches, have been worked out in 
numerous publications. An insightful review on the 
numerical solutions is given by Takeuchi and Saito 
(1972). The extension from three numerical solutions 
in the whole earth to six numerical solutions in the 
mantle shell is trivial. We will not repeat the details of 
the numerical procedures.   

Consider the solution of the Green functions (4) 
for an impulse force loaded at the CMB at the North 
Pole. As mentioned earlier, it will result in degenerate 
solutions (Un, Vn, Φn). Six boundary conditions are 
needed to accommodate six independent solutions for 
the elasto-gravitational operator. For a pressure load at 
the CMB, the outer surface of the elastic Earth is a 
free surface. Thus, the three boundary conditions, two 
stress components plus a gravitational potential, are 
identical to those of the seismic normal mode prob-
lems (e.g., Dahlen and Tromp, 1998; Takeuchi and 
Saito, 1972). We only have to consider three addition-
al boundary conditions at the CMB. 

For the stress boundary conditions, we take Mgδb 
as the impulse force, instead of a unit impulse force, 
δb. Here M is the total mass of the Earth, and g the 
surface gravity g≈980 cm/s2. Although the mantle is 
dynamically decoupled from the core, they have to be 
coupled kinematically. This means that the radial dis-
placement Unm must be continuous across the CMB 
and in fact any layer of discontinuity in density, ρ. 
Without an external mass load, the perturbation in 
gravitational potential, Φnm, is only due to the de-
formed mass within the mantle, plus the density con-
trast at the deflected CMB. The gravitational boundary 
conditions across the outer surface, a, and the CMB, b, 
are, in a unified form (e.g., Dahlen and Tromp, 1998; 
Hager and Clayton, 1989; Takeuchi and Saito, 1972)  

∂Φnm (r)
∂r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ex

−
∂Φnm (r)

∂r
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

in

= 4πG ρin (r) − ρex (r)( )Unm (r) (r = a, b)
                           

(7) 

where G is the gravitational constant. The subscript ex 
stands for the exterior of the mantle, in, the interior of 

the mantle. The exterior at the outer surface boundary, 
a, is the open air, thus 

∂Φnm

∂a
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ex

= −
n +1

a
Φnm ρex (a) = 0 ρin (a) = ρ(a)                                         (8) 

The exterior of the mantle at the CMB b is the 
fluid outer core and the inner core. For harmonic de-

grees, n≥2, the center or mass of the cores remains 
unperturbed in the inertial space by the mantle defor-
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mation. Therefore, we can treat the gravitational per-
turbation in the core as due to the deformed mantle 
alone for n≥2 

∂Φnm

∂b
⎛
⎝⎜

⎞
⎠⎟ ex

=
n
b

Φnm , n ≥ 2

ρex (b) = ρ(b− ), ρin (b) = ρ(b+ )          

(9) 

For degree-1 solution, the center of mass of the 
cores has to shift a bit in order to maintain the 
CCMWE fixed in the inertial space. The shift will in-
validate this relation (9) (see next section). 

Denote by Tn
rr(r) and Tn

rθ (r) the ˆ r ̂  r  and  
stress components of harmonic degree n, the complete 
set of boundary conditions for the Green functions of 
n≥2 is 

Tn
rr (a) = 0                           (10a) 

Tn
rθ (a) = 0                           (10b) 

∂Φn (a)
∂a

+ 4πGρ(a)Un (a)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

n +1
a

Φn (a) = 0 (10c) 

Tn
rr(b) = −(2n +1) Mg

4πb2 = −(2n +1) a
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2 g2

4πG  
(10d) 

Tn
rθ (b) = 0                           (10e) 

∂Φn (b)
∂b

+ 4πG ρ(b+) − ρ(b−)( )Un (b)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ −

n
b

Φn (b) = 0  

(10f) 

The load term in the radial stress component (10d) 
is the harmonic coefficient of Mgδb obtained by letting 
Ω'=0 and α=θ in (4). The term (a/b)2 arises in (10d) by 
applying the relation g=MG/a2.  
 
DEGREE-1 TERMS FOR THE CMB PRESSURE 
LOAD 

Pressure loads at degree 0 correspond to a pure 
spherical expansion with no change in surface gravity. 
We chose to ignore degree zero loads. The peculiarity 
and sometimes confusion in dealing with the degree-1 
terms has to do with a rigid shift solution, arising in 
the static state ω=0. That is, one of the six solutions 
for the elastio-gravitational operator at degree-1, 

˜ U 1, ˜ V 1, ˜ Φ 1( ), degenerates into a rigid shift inside the 
mantle shell b≤r≤a 

˜ U 1(r) = χ
˜ V 1(r) = χ
˜ T 1

rr(r) = 0
˜ T 1

rθ (r) = 0
˜ Φ 1(r) = −χg(r)
∂ ˜ Φ 1(r)

∂r
+ 4πGρ(r) ˜ U 1(r) =

2χ
r

g(r)
         

(11) 

where g(r) is the Earth’s gravity as a function of radius, 
and χ represents the amount of the rigid shift. If the 
whole earth is taken as a self-gravitating elastic me-
dium, as in the classic tidal problems, (11) is also va-
lid in the solid inner core. For the outer core, where 
the tangential displacement may go to infinity, the ri-
gid shift solution (11) satisfies the Poisson equation 
(Fang, 1998; Dahlen, 1976; Farrell, 1972). 

In order to deal with this rigid shift (11) in a gen-
eral way, we first recall some basics. A stripped-down 
mechanical system concerns the balance of three ma-
jor forces: inertial forces in the form of accelerations, 
tractions in the form of stresses, and body forces in the 
form of self and applied gravitation. With properly 
prescribed initial and boundary conditions, the evolu-
tion of the system can be determined uniquely by its 
governing equations in the form of a local balance of 
forces. When the inertial forces are dropped by setting 
ω→0, there are only two types of forces balancing 
each other locally inside the mantle. But the solution 
(11) is stress free, hence it does not correspond to a 
balance of forces in the mantle system. The gravity in-
side the mantle cannot balance itself to give rise to a 
finite rigid shift. Put in another way, the rigid shift so-
lution (11) at degree 1 allows us to specify the refer-
ence frame of the static deformation, but the reference 
frame cannot be determined by the governing equa-
tions in the form of a local balance of forces, because 
of the missing inertial forces. An additional constraint 
is required for specifying the reference frame. This 
constraint, plus the old boundary conditions (10), 
would make the system overdetermined. The overde-
termination can be eased by relaxing the boundary 
conditions. If the old boundary conditions are consis-
tent with the new constraint, the new constraint is 
simply redundant. Otherwise, one of the old boundary 
conditions in (10) has to be discarded to give room for 
imposing the new constraint. The physical grounds for 
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such a treatment are the following. The old boundary 
conditions constrain the state of strains, while the 
mantle at degree-1 is only partially in a state of strain. 
Therefore, the old boundary conditions have to be 
“partially” relaxed to accommodate this partial state of 
strain. The new constraint in place of the relaxed old 
boundary condition is used to determine the rigid shift 
component.  

Mathematically, we have six independent solu-
tions of non-zero static strains and six boundary con-
ditions (10a–10f) for degrees n≥2, and the local bal-
ance of forces is perfect at each degree. For degree-1, 
however, we have only five independent solutions for 
non-zero static strains. One of the six boundary condi-
tions (10) has to be discarded so that a particular solu-
tion at degree-1, (U1

p, V1
p, Φ1

p), can be determined by 
the five independent solutions and five remaining 
boundary conditions. We notice that the (U1

p, V1
p, Φ1

p) 
so obtained are not unique, because each one of the 
five solution vectors has six elements in the form of 

the left hand side of (11), while we have only five 
boundary conditions available. One can easily prove 
that if the five boundary conditions chosen are homo-
geneous (identically zero) to the rigid shift solution 
(11), then the non-unique particular solutions (U1

p, V1
p, 

Φ1
p) differ with each other only by a rigid shift. The 

amount of shift, χ, is determined by incorporating an 
additional constraint usually associated with the center 
of mass. The complete solution at degree-1 is reached 
by adding the components of the rigid shift (11) to the 
particular solution (U1

p, V1
p, Φ1

p) 

U1(r) = U1
p (r) + χ

V1(r) = V1
p (r) + χ

Φ1(r) =Φ1
p (r) − χg(r)                   

(12) 

To see which one of the six boundary conditions 
must be discarded, we substitute (11) into the left hand 
side of (10a–10f) to obtain 

˜ T 1
rr(a) = 0

˜ T 1
rθ (a) = 0

∂ ˜ Φ 1(a)
∂a

+ 4πGρ(a) ˜ U 1(a)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

2
a

˜ Φ 1(a) = 0

˜ T 1
rr(b) = 0

˜ T 1
rθ (b) = 0

∂ ˜ Φ 1(b)
∂b

+ 4πG ρ(b+) − ρ(b− )( ) ˜ U 1(b)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

1
b

˜ Φ 1(b) = 3 g(b)
b

− 4πGρ(b− )

                                (13) 

It is clear that the first five boundary conditions 
in (13) are homogeneous to the rigid shift solution. 
Thus, the five boundary conditions would not be vi-
olated by the final solution (12), if and only if the first 
five (10a–10e) are chosen for computing the particular 
solution (U1

p, V1
p, Φ1

p). The boundary condition that 
has to be discarded from (10) for degree-1 is (10f). 
The physical justification of this decision can be seen 
shortly.  

The next step is to determine the amount of shift, 
χ, by incorporating an additional constraint. We place 
the origin of our reference frame at the combined cen-
ter of mass of the mantle and the core i.e., the 

CCMWE. The total potential of the mantle and the 
core must vanish at degree-1 outside the surface of the 
Earth  

Φ1
p(a)− χg(a)( ) + Φ1

core(a) = 0
             

(14) 

where Φ1
core(r)  is the degree-1 coefficient of the 

potential perturbation from the core. Neglecting the 
density anomaly inside the core, we already assume 
that Φ1

core(r)  is generated only by the deflection at the 
boundary of the outer core of density ρ(b-), which is 
welded to the deformed lower boundary of the mantle 
of density ρ(b+).  

Φ1
core(r) = −

4πGb3 ρ(b− )− ρ(b+ )( )
3r2 U1

P (b)+ χ( ) r > b                                       (15) 

It follows from (12), (14), and (15) that  
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χ =
Φ1

p (a) −
4πGb3 ρ(b−) − ρ(b+)( )

3a2 U1
p (b)

g(a) +
4πGb3 ρ(b−) − ρ(b+)( )

3a2

                                                  (16) 

The physical justification for discarding the 
boundary condition (10f) manifests itself through our 
discussions from (14) to (16). In fact, the boundary 
condition (10f) represents a physical state where the 
perturbation in gravitational potential within the core 
is due to the deformed mantle only. This is not true at 
degree-1: the center of mass of the deformed mantle 
shifts in the inertial space, and the center of mass of 
the core has to shift accordingly to maintain the sta-
tionary CCMWE. As a result, the potential perturba-
tion within the core is a combined effect of the de-
formed mantle and shifted center of mass of the cores. 
If the entire core is an incompressible fluid of constant 
density, there may not be degree-1 pressure exerted at 
the CMB, because the boundary condition (10f) must 
be valid at degree-1.  

Our analysis from (11) to (16) is independent of a 
particular set of the five boundary conditions 
(10a–10e). In other words, the shift obtained by (16) 
also applies to the problem of a Mass-Related-    
Surface-Pressure (MRSP) load on a mantle shell with 
or without a dynamically decoupled core. Although 
this MRSP loading on a mantle shell has little value in 
practice, it proves to be a good thought-experiment in 
helping understand the connection between our treat-
ment of the degree-1 terms and the treatment of Far-
rell (1972) and Dahlen (1976). Suppose we consider 
an identical MRSP load as Longman’s (1962) on a 
mantle shell in the presence of a dynamically de-
coupled fluid core. The three homogeneous surface 
boundary conditions (10a–10c) then become inhomo-
geneous.   

T1
rr (a) = −

3g2

4πG
                      (17a) 

T1
rθ (a) = 0                          (17b) 

∂Φ1(a)
∂a

+ 4πGρ(a)U1(a)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

2
a

Φ1(a) = −3g  (17c) 

The CMB becomes a purely free-slip boundary 
without pressure load (e.g., Hager and Clayton, 1989). 

Repeating the analysis from (11) through (16), we ob-
tain the degree-1 shift χ. Now let us shrink the volume 
of the core by b→0, the free-slip boundary conditions 
at the CMB will then be replaced by the regularity 
condition at the origin, U1(0)=V1(0)=Φ1(0)=0. Hence, 
the problem reduces to the exact Longman’s (1962) 
MRSP load problem on a coreless solid earth. In the 
mean time, we have from (16) 

                        
(18) 

This is exactly the same degree-1 shift derived by 
Farrell (1972) and Dahlen (1976) for the MRSP load 
problem. We can see at this point that the treatments 
by Farrell (1972) and Dahlen (1976) on the degree-1 
terms is just a special case of the general procedure 
introduced here.  

What is remarkable about the degree-1 terms in 
the MRSP load problem is that the three surface 
boundary conditions are self-consistent through the 
compatibility relation (Saito, 1974; Farrell, 1972) 

If the particular solution (U1
p, V1

p, Φ1
p) in this 

MRSP problem is determined by any two of the three 
boundary conditions in (17), the third (discarded) 
boundary condition is met automatically by (U1

p, V1
p, 

Φ1
p) through the compatibility relation (19). Physical-

ly, this degree-1 self-consistence in boundary condi-
tions for MRSP loading results from the fact that the 
Earth as a whole adjusts to the external loading to 
keep the CCMWE stationary in space. In contrast, for 
the CMB pressure loading, the mantle and the core 
have to adjust each other internally to cancel out the 
degrre-1 hemispherical asymmetry in gravitational 
potential to keep the CCMWE stationary in space. The 
boundary condition (10f) that gravitationally couples 
the deformed mantle and the core is incompatible   
tothenon-deformational rigid shift adjustment at   
degree-1, and hence must be replaced by the CCMWE 
condition (14).  
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T1
rr (a) + 2T1

rθ (a) −
g

4πG
∂Φ1(a)

∂a
+ 4πGρ(a)U1(a)

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

2
a

Φ1(a) = 0                                (19) 

NEW DEFINITION FOR CMB PRESSURE 
LOAD LOVE NUMBERS 

To make the load Love numbers comparable with 

the classical SMRP load Love numbers, we redefine 
the load Love numbers hn, ln, kn for the CMB pressure 
load based on the Green functions for the Mgδb load 

Un (a) =
a
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

ahn Vn (a) =
a
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

aln Φn (a) = −
a
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

knag                                    (20) 

The minus sign incurred in the kn equation in (20) 
is because we adopt the physical convention for the 
potential which is opposite in sign with the geodetic 
convention (e.g., Heiskanen and Moritz, 1968).   

The harmonic spectrum for the Green functions 
for the unit impulse force δb are recovered by divid-
ing (18) by 1/Mg. The complete expressions for the 
Green functions are  

                                  (21) 

Here we return the variable from θ back to α. Advan-
tages of this new definition of the CMB pressure load 
Love numbers (20) can be seen by computing the per-
turbed fields (1) with an arbitrary CMB pressure p(Ω). 
The CMB pressure, p(Ω), can be represented by its 
spectrum, pnm, with the normalized harmonics 
Y nm (θ,ϕ) 

              
(22) 

Our normalization for the harmonics Y nm (θ,ϕ) 
is consistent with Heiskanen and Moritz (1968) and 
Stacey (1991). Substituting (21) and (22) into (1) and 
using the addition theorem for spherical harmonics, 
we obtain the radial component, ur, of the displace-
ment and the potential perturbation, φ 

    

(23) 

where ρE is the average density of the Earth. Relations 
in (23) are identical to those for the MRSP loads, ex-
cept that for the MRSP loads, we usually have (1+kn) 
instead of the single number kn in the φ equation, 
because the mass load itself contributes to the poten-
tial perturbation. As far as the load Love numbers, kn, 

they only correspond to the potentials generated by the 
deformed Earth’s perturbed density. Therefore, the 
load Love numbers defined by (20) for the motion- 
related CMB pressure loads are completely compara-
ble with the load Love numbers for the MRSP loads.  

 
RESULTS AND DISCUSSIONS 

Table 1 lists the load Love numbers calculated 
for the CMB pressure up to degree-10. A striking fea-
ture in the list is a large negative degree-1 vertical 
Love number, h1, standing out among the otherwise 
all-positive hn (n≥2). The positive hn (n≥2) is consis-
tent with intuition: a positive pressure at the CMB  

 
Table 1  Load Love numbers for the CMB pressure load 

n hn ln kn 

1 -1.425 23 -0.434 03 0.227 76 

2 0.658 98 -0.023 60 0.317 35 

3 0.352 21 -0.052 79 0.109 24 

4 0.194 33 -0.031 93 0.043 81 

5 0.113 13 -0.017 76 0.019 90 

6 0.067 97 -0.009 84 0.009 76 

7 0.041 35 -0.005 47 0.005 00 

8 0.025 19 -0.003 04 0.002 63 

9 0.015 30 -0.001 69 0.001 40 

10 0.009 24 -0.000 94 0.000 75 
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pushes the mantle up from below to cause positive 
vertical displacement. 

This negative h1 is markedly different from the 
MRSP loading, where the degree-1, h1' (prime is used 
to distinguish the MRSP loading), is of the same sign 
with the higher degrees hn', n≥2. The phenomenological 
cause of the negative h1 is shown schematically in Fig. 
1. In the undeformed state, the center of mass of the 
mantle and the center of mass of the core coincide 
with the CCMWE at position, say, O (Fig. 1a). When 
an impulse pressure load is applied at the North Pole 
in the positive direction, the degree-1 component of 
strained-deformation produces thickening above the 
point of load and thinning at its antipodal point within 
the mantle. This asymmetric thickening-thinning shifts 

the center of mass of the mantle towards the North 
Pole. The shifted center of mass of the mantle in turn 
brings the center of mass of the inner core upwards by 
gravitational attraction. The shifts of center of masses 
of the mantle and inner core are offset by the down-
ward shift of the fluid outer core. The downward shift 
in the center of mass of the fluid outer core is not 
strong enough to offset the shift in the center of mass 
of the mantle in inertial space. As a result, the whole 
Earth undergoes a rigid shift towards the South Pole in 
inertial space to keep the CCMWE stationary (Fig. 1a). 
The mantle thickening at the point of load and the 
upward shift of the inner core bring extra mantle mass 
closer to the point. This is why the gravitational k1 is 
positive (k1>0). 
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Figure 1. Schematic displacementsat degrees 1 and 2 for an impulse load on the North Pole at the CMB in 
reference to the undeformed surface and CMB in inertial space. The CCMWE is located at the point O. 
Arrows indicate the directions of the pressure load at the North and South poles. Concentric dashed lines 
indicate the undeformed inner core boundary, CMB and the surface.   
 

The kinematic explanation does not address the 
question why at degree-1 the mantle is thickened at 
the North Pole (Fig. 2). For the directions of forcing in 
Fig. 1a, the North Pole is expected to be thinned, with 
the thickening taking place at the South-Pole. A full 
explanation of this unusual thickening at the North 
Pole requires additional testing. Detailed analyses and 
testing are conducted in a separate paper.  

Another interesting feature revealed in our cal-
culations is the non-integer k1. In the case of the 
MRSP loads, k1' is known as k1'=0, if the reference 

frame is centered at the center of mass of the de-
formed earth (Dahlen, 1976; Farrell, 1972). Or we 
have k1'=-1, if the origin of the reference frame is 
placed at the CCMWE (Conrad and Hager, 1997). In 
the case of a CMB pressure load, we find k1=0.227 76 
by placing the origin of the reference frame at the 
CCMWE. This non-integer k1 measures the potential 
perturbation in the deformed mantle to balance the 
potential perturbation of the deformed core in order to 
keep the CCMWE fixed in inertial space. This 
non-integer k1 of the deformed mantle cannot be re-
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lated to gravitational observations at the surface espe-
cially when the gravity is derived from satellite rang-
ing. As far as the solid earth, geodetic techniques are 
only sensitive to the CCMWE. However, this 
non-integer k1 is important for studying the interaction 
between the core and the mantle, which will be consi-
dered elsewhere. 
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Figure 2. Degree-1 vertical Love numbers for the 
CMB pressure load (dashed line) and the MRSP 
load (solid line) as functions of radius within the 
mantle. Note, the surface value for the MRSP Love 
number hn'(a)=-1.29, because the reference frame 
is centered at the CCMWE. 

 
The comparison between the SMRP loading and 

the CMB pressure loading for n>1 is shown in Fig. 3, 
where the surface mass load Love numbers, hn' and kn' 
are calculated based on the procedure in Fang (1998). 
As shown in Fig. 3, the rapid decrease of the CMB hn, 
as a function of n, is due to the great depth of the 
CMB. Specifically, the convergence connects to the 
issue of penetration depth. A well known property of 
the elasto-gravitational operator of Alterman et al. 
(1959) is that, when the Earth undergoes a free oscil-
lation, or the source of excitation is near the Earth’s 
surface, the radial perturbations (Un(r), Vn(r), Φn(r)) 
penetrate down from the surface as a function of de-
gree n. The higher the degree, the shallower the radial 
perturbations penetrate. This is the foundation for the 
equivalence of high degree seismic normal modes and 
surface waves (e.g., Dahlen and Tromp, 1998; Aki and 
Richards, 1980; Takeuchi and Saito, 1972). Fang and 
Hager (1999) have made a quantitative analysis on the 
penetration depth for the MRSP load Love numbers, 
hn'. For the CMB pressure loads, the radial perturba-
tions (Un(r), Vn(r), Φn(r)) penetrate the mantle up-
wards from the CMB. The vertical hn penetrates 

through the mantle only up to degree-6. One reason 
for such a rapid decrease is that the perturbations 
spreads from the CMB outwards to a broader space, 
like a wave from a point source. The outward spread-
ing reduces the deformation energy at locations farther 
away from the source more rapidly than the inward 
propagation of perturbations from the surface. 

The MRSP load, hn', does not converge to zero. 
As n→∞, hn' converges to a number in the range of 
-10– -3. The reason we do not specify the limit h∞' is 
that for ultra high degrees, the penetration depths of 
hn' are extremely shallow, and the value of hn' are crit-
ically sensitive to the crustal structure. The crust is 
very heterogeneous in the transverse direction, it is 
meaningless to consider h∞' for a model with a spher-
ically symmetric thin crust.  

The most intriguing revelation in the calculations 
in Table 1 and the plots in Fig. 3 is that the gravita-
tional kn for the motion-related CMB pressure loads 
are nearly identical in absolute value with their coun-
terparts kn' for the MRSP loads. This means that if the 
projections of pressure fields from the surface and the 
CMB onto the surface of a unit sphere are identical, 
the deformed mantle mass will produce nearly iden-
tical potential perturbations at the Earth’s surface, only 
opposite in sign, for both pressure loads, regardless of 
the depth of the CMB pressure. To understand this 
important feature, we first notice from Fig. 2 that the 
vertical hn' curve is markedly different from the gravi-
tational kn' curve. The diverging hn' (in Fig. 3) 
represents a significant surface deformation caused by 
the surface load. The rapidly converging (to zero) kn' 
curve implies a rapid decrease of deformation in the 
Earth’s interior i.e. a decrease in penetration depth. In 
other words, a surface pressure load produces a sig-
nificant deformation at the surface but much less sig-
nificant deformation in the interior. The CMB pressure 
produces much less significant deformation at the 
surface, as it should, but significant deformation in the 
interior, because the interior is closer to the source of 
load. This relatively significant deformation in the in-
terior contributes most for the gravitational kn. 

Finally, for geodetic signatures from the core 
motion, it is more important to examine the individual 
harmonic coefficients than to calculate the global pat-
terns, using (23). There are continuing efforts in the  
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Figure 3. Love numbers, starting from degree-2, 
for the CMB pressure load, hn and kn versus the 
Love numbers for the mass-related surface pres-
sure (MRSP) load, hn' and kn'. Details for the cal-
culations are in the text.  
 
determination and geophysical interpretation of the 
time variation of the Earth’s gravity field in the    
degree-2 zonal coefficient, known as J2 dot (e.g., 
Cheng and Tapley, 2004; Cox and Chao, 2002; Dickey 
et al., 2002; Cheng et al., 1997). The incremental δJ2 
caused by the mass-related surface pressure p' is 

δJ2 = −
3

aρE g 5
1+ ′ k 2( ) ′ p 20

              
(24) 

where p'20 is the degree-2 and order 0 coefficient in 
the harmonic expansion (20) for the pressure p', and 
k'2≈-0.31. The incremental δJ2 caused by the CMB 
pressure load is 

δJ2 = −
3k2

aρE g 5
p20

                    
(25) 

Suppose p'20= p20, then we have, from (24) and (25) 

δJ2(CMB)
δJ2(surface)

≈ 0.5
                     

(26) 

Relation (26) states that the J2 perturbation from the 
CMB pressure is about half the value of the J2 pertur-
bation from the mass-related surface pressure if the 

coefficients, p20, are identical. We may also find from 
(26) that 

δJ2 (CMB) ≈ −1.3×10−10 p20 hpa            (27) 
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APPENDIX: FORMAL CONSIDERATION OF THE 

ELASTIC SHELL MODEL  

Distinction between external and internal forcingin the 

surface loading is a delicate issue in geodynamics. Here we 

conduct a formal analysis to valid the spherical shell simplifi-

cation for the CMB pressure loading. 

Denote by a, b, and c, respectively, the radii of the Earth 

surface, the CMB, and the inner-outer core boundaries in an 

undeformed equilibrium state. Superscripts of a, b, and c 

represent the physical variables within the mantle, outer-core 

and the inner-core. Subscript 0 is used to denote the initial state. 

Since the CMB pressure variation is generated by the core dy-

namics, the complete treatment of the problem is to solve the 

coupled system simultaneously under different regimes. In the 

form of operators, we may write the governing equations as 
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(A-1) 

Here the operator E represents an elastic regime govern-

ing the displacement, u, density, ρ, potential Φ, and the gravity 

g. H is the magnetohydrodynamic (MHD) operator that go-

verns the displacement, u, velocity V, density, ρ, potential Φ, 

gravity g, temperature T, magnetic field B, and the pressure 

field p. The last operator, T, represents the regime of thermal- 

magneto-elasticity, governing the variables, u, ρ, Φ, g, T, and 

B.  

The variables in (A-1) should be understood as deviations 

from the reference state. For example, we may choose the ref-

erence state to be the Taylor state, in which the Lorentz axial 

torques on the surfaces of cylinders co-axial with the rotational 

axis and across the outer core (called the Taylor cylinders) va-

nish (Taylor, 1963). The flow field in this state does not include 

any torsional oscillation. A small departure from the reference 

state, i.e. the small Lorentz torques on the Taylor cylinders are 

balanced by fluid inertia, thus driving torsional oscillation. The 

operator H therefore includes this torsional oscillation genera-

tion mechanism. For simplicity, let use assume that H is indeed 

the operator for the torsional oscillation on the part of the flow 

field Vb. The ultimate forcing, for maintaining the reference 

state and for driving the torsional oscillation (i.e., to maintain a 

finite magnetic field in the core), is presumably the thermal- 

compositional buoyancy force. 

If there are no significant material exchange and phase 

changes among the Earth’s three major layers in time scales of 

interests, the system (A-1) is coupled in two ways: One is 

through self-gravitation, the second way in which the system is 

coupled is through the boundary conditions on the deformed 

boundaries.  

Even though the forcing of the geodynamo motion in the 

core remains obscured, it is mostly likely that thermal and 

compositional forcing dominate the balance of energy leakage, 

at least we assume so. As an implication of this assumption, 

density anomaly in the core is predominantly of thermal and 

compositional origin, and perturbations from mantle gravity on 

the core density plays a minor role. In other words, gravitation-

al coupling between the core and mantle could be neglected in 

the geodynamo motion. Then there is only one way the system 

is coupled, that is through boundary conditions.  

We use the over-tilde to distinguish the deformed bounda-

ries from the undeformed. For a viscous boundary layer, 

co-rotating with the mantle at the upper reach of the outer core, 

we have the boundary condition 

Vb ( %b − 0) = 0                              (A-2) 

On the mantle side, the radial component of the stress 

tensor Γrr
a  (the notation for stress is different from in the text) 

balances the pressure from the outer core 

Γrr
a ( ˜ b + 0) = − pb ( ˜ b − 0)                         (A-3) 

The remaining boundary conditions at the CMB relevant 

for our discussion are  

ua ( ˜ b + 0) = ub ( ˜ b − 0)

Φa ( ˜ b + 0) = Φb ( ˜ b − 0)

∂rΦ
a (b + 0) + 4πGρa (b + 0)ur (b) = ∂rΦ

b (b − 0) + 4πGρb (b + 0)ur (b)

                                            (A-4) 

The boundary conditions at the outer surface are  

Γrr
a ( ˜ a ) = 0  

Γrθ
a ( ˜ a ) = 0                                                                                         (A-5) 

∂rΦ
a ( ˜ a − 0) + 4πGρa ( ˜ a − 0)ur (a) = ∂rΦ

a (a + 0)  

Note the last one in (A-4) is not built on the deformed 

boundary. This is because we need to have a “surface density” 

for gravity across a 2D boundary. The surface density is formed 

by a thin layer of thickness, ur(b), as (ρa(b+0)–ρb(b–0))ur(b). 

It is evident from mathematical consideration, that if and 

only if the CMB pressure, pb ( ˜ b − 0) in (A-3) is prescribed by 

“observations”, then, the boundary conditions in (A-3), (A-4) 

and (A-5) become self-sufficient for the elastic regime E. Thus, 

the mantle deformation can be determined, without regarding 

details of the motion in the core, by the six equations adopted 

in the text and six essential boundary conditions stripped-down 

from (A-3), (A-4), and (A-5) 

Γrr
a ( ˜ a ) = 0                                                                                         (A-6a) 

Γrθ
a ( ˜ a ) = 0                                                                                        (A-6b) 

∂rΦ
a ( ˜ a − 0) + 4πGρa ( ˜ a − 0)ur (a) = ∂rΦ

a (a + 0)                                                              (A-6c) 
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Γrr
b ( ˜ b ) = − pb ( ˜ b − 0)                                                                                  (A-6d) 

Γrθ
a ( ˜ b ) = 0                                                                                         (A-6e) 

∂rΦ
a (b + 0) + 4πGρa (b + 0)ur (b) = ∂rΦ

b (b − 0) + 4πGρb (b + 0)ur (b)                                               (A-6f) 

These are essentially the same boundary conditions as in 

(10), except that some of them in are on the deformed bounda-

ries while in (10) the boundary conditions seem to be on the 

undeformed boundaries. This technical discrepancy can be re-

solved by the equivalence between Lagrangian and Eulerian in 

the linear theory for infinitesimal deformation. 
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