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than the commonly used 3-down, 1-up symmetric staircase. 
We also applied recent advances to reduce accuracy errors 
using a bias-reduced fitting approach. Taken together, the 
results lend confidence that the assumptions underlying 
each approach are reasonable and that human threshold 
forced-choice decision making is modeled well by detec-
tion theory models and mimics simulations based on detec-
tion theory models.

Keywords Psychometric curve · Psychophysics · 
Efficiency · Precision

Introduction

Thresholds provide significant insight into neural process-
ing and are an important part of clinical care (e.g., Fletcher 
1923; Valko et al. 2012; Ernst and Banks 2002; Lewis et al. 
2011). Determining thresholds usually involves repeatedly 
collecting perceptual responses after exposing subjects to 
stimuli of different amplitudes and/or directions. In many 
clinical or experimental situations, a certain level of pre-
cision is required for a threshold estimate. Although col-
lecting additional responses can improve precision (Taylor 
and Creelman 1967; Taylor 1971), this takes additional 
time. Thoughtful selection of stimuli can improve preci-
sion without additional responses, which saves time and 
thus improves efficiency (Wetherill 1963; Kaernbach 1991; 
Treutwein 1995; Pentland 1980; Harvey 1986; Hall 1981, 
1968; Watt and Andrews 1981; Green 1990; Garcia-Perez 
1998; Leek 2001; Merfeld 2011; Lim and Merfeld 2012). 
Indeed, it seems possible to get “something for nothing”: 
for example, large stimuli to which subjects will consist-
ently respond correctly provide little useful information 
about threshold, as do tiny stimuli for which subjects are 

Abstract When measuring thresholds, careful selection 
of stimulus amplitude can increase efficiency by increas-
ing the precision of psychometric fit parameters (e.g., 
decreasing the fit parameter error bars). To find efficient 
adaptive algorithms for psychometric threshold (“sigma”) 
estimation, we combined analytic approaches, Monte Carlo 
simulations, and human experiments for a one-interval, 
binary forced-choice, direction-recognition task. To our 
knowledge, this is the first time analytic results have been 
combined and compared with either simulation or human 
results. Human performance was consistent with theory 
and not significantly different from simulation predictions. 
Our analytic approach provides a bound on efficiency, 
which we compared against the efficiency of standard 
staircase algorithms, a modified staircase algorithm with 
asymmetric step sizes, and a maximum likelihood estima-
tion (MLE) procedure. Simulation results suggest that opti-
mal efficiency at determining threshold is provided by the 
MLE procedure targeting a fraction correct level of 0.92, 
an asymmetric 4-down, 1-up staircase targeting between 
0.86 and 0.92 or a standard 6-down, 1-up staircase. Psy-
chometric test efficiency, computed by comparing simula-
tion and analytic results, was between 41 and 58 % for 50 
trials for these three algorithms, reaching up to 84 % for 
200 trials. These approaches were 13–21 % more efficient 
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guessing. Adaptive algorithms, which adapt stimulus 
amplitude based on the subjects’ responses (Leek 2001) are 
particularly important for threshold testing because thresh-
olds can vary by more than a factor of ten across individu-
als (Benson et al. 1986, 1989).

A number of approaches have been used to determine 
the ideal stimulus amplitudes for precisely estimating 
threshold, including analytic approaches, Monte Carlo sim-
ulations, and human experiments. In this paper, we detail a 
novel analytic approach, and combine and directly compare 
these three approaches. Our analytic approach for Gaussian 
distributions is motivated by a previous analysis for logistic 
distributions (Wetherill 1963). It determines a bound on the 
lowest possible error given a set of conditions (such as the 
Cramér-Rao bound1 Rao 1945; Cramér 1946; Van Trees 
et al. 2013). Comparing the three approaches together is 
important because analytic approaches do not consider 
practical issues (Wetherill 1963), and simulation and exper-
imental results do not consider all theory. For example, 
analytic approaches do not take into account the particulars 
of the adaptive algorithm used nor predict whether or how 
quickly real-world results will converge on theoretical 
bounds as the number of trials increases.2 Our analytic 
results closely match the previous gold standard, the 
“omniscient experimenter” Monte Carlo simulation in 
which the simulated experimenter has perfect information 
about the subject’s psychometric curve (Taylor and Creel-
man 1967), providing robust support to both approaches. 
We performed our analyses for a recognition task (e.g., left 
vs. right) and focus our results on threshold, which is the 
spread of the Gaussian psychometric function; while stand-
ard, this differs from the definition sometimes used for 
detection tasks (e.g., stimulus present/not present). Discus-
sion explains why we did not focus on bias.

Our approach allows the calculation of “psychometric 
test efficiency” (Taylor and Creelman 1967) of sampling 
schemes, using the theoretic bound as a benchmark which is 
more robust than simulations (Taylor and Creelman 1967). 
To demonstrate, we apply our approach to variations of three 
previously described adaptive sampling schemes to com-
pare their efficiency at threshold determination, although 
the approach can be used with any sampling scheme. The 
first is the common parameter estimation by sequential test-
ing (PEST) staircase scheme (Taylor and Creelman 1967). 
The second is the maximum likelihood estimation (MLE) 
scheme (Hall 1968; Pentland 1980; Watt and Andrews 1981; 

1 The Cramér-Rao bound—named for Harold Cramér and C.R. Rao, 
two of the first to derive it—defines the theoretic lower bound for 
the variance of estimated parameters. More can be learned at http://
en.wikipedia.org/wiki/Cramer-Rao_bound.
2 Indeed, Wetherill (1963) stated that “ we need the asymptotic prop-
erties of various strategies.”

Harvey 1986; Green 1990; Treutwein 1995; Leek 2001; 
Shen et al. 2015), which fits the psychometric curve after 
every response and uses the new fit parameters to deter-
mine the ideal stimulus level for the next trial. The third is a 
staircase with different up and down steps sizes (Kaernbach 
1991; Garcia-Perez 1998), which allows the experimenter to 
target the staircase at specific stimulus levels.

Since the assumption that human behavior is well mod-
eled by detection theory is not exhaustively tested, we com-
pare human and analytic predictions, and also extend pre-
vious comparisons between human and simulation results 
(Kollmeier et al. 1988; Garcia-Perez 2000; Garcia-Perez 
and Alcala-Quintana 2007, 2009). Our human results are 
consistent with both simulation and analytic results, and 
confirm that threshold can easily be determined 15 % more 
efficiently compared to the widely used three-down, one-
up staircase (e.g., Grabherr et al. 2008; Valko et al. 2012; 
Agrawal et al. 2013; Hartmann et al. 2014).

Improved efficiency means that either parameter estima-
tion can be done (a) with fewer trials to yield the same pre-
cision, (b) more precisely with the same number of trials, or 
(c) with some combination of the two. High-quality patient 
care relies on clinical testing with high sensitivity and speci-
ficity, which are improved by reducing error on parameter 
estimates. Efficient data collection is particularly important 
for motion studies (e.g., with visual or vestibular stimuli) 
because of the time required to present relevant dynamic 
stimuli for each trial. For example, thresholds for single 
cycles of 0.1 Hz sinusoidal motion which take 10 s to pre-
sent are different for vestibular migraine subjects compared 
to other subjects (Lewis et al. 2011), and it is often informa-
tive to measure thresholds at multiple frequencies (Nakay-
ama and Tyler 1981; Benson et al. 1986, 1989; Grabherr 
et al. 2008; Lewis et al. 2011; Soyka et al. 2011; Valko et al. 
2012; Haburcakova et al. 2012; Karmali et al. 2014).

Methods

Psychometric function

Our psychometric function relates a bidirectional physical 
stimulus amplitude (magnitude and direction) to the binary 
subject response (e.g., left/right). We assume that the psy-
chometric function is a cumulative Gaussian distribution, 
as in many recent experimental studies (e.g., Butler et al. 
2010; MacNeilage et al. 2010; Soyka et al. 2011; Roditi 
and Crane 2012b). The psychometric fit parameters are 
the standard deviation and mean of a Gaussian distribution 
underlying the psychometric function, often referred to as 
threshold and bias (Merfeld 2011; Garcia-Perez and Alcala-
Quintana 2013). We assume a one-interval, two-alternative, 
direction-recognition (sometimes called discrimination), 

http://en.wikipedia.org/wiki/Cramer-Rao_bound
http://en.wikipedia.org/wiki/Cramer-Rao_bound
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forced-choice task. Subject responses are binary and are 
0 for negative responses (e.g., I perceive I moved to the 
right) and 1 for positive responses (e.g., I perceive that I 
moved to the left), meaning that rightward motions would 
occupy the left side of the abscissa and rightward subject 
responses would occupy the lower part of the ordinate of 
the psychometric curve plot (Fig. 1a). The linear translation 
of the psychometric function along the abscissa is referred 
to as the bias, is represented mathematically as µ, and cor-
responds to the mean of the underlying Gaussian distribu-
tion. The spread of the psychometric function, referred to 
as the threshold, is related to both the standard deviation 
of the underlying Gaussian and the function’s slope, and is 
represented mathematically by σ. For sensory applications, 
this parameter corresponds to the standard deviation of the 
equivalent physiological noise (Merfeld 2011), which is 
often referred to as the threshold. Our estimates of µ and σ 
will be represented by µ̂ and σ̂ respectively.

The following equation defines our psychometric func-
tion (ψ):

(1)ψ(x;µ, σ) = 1

σ
√
2π

x−µ
σ

∫

−∞

e
−z2

2 dz = Φ

(

x − µ

σ

)

where Φ is the cumulative standard Gaussian distribution 
and z is a “dummy” integration variable. Figure 1a shows 
an example of a psychometric function with µ = 0.5 and 
σ = 1. This notation is consistent with our earlier papers 
(Merfeld 2011; Lim and Merfeld 2012; Chaudhuri and 
Merfeld 2013).

Target level

The target level refers to the location on the psychomet-
ric curve that adaptive sampling schemes attempt to place 
stimuli (Taylor and Creelman 1967). Target level can be 
defined both in terms of stimulus amplitude and fraction 
correct. Since the psychometric curve is symmetric, and 
since we use a bidirectional task, stimuli are usually placed 
symmetrically about 0, although some algorithms place 
them symmetrically around µ̂. When we state target level 
as stimulus amplitude (k), it refers to stimuli at either −kσ̂ 
or +kσ̂. Note that for our simulations, we assume σ = 1 
and our experimental data are normalized, but these results 
generalize to any underlying σ. When we state target level 
as fraction correct (p), it refers to the corresponding frac-
tion correct for stimuli at −kσ̂ or +kσ̂, which corresponds 
to a fraction positive of p and 1 − p. Since both stimulus 
amplitude and fraction correct are intuitive and important, 
many of our results present both.

While adaptive sampling schemes are designed to con-
verge toward a certain target level, actual stimulus ampli-
tudes will generally differ from the target level. This 
is especially true early in a session, when there is a very 
imprecise estimate σ̂; given that there is a ten-fold range 
of motion thresholds in the population (Benson et al. 1986, 
1989), little a priori information about threshold is availa-
ble. Thus, when our results (and those of others) are related 
to target level, the distribution of actual stimuli will depend 
on random variability and the specific scheme used. For 
sessions having few trials, many stimuli may not be close 
to the target level. Regardless, for practical purposes, the 
target level and scheme used are the variables set by the 
experimenter, and thus are the most appropriate independ-
ent variables for analyses and experimental design deci-
sions. The discussion elaborates on how this could explain 
some small differences between simulations and analytical 
predictions.

Analytic prediction for limits on efficiency using Fisher 
Information

We applied an approach similar to that previously used 
for logistic distributions (Wetherill 1963) to determine the 
theoretical bounds for the precision of parameters defining 
the psychometric curve with an underlying Gaussian dis-
tribution. Specifically, our analytic approach uses concepts 
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Fig. 1  a An example of a psychometric function (solid line) with 
an underlying Gaussian distribution, a vestibular bias µ = +0.5 and 
threshold σ = 1. The function corresponds to a bidirectional recog-
nition task, which is common in vestibular and visual studies (e.g., 
task is to determine if motion is leftward or rightward). In this case, 
a stimulus level of +1.5 (i.e., + 1 relative to vestibular bias) corre-
sponds to an average of 84 % of responses being positive (dashed 
lines). b For comparison, a typical psychometric curve for a two-
alternative force choice detection task is shown, with the threshold 
defined as the 75 % correct level, as is typical



776 Exp Brain Res (2016) 234:773–789

1 3

from information theory, a mathematical approach to deter-
mine the fundamental limits of signaling channels, which 
is often used to understand digital communication and neu-
ral signaling. Fisher Information (Fisher 1922, 1925; Van 
Trees et al. 2013) provides a measure of the amount of 
information that a set of responses carry about the param-
eters of interest (i.e., threshold and bias). We determine the 
Fisher Information for the Gaussian psychometric curve 
using a standard maximum likelihood approach below. The 
Cramér–Rao bound (Rao 1945; Cramér 1946; Van Trees 
et al. 2013) relates Fisher Information to a theoretical limit 
on the precision of a parameter estimate. Specifically, the 
inverse of the Fisher Information provides a lower bound 
for the variance of a parameter estimate, assuming the 
parameter estimate is unbiased:

and

where I[σ ] and I[µ] are the Fisher Information for threshold 
and bias, respectively. In our analyses, we are often inter-
ested in the information per trial resulting in the bounds

and

Note that a lower standard deviation and a higher informa-
tion per trial correspond to higher efficiency and/or better 
precision; we use standard deviation rather than variance as 
it possesses the physical units of direct interest. The units 
of information per trial are the inverse of the square of 
the stimulus units. For example, if the stimulus is angular 
velocity, the units of information per trial will be 1/(◦/s)2.

We applied a standard maximum likelihood estimation 
approach (Wetherill 1963) to determine Fisher Informa-
tion. The log-likelihood function logL for a general binary 
response model is:

where x is the stimulus vector, y is the binary response vec-
tor, and Φ is the cumulative standard Gaussian distribution 

(2)var
(
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)
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(3)var
(
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(6)

logL(µ, σ ; x, y)

=
n

∑
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[

log

(

yiΦ

(
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σ

)

+ (1− yi)

(

1−Φ

(

xi − µ

σ

)))]

that underlies the psychometric function ψ (Eq. 1). The 
maximum likelihood estimate occurs when logL is maxi-
mized, i.e., ∇ logL = 0. The second derivatives of logL 
indicate the steepness around the maximum, which reflects 
the confidence in parameter estimates. The expected values 
of the second derivatives are:

and

We assume the case where stimuli are divided into two 
groups, each placed an equal distance below and above 
µ . For symmetric distributions (e.g., logistic, Gaussian), 
when there are the same number of observations above and 
below the bias located k standard deviations from µ (i.e., 
x± = µ± kσ),

For the Gaussian distribution, this leads to the following 
relationships for information per trial for µ and σ:

and

where φ is the probability density function of the stand-
ard Gaussian distribution, and Φ is the cumulative dis-
tribution function of the standard Gaussian distribution 
defined earlier. To estimate the information per trial 
about both µ and σ, we use the common metric previ-
ously used for logistic distributions (Wetherill 1963), 

(7)
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the geometric mean of each parameter’s information per 
trial:

This formulation is one of many possible ways of combin-
ing information about the two parameters and other pos-
sibilities could be selected, especially if precision of one 
parameter was of greater importance than that of the other.

By examining the dependence of information per trial on 
the stimulus level k, we determined the ideal placement of 
stimuli to efficiently estimate psychometric fit parameters. 
These relationships are examined in Results.

Adaptive sampling schemes

The estimation of psychometric functions is a common 
experimental problem with applications in many fields, 
and, as such, numerous sampling procedures have been 
developed (Treutwein 1995; Leek 2001). Early contribu-
tions included the development of an up-down protocol to 
analyze sensitivity of explosives (Dixon and Mood 1948) 
and estimate psychometric function thresholds (Cornsweet 
1962), with subsequent work providing a more robust 
mathematical framework (Wetherill 1963). Adaptive algo-
rithms, which adapt stimulus amplitude based on the sub-
jects’ responses (Leek 2001), are particularly important for 
threshold testing given that thresholds can vary by more 
than a factor of ten across individuals (Benson et al. 1986, 
1989).

We evaluated three classes of adaptive sampling schemes 
using Monte Carlo simulations. Each scheme adaptively 
determined stimulus amplitude, and every stimulus had a 
50 % probability of being positive or negative (e.g., left-
ward or rightward).

The first adaptive sampling scheme we evaluated was 
the common parameter estimation by sequential testing 
(PEST) staircase protocol (Taylor and Creelman 1967). For 
the remainder of this paper, when we use the term “stair-
case,” it always refers to the PEST staircase. The staircase 
converges on a target stimulus level by decreasing stimu-
lus amplitude when a number (N) of responses are correct, 
and increasing stimulus amplitude when one response is 
incorrect. For example, in a three-down, one-up staircase 
(3D1U) the stimulus amplitude decreases after three cor-
rect responses and increases when one response was incor-
rect. We simulated two-, three-, four-, five-, and six-down, 
one-up staircases (2D1U, 3D1U, 4D1U, 5D1U, 6D1U). 
The PEST rules developed by Taylor and Creelman (1967) 
were utilized to modulate step size. Briefly, they are the 
following. (1) Every time the staircase reverses direction, 
halve the step size. (2) The first and second steps in a given 
direction have the same size. (3) The third step in a given 
direction is the same size, with the exception that if the 

(13)(I[µ]/n · I[σ ]/n)1/2.

previous reversal did not have a doubling, then the step size 
should double. (4) A fourth step in a given direction has a 
step size double of the previous step. The initial step size 
was 3.01 dB (i.e.,  1

2
20 log10 2), the minimum step size was 

0.38 dB (i.e., 1
16
20 log10 2), and the maximum step size to 

6.02 dB (i.e., 20 log10 2). The N-down, one-up staircases 
target the N

√
0.5 fraction correct level (Taylor and Creelman 

1967; Levitt 1971). Thus, the 2D1U, 3D1U, 4D1U, 5D1U, 
and 6D1U staircases target the 0.707, 0.794, 0.841, 0.871, 
and 0.891 probability correct level. Simulations were per-
formed for n = 50, 100, 150, and 200 trials.

The second adaptive scheme we simulated was the max-
imum likelihood estimation (MLE) method (Hall 1968; 
Pentland 1980; Hall 1981; Watt and Andrews 1981; Har-
vey 1986; Treutwein 1995; Garcia-Perez and Alcala-Quin-
tana 2007; Shen et al. 2015), which fits the psychometric 
curve after every response and uses the new fit parameters 
to determine the ideal stimulus level for the next trial. We 
chose a hybrid approach method which was previously 
shown to improve efficiency (Hall 1981) by using an initial 
staircase to roughly estimate threshold before beginning the 
second phase of the MLE procedure. We performed most 
simulations with an initial 3D1U staircase with n = 25 tri-
als (after pilot simulations showed that 3D1U yielded a 
more precise estimate of threshold than a 2D1U staircase 
and was also more responsive and similarly precise com-
pared to 4D1U and 5D1U staircases for small numbers of 
trials). In the second phase of the MLE procedure, after 
each response, the psychometric function was fit to all pre-
vious responses. The next stimulus amplitude was a fixed 
ratio (k) of the estimated threshold and had a 50 % prob-
ability of being positive or negative (i.e., −kσ̂ or +kσ̂). To 
determine the optimal target stimulus levels, we conducted 
simulations with fixed ratios that targeted fraction correct 
levels from 0.50 to 0.99 with steps of 0.01. We also con-
ducted simulations in which the next stimulus amplitude 
was a fixed ratio of the estimated threshold, but centered 
around the bias (i.e., −kσ̂ + µ̂ or +kσ̂ + µ̂).

The third adaptive scheme, which we call the asymmet-
ric staircase, is a modification of the PEST staircase so that 
the step sizes are different for up and down steps. Our bidi-
rectional implementation is similar to one previously used 
for non-directional stimuli in a detection task (Kaernbach 
1991; Garcia-Perez 1998). The ratio of up/down steps is 
chosen to target a particular stimulus level. Ideally, the ratio 
would be chosen to target the optimal stimulus amplitude 
to efficiently estimate the parameter(s) of interest.

To determine target level from step size, we begin with 
the equilibrium condition for convergence,

where Sdown and Sup are the down and up step sizes, and 
pdown and pup are the probability of responses leading to 

(14)Sdown · pdown = Sup · pup,
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the staircase going down and up. For an N-down, 1-up 
staircase,

since N correct responses are required to go down, where p 
is the target fraction correct level. Likewise,

with each term corresponding to an incorrect response pre-
ceded by a certain number of correct responses. This is eas-
ily simplified to

Thus,

and

For example, for 3D1U targeting p = 0.895, 
Sup/Sdown = 2.533, which means that the upward step size 
is 2.5 times greater than the downward step size to target 
p = 0.895 for a three-down, one-up staircase.

With the exception of asymmetric step size, our asym-
metric staircase was implemented with identical rules to 
those stated above for the PEST symmetric staircase. Sim-
ulations targeted fraction correct levels from 0.70 to 0.99 
with steps of 0.01. Simulations were performed for n = 50, 
100, 150 and 200 trials. Simulations were performed with 
2D1U, 3D1U, 4D1U, 5D1U and 6D1U.

Simulations and bias‑reduced psychometric curve fits

Simulations were implemented in MATLAB R2011b (The 
Mathworks, Inc, Massachusetts) on the Harvard Orchestra 
computation cluster. Simulations were run in parallel on a 
number of IBM BladeCenter HS21 XMs with 3.16 GHz 
Xeon processors and 8 GB of RAM.

Monte Carlo simulations were used to estimate preci-
sion of parameter estimates for the various sampling pro-
cedures. All simulations started with an initial amplitude 
of 4σ and set σ = 1. In all cases, 2D1U, 3D1U, 4D1U, 
5D1U, and 6D1U were tested. The simulations were per-
formed with µ = 0, µ = 0.2σ, and µ = 0.5σ. Simulations 
for MLE were performed with stimuli positioned symmet-
rically around 0 and around the estimated bias. There were 
50 target levels for MLE and 45 for asymmetric staircases. 
Simulations were performed for n = 50, 100, 150, and 200 
trials. This resulted in 5 × 3 × 4 = 60 sets of conditions 
for staircases, 5 × 3 × 2 × 50 × 4 = 6000 for MLE, and 
5 × 3 × 45 × 4 = 2700 for asymmetric staircases, resulting 

(15)pdown = pN ,

(16)
pup = pN−1(1− p)+ pN−2(1− p)+ · · · + p0(1− p),

(17)pup = 1− pN .

(18)Sdown · pN = Sup ·
(

1− pN
)

(19)Sup/Sdown = pN/(1− pN ).

in 8760 sets of conditions total. Every set of conditions was 
simulated 10,000 times. Each simulation produced esti-
mates of threshold and bias σ̂ and µ̂. The standard deviation 
across the population was computed to estimate how pre-
cisely the parameters were estimated.

We obtained the psychometric function parameter esti-
mates µ̂ and σ̂ using maximum likelihood fits determined 
using a generalized linear model (GLM) and probit link 
function. Specifically, we applied a recent innovation to psy-
chometric curve fitting that improves the accuracy of param-
eter estimation without sacrificing how precisely param-
eters are estimated (Chaudhuri and Merfeld 2013). This 
approach responds to the observation that σ̂ is often over-
estimated when fitting serially dependent data (Leek et al. 
1992; Treutwein and Strasburger 1999; Kaernbach 2001; 
Leek 2001) and applies established techniques for remov-
ing bias during estimation with generalized linear models 
to psychometric curve fitting (McCullagh and Nelder 1989; 
Firth 1993). These bias-reduced maximum likelihood fits 
were performed using the brglmfit.m program (Chaudhuri 
and Merfeld 2013) in MATLAB 2011B (The Mathworks, 
MA, USA). To simplify interpretation of results, we did not 
perform the scaling of the biased-reduced estimates (Chaud-
huri and Merfeld 2013) to further improve accuracy, but this 
could easily be done in combination with the approaches 
described in this paper. For simplicity, we opted not to 
include a nonlinear asymmetry (Roditi and Crane 2012a) or 
a lapse rate (Wichmann and Hill 2001a), though either could 
be readily included as independent effects when necessary.

Omniscient experimenter sample scheme

To verify both analytic and simulation approaches, we per-
formed Monte Carlo simulations of an “omniscient experi-
menter” sampling scheme to show that the simulations con-
verged to predicted theoretical limits, which was previously 
used to determine the bounds on efficiency for a quasilogis-
tic distribution (Taylor and Creelman 1967). Like the adap-
tive schemes, the omniscient experimenter sampling scheme 
targets stimuli at a particular level. However, whereas the 
adaptive schemes determine stimulus amplitude based on 
prior trials, the omniscient experimenter scheme uses the 
known threshold and bias to select stimuli amplitudes. These 
schemes assume that complete a priori information about 
the underlying psychophysical distribution is known. 10,000 
simulations were performed with n = 200 trials at 10 target 
stimulus amplitudes ranging from 0.3 to 2.1 with steps of 0.2.

Measuring psychometric test efficiency

Our analytic approach provides a bound for the best pos-
sible precision for a given target level and number of tri-
als. We used this to evaluate the efficiency of adaptive 
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sampling schemes by calculating, for a certain number of 
trials, the ratio of the variances determined by the simula-
tion and analytic approaches. With the exception that we 
use a closed-form analytic solution rather than an “omnis-
cient experimenter” as our benchmark, this approach is 
equivalent to that of Taylor and Creelman (1967) in which 
the ratio of the sweat factors was determined (Taylor and 
Creelman 1967), since the number of trials in the numera-
tor and denominator is equal. Since, in this paper, our goal 
is to determine how to most efficiently determine threshold, 
we use the theoretic bound at the target level that provides 
the best precision for a given number of trials.

Experimental human psychophysical task

Human subject thresholds were determined to evaluate 
the efficiency of different adaptive sampling schemes by 
testing subjects’ ability to perceive rotation of their body 
in the dark, which is primarily senses by the vestibular 
organs, and specifically the semicircular canal (Grabherr 
et al. 2008). Eight healthy human subjects (five male, three 
female, 19–54 years old) were recruited to participate in 
the study. The study was approved by the local institutional 
review board and was performed in accordance with the 
ethical standards laid down in the 1964 Declaration of Hel-
sinki. Each subject was screened using a detailed, standard 
vestibular diagnostic clinical exam to confirm the absence 
of undiagnosed vestibular disorders (Grabherr et al. 2008; 
Valko et al. 2012; Chaudhuri et al. 2013; Karmali et al. 
2014). Screening included Hallpike tests, angular vestibu-
loocular reflex (VOR) evoked via rotation, caloric testing, 
and posture control measures. Subjects also completed a 
short health history questionnaire to confirm the absence of 
vertigo, dizziness, and any other neurological deficits.

Subjects performed a direction-recognition task (i.e., did 
I move left or right?) in response to upright whole-body 
yaw rotation, using methods similar to those used in previ-
ous studies (Grabherr et al. 2008; Valko et al. 2012; Chaud-
huri et al. 2013). An adaptive, one-interval, two-alternative, 
categorical, forced-choice procedure (Treutwein 1995; 
Leek 2001) was used. In separate counterbalanced sessions 
of 100 responses each, subjects did (a) a standard, symmet-
ric three-down, one-up staircase which targeted the 0.794 
fraction correct level (3D1U) and (b) a modified three-
down, one-up staircase with asymmetric step size which 
targeted the 0.90 fraction correct level (3D1U-90 %). A 
tone began 300 ms before motion commenced and ended 
simultaneous with motion. After the tone ended, subjects 
were required to push a button in their right hand if they 
perceived rightward motion and push a button in their left 
hand if they perceived leftward motion. If subjects were 
unsure, they were required to make their best guess. Sub-
jects practiced the task before each session.

Motions were provided by our eccentric rotator device 
(Neurokinetics, Pittsburg, PA, USA). Motions were single 
cycles of sinusoidal acceleration, as in many other motion 
threshold studies (Benson et al. 1989, 1986; Kolev et al. 
1996; Grabherr et al. 2008; Zupan and Merfeld 2008; But-
ler et al. 2010; Soyka et al. 2011; Haburcakova et al. 2012; 
Roditi and Crane 2012a, b; Crane 2012a; Valko et al. 2012). 
In this study, motions always had a frequency f = 2 Hz and 
were defined by the equations:

and

We attempted to minimize the influence of non-vestibu-
lar cues using the same approaches previously used (Grab-
herr et al. 2008; Valko et al. 2012; Chaudhuri et al. 2013; 
Karmali et al. 2014). Briefly, subjects were secured with a 
five-point harness in a racing-style chair, with their head 
fixed relative to the chair and platform with a vacuum cush-
ion snugly pressed between two adjustable plates. Gloves 
and long sleeves reduced wind cues on skin surfaces. Audi-
tory cues were masked with active noise-canceling head-
phones playing white noise (circa 60 dB). Elevated thresh-
olds measured in patients suffering total vestibular loss 
(Valko et al. 2012) suggest that motion thresholds depend 
predominantly on vestibular cues.

There was a pause of at least 3 s between motions since 
bias after-effects extinguish within 3 s in the dark (Crane 
2012b). Since a stationary visual scene can help extinguish 
perceived motion (Guedry et al. 1961), we tested whether 
any influence of prior motion on thresholds may be modu-
lated by a stationary visual scene between motions. We did 
this by testing each condition once in total darkness, and 
a second time with a stationary full-field scene illuminated 
by a dim light for at least 1.5 s after subjects responded 
and before the commencement of the following trial. We 
found that there was no significant difference in thresholds 
between sessions with and without a stationary visual scene 
between motions (paired t test; p = 0.34), and thus, we 
pooled these data when performing statistical tests.

We were primarily interested in estimating the preci-
sion (i.e., standard deviation) of the measured threshold for 
each subject, which we determined using a standard boot-
strap approach (Wichmann and Hill 2001b; Chaudhuri and 
Merfeld 2013). In this approach, for each subject and con-
dition, the psychometric curve was fit to a resampled set 
of responses 2000 times using the bias-reduced maximum 
likelihood fit (Chaudhuri and Merfeld 2013) to calculate a 
population of fit thresholds and biases. These values were 

(20)Angular acceleration α(t) = A sin (2π ft),

(21)Angular velocity ω(t) = A/(2π f )
[

1− cos (2π ft)
]

(22)
Displacement �θ(t) = A/(2π f )

[

t − 1/(2π f ) sin (2π ft)
]

.



780 Exp Brain Res (2016) 234:773–789

1 3

normalized by the subject’s threshold to allow comparison 
across subjects. The standard deviation of the normalized 
thresholds and bias were determined (Wichmann and Hill 
2001b) to measure their precision.

Results

Analytic limits on efficiency

Figure 2 shows the results of analyses that determine the 
theoretic bound on efficiency. While the majority of our 
results are presented in terms of the standard deviation of 
parameter estimates, this figure shows Fisher Information 
per trial because it relates directly to the underlying ana-
lytic framework. Figure 2a, d shows how Fisher Informa-
tion per trial regarding the threshold (σ) varies as target 
level changes (Eq. 12). We show results for target level 
presented both in terms of stimulus level (Fig. 2a–c) and 
the corresponding fraction correct (Fig. 2d–f). We provide 
both because each provides a different relevant perspec-
tive. Figure 2a shows that at small stimulus amplitudes, 

each response provides almost no additional information 
about threshold (σ), meaning that it is an unwise choice 
for stimulus amplitude if threshold is the parameter of 
interest. Information per trial about threshold (σ) peaks as 
stimulus amplitude increases to 1.575 (indicated by circle), 
suggesting that this is the ideal target level to efficiently 
collect data about threshold. As stimulus amplitude con-
tinues to increase, information per trial again decreases. 
Note that the abscissae are relative to bias, and thus, in a 
subject with a bias, these stimulus amplitudes should be 
shifted accordingly. Figure 2d shows the information per 
trial peaks (circle) when the target fraction correct level 
is 0.9424, which occurs at a stimulus level of 1.575 (e.g., 
see Fig. 2a). The peak information per trial is 0.6084 (both 
curves). Since the psychometric curve is symmetric, this 
also includes stimuli placed at −1.575, which corresponds 
to 0.9424 fraction correct and 1 − 0.9424 = 0.0576 frac-
tion positive. Figure 2b, e shows the Fisher Information per 
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tribution with σ = 1 for all results in this paper, standard deviation is 
always equivalent to coefficient of variation
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trial regarding bias µ (Eq. 11). At zero stimulus amplitude, 
the information per trial is maximized (circle), suggesting 
that this is the optimal target level to collect information 
about bias (µ). This corresponds (circle) to a fraction cor-
rect of 0.5. As stimulus amplitude increases, the informa-
tion per trial about bias (µ) decreases, suggesting reduced 
efficiency. The peak information per trial is 0.6366. 
Figure 2c, f shows the Fisher Information per trial about 
both threshold and bias, using a formulation that gives the 
two parameters equal weight (Eq. 13). As expected, when 
stimulus amplitude is small, there is almost no information 
provided. As stimulus amplitude increases, information per 
trial increases until it reaches a peak (circle) at 1.138. This 
corresponds to a fraction correct (circle) of 0.8725. Note 
that this target level is between the optimal target levels 
when only threshold or bias is of interest, which is expected 
given that both are being optimized. The peak information 
per trial is 0.4457.

In many cases, the overall precision for an experiment, 
rather than just the information gained from each response, 
is of interest. In addition, standard deviation is a more 
intuitive measure of precision since it is formulated in the 
physical units of interest. Figure 3 and Table 1 show the 
same analytic results as in Fig. 2, but presented as standard 
deviation of the parameter estimates (Eqs. 4 and 5). When 
shown as standard deviation, the theoretic bound (lines) 
depends on number of trials; results are shown for 50, 100, 
and 200 trials. Since more information per trial improves 
precision, standard deviation is minimized at the same 

target level that information per trial is maximized, result-
ing in the most efficient data collection. Since we assume 
an underlying distribution with σ = 1 for all results in this 
paper, standard deviation is always equivalent to coefficient 
of variation.

Omniscient experimenter simulation results approach 
the theoretical bound

Figure 4 compares simulation results from the omnisci-
ent experimenter sampling scheme (Taylor and Creelman 

Table 1  Summary of performance at optimal target levels for various adaptive sampling schemes, including analytic predictions, simulations, 
and human experiments

For asymmetric staircases and MLE, the target level yielding the lowest standard deviation of the threshold estimate is shown. Symmetric stair-
cases can target only a single level, and performance is shown for that level. ND1U (e.g., 2D1U) means that the staircase requires N correct 
responses to decrease stimulus amplitude and one incorrect response to increase stimulus amplitude

Scheme Optimal target level Standard deviation of threshold estimate

Stimulus amplitude Fraction correct 50 trials 100 trials 150 trials 200 trials

Analytic 1.555 0.940 0.181 0.128 0.105 0.091

Omniscient experimenter 1.500 0.933 – – – 0.092

MLE simulations 1.405 0.920 0.237 0.149 0.117 0.099

Symmetric 2D1U simulations 0.545 0.707 0.366 0.246 0.195 0.167

Symmetric 3D1U simulations 0.819 0.794 0.283 0.185 0.147 0.126

Symmetric 4D1U simulations 0.998 0.841 0.256 0.166 0.132 0.113

Symmetric 5D1U simulations 1.129 0.871 0.250 0.160 0.126 0.108

Symmetric 6D1U simulations 1.231 0.891 0.247 0.158 0.124 0.105

Asymmetric 2D1U simulations 1.103 0.865 0.279 0.177 0.142 0.120

Asymmetric 3D1U simulations 1.254 0.895 0.257 0.163 0.131 0.111

Asymmetric 4D1U simulations 1.254 0.895 0.240 0.158 0.127 0.108

Asymmetric 5D1U simulations 1.282 0.900 0.238 0.154 0.123 0.105

Asymmetric 6D1U simulations 1.341 0.910 0.234 0.152 0.122 0.105

Human symmetric 3D1U 0.819 0.794 – 0.211 – –
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Fig. 4  Omniscient experimenter simulation results (x) are similar to 
the theoretic limits (lines). The analytic results are identical to those 
presented in Fig. 3. Each simulations has 200 responses. Target level 
is presented in terms of stimulus amplitude (a) and fraction correct 
(b), as described above
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1967) with the theoretic bound. In this scheme, all stimuli 
are provided at the target level, under the assumption that 
the sampling scheme has full a priori information about 
the underlying psychophysical distribution. We focus the 
remainder of results on threshold (σ) because this is the 
parameter usually of interest to many groups, and because 
bias is often considered a nuisance parameter (Garcia-Perez 
and Alcala-Quintana 2013); however, these results can all 
be extended to optimizing both bias and a combination of 
threshold and bias. We present standard deviation both in 
terms of stimulus level (Fig. 4a) and the corresponding 
fraction correct (Fig. 4b), as in Fig. 3. Simulation results 
are the standard deviation of the thresholds calculated in 
each of 10,000 experiments, with each experiment having 
200 trials.

Figure 4 shows that the relationship between standard 
deviation and target level is very similar for the omniscient 
experimenter simulations (x) and analytic approach (thick 
line). In all cases, a target level slightly above threshold is 
the optimal target level. The similarity of the results lends 
support to the assumption underlying both the analytic and 
simulation approaches. Simulations were also performed 
(not shown) with 1000 trials; these results converged to be 
indistinguishable from the corresponding analytic curves 
(not shown).

Human subject results are consistent with simulation 
and analytic results

We conducted human psychophysics experiments to exam-
ine whether the precision of threshold estimates predicted 
by analytic analyses and simulations modeled human per-
formance well. We did so by measuring precision for a 
symmetric 3D1U staircase targeting 79.4 % correct and an 
asymmetric 3D1U staircase targeting 90 % correct, both for 
human subjects and simulations for the same staircases (As 
a reminder, in this paper, “staircase” always refers to the 
PEST staircase). Figure 5 shows example staircase tracks 
from simulations and highlights the large upward steps 

after incorrect responses in the asymmetric 3D1U-90 % 
staircase (Fig. 5b) in comparison with the symmetric 3D1U 
staircase (Fig. 5a). This results in stimuli being placed at a 
higher level, which is illustrated by the difference in stim-
ulus amplitude near the ends of the two tracks. Subjects 
performed 100 trials of a direction-recognition task (did I 
move left or right?) in response to whole-body movement.

Figure 6 compares human, simulation, and analytic 
results, for the case of 100 trials per session. Broadly, pre-
cision of threshold estimates follows the same trend as 
analytic predictions for both human and simulation results. 
Human results shown are the standard deviation of thresh-
old measurements for a standard 3D1U staircase (thin 
asterisk) and an asymmetric 3D1U-90 % staircase target-
ing the 0.90 fraction correct level (thick asterisk), normal-
ized by each subject’s threshold then averaged across sub-
jects. Standard deviation decreases from 0.211 for 3D1U 
(thin asterisk) to 0.174 for 3D1U-90 % (thick asterisks). 
This 17 % improvement is statistically significant (paired 
t test, p = 0.021). The corresponding simulation (triangles) 
yields estimates for the precision of threshold estimate that 
broadly follow the theoretic bound and shows that threshold 
can be determined 12 % more precisely with 3D1U-90 % 
than 3D1U. The simulations are consistent with human 
performance, with small differences not reaching the level 
of statistical significance (t test, p = 0.735 for 3D1U-90 % 
and p = 0.094 for 3D1U). The theoretic bound (thick line) 
for 100 trials is replicated from that shown in Fig. 4. That 
both human performance and simulations are similar sug-
gests that the human observers are performing as assumed. 
That both are somewhat worse than the theoretical bound is 
indicative of sub-optimal design of the adaptive sampling 
scheme.

Comparison of efficiency for common adaptive 
sampling schemes

We now compare three different adaptive sampling 
schemes to each other, relative to theoretic bounds, for the 
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case of 100 trials per session (Fig. 7; Table 1). The theo-
retic bound (thick line) for 100 trials is replicated from 
that shown in Fig. 4. The simulations for the MLE proce-
dure (thin solid line) yield estimates for the precision of 

threshold estimate that are broadly similar to the theoretic 
bound, with some exceptions (discussed below). The MLE 
procedure most efficiently estimates threshold when the 
target level is 1.405 (fraction correct of 0.920). The results 

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

A

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 th

re
sh

ol
d 

es
tim

at
e

Target level
(Stimulus amplitude)

Experimental
Simulations
Theoretical

0.5 0.6 0.7 0.8 0.9 1

B

Target level
(Fraction correct)

Symmetric
3D1U

targeting
0.794

↓

Asymmetric
3D1U
targeting
0.90

↓

Fig. 6  Precision of threshold estimates in human experiments is 
consistent with simulations and close to theoretical limits. Human 
experiments (stars) were performed with a symmetric 3D1U staircase 
targeting the 0.794 fraction correct level and an asymmetric 3D1U 
staircase targeting the 0.90 fraction correct level. There were 100 tri-
als in each experiment, and precision was determined for each sub-
ject then averaged across subjects, with error bars showing standard 

error across subjects. Simulations were done for symmetric 3D1U 
(filled triangle) and asymmetric 3D1U targeting 0.90 (open triangle), 
and also included 100 trials/simulation. Both human performance and 
simulations are close to the theoretical limit (line), which means that 
the symmetric staircase is a reasonably efficient choice of algorithm. 
Target level is presented in terms of stimulus amplitude (a) and frac-
tion correct (b), as described above

0 0.5 1 1.5 2
0

0.1

0.2

0.3 A

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 th

re
sh

ol
d 

es
tim

at
e

Target level
(Stimulus amplitude)

Asymmetric 2D1U
Asymmetric 3D1U
Asymmetric 4D1U
Asymmetric 5D1U
Asymmetric 6D1U

0.5 0.6 0.7 0.8 0.9 1

B

Target level
(Fraction correct)

Theoretical limit
MLE
Symmetric 2D1U
Symmetric 3D1U
Symmetric 4D1U
Symmetric 5D1U
Symmetric 6D1U

Fig. 7  Precision of common adaptive algorithms compared to theo-
retical limits (thick line) for a range of target levels. Results pre-
sented for 100 responses in each simulation/experiment. Symmetric 
staircases (solid symbols) have a single target level, while asymmet-

ric staircases (dashed lines) and the MLE procedure (thin line) were 
simulated at a range of target levels. Target level is presented in terms 
of stimulus amplitude (a) and fraction correct (b), as described above



784 Exp Brain Res (2016) 234:773–789

1 3

for standard staircase simulations show that 2D1U, which 
has the smallest target level, provides the least precise esti-
mate of threshold. Precision increases progressively for 
3D1U, 4D1U, 5D1U and 6D1U (Fig. 7, solid symbols and 
Table 1), which corresponds to increasing staircase target 
level. Simulations of the asymmetric staircases (dashed 
lines) demonstrate that varying target level changes the 
precision of the threshold estimate, with a relationship 
that is broadly similar to the theoretic bound; differences 
from theory are explained in Discussion. While asym-
metric staircases generally follow a similar relationship 
between precision and target level regardless of whether 
2D1U, 3D1U, 4D1U, 5D1U or 6D1U is used, asymmetric 
2D1U underperforms and has a lower optimal target level 
compared to the rest. For example, the 4D1U asymmetric 
staircase most precisely estimates threshold when the target 

level is approximately 1.254 (fraction correct of 0.895), 
although any target level between 1.058 and 1.405 (fraction 
correct between 0.855 and 0.920) provides precision within 
3 % of that at its best.

Figure 8 compares the efficiency of the MLE adaptive 
sampling scheme with the analytic results for experiments 
with 50, 100, and 200 trials. It shows that the relation-
ship between standard deviation of the threshold estimate 
and target level is broadly similar for the MLE simulations 
(thin lines) and theoretic bound (thick line). In all cases, a 
target level slightly above threshold is the optimal target 
level. The gap between MLE simulation and the theoretical 
bound is very small for 200 trials; the larger gap for 100 
and especially 50 trials suggests that the MLE procedure is 
suboptimal for smaller numbers of trials. As expected, the 
precision of the threshold estimate improves with number 
of trials for both the analytic and simulation results. For 
example, the MLE simulations show that the lowest stand-
ard deviation at the optimal target level is 0.237 for 50 tri-
als, 0.149 for 100 trials, and 0.0984 for 200 trials (Table 1). 
There are a few notable differences between the MLE pro-
cedure and the theoretic bound. First, the best precision 
occurs at slightly lower stimulus levels for MLE simula-
tions, especially with a small number of trials. Second, the 
MLE simulations targeting very low levels actually provide 
better precision than the theoretical bound. These differ-
ences are likely because of differences between target stim-
ulus level and actual stimulus level, which is examined in 
Discussion.

Figure 9a shows how the precision of the three adap-
tive sampling schemes and the theoretic bound improves 
with increasing numbers of trials. Each data point shows 
precision at the optimal target level for a given scheme and 
number of trials (the legend lists the target fraction correct 
for each scheme). As expected, standard deviation of the 
threshold estimate decreases as the number of responses 
increases for all approaches. The standard symmetric 
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Fig. 9  a The improvement in 
precision of select adaptive 
sampling schemes as number 
of trials increases. Standard 
deviation is presented for each 
scheme at its optimal target 
level (Table 1, also shown in 
brackets in the legend). b The 
efficiency of each scheme ver-
sus the theoretic bound
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3D1U staircase (thin solid dark line) produces estimates 
of threshold with much worse precision than other algo-
rithms, while the 6D1U staircase (thin solid light line) 
performs better. The asymmetric 4D1U staircase (thick 
dashed line) and MLE procedure (thin dashed line) have 
precision similar to or better than the standard staircases. 
For 50 trials, the two have similar precision, while for 100 
trials and above, the MLE procedure slightly outperforms 
the asymmetric 4D1U staircase. Although the asymmetric 
5D1U and 6D1U have minutely better precision (Table 1) 
compared to asymmetric 4D1U at the optimal target 
level, we believe that asymmetric 4D1U is a better choice 
because it is less disrupted by lapses, which is consid-
ered in Discussion. These results suggest that asymmetric 
4D1U, symmetric 6D1U, and the MLE procedures may be 
optimal for many experiments; other practical considera-
tions are presented in Discussion.

A practical use of Fig. 9a is in determining the required 
number of responses in an experiment when the adap-
tive sampling scheme is changed and the same precision 
is desired. For example, if an experimenter is planning 
an experiment with 150 trials using 3D1U, they can trace 
horizontally to the left from that point and determine that 
to yield the same precision, the asymmetric 3D1U staircase 
would require roughly 124 trials, and the MLE procedure 
would require approximately 102 trials.

Figure 9b shows the psychometric test efficiency of 
selected adaptive sampling schemes using the theoretic 
bound as a benchmark of ideal precision. It is calculated 
using the ratio of the variance of the analytic approach for 
the ideal target level and the variance of the simulation. For 
example, the symmetric 3D1U staircase performed at 41 % 
efficiency for 50 trials, growing to 52 % for 200 trials. As 
expected, the asymmetric 3D1U staircase performed better, 
growing from 50 % efficiency for 50 trials to 67 % for 200 
trials. The asymmetric 4D1U grew from 57 % efficiency 
for 50 trials to 71 % for 200 trials. The MLE procedure per-
formed best, growing from 58 % efficiency at 50 trials to 
84 % at 200 trials.

While the MLE method outperformed all other methods, 
for 50 trials, the asymmetric 4D1U and 6D1U also pro-
vided comparable performance. All methods became more 
efficient with additional trials, which is expected since the 
trials provided later in the sequence are usually closer to 
the optimal target level.

We also compared the precision of the threshold esti-
mate for selected schemes to the commonly used symmet-
ric 3D1U staircase. For example, the MLE procedure per-
formed approximately 16 % better for 50 trials and 21 % 
better for 200 trials. The asymmetric 4D1U was consist-
ently 14–15 % better. The symmetric 6D1U was approxi-
mately 13 % better for 50 trials and 16 % better for 200 
trials.

While our primary interest was determining the preci-
sion of the threshold estimate, we also used our simulations 
to see if there were inaccuracies (i.e., systematic deviations 
from the actual value) in these estimates. Figure 10 shows 
accuracy errors (biases) for the same optimal target lev-
els used in Fig. 9; these data show that there were small 
systematic overestimates (i.e., small parameter biases). 
For example, the inaccuracy is less than 2 % for 100 trials 
or more, and less than 6 % for 50 trials. When compared 
with standard deviations of 0.16 and 0.25, respectively, 
these biases are of little consequence (“as a rule of thumb, 
a bias of less than 0.25 standard errors can be ignored,” 
Efron and Tibshirani 1994). It is crucial to note that these 
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fits accurately fit the data (i.e., parameter estimates were 
unbiased) because a bias-corrected fit was utilized (Chaud-
huri and Merfeld 2013); this earlier publication presents in 
detail the accuracy of psychometric curve fits obtained with 
and without bias-corrected fits.

Effects of bias

Since all of the adaptive sampling schemes we analyzed 
place stimuli symmetrically around 0, a shift of the psy-
chometric curve (i.e., a bias caused by nonzero mean noise) 
would cause stimuli intended to be placed at the target level 
to actually fall on a different part of the subject’s psycho-
metric curve (Merfeld 2011). Figure 11 shows how thresh-
old estimate precision is impacted by a bias in the same 
adaptive sampling schemes described above. Bias is shown 
as a fraction of threshold. In general, algorithms that sam-
ple at a higher target level, such as 6D1U (gray thin line) 
targeting 0.891, asymmetric 3D1U (thick dashed line) tar-
geting 0.895, and the MLE procedure (black dotted line) 
targeting 0.92, worsen in performance as bias increases. 
Symmetric 3D1U (black thin line) targeting 0.794 has a 
much smaller decrement in performance as vestibular bias 
increases.

One approach to overcome the effects of bias is to place 
stimuli symmetrically around the estimated bias (µ̂± kσ̂ ) 
instead of symmetrically around zero (0± kσ̂ ). A modified 
MLE procedure (Fig. 11, gray dotted line) implementing 
this approach results in little worsening of threshold esti-
mate precision as bias increases; Discussion describes dis-
advantages of this approach.

Discussion

Theoretical limits on precision

Our analytic approach determined the optimal target level 
for psychometric functions with underlying bidirectional 
Gaussian distribution. The overall results were similar to 
those for logistic distributions (Wetherill 1963), with small 
differences. For example, we found the target fraction cor-
rect level to optimize threshold for Gaussian distributions 
was 0.942, compared to 0.915 for logistic distributions. For 
both, the optimal target fraction correct to optimize bias 
was 0.5. If interested in both threshold and bias, we found 
the optimal target fraction correct was 0.873 for Gaussian 
distributions, compared to 0.824 for logistic distributions. 
Many studies now perform analysis using a Gaussian dis-
tribution and selection of appropriate target levels could 
improve efficiency.

While previous approaches have evaluated psychomet-
ric test efficiency by comparing simulation results for each 

adaptive sampling scheme with the results of omniscient 
experimenter simulations (Taylor and Creelman 1967), our 
approach uses a closed-loop analytic solution, providing 
robust support for the existing approach.

Comparison of analytic, simulation, and experiment 
results

To our knowledge, this is the first time that analytic 
approaches have been compared with Monte Carlo simu-
lations or human experiments, and also the first time 
the three have been directly compared, to evaluate effi-
ciency of approaches to determine recognition thresholds. 
That the results broadly agree is important because each 
approach has untested assumptions. For example, analytic 
approaches do not account for the particulars of the adap-
tive algorithm used, and simulations do not say how close 
to the theoretic limit results are.

To our knowledge, this is also the first study to compare 
simulations and human experiments for an adaptive stair-
case recognition task, and the results suggests that human 
threshold forced-choice decision making is modeled well 
by detection theory models and that simulations incorpo-
rate acceptable models of human threshold decision mak-
ing. It also suggests that human threshold decision-making 
functions near optimal levels. Previous studies (Kollmeier 
et al. 1988; Garcia-Perez 2000; Garcia-Perez and Alcala-
Quintana 2007, 2009), mostly using two-alternative forced-
choice detection tasks and non-directional stimuli, found 
that experimental results are similar to simulations in some 
situations, but fundamental differences between detection 
(e.g., “did I move or not move?”) and recognition (e.g., 
“did I move left or right?”) tasks (Merfeld 2011) underline 
the importance of studying both recognition and detection. 
Figure 1 illustrates a few differences between recogni-
tion (Fig. 1a) and detection (Fig. 1b) that are noteworthy: 
(1) The stimulus amplitude for detection is always a posi-
tive scalar and is typically depicted on a logarithmic axis to 
emphasize the plateau at small amplitudes, while recogni-
tion can be used for bidirectional measures. (2) Two-alter-
native forced-choice detection (with the exception of the 
yes–no staircase) has a plateau at the guessing level, which 
is expected on average to be 50 % correct, but can vary 
with the subject’s decision boundary, and is typically more 
variable than the plateau at 0 % positive for recognition. 
This is a fundamental difference, since recognition tasks do 
not need to sample extensively using stimuli that yield just 
50 % correct (“just guessing”). (3) While detection uses 
fraction correct as the ordinate axis, recognition uses frac-
tion positive (with the exception of the yes–no staircase).

One simple message (Wetherill 1963; Taylor and Creel-
man 1967) highlighted by both the analytic (Figs. 2, 3) 
and numeric (Fig. 4) results is that the optimal strategy 
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(on average) is to distribute the stimuli equally at just two 
levels located symmetrically on both sides of the point of 
subjective equality. For example, if interested only in σ, the 
stimuli should be placed at the two levels that yield 94 % 
correct (µ± 1.575σ). This message differs from a common 
psychometric intuition that sampling at a range of stimu-
lus amplitudes, including a few trials at the two extremes 
to “anchor” the fit, is desirable. The results (Figs. 7, 8, 9) 
presented herein provide practical guidance that might help 
improve the efficiency of some experimental investigations. 
Given the limited time available for clinical and scientific 
testing, efficient data collection can make previously infea-
sible tests feasible. Since anchoring, especially to deter-
mine the lapse rate for the guessing level in detection tasks, 
requires tiny amplitude stimuli, further investigation is 
required to determine the most efficient approaches under 
these assumptions.

As a demonstration, we evaluated a few common adap-
tive algorithms, although the approach can and should be 
applied to other common sampling schemes that so far have 
been evaluated using simulations and experiments, such as 
“QUEST” (Watson and Pelli 1983) and “PSI” (Kontsevich 
and Tyler 1999). A few results stand out from the evalu-
ation of common adaptive algorithms. First, symmetric 
2D1U and 3D1U staircases perform quite close to the theo-
retic level for their target level, but they do not target the 
most efficient level if threshold is the parameter of interest. 
Across a broad range of target levels, the MLE procedure 
produces results close to the theoretic limit, especially for 
200 trials. Asymmetric staircases exceed or match per-
formance of symmetric staircases, suggesting that they 
can couple optimal efficiency with the ability to converge 
quickly toward the threshold level, and came close to 
matching the performance of the MLE procedure.

Most of our analyses focused on the efficient determina-
tion of threshold rather than bias. We do so because the ori-
gin of these biases is unclear, with some (Garcia-Perez and 
Alcala-Quintana 2013) suggesting that they could include 
both cognitive decision making and perceptual biases. It 
would be straightforward to extend our analyses to other 
cases.

The similarity between the theoretic limit and simula-
tions of the MLE procedure (Fig. 8) and asymmetric stair-
cases (Fig. 7) lend support to the assumptions underlying 
both approaches. There are a few peculiarities that deserve 
explanation: optimal target level was slightly lower than 
that predicted by the theoretical limits, precision outper-
formed the theoretical limit at small target levels, and the 
precision for 50 trials of the MLE procedure was much 
worse than the theoretical limits, whereas for 200 trials it 
was comparable. These observations can be explained by 
recalling that actual stimuli are not all placed at the target 
level. We demonstrate this with an example that assumes 

the initial stimulus amplitude is higher than threshold, 
although analogous logic holds if the opposite is true. The 
initial staircase, which has 25 responses starting from the 
initial stimulus amplitude of 4σ, places some trials above 
the target level. Indeed, it is necessary to have a range of 
stimulus amplitudes to roughly establish a psychometric 
curve, since, given that population thresholds vary more 
than an order of magnitude, there is little a priori informa-
tion about threshold. Thus, especially for small n, some 
stimuli will be above target level, and the median stimulus 
amplitude may be somewhat higher than the target level. 
Likewise, when target level is lower than optimal, as the 
staircase traverses from the initial amplitude to the target 
level, it will provide some stimuli that are close to the opti-
mal target level. This allowed the simulations to outperform 
theory. And when target level is at the optimal theoretic tar-
get level, some stimuli will be above the target level, reduc-
ing efficiency. This is why the most precise target level is 
slightly less than that predicted by theory, and why this gap 
diminishes as the number of trials increases. While it would 
be interesting to determine an “effective stimulus level” 
and compare it to the target level, from a practical perspec-
tive, the target level is the parameter set by the operator and 
thus is of direct interest. Furthermore, while target level is 
a single value, actual stimuli span a broad range, and cal-
culating “effective stimulus level” would require additional 
assumptions.

Recommendations for adaptive sampling schemes

Three schemes had psychometric test efficiencies that 
approached the ideal predicted by theory: (1) a symmetric 
6D1U standard staircase, which naturally targets a fraction 
correct of 0.89, (2) an MLE procedure targeting a fraction 
correct of 0.92, and (3) an asymmetric 4D1U staircase tar-
geting a fraction correct of 0.90. While they had similar 
precision at 50 trials, the MLE procedure outperformed 
at 100 trials and more (Fig. 9). Accuracy errors were very 
small and similar for the three (Fig. 10).

Overall, the results suggest that the MLE procedure 
would often be the best adaptive sampling scheme for most 
experiments, followed by the 4D1U asymmetric staircase, 
although an advantage of the 6D1U staircase is that it uses 
a simpler well-established approach. However, a few prac-
tical considerations not incorporated into the simulations 
presented in this paper are worthy of consideration.

First, these simulations do not include lapses, errors that 
are independent of stimulus amplitude (Wichmann and Hill 
2001a). In particular, a lapse at high amplitudes during the 
initial staircase for the MLE procedure would cause a large 
overestimate of threshold, which would cause later stim-
uli to be placed at inefficient levels. In contrast, a 3D1U 
or 4D1U staircase would recover quickly from the lapse. 
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Second, if the initial stimulus level is much larger than the 
target level, the 6D1U staircase can take a large number of 
high-amplitude, low-information trials to converge to the 
target level. Finally, while bias impacted precision simi-
larly for MLE, symmetric 6D1U and asymmetric 4D1U 
(Fig. 11), we also presented results for a modification of the 
MLE procedure that places stimuli symmetrically around 
µ̂ . While this improves the precision of the threshold esti-
mate, it results in the physical stimulus amplitude differing 
for each of the two motion directions, which can sometimes 
provide unwanted cues to the subject. For example, many 
motion devices vibrate proportionally to motion speed, and 
subjects could learn to use vibration intensity as a cue to 
determine motion direction (Chaudhuri et al. 2013). Anec-
dotally, one subject we have tested has a vestibular bias that 
is approximately half the measured threshold and has sug-
gested the ability to do so.
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