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Abstract. We propose an approach, via relative trace formulae, toward the global restriction
problem involving Bessel or Fourier–Jacobi periods on unitary groups Un×Um , generalizing
the work of Jacquet–Rallis for m = n−1 (which is a Bessel period). In particular, when m =
0, we recover a relative trace formula proposed by Flicker concerning Kloosterman/Fourier
integrals on quasi-split unitary groups. As evidences for our approach, we prove the vanishing
part of the fundamental lemmas in all cases, and the full lemma for Un × Un .

1. Introduction

Recently, Jacquet and Rallis [22] propose a new approach to the global Gan–Gross–
Prasad conjecture [8] for unitary groups Un × Un−1, which relates automorphic
periods with special L-values. It is based on the comparison of some relative trace
formulae. In this article, we extend this approach to all sorts of pairs Un × Um

where 0 ≤ m ≤ n. If n − m is odd (resp. even), the automorphic periods at hand
are Bessel (resp. Fourier–Jacobi) periods.

1.1. Periods and special values of L-functions

Let us consider a quadratic extension k/k′ of number fields with A/A′ the corre-
sponding rings of adèles. Denote Mk (resp. Mk′ ) the set of all places of k (resp. k′).
Let τ be the nontrivial element in Gal(k/k′), and η : k′\A′× → {±1} the quadratic
character associated to k/k′.

Let V, ( , ) be a (nondegenerate) hermitian space over k (with respect to τ )
of dimension n and W ⊂ V a subspace of dimension m such that the restricted
hermitian form ( , )|W is nondegenerate. Denote Un = U(V ) and Um = U(W )

the corresponding unitary groups, respectively. We regard Um as a subgroup of Un

consisting of elements fixing the orthogonal complement of W in V point-wisely.
When n−m is even (resp. odd), we define a unipotent subgroup U ′ = U ′1r ,m ⊂ Un

(resp. U ′ = U ′1r ,m+1) on which Um acts through conjugation. We put H ′ = U ′�Um ,
viewed as a subgroup of Un × Um via the embedding into the first factor and the
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projection onto the second factor (see Sects. 4.1, 5.1 for the precise definitions).
Let π (resp. σ ) be an irreducible representation of Un(A

′) (resp. Um(A
′)) which

occurs with multiplicity one in the space of cuspidal automorphic forms A0(Un)

(resp. A0(Um)), and Aπ ⊂ A0(Un) (resp. Aσ ⊂ A0(Um)) the unique irreducible
π (resp. σ )-isotypic subspace.

First, we consider the case of Bessel periods, that is, n − m = 2r + 1 is odd.
There is an essentially unique generic character ν′ : U ′(k′)\U ′(A′) → C

× that is
stabilized by Um(A

′) and hence can be extended to a character of H ′(k′)\H ′(A′).
For ϕπ ∈ Aπ and ϕσ ∈ Aσ , we define

Bν′
r (ϕπ , ϕσ ) =

∫

H ′(k′)\H ′(A′)
ϕπ ⊗ ϕσ (h

′)ν′(h′)−1dh′

to be a Bessel period of π ⊗ σ . The global Gan–Gross–Prasad conjecture [8] says
that if π⊗σ is in a generic Vogan L-packet, then there is a nonzero Bessel period of
a representation in the Vogan L-packet of π⊗σ if and only if the central special L-
value L

( 1
2 ,BC(π)× BC(σ )

) �= 0, where BC stands for the standard base change
and the L-function is the Rankin–Selberg convolution (see [21]).

Second, we consider the case of Fourier–Jacobi periods, that is, n − m = 2r
is even. After choosing a nontrivial character ψ ′ : k′\A′ → C

× and a character
μ : k×\A× → C

× satisfyingμ|A′× = η, we have an automorphic (essentially Weil)
representation ν′

ψ ′,μ of H ′(A′) realized on some space S of Schwartz functions. For
ϕπ ∈ Aπ , ϕσ ∈ Aσ and φ ∈ S, we define

FJ
ν′
ψ ′,μ

r (ϕπ , ϕσ ;φ) =
∫

H ′(k′)\H ′(A′)
ϕπ ⊗ ϕσ (h

′)θ(h′, φ)dh′

to be a Fourier–Jacobi period ofπ⊗σ (with respect toμ), where θ(h′, φ) is a certain
theta series on H ′(A′) attached to φ. The global Gan–Gross–Prasad conjecture [8]
says that if π ⊗ σ is in a generic Vogan L-packet, then there is a nonzero Fourier–
Jacobi period of a representation in the Vogan L-packet of π ⊗ σ if and only if the
central special L-value L

( 1
2 ,BC(π)× BC(σ )⊗ μ−1

) �= 0. In an early work [10],
Gelbart and Rogawski studied Fourier–Jacobi periods on U3 × U1 for endoscopic
representations.

There has been significant progress toward these conjectures in a series of
works of Ginzburg, Jiang and Rallis including [13] for unitary groups, [11] for
symplectic groups and [12] for orthogonal groups, toward the direction that the
existence of nontrivial Bessel or Fourier–Jacobi periods implies the non-vanishing
of corresponding central L-value. Their approach is to study those periods of certain
residue Eisenstein series and some related Fourier coefficients. In a recent preprint
[38], Wei Zhang establishes both directions (and even the refined version in [39];
see below) for the pair Un × Un−1 under certain restrictions, by exploring the
relative trace formula of Jacquet–Rallis, which is a significant step forward to the
conjecture.

One may formulate a refined version of the global Gan–Gross–Prasad conjec-
ture predicting a precise relation between these automorphic periods and central
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special L-values, known as the Ichino–Ikeda [16] (resp. Harris [15]) conjecture in
the context of SOn ×SOn−1 (resp. Un × Un−1). In a recent preprint [28] of the
author, the refined conjecture has been formulated for all pairs SOn ×SOm and
Un × Um with n − m odd (that is, all cases of Bessel periods). The advantage of
the relative trace formula approach is the possibility to prove the explicit formula

relating |Bν′
r (ϕπ , ϕσ )|2 (or |FJ

ν′
ψ ′,μ

r (ϕπ , ϕσ ;φ)|2) and the product of certain local
periods of positive type, with L-values as (part of) the scaling factor of these two
periods. In particular, one can prove the positivity of the corresponding central
special L-value, for example, as in [19].

1.2. The conjecture for Un × Un

As a special case in our article, we formulate a relative trace formula for the pair
Un×Un , which should be compared with another one on GLn ×GLn . We prove in
Theorem 5.15 that the fundamental lemma for Un ×Un can be reduced to the one
for Un+1 × Un , which is proved by Yun [37]. Moreover, even the smooth transfer
for Un ×Un can be reduced to the one for Un+1 ×Un . In other words, the relative
trace formula established in the current article provides a way to unify the problem
for Un+1 ×Un and Un ×Un , which is hard to be seen at the level of global period
integrals.

Based on this idea, Hang Xue proves the equivalence of nonvanishing of the
periods and the nonvanishing of the central L-values for Un × Un [35, Theorem
1.1.1] in a recent work, following the argument of Zhang [38] regarding the pair
Un+1 × Un , under similar restrictions. Therefore, the Gan–Gross–Prasad conjec-
tures for Un × Un (a Fourier–Jacobi case) and Un+1 × Un (a Bessel case) are on
the same pace. Moreover, by the machine of theta lifting, one can even prove the
conjecture for certain endoscopic cases for Un+1×Un [35, Theorem 1.1.5], which
are not covered by the work of Wei Zhang.

1.3. Relative trace formulae and fundamental lemmas

We briefly describe our relative trace formulae. To be simple for the introduction,
we consider only the case of Bessel periods. In other words, we assume that n−m =
2r + 1 is odd.

Let fn ∈ S(Un(A
′)) (resp. fm ∈ S(Um(A

′))) be a Schwartz function on Un(A
′)

(resp. Um(A
′)). We associate to fn ⊗ fm a kernel function on (Un(k′)\Un(A

′) ×
Um(k′)\Um(A

′))2 as

K fn⊗ fm (g
′
1, g′2; g′3, g′4) =

∑
ζ ′∈Un(k′)

fn(g
′−1
1 ζ ′g′3)

∑
ξ ′∈Um (k′)

fm(g
′−1
2 ξ ′g′4),

and consider the following distribution

J( fn ⊗ fm) =
∫∫

(H ′(k′)\H ′(A′))2
K fn⊗ fm

(
h′1, h′1; h′2, h′2

)
ν′(h′−1

1 h′2)dh′1dh′2. (1.1)
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Such distribution formally computes

∑
π,σ

∑
Bν′

r (ρ( fn)ϕπ , ρ( fm)ϕσ )B
ν̃′
r (ϕπ , ϕσ ),

where the inner sum is taken over orthonormal bases of Aπ and Aσ , and ρ denotes
the right translation. The integral (1.1) is not absolutely convergent in general and
requires regularization. It turns out that the regular part of this distribution has the
following decomposition

Jreg( fn ⊗ fm) =
∑

ζ ′∈[Un(k′)reg]/H′(k′)
Jζ ′( f ),

where [Un(k′)reg]/H′(k′) is the set of regular orbits in Un(k′), which will be dis-
cussed in Sect. 4.3, and f ∈ S(Un(A

′)) is obtained from fn ⊗ fm . Moreover, each
summand Jζ ′ is an adèlic orbital integral

Jζ ′( f ) =
∫

Um (A′)

∫∫

U ′1r ,m+1(A
′)2

f (g′−1u′−1
1 ζ ′u′2g′)ν′(u′−1

1 u′2)du′1du′2dg′.

To encode the L-function, one should pass to the general linear groups. Let
� = BC(π) (resp. � = BC(σ )) be the base change to GLn(A) (resp. GLm(A))
and assume that it remains cuspidal. We define similarly a unipotent subgroup
U1r ,m+1,1r of GLn , and put H = U1r ,m+1,1r � GLm , viewed as a subgroup of
GLn ×GLm , equipped with a character ν (see Sect. 2.1 for precise definitions). For
ϕ� ∈ A� and ϕ� ∈ A� , consider the following version of the Bessel period on
general linear groups

Bν
r,r (ϕ�, ϕ�) =

∫

H(k)\H(A)

ϕ� ⊗ ϕ�(h)ν(h)
−1dh.

Note that the above integral is the usual Rankin–Selberg convolution for
GLn ×GLm when r = 0, but slightly different when r > 0. In fact, it is an
integral presentation of L(s,�×�) as well.

To single out the cuspidal representations that come from unitary groups via
base change, we follow [22]. Say that n is odd. Put

Pn(ϕ�) =
∫

Z ′n(A′)GLn(k′)\GLn(A′)

ϕ�(g1)dg1,

Pm(ϕ�) =
∫

Z ′m (A′)GLm (k′)\GLm (A′)

ϕ�(g2)η(det g2)dg2,

where Z ′n (resp. Z ′m) denotes the center of GLn,k′ (resp. GLm,k′ ). As pointed out
in [6,7,9], the functional Pn (resp. Pm) should be nontrivial on � (resp. �) if the
representation comes from unitary groups via (standard) base change.
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Take Fn ∈ S(GLn(A)) and Fm ∈ S(GLm(A)). We introduce another distribu-
tion J(Fn ⊗ Fm) which formally computes

∑
�,�

∑
Bν

r,r (ρ(Fn)ϕ�, ρ(Fm)ϕ�)Pn(ϕ�)Pm(ϕ�),

whose regular part has the following decomposition

Jreg(Fn ⊗ Fm) =
∑

ζ∈[Sn(k′)reg]/H(k′)
Jζ (F),

where [Sn(k′)reg]/H(k′) is the set of regular orbits in the symmetric space Sn(k′),
which will be discussed in Sect. 4.3, and F ∈ S(Sn(A

′)) is obtained from Fn⊗ Fm .
Moreover, each summand Jζ is an adèlic orbital integral

Jζ (F) =
∫

GLm (A)

∫

U1r ,m+1,1r (A′)

F(g−1u−1ζuτ g)ν(u−1)dudg.

We prove in Proposition 4.12 that there is a natural bijection

N : [Sn(k
′)reg]/H(k′) ∼−→

∐
β

[Un(k
′)reg]/H′(k′), (1.2)

where the disjoint union is taken over all nondegenerate hermitian matrices β ∈
Her×m(k′) of rank m (which determines W ⊂ V ) up to similarity. We say the test
function F matches the collection ( f β)β if Jζ (F) = Jζβ ( f β) for every ζ, ζ β such
that N(ζ ) = ζ β (see Conjecture 4.13).

As the most important and interesting problem in trace formulae, we now
discuss the corresponding fundamental lemma for all pairs (m, n) including
the case of Fourier–Jacobi periods. When n − m is even, we put Sn,m(k′) =
Sn(k′) × Mat1,m(k′) × Matm,1(k′) and Un,m(k′) = Un(k′) × Mat1,m(k). As in
the case of Bessel periods, there are notions of regular elements in both sets and
we have a similar bijection as (1.2) (see Sect. 5.3).

Now let k′ be a non-archimedean local field and k/k′ an unramified quadratic
field extension. Let o′ (resp. o) be the ring of integers of k′ (resp. k). There are only
two non-isomorphic hermitian spaces of dimension m > 0 over k. Let U+m ⊂ U+n
be the pair associate to W+ ⊂ V+ both with trivial discriminant, and U−m ⊂ U−n be
another one. Then W+ has a selfdual o-lattice LW that extends to a selfdual o-lattice
LV of V+. The unitary group U+m (resp. U+n ) is unramified and has a model over o′.
The group of o′-points U+m(o′) (resp. U+n (o′)) is a hyperspecial maximal subgroup
of U+m(k′) (resp. U+n (k′)). Note that GL(LV ) ∼= GLn(o) is a hyperspecial maximal
subgroup of GLn(k) and we put Sn(o

′) = Sn(k′) ∩ GLn(o).
We propose the following conjecture, where the notion 1T stands for the char-

acteristic function of a subset T .
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Conjecture 1.1. (The fundamental lemma for unit elements). We have

(1) When n − m is odd or m = 0,

O(1Sn(o′), ζ ) =
{

t(ζ )O(1U+n (o′), ζ
+) ζ ↔ ζ+ ∈ U+n (k′)

0 ζ ↔ ζ− ∈ U−n (k′),

where ζ, ζ+ are normal, and

O(1Sn(o′), ζ ) =
∫

H(k′)

1Sn(o′)([ζ ]h)ψ(h)η(det h)dh,

O(1U+n (o′), ζ
+) =

∫

H+(k′)

1U+n (o′)([ζ+]h′)ψ ′(h′)dh′.

Here, ψ (resp. ψ ′) is the character induced from a generic character of the
unipotent radical of H (resp. H+) (see Sect. 4.2), and t(ζ ) ∈ {±1} is a certain
transfer factor defined in (4.17). In particular, when m = 0, the second part
of the above identity does not happen.

(2) When n − m is even and m �= 0,

Oμ(1Sn (o′);1Mat1,m (o′) ⊗ 1Matm,1(o′), [ζ, x, y])

=
{

t([ζ, x, y])Oμ(1U+n (o′);1Mat1,m (o), [ζ+, z]) [ζ, x, y] ↔ [ζ+, z] ∈ U+n,m(k′)
0 [ζ, x, y] ↔ [ζ−, z] ∈ U−n,m(k′),

where ζ, ζ+ are normal, and

Oμ(1Sn(o′);1Mat1,m (o′) ⊗ 1Matm,1(o′), [ζ, x, y])
=
∫

H(k′)

1Sn(o′)([ζ ]h)
(
ω

†
ψ,μ

(h)
(
1Mat1,m (o′) ⊗ 1Matm,1(o′)

))
(x, y)ψ(h)dh,

Oμ(1U+n (o′);1Mat1,m (o), [ζ+, z])
=

∫

H+(k′)

1U+n (o′)([ζ+]h′)(ω
‡
ψ ′,μ(h

′)1Mat1,m (o))(z)ψ
′(h′)dh′.

Here, ψ (resp. ψ ′) is the character induced from a generic character of the
unipotent radical of H (resp. H+) (see Sect. 5.2), and t([ζ, x, y]) ∈ {±1} is a
certain transfer factor defined in (5.16).

We have the following theorem.

Theorem 1.2. In the above Conjecture 1.1,

(1) The second part of the identities in both cases holds.
(2) When n = m+1, the fundamental lemma holds if char(k) > n, or char(k) = 0

and the residue characteristic is sufficiently large with respect to n.
(3) When n ≤ 3,m = 0, the fundamental lemma holds if k has odd residue

characteristic.
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(4) When n = m, the fundamental lemma holds if char(k) > n, or char(k) = 0
and the residue characteristic is sufficiently large with respect to n.

Proof. Part (1) is proved in Propositions 4.16 and 5.14 in this article. Part (2)
is proved by Yun [37] where the transfer to characteristic 0 is accomplished by
Gordon in the appendix therein. Part (3) is proved by Jacquet [17] when n = 3;
(essentially) proved by Ye [36] when n = 2; and trivial when n = 1. Part (4) is
proved in Theorem 5.15 by reducing to (2).

Remark 1.3. We have

(1) In general, when m = 0, the fundamental lemma can be proved by the argu-
ment of Ngô [31], with slight modification, in the case char (k) > n, and trans-
ferred to the case char(k) = 0 by the work of Cluckers–Loeser [3, Remark
9.2.5].

(2) When n = m + 1, the fundamental lemma is the group version of the one
proposed by Jacquet–Rallis [22]. When m = 0, the fundamental lemma is
the one proposed by Flicker [6], which is the unitary group version of the
Jacquet–Ye fundamental lemma (see [26]). When m > 0 (and n −m is odd),
the fundamental lemma is a sort of hybrid of the Jacquet–Rallis fundamental
lemma and the Flicker fundamental lemma. We hope that there is a geometric
method toward this fundamental lemma as well, which is a sort of hybrid of
those in [37] by Yun and [31] by Ngô.

(3) When n = 3 and m = 0, the fundamental lemma for the whole spherical
Hecke algebra is proved by Mao [30].

1.4. Variants of Rankin–Selberg convolutions

As we see in the previous subsection, one needs to consider certain periods of
Bessel and Fourier–Jacobi types on general linear groups as well. In Sect. 2 (resp.
3), we generalize the notion of Bessel (resp. Fourier–Jacobi) models and periods for
GLn ×GLm for a pair (r, r∗) of nonnegative integers such that n = m+ 1+ r + r∗
(resp. n = m + r + r∗). When r = r∗, they are introduced and considered in [8].

Let (r, r∗) be as above, we introduce a unipotent subgroup U1r ,m+1,1r∗ of GLn

and put H = U1r ,m+1,1r∗ � GLm , viewed as a subgroup of GLn ×GLm . We have
a character ν of H , which is automorphic if k is a number field. Let π (resp. σ )
be an irreducible cuspidal automorphic representation of GLn(A) (resp. GLm(A)).
We introduce the Bessel integral

Bν
r,r∗(s;ϕπ , ϕσ ) =

∫

H(k)\H(A)

ϕ� ⊗ ϕ�(h)ν(h)
−1| det h|s−

1
2

A
dh,

for ϕπ ∈ Aπ , ϕσ ∈ Aσ and s ∈ C, and the Bessel period Bν
r,r∗(ϕπ , ϕσ ) :=

Bν
r,r∗
( 1

2 , ϕπ , ϕσ
)
. ThenBν

r,r∗ is the usual Rankin–Selberg convolution on GLn ×GLm

if and only if r = 0. Similarly, we may define the Fourier–Jacobi integral (with
respect to μ) FJ

νμ
r,r∗(s;ϕπ , ϕσ ;�) and Fourier–Jacobi period (with respect to μ)

FJ
νμ
r,r∗(ϕπ , ϕσ ;�) := FJ

νμ
r,r∗
( 1

2 ;ϕπ , ϕσ ;�
)
.



8 Y. Liu

The following theorem was known by Jacquet, Piatetskii-Shapiro and Shalika
long time ago. Since it is not explicated in any reference, we would like to write it
down with proof simply for completeness.

Denote ι to be the outer automorphism of GLn or GLm by ι(g) = gι := t g−1.
Put ϕ̃π (g) = ϕπ(gι) and ϕ̃σ (g) = ϕσ (gι).

Theorem 1.4. (Theorem 2.5, Corollary 2.6, Theorem 3.4, Remark 3.5, Corollary
3.6). We refer to Sects. 2.2, 3.2 for notation.

(1) The Bessel integrals are holomorphic in s and satisfy the following functional
equation

Bν
r,r∗(s;ϕπ , ϕσ ) = Bν

r∗,r (1− s; ρ(wn,m)ϕ̃π , ϕ̃σ ).

For ϕπ ∈ Aπ and ϕσ ∈ Aσ such that Wψ
ϕπ = ⊗vWv and Wψ

ϕσ = ⊗vW−v are
factorizable,

Bν
r,r∗(ϕπ , ϕσ ) = L

(
1

2
, π × σ

) ∏
v∈Mk

�v,r (s;Wv,W−v )
Lv(s, πv × σv)

|s= 1
2
,

where in the last product almost all factors are 1. In particular, there is a
nontrivial Bessel period of π ⊗ σ if and only if L

( 1
2 , π × σ

) �= 0.
(2) The Fourier–Jacobi integrals are meromorphic in s (holomorphic when n >

m) and satisfy the following functional equation

FJ
νμ
r,r∗(s;ϕπ , ϕσ ;�) = FJ

νμ
r∗,r (1− s; ρ(wn,m)ϕ̃π , ϕ̃σ ; �̂).

For ϕπ ∈ Aπ , ϕσ ∈ Aσ and � ∈ S(W∨(A)) such that Wψ
ϕπ = ⊗vWv ,

Wψ
ϕσ = ⊗vW−v and � = ⊗�v are factorizable,

FJ
νμ
r,r∗(ϕπ , ϕσ ;�)

= L

(
1

2
, π × σ ⊗ μ−1

) ∏
v∈Mk

�v,r (s;Wv,W−v ⊗ μ−1
v ;�v)

Lv(s, πv × σv ⊗ μ−1
v )

|s= 1
2
,

where in the last product almost all factors are 1. In particular, there
is a nontrivial Fourier–Jacobi period of π ⊗ σ for νμ if and only if
L
( 1

2 , π × σ ⊗ μ−1
) �= 0.

Remark 1.5. The above theorem completely confirms [8, Conjecture 24.1] for split
unitary groups, that is, general linear groups.

The following is an outline of the article. In Sect. 2, we focus on the Bessel
models and periods on general linear groups, including the proof of Theorem 1.4
for the Bessel case. In Sect. 3, we focus on Fourier–Jacobi models and periods on
general linear groups, including a proof of Theorem 1.4 for the Fourier–Jacobi case.
After briefly recalling Bessel models and periods for unitary groups, we introduce
the relative trace formula in Sect. 4. We prove the matching of orbits and the smooth
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matching of functions at split places in Sect. 4.3. We formulate the fundamental
lemma and prove the vanishing part in Sect. 4.4. In Sect. 5, we repeat the previous
section, but for the Fourier–Jacobi models and periods. We also prove the full
fundamental lemma for Un×Un by reducing to the one for Un+1×Un . Section 5.4
is an appendix on integrals of local Whittaker functions on general linear groups. We
collect all the results we need in Sects. 2, 3 from existing literatures. In particular,
we have to use various sorts of auxiliary local Whittaker integrals in the theory of
Rankin–Selberg convolutions.

1.5. Notation and convention

Here are some general notation and conventions.

• If k is a local field, we denote | |k its normalized absolute value which satisfies
dab = |a|kdb for any Haar measure da on the additive group k.

• Let k be a (commutative unital) ring and τ : k → k an automorphism. For a
k-module M , we put Mτ = M ⊗k,τ k and denote M∨ = Homk(M, k) the dual
module.

• All quadratic, symplectic, hermitian, or skew-hermitian spaces are assumed to
be nondegenerate.

• For a smooth representation π , we denote π̃ for its (smooth) contragredient
representation.

• Denote A0(G) the space of cuspidal automorphic forms for a reductive group
G defined over a number field k, which is a representation of G(A) by right
translation where A is the ring of adèles of k.

• If G is a linear algebraic group over a number field k, we always use the Tam-
agawa measure for adèlic integrals over G(A). In particular, if G is unipotent,
then the total volume of G(k)\G(A) is 1.

Throughout the article, we will fix a quadratic extension k/k′ of number fields
with A/A′ the corresponding rings of adèles. Denote Mk (resp. Mk′ ) the set of all
places of k (resp. k′). Let τ be the nontrivial element in Gal(k/k′) and η : k′\A′× →
{±1} the quadratic character associated to k/k′. We denote by Tr and Nm the trace
and norm of k/k′, respectively. Put k− = {x ∈ k | xτ = −x}. We fix a nonzero
element j ∈ k− once for all and define T̃r(x) = j (x−xτ ) ∈ k′ for x ∈ k. In certain
situation, we will also refer k/k′ and the related notation to their localizations (or
possible general local fields).

• Denote Matm,n the affine group scheme over Spec Z of m × n matrices; put
Matn = Matn,n with GLn the open subscheme of invertible matrices. For a
scheme S over Spec Z and a field k, put Sk = S ×Spec Z Spec k.

• For 0 ≤ m ≤ n, denote 1n the identity matrix of rank n and put

w0 = ∅, wn =
[

1
wn−1

]
, wn,m =

[
1m

wn−m

]
.

• Denote Hern (resp. Hern) the affine group scheme over Spec k′ of n × n-
hermitian (resp. skew-hermitian) matrices with respect to the quadratic exten-
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sion k/k′, which is naturally a closed subscheme of Resk/k′ Matn,k . In partic-
ular, Her1(k′) = k′ (resp. Her1(k′) = k−). Put Her×n = Hern ∩Resk/k′ GLn,k .

• Denote Sn ⊂ Resk/k′ GLn,k the symmetric space, which is the closed
subscheme defined by the equation ssτ = 1n . We have an isomorphism
Resk/k′ GLn,k /GLn,k′ ∼= Sn given by g �→ ggτ,−1.

• We have a subgroup H ⊂ GLn,k ×GLm,k (resp. H ′ ⊂ Un × Um) over Spec k
(resp. Spec k′), whose reductive quotient is GLm,k (resp. Um) in Sect. 2.1 (resp.
Sect. 3.1). In Sect. 4.2, we will introduce a subgroup H (resp. H′) of Resk/k′ H
(resp. H ′ ×Spec k′ H ′). Moreover, in Sect. 5.2, we need to consider an auxiliary
quotient group H† (resp. H‡, H‡) of H (resp. H ′, H′). Here are two extremal
cases. When n−m ≤ 1, H = H† = GLm,k and H = GLm,k′ (resp. H ′ = H‡ =
H′ = H‡ = Um). When m = 0, H = Resk/k′ H (resp. H′ = H ′ ×Spec k′ H ′);
H† � Mat1,k (resp. H‡ � Her1 and H‡ � Her1 ×Spec k′ Her1).

2. Bessel periods on GLn × GLm

2.1. Bessel models for general linear groups

Let k be a local field and V be a k-vector space of dimension n. Suppose that V has
a decomposition V = X ⊕W ⊕ E ⊕ X∗, where W , X , X∗ and E have dimensions
m, r , r∗ and 1, respectively. Then n = m+r+r∗+1. Let Pr,m+1,r∗ be the parabolic
subgroup of GL(V ) stabilizing the flag 0 ⊂ X ⊂ X ⊕W ⊕ E ⊂ V , and Ur,m+1,r∗
its unipotent radical. Then Ur,m+1,r∗ fits into the following exact sequence

0 �� Hom(X∗, X) �� Ur,m+1,r∗ �� Hom(X∗,W ⊕ E)+ Hom(W ⊕ E, X) �� 0,

which may be written as

0 �� (X∗)∨ ⊗ X �� Ur,m+1,r∗ �� (X∗)∨ ⊗ (W ⊕ E)+ (W∨ ⊕ E∨)⊗ X �� 0.

Let �X : X → k (resp. �X∗ : k → X∗) be a nontrivial k-linear homomorphism
(if exists), and UX (resp. UX∗ ) a maximal unipotent subgroup of GL(X) (resp.
GL(X∗)) stabilizing �X (resp. �X∗ ). Moreover, let

�W : (W ⊕ E)+ (W∨ ⊕ E∨)→ k

be a k-linear homomorphism, which is trivial on W +W∨ and nontrivial on E and
E∨. Let � : Ur,m+1,r∗ → k be the homomorphism as the composition

Ur,m+1,r∗ → (X∗)∨ ⊗ (W ⊕ E)+ (W∨ ⊕ E∨)⊗ X
�X+�∨X∗−−−−→ (W ⊕ E)+ (W∨ ⊕ E∨) �W−→ k,

which is fixed by (UX ×UX∗)× GL(W ). Therefore, we may extend � trivially to
a homomorphism

� : H = Ur,m+1,r∗ � ((UX ×UX∗)× GL(W ))→ k.
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Let ψ : k → C
× be a nontrivial character and λ : UX × UX∗ → C

× a generic
character which can be viewed as a character of H . Let δW be the character of
GL(W ) defined by δW (g) = | det g|r∗−r

k . Then we can form a character ν =
(ψ ◦ �) ⊗ λ ⊗ δ

− 1
2

W of H . There is a natural embedding ε : H → GL(V ) and a
projection κ : H → GL(W ), which together induce an embedding (ε, κ) : H →
GL(V )× GL(W ). The pair (H, ν) is uniquely determined up to conjugacy in the
group GL(V ) × GL(W ) by the pair W ⊂ V and (r, r∗). We have the following
theorem.

Theorem 2.1. Let k be of characteristic 0. Let π (resp. σ ) be an irreducible admis-
sible representation of GL(V ) (resp. GL(W )).

(1) If π and σ are generic, dimC HomH (π ⊗ σ, ν) ≥ 1.
(2) If r = r∗, dimC HomH (π ⊗ σ, ν) ≤ 1.

It is naturally expected that (2) is true for any r, r∗. For the relative trace formula
we are going to consider, r is equal to r∗.

Proof. Part (1) is due to Corollary 6.2(1). Part (2) is proved in [34] (resp. [1,2])
when r = 1 (resp. and k non-archimedean, and k = R). The case for general r is
reduced to the previous one, as shown in [27].1 ��
Definition 2.2. (Bessel model). A nontrivial element in the space HomH (π⊗σ, ν)
is called an (r, r∗)-Bessel model of π ⊗ σ . When r = r∗, hence n −m is odd, it is
simply the one defined in [8].

Remark 2.3. In Theorem 2.1, if k is archimedean, π and σ will be understood as
smooth Fréchet representations of moderate growth (in fact, they are Casselman–
Wallach representations) and the tensor product π ⊗ σ will be understood as com-
plete (projective) tensor product. This same convention will be adopted throughout
the article, unless otherwise specified.

2.2. Bessel integrals, functional equations and L-functions

Now we consider the global situation. Let k be a number field and | |A =
∏

v∈Mk
| |v

a norm on A. For a place v ∈Mk , we denote kv the completion of k at v. We denote
o (resp. ov) the ring of integers of k (resp. kv for v finite). For an algebraic group
G over k, we denote Gv = G(kv) the kv-Lie group for v ∈Mk .

We define the pair (H, ν) as in the local case, as well as, �X , �X∗ and �W . In
particular, ψ : k\A→ C

× is a nontrivial character, and λ : (UX ×UX∗)(k)\(UX ×
UX∗)(A)→ C

× is a generic character. Let π (resp. σ ) be an irreducible cuspidal
automorphic representation of GL(V )(A) (resp. GL(W )(A)). Then π (resp. σ ) is
isomorphic to a unique irreducible sub-representation Aπ (resp. Aσ ) of A0(GL(V ))
(resp. A0(GL(W ))).

1 Although the authors consider the case where k is archimedean, the proof works for
non-archimedean case as well without change.
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Definition 2.4. (Bessel integral and Bessel period) For ϕπ ∈ Aπ , ϕσ ∈ Aσ , the
following integral, with a parameter s ∈ C:

Bν
r,r∗(s;ϕπ , ϕσ ) =

∫

H(k)\H(A)

ϕπ (ε(h))ϕσ (κ(h))ν(h)
−1| det h|s−

1
2

A
dh,

which is absolutely convergent, is an (r, r∗)-Bessel integral of π⊗σ . When s = 1
2 ,

Bν
r,r∗(ϕπ , ϕσ ) = Bν

r,r∗

(
1

2
;ϕπ , ϕσ

)

is an (r, r∗)-Bessel period of π⊗σ (for a pair (H, ν)). If there exist ϕπ ∈ Aπ , ϕσ ∈
Aσ such that Bν

r,r∗(ϕπ , ϕσ ) �= 0, then we say π ⊗ σ has a nontrivial (r, r∗)-Bessel
period.

It is obvious that Bν
r,r∗(ϕπ , ϕσ ) defines an element in

HomH(A)(π ⊗ σ, ν) =
⊗
v∈Mk

HomHv (πv ⊗ σv, νv).

We now show that the Bessel period is Eulerian. Choose a basis {v1, . . . , vr } of X
under which

• the homomorphism �X : X → k is given by the coefficient of vr ;
• UX is the unipotent radical of the parabolic subgroup PX stabilizing the com-

plete flag 0 ⊂ 〈v1〉 ⊂ 〈v1, v2〉 ⊂ · · · ⊂ 〈v1, . . . , vr 〉 = X ;
• the generic character λ|UX is given by

λ(u) = ψ
(
u1,2 + u2,3 + · · · + ur−1,r

)
,

where

u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 u1,2 u1,3 · · · u1,r−1 u1,r
1 u2,3 · · · u2,r−1 u2,r

1 · · · u3,r−1 u3,r
. . .

...
...

1 ur−1,r
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ UX (A). (2.1)

Similarly, we also choose a basis
{
v∗r∗ , . . . , v∗1

}
of X∗ under which

• the homomorphism �X∗ : k → X∗ is given by x �→ cxv∗r∗ for some c �= 0,
which will be determined later;

• UX∗ is the unipotent radical of the parabolic subgroup PX∗ stabilizing the
complete flag 0 ⊂ 〈v∗r∗

〉 ⊂ 〈v∗r∗ , v∗r∗−1

〉 ⊂ · · · ⊂ 〈v∗r∗ , . . . , v∗1
〉 = X∗;
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• The generic character λ|UX∗ is given by

λ(u∗) = ψ
(
u∗r∗,r∗−1 + u∗r∗−1,r∗−2 + · · · + u∗2,1

)
,

where

u∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 u∗r∗,r∗−1 u∗r∗,r∗−2 · · · u∗r∗,2 u∗r∗,1
1 u∗r∗−1,r∗−2 · · · u∗r∗−1,2 u∗r∗−1,1

1 · · · u∗r∗−2,2 u∗r∗−2,1
. . .

...
...

1 u∗2,1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ UX∗(A). (2.2)

Moreover, we choose a basis {w1, . . . , wm} of W and {w0} of E under which the
homomorphism �W : (W⊕E)+(W∨⊕E∨)→ k is given by �W (wi ) = �W (w∨i ) =
0 (1 ≤ i ≤ m) and �W (w∨0 ) = 1, where

{
w∨1 , . . . , w∨m, w∨0

}
is the dual basis. Set

c = �W (w0)
−1.

We identify GL(V ) (resp. GL(W )) with GLn,k (resp. GLm.k) under the basis

{
w1, . . . , wm, v1, . . . , vr , w0, v

∗
r∗ , . . . , v

∗
1

}
, (2.3)

and view GLm,k as a subgroup of GLn,k (through the first m coordinates).

Theorem 2.5. The Bessel integrals are holomorphic in s and satisfy the following
functional equation

Bν
r,r∗(s;ϕπ , ϕσ ) = Bν

r∗,r (1− s; ρ(wn,m)ϕ̃π , ϕ̃σ ).

Put
˜
Wψ• (g) = Wψ• (wngι) ∈ W(π̃, ψ) (resp.

˜
Wψ• (g) = Wψ• (wm gι) ∈ W(̃σ , ψ)).

If the Whittaker–Fourier coefficient Wψ
ϕπ = ⊗vWv (resp. Wψ

ϕσ = ⊗vW−v ) is fac-

torizable, then
˜
Wψ
ϕπ = ⊗vW̃v (resp.

˜
Wψ
ϕσ = ⊗v˜W−v ) is also factorizable with

W̃v(g) = Wv(wngι) (resp.˜W−v (g) = W−v (wm gι)). In this case, for Re s � 0,

Bν
r,r∗(s;ϕπ , ϕσ ) = �r (s;Wψ

ϕπ
,Wψ

ϕσ
) =

∏
v∈Mk

�v,r (s;Wv,W−v ),

Bν
r∗,r (s; ρ(wn,m)ϕ̃π , ϕ̃σ ) = �r∗(s; ρ(wn,m)

˜
Wψ
ϕπ ,

˜
Wψ
ϕσ )

=
∏
v∈Mk

�v,r∗(s; ρ(wn,m)W̃v,
˜W−v ).

We refer readers to Sect. 5.4 for Whittaker functions and �v,r (s;Wv,W−v ) (6.1).
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Proof. Under the basis (2.3), the image of H(A) in GL(V )(A) consists of matrices
of the following form

h=h
(
n, n∗, b; u, u∗; g)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g
n∗1,r∗ · · · n∗1,1
...

...

n∗m,r∗ · · · n∗m,1
n1,1 · · · n1,m
...

...

nr,1 · · · nr,m

u
n1,0
...

nr,0

b

1 n∗0,r∗ · · · n∗0,1

u∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.4)

where

n =
⎡
⎢⎣

n1,1 · · · n1,m n1,0
...

...
...

nr,1 · · · nr,m nr,0

⎤
⎥⎦ ∈ Hom(W ⊕ E, X)(A),

n∗ =

⎡
⎢⎢⎢⎣

n∗1,r∗ · · · n∗1,1
...

...

n∗m,r∗ · · · n∗m,1
n∗0,r∗ · · · n∗0,1

⎤
⎥⎥⎥⎦ ∈ Hom(X∗,W ⊕ E)(A),

b ∈ Hom(X∗, X)(A), u ∈ UX (A), u∗ ∈ UX∗(A), and g ∈ GL(W )(A). Here, u
and u∗ are upper triangular matrices as in (2.1) and (2.2). Thus the character ν on
H(A) is given by

ν(h) = ν
(
h
(
n, n∗, b; u, u∗; g))

=| det g|
r−r∗

2
A

ψ
(
u1,2 + · · · + ur−1,r + nr,0+n∗0,r∗ + u∗r∗,r∗−1 + · · · + u∗2,1

)
.

Put U1r ,m+1,1r∗ = Ur,m+1,r∗ � (UX × UX∗) which is the unipotent radical of H .
Precisely,

U1r ,m+1,1r∗ (A) = {u = u(n, n∗, b; u, u∗) := h(n, n∗, b; u, u∗; 1m)
}
.
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Then

Bν
r,r∗ (s;ϕπ , ϕσ )
=

∫

GLm (k)\GLm (A)

∫

U
1r ,m+1,1r∗ (k)\U1r ,m+1,1r∗ (A)

ϕπ
(
ug
)
ϕσ (g)| det g|s−

1
2+ r−r∗

2
A

ψ(u)dudg,

(2.5)

where we simply write

ψ(u) = ψ
(
u1,2 + · · · + ur−1,r + nr,0 + n∗0,r∗ + u∗r∗,r∗−1 + · · · + u∗2,1

)
.

We are going to use the Fourier transform. Let

Lr+1 =

⎧⎪⎨
⎪⎩u(n0, n∗, b; u, u∗) | n0 =

⎡
⎢⎣

0 · · · 0 n1,0
...

...
...

0 · · · 0 nr,0

⎤
⎥⎦
⎫⎪⎬
⎪⎭

be a subgroup of U1r ,m+1,1r∗ . For 1 ≤ i ≤ r , put

Li =

⎧⎪⎨
⎪⎩l = l(li ; n0, n∗, b; u, u∗) | li =

⎡
⎢⎣

l1,i · · · l1,r−1 l1,r
...

...
...

lm,i · · · lm,r−1 lm,r

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ,

where l(li ; n0, n∗, b; u, u∗) is the one obtained from u(n0, n∗, b; u, u∗) by adding li
above the entries [u1,i+1, . . . , u1,r , n1,0] as in (2.4). In particular, L1 is the unipotent
radical of the (standard) parabolic subgroup stabilizing the flag

0 ⊂ W ⊕ 〈v1〉 ⊂ W ⊕ 〈v1, v2〉 ⊂ · · · ⊂ V .

It is clear that for 1 ≤ i ≤ r , Li/Li+1 is isomorphic to Matm,1,k , which may be
identified with the group of columns t [l1,i , · · · , lm,i ]. For 1 ≤ i ≤ r , we regard ψ
as a character of Li (A) via the quotient group Lr+1(A).

By the Fourier inversion formula for Matm,1(k)\Matm,1(A), we have

(2.5) =
∫

GLm (k)\GLm (A)

∫

Matr,m (k)\Matr,m (A)

∑
εi∈k

×
⎛
⎜⎝

∫

Lr (k)\Lr (A)

ϕπ (l ng)ψ

(
m∑

i=1

εi li,r

)
ψ(l)dl

⎞
⎟⎠ϕσ (g)| det g|s−

1
2+ r−r∗

2
A

dndg,

(2.6)

where n is the element u (n, 0, 0; 1r , 1r∗) with

n =
⎡
⎢⎣

n1,1 · · · n1,m 0
...

...
...

nr,1 · · · nr,m 0

⎤
⎥⎦ .
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Let ε be an element like u(ε, 0, 0; 1r , 1r∗), where

ε =

⎡
⎢⎢⎢⎣

0 · · · 0 0
...

...
...

0 · · · 0 0
ε1 · · · εm 0

⎤
⎥⎥⎥⎦ .

If we conjugate l by ε from left to right, we can incorporate ψ
(∑

εi li,r
)

into ψ(l)
and collapse the summation over εi ∈ k. Then

(2.6) =
∫

GLm (k)\GLm (A)

∫

Matr−1,m (k)\Matr−1,m (A)×Mat1,m (A)

×
⎛
⎜⎝

∫

Lr (k)\Lr (A)

ϕπ (l ng)ψ(l)dl

⎞
⎟⎠ϕσ (g)| det g|s−

1
2+ r−r∗

2
A

dndg. (2.7)

We repeat the process for r − 1 more times. Then

(2.7) =
∫

GLm (k)\GLm (A)

∫

Matr,m (A)

×
⎛
⎜⎝

∫

L1(k)\L1(A)

ϕπ (l ng)ψ(l)dl

⎞
⎟⎠ϕσ (g)| det g|s−

1
2+ r−r∗

2
A

dndg. (2.8)

We will shortly see that when Re s � 0, the above integral is absolutely convergent
after integrating over L1(k)\L1(A). First formally interchange the order of g and
n,

(2.8) =
∫

Matr,m (A)

∫

GLm (k)\GLm (A)

×
⎛
⎜⎝

∫

L1(k)\L1(A)

ϕπ (lgn)ψ(l)dl

⎞
⎟⎠ϕσ (g)| det g|s−

1
2− r+r∗

2
A

dgdn

=
∫

Matr,m (A)

∫

GLm (k)\GLm (A)

×
⎛
⎜⎝

∫

L1(k)\L1(A)

(
ρ(n)ϕπ

)
(lg)ψ(l)dl

⎞
⎟⎠ϕσ (g)| det g|s−

n−m
2

A
dgdn. (2.9)
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Now the inner iterated integral is simply the usual Rankin–Selberg convolution (see
[21]). The following calculation is well-known:

∫

GLm (k)\GLm (A)

⎛
⎜⎝

∫

L1(k)\L1(A)

(
ρ(n)ϕπ

)
(lg)ψ(l)dl

⎞
⎟⎠ϕσ (g)| det g|s−

n−m
2

A
dg

=
∫

GLm (k)\GLm (A)∑
U1m (k)\GLm (k)

Wψ

ρ(n)ϕπ

([
γ 0
0 1n−m

] [
g 0
0 1n−m

])
ϕσ (g)| det g|s−

n−m
2

A
dg,

(2.10)

which is absolutely convergent when Re s � 0, where U1m is the standard maximal
unipotent subgroup of GLm and Wψ• stands for theψ-Whittaker–Fourier coefficient.
Thus when Re s � 0, we may interchange the order of integration and summation
in the above expression, and then combine them to obtain

(2.10)=
∫

U1m (k)\GLm (A)

Wψ

ρ(n)ϕπ

([
γ 0
0 1n−m

] [
g 0
0 1n−m

])
ϕσ (g)| det g|s−

n−m
2

A
dg.

(2.11)

Factorizing the integral over U1m (A), we have

(2.11) =
∫

U1m (A)\GLm (A)

∫

U1m (k)\U1m (A)

Wψ

ρ(n)ϕπ

([
u 0
0 1n−m

] [
g 0
0 1n−m

])
ϕσ (g)du | det g|s−

n−m
2

A
dg

=
∫

U1m (A)\GLm (A)

Wψ

ρ(n)ϕπ

([
g 0
0 1n−m

])

∫

U1m (k)\U1m (A)

ψ(u)ϕσ (g)du | det g|s−
n−m

2
A

dg

=
∫

U1m (A)\GLm (A)

Wψ

ρ(n)ϕπ

([
g 0
0 1n−m

])
Wψ
ϕσ
(g)| det g|s−

n−m
2

A
dg

=
∫

U1m (A)\GLm (A)

Wψ
ϕπ

([
g 0
0 1n−m

]
n

)
Wψ
ϕσ
(g)| det g|s−

n−m
2

A
dg. (2.12)
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Plugging (2.12) into (2.9), we have

(2.9) =
∫

Matr,m (A)

∫

U1m (A)\GLm (A)

Wψ
ϕπ

×
⎛
⎝
⎡
⎣ g 0 0

x 1r 0
0 0 1n−m−r

⎤
⎦
⎞
⎠Wψ

ϕσ
(g)| det g|s−

n−m
2

A
dgdx,

which we denote by �r (s;Wψ
ϕπ ,Wψ

ϕσ ). By Proposition 6.1 (whose proof uses a
gauge estimate in, for example, [20, Sect. 13] and [24, Sect. 3]) and Proposition
6.3, the above integral is absolutely convergent when Re s � 0 and hence our
calculation is valid.

We assume that Wψ
ϕπ = ⊗vWv and Wψ

ϕσ = ⊗vW−v are factorizable with Wv ∈
W(πv, ψv) and W−v ∈W(σv, ψv) such that for almost all finite places v, Wv , W−v
are unramified satisfying Wv(1n) = W−v (1m) = 1. Denote �v,r (s;Wv,W−v ) to be

∫

U1m ,v\GLm,v

∫

Matr,m,v

Wv

⎛
⎝
⎡
⎣ gv 0 0

xv 1r 0
0 0 1n−m−r

⎤
⎦
⎞
⎠W−v (gv)| det gv|s−

n−m
2

v dxvdgv.

Then for Re s � 0,

Bν
r,r∗(s;ϕπ , ϕσ ) = �r (s;Wψ

ϕπ
,Wψ

ϕσ
) =

∏
v∈Mk

�v,r (s;Wv,W−v ).

Now we discuss the functional equation for Bessel integrals. We have

Bν
r,r∗(s;ϕπ , ϕσ )
=

∫

GLm (k)\GLm (A)

∫

U
1r ,m+1,1r∗ (k)\U1r ,m+1,1r∗ (A)

ϕπ (ugι)ϕσ (g
ι)| det gι|s−

1
2+ r−r∗

2
A

ψ(u)dudg

=
∫

GLm (k)\GLm (A)∫

U
1r ,m+1,1r∗ (k)\U1r ,m+1,1r∗ (A)

ϕ̃π (u
ιg)ϕ̃σ (g)| det g|−s+ 1

2+ r∗−r
2

A
ψ(u)dudg,

which equals
∫

GLm (k)\GLm (A)

∫

U
1r ,m+1,1r∗ (k)\U1r ,m+1,1r∗ (A)

× (ρ(wn,m)ϕ̃π
)
(wn,muιwn,m g)ϕ̃σ (g)| det g|−s+ 1

2+ r∗−r
2

A
ψ(u)dudg. (2.13)
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Since wn,mU1r ,m+1,1r∗wn,m = U1r∗ ,m+1,1r and ψ(u) = ψ
(
wn,muιwn,m

)
, we have

(2.13) =
∫

GLm (k)\GLm (A)

∫

U
1r∗ ,m+1,1r (k)\U1r∗ ,m+1,1r (A)

× (ρ(wn,m)ϕ̃π
)
(ug)ϕ̃σ (g)| det g|1−s− 1

2+ r∗−r
2

A
ψ(u)dudg

= Bν
r∗,r (1− s; ρ(wn,m)ϕ̃π , ϕ̃σ ).

The theorem follows. ��
By Propositions 6.1 and 6.3, we have the following corollary, which confirms

[8, Conjecture 24.1] for Bessel periods on split unitary groups, that is, general linear
groups.

Corollary 2.6. Let the notation be as above.

(1) Let π (resp. σ ) be an irreducible cuspidal automorphic representation of
GL(V )(A) (resp. GL(W )(A)). For a pair (r, r∗) such that r+r∗ = n−m−1
and the automorphic representation ν introduced above, we have, forϕπ ∈ Aπ

and ϕσ ∈ Aσ such that Wψ
ϕπ = ⊗vWv and Wψ

ϕσ = ⊗vW−v are factorizable,

Bν
r,r∗(ϕπ , ϕσ ) = L

(
1

2
, π × σ

) ∏
v∈Mk

�v,r (s;Wv,W−v )
Lv(s, πv × σv)

|s= 1
2
,

where in the last product almost all factors are 1, and the L-functions are the
ones defined by Rankin–Selberg convolutions (see [21]).

(2) There is a nontrivial Bessel period of π ⊗ σ if and only if L
( 1

2 , π × σ
) �= 0.

3. Fourier–Jacobi periods on GLn × GLm

3.1. Fourier–Jacobi models for general linear groups

Let k be a local field and V a k-vector space of dimension n > 0. Suppose that V
has a decomposition V = X ⊕W ⊕ X∗, where W , X and X∗ have dimensions m,
r and r∗, respectively. Then n = m+ r + r∗. Let Pr,m,r∗ be the parabolic subgroup
of GL(V ) stabilizing the flag 0 ⊂ X ⊂ X ⊕ W ⊂ V and Ur,m,r∗ its unipotent
radical. Then Ur,m,r∗ fits into the following exact sequence

0 �� Hom(X∗, X) �� Ur,m,r∗ �� Hom(X∗,W )+ Hom(W, X) �� 0,

which may be written as

0 �� (X∗)∨ ⊗ X �� Ur,m,r∗ �� (X∗)∨ ⊗W +W∨ ⊗ X �� 0.

Let �X : X → k (resp. �X∗ : k → X∗) be a nontrivial k-linear homomorphism
(if exists), and UX (resp. UX∗ ) a maximal unipotent subgroup of GL(X) (resp.
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GL(X∗)) stabilizing �X (resp. �X∗ ). Then the above exact sequence fits into the
following commutative diagram

0 �� (X∗)∨ ⊗ X

�∨X∗⊗�X

��

�� Ur,m,r∗

��

�� W∨ ⊗ X + (X∗)∨ ⊗W

�X+�∨X∗
��

�� 0

0 �� k �� H(W∨ +W ) �� W∨ +W �� 0,

which is equivariant under the action of UX×UX∗ ×GL(W ), where H(W∨+W ) =
k + W∨ + W is the Heisenberg group of W∨ + W whose multiplication is given
by

(t1, w
∨
1 , w1)(t2, w

∨
2 , w2) =

(
t1 + t2 + w∨1 w2 − w∨2 w1

2
, w∨1 + w∨2 , w1 + w2

)
.

Given a nontrivial character ψ : k → C
×, there is a unique infinite dimensional

irreducible smooth representation ωψ of H(W∨ + W ) with central character ψ ,
which may be realized on S(W∨), the space of Schwartz functions on W∨, in the
following way. For � ∈ S(W∨), put

(
ωψ(t, w

∨, w)�
)
(w�) = ψ

(
t + w�w + w∨w

2

)
�(w� + w∨)

for all (t, w∨, w) ∈ H(W∨+W ). Moreover, if we choose a characterμ : k× → C
×,

we have a Weil representation ωμ of GL(W ) on S(W∨) by

(
ωμ(g)�

)
(w�) = μ(det g)| det g|

1
2
k �(w

� · g),
where g ∈ GL(W ) acts on W∨ by (w� · g)w = w�(g ·w) for all w ∈ W . The two
representationsωψ andωμ together form a representationωψ,μ of Ur,m,r∗�GL(W )

through the projection Ur,m,r∗ → H(W∨ + W ), and hence a representation of
H := Ur,m,r∗� (UX ×UX∗ ×GL(W )) by extending trivially to UX ×UX∗ . Choose
a generic character λ : UX ×UX∗ → C

×, and define the representation

ν = ν(μ,ψ, λ) = ωψ,μ ⊗ λ⊗ δ
− 1

2
W

of H , which has the Gelfand–Kirillov dimension m. We also define

ν = ν̃δ−1
W = ν(μ−1, ψ−1, λ−1) = ν(μ−1, ψ, λ).

As in the Bessel model, we have an embedding (ε, κ) : H → GL(V )×GL(W ).
Then the pair (H, ν) is uniquely determined up to conjugacy in the group GL(V )×
GL(W ) by the pair W ⊂ V , (r, r∗) and μ. We have the following theorem.

Theorem 3.1. Let k be of characteristic 0. Let π (resp. σ ) be an irreducible admis-
sible representation of GL(V ) (resp. GL(W )).

(1) If π and σ are generic, dimC HomH (π ⊗ σ ⊗ ν̃,C) ≥ 1.
(2) If r = r∗, HomH (π ⊗ σ ⊗ ν̃,C) ≤ 1.
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It is naturally expected that (2) is true for any r, r∗. For the relative trace formula
we are going to consider, r is equal to r∗.

Proof. Part (1) is due to Corollary 6.2(2). Part (2) is proved in [33] (for k non-
archimedean) and [34] (for k archimedean) when r = 0. The case for general r is
reduced to the previous one, as shown in [29]. ��
Definition 3.2. (Fourier–Jacobi model). A nontrivial element in the space Hom(π⊗
σ ⊗ ν̃,C) is called an (r, r∗)-Fourier–Jacobi model of π ⊗σ . When r = r∗, hence
n − m is even, it is simply the one defined in [8].

3.2. Fourier–Jacobi integrals, functional equations and L-functions

Let k be a number field, (H, ν) the pair associated with a nontrivial character
ψ : k\A → C

× and a character μ : k×\A× → C
×. Let λ be a generic character

(UX ×UX∗)(k)\(UX ×UX∗)(A)→ C
×. We have the representation ν that realizes

on the space S(W∨(A)).
For � ∈ S(W∨(A)), define the theta series as

θν(h,�) = θν(μ,ψ,λ)(h,�) =
∑

w�∈W∨(k)
λ(h) (ν(h)�) (w�),

which is an automorphic form of H . Let π (resp. σ ) be an irreducible cuspidal
automorphic representation of GL(V )(A) (resp. GL(W )(A)).

Definition 3.3. (Fourier–Jacobi integral and Fourier–Jacobi period). Assume n >

m. For ϕπ ∈ Aπ , ϕσ ∈ Aσ and � ∈ S(W∨(A)), the following integral, with a
parameter s ∈ C:

FJνr,r∗(ϕπ , ϕσ ;�) =
∫

H(k)\H(A)

ϕπ (ε(h))ϕσ (κ(h))θ̃ν(h,�)| det h|s−
1
2+r∗−r

A
dh

which is absolutely convergent, is an (r, r∗)-Fourier–Jacobi integral of π ⊗ σ .
When s = 1

2 ,

FJνr,r∗(ϕπ , ϕσ ;�) = FJνr,r∗

(
1

2
;ϕπ , ϕσ ;�

)

is an (r, r∗)-Fourier–Jacobi period of π ⊗ σ (for a pair (H, ν)). If there exist
ϕπ ∈ Aπ , ϕσ ∈ Aσ and � ∈ S(W∨(A)) such that FJνr,r∗(ϕπ , ϕσ ;�) �= 0, then we
say π ⊗ σ has a nontrivial (r, r∗)-Fourier–Jacobi period. The case m = n will be
discussed in Remark 3.5.

It is obvious that FJνr,r∗(ϕπ , ϕσ ;�) defines an element in

HomH(A)(π ⊗ σ ⊗ ν̃,C) =
⊗
v∈Mk

HomHv (πv ⊗ σv ⊗ ν̃v,C).
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We now show that the Fourier–Jacobi period is Eulerian. Choose a basis {v1, . . . , vr }
(resp.

{
v∗1 , . . . , v∗r∗

}
) for X (resp. X∗) in the same way as in Sect. 2.2 (with c = 1).

We also choose a basis {w1, . . . , wm} of W with dual basis
{
w∨1 , . . . , w∨m

}
of W∨.

We identify GL(V ) (resp. GL(W )) with GLn,k (resp. GLm.k) under the basis
{
w1, . . . , wm, v1, . . . , vr , v

∗
r∗ , . . . , v

∗
1

}
. (3.1)

and view GLm,k as a subgroup of GLn,k (through the first m coordinates).

Theorem 3.4. Assume n > m. the Fourier–Jacobi integrals are holomorphic in s
and satisfy the following functional equation

FJνr,r∗(s;ϕπ , ϕσ ;�) = FJνr∗,r (1− s; ρ(wn,m)ϕ̃π , ϕ̃σ ; �̂),
where the Fourier transform �̂ is explicated as (3.9) in the proof below. Put
˜
Wψ• (g) = Wψ• (wngι) ∈ W(π̃, ψ) (resp.

˜
Wψ• (g) = Wψ• (wm gι) ∈ W(̃σ , ψ)).

If Wψ
ϕπ = ⊗vWv (resp. Wψ

ϕσ = ⊗vW−v , � = ⊗v�v) is factorizable, then

˜
Wψ
ϕπ = ⊗vW̃v (resp.

˜
Wψ
ϕσ = ⊗v˜W−v , �̂ = ⊗v�̂v) is also factorizable with

W̃v(g) = Wv(wngι) (resp. ˜W−v (g) = W−v (wm gι), �̂v = �̂v). In this case, for
Re s � 0,

FJνr,r∗(s;ϕπ , ϕσ ;�) = �r (s;Wψ
ϕπ
,Wψ

ϕσ
⊗ μ−1;�)

=
∏
v∈Mk

�v,r (s;Wv,W−v ⊗ μ−1
v ;�v),

FJνr∗,r (s; ρ(wn,m)ϕ̃π , ϕ̃σ ; �̂) = �r∗(s; ρ(wn,m)
˜
Wψ
ϕπ ,

˜
Wψ
ϕσ ⊗ μ; �̂)

=
∏
v∈Mk

�v,r∗(s; ρ(wn,m)W̃v,
˜W−v ⊗ μv; �̂v).

We refer readers to Sect. 5.4 for Whittaker functions and �v,r (s;Wv,W−v ;�v)

(6.2), (6.3).

Proof. Under the basis (3.1), the image of H(A) in GLn(A) consists of matrices
of the following form

h=h(n, n∗, b; u, u∗; g)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g
n∗1,r∗ · · · n∗1,1
...

...

n∗m,r∗ · · · n∗m,1
n1,1 · · · n1,m
...

...

nr,1 · · · nr,m

u b

u∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.2)
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where n, n∗, b, u, u∗ and g are similar to those in Sect. 2.2, but without entries
related to w0. Put U1r ,m,1r∗ = Ur,m,r∗ � (UX ×UX∗) which is the unipotent radical
of H . Precisely,

U1r ,m,1r∗ (A) = {u = u(n, n∗, b; u, u∗) := h(n, n∗, b; u, u∗; 1m)
}
.

For � ∈ S(W∨(A)), we have

(
ν(u)�

)
(w�) = ψ(u)ψ

(
w�t [n∗1,r∗ , . . . , n∗m,r∗ ]

)
�(w� + [nr,1, . . . , nr,m]),

where ψ(u) = ψ(u1,2 + · · · + ur−1,r + br,r∗ + u∗r∗,r∗−1 + · · · + u∗2,1). Then

FJνr,r∗(s;ϕπ , ϕσ ;�)
=

∫

GLm (k)\GLm (A)

∫

U
1r ,m,1r∗ (k)\U1r ,m,1r∗ (A)

ϕπ (ug)ϕσ (g)θ̃ν(ug,�)| det g|s−
1
2

A
dudg.

(3.3)

There are two cases.
Case 1: r > 0. We have

θν(ug,�) =
∑

w�∈W∨(k)
λ(u)

(
ωψ,μ(ug)�

)
(w�)| det g|

r−r∗
2

A

=
∑

nr∈Mat1,m (k)

λ(u)
(
ωψ,μ(nr ug)�

)
(0)| det g|

r−r∗
2

A
,

where nr = u(nr , 0, 0; 1r , 1r∗), and

nr =

⎡
⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0
nr,1 · · · nr,m

⎤
⎥⎥⎥⎦ .

Let Lr+1 =
{
u(0, n∗, b; u, u∗)

}
be a subgroup of U1r ,m,1r∗ . For 1 ≤ i ≤ r , put

Li =

⎧⎪⎨
⎪⎩l = l(li ; 0, n∗, b; u, u∗) | li =

⎡
⎢⎣

l1,i · · · l1,r
...

...

lm,i · · · lm,r

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ,

where l(li ; 0, n∗, b; u, u∗) is the one obtained from u(0, n∗, b; u, u∗) by adding
li above the entries [u1,i , . . . , u1,r ] as in (3.2). It is clear that for 1 ≤ i ≤ r ,
Li/Li+1 is isomorphic to Matm,1,k , which may be identified with the group of
columns t [li,i , · · · , lm,i ]. For 1 ≤ i ≤ r , we regard ψ as a character of Li (A) via
the quotient group Lr+1(A).
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Expand the theta series and summate the last row in n over Mat1,m(k). We have

(3.3) =
∫

GLm (k)\GLm (A)

∫

Matr−1,m (k)\Matr−1,m (A)×Mat1,m (A)

∫

Lr+1(k)\Lr+1(A)

ϕπ (l ng)ϕσ (g)�(nr g)ψ(l)μ(det g)−1| det g|s+
r−r∗

2
A

dldndg, (3.4)

where nr only remembers the last row of n. If we repeat the process (2.6), (2.7),
(2.8) and (2.9), then

(3.4) =
∫

GLm (k)\GLm (A)

∫

Matr,m (A)

×
⎛
⎜⎝

∫

L1(k)\L1(A)

(
ρ(n)ϕπ

)
(lg)ψ(l)dl

⎞
⎟⎠ϕσ (g)�(nr )μ(det g)−1| det g|s−

n−m
2

A
dndg.

(3.5)

We will shortly see that when Re s � 0, the above integral is absolutely convergent
after integrating over L1(k)\L1(A). First formally interchange the order of g and
n. By the classical argument for the Rankin–Selberg convolution, we have that for
Re s � 0

(3.5) = �r (s;Wψ
ϕπ
,Wψ

ϕσ
⊗ μ−1;�) :=

∫

U1m (A)\GLm (A)

∫

Matr−1,m (A)

∫

Mat1,m (A)

Wψ
ϕπ

⎛
⎜⎜⎝

⎡
⎢⎢⎣

g 0 0 0
x 1r−1 0 0
y 0 1 0
0 0 0 1r∗

⎤
⎥⎥⎦

⎞
⎟⎟⎠Wψ

ϕσ
(g)�(y)μ(det g)−1| det g|s−

n−m
2

A
dydxdg,

which is absolutely convergent and hence our calculation is valid. If Wψ
ϕπ = ⊗vWv ,

Wψ
ϕσ = ⊗vW−v and � = ⊗v�v are factorizable, we have

FJνr,r∗(s;ϕπ , ϕσ ;�) = �r (s;Wψ
ϕπ
,Wψ

ϕσ
⊗ μ−1;�)

=
∏
v∈Mk

�v,r (s;Wv,W−v ⊗ μ−1
v ;�v).

where

�v,r (s;Wv,W−v ⊗ μ−1
v ;�v) =

∫

U1m ,v\GLm,v

∫

Matr−1,m,v

∫

Mat1,m,v

Wv

⎛
⎜⎜⎝

⎡
⎢⎢⎣

gv 0 0 0
xv 1r−1 0 0
yv 0 1 0
0 0 0 1r∗

⎤
⎥⎥⎦

⎞
⎟⎟⎠W−v (gv)�v(yv)μv(det gv)

−1| det gv|s−
n−m

2
v dyvdxvdgv.
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Case 2: r = 0 but r∗ > 0. Let Pm be the standard mirabolic subgroup of
GLm consisting of (invertible) matrices whose last row is em = [0, . . . , 0, 1] ∈
Mat1,m(k). Then

θν(gu,�) =
∑

w�∈W∨(k)
λ(u)

(
ωψ,μ(gu)�

)
(w�)| det g|

m−n
2

A

= λ(u)μ(det g)| det g|
1
2
A
�(0)| det g|

m−n
2

A

+μ(det g)| det g|
1
2
A

∑
γ∈Pm (k)\GLm (k)

λ(u)
(
ωμ,ψ(u)�

)
(emγ g)| det g|

m−n
2

A
,

where the first term (for θν) contributes 0 to FJν0,n−m(s;ϕπ , ϕσ ;�) since ϕπ is a
cusp form. Therefore,

FJν0,n−m(s;ϕπ , ϕσ ;�) =
∫

Um,1n−m (k)\Um,1n−m (A)

∫

Pm (k)\GLm (A)

ϕπ (gu)ϕσ (g)�(em g)ψ(em gn∗e∗m) ψ(u)μ(det g)−1| det g|s+
n−m

2
A

dgdu, (3.6)

where u = u(∅, n∗,∅; ∅, u∗), since r = 0 and e∗m = t [1, 0, . . . , 0]. Applying the
Fourier inversion formula to ϕσ , we have for Re s � 0,

(3.6) =
∫

Um,1n−m (k)\Um,1n−m (A)

∫

U1m (k)\GLm (A)

ϕπ (gu)Wψ
ϕσ
(g)�(em g)ψ(em gn∗e∗m) ψ(u)μ(det g)−1| det g|s+

n−m
2

A
dgdu.

(3.7)

Factorizing the inner integral through U1m (k)\U1m (A) and incorporating this unipo-
tent part into u, we get the integral over U1n (k)\U1n (A), where U1n is the standard
maximal unipotent subgroup of GLn . Moreover, if we interchange the order of g
and u ∈ U1n (k)\U1n (A) when Re s � 0, all terms involving ψ will form a generic
character ψ of U1n (k)\U1n (A) as

ψ(u) = ψ
(
u1,2 + · · · + un−1,n

)
.

In all, for Re s � 0,

(3.7) =
∫

U1m (A)\GLm (A)

∫

U1n (k)\U1n (A)

ϕπ (ug)ψ(u)Wψ
ϕσ
(g)�(em g)μ(det g)−1

| det g|s−
n−m

2
A

dudg

=
∫

U1m (A)\GLm (A)

Wψ
ϕπ

([
g 0
0 1n−m

])
Wψ
ϕσ
(g)�(em g)μ(det g)−1

| det g|s−
n−m

2
A

dg. (3.8)
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We denote (3.8) by �0(s;Wψ
ϕπ ,Wψ

ϕσ ⊗ μ−1;�), which is absolutely convergent

when Re s � 0. Moreover, if Wψ
ϕπ = ⊗vWv , Wψ

ϕσ = ⊗vW−v and � = ⊗v�v are
factorizable, we have

FJν0,n−m(s;ϕπ , ϕσ ;�) = �0(s;Wψ
ϕπ
,Wψ

ϕσ
⊗ μ−1;�)

=
∏
v∈Mk

�v,0(s;Wv,W−v ⊗ μ−1
v ;�v),

where

�v,0(s;Wv,W−v ⊗ μ−1
v ;�v)

=
∫

U1m ,v\GLm,v

Wv

([
gv 0
0 1n−m

])
W−v (gv)�v(em gv)μv(det gv)

−1| det gv|s−
n−m

2
v dgv.

Now we discuss the functional equations of the (r, r∗)-Fourier–Jacobi inte-
grals FJνr,r∗(s;ϕπ, ϕσ ;�). There is a linear map̂: S(W∨(A))→ S(W (A)) given
by

�̂(w�) =
∫

W∨(A)

�(w�)ψ
(
w�(w�)

)
dw�. (3.9)

If we identify W with W∨ through the basis {w1, . . . , wm}, then̂ is an endomor-
phism of S(W∨(A)). Consider the group isomorphism ιr∗,r : H → H given by
ιr∗,r (ug) = wn,muιwn,m gι. For h ∈ H(A), we have the following commutative
diagram, which can be checked directly

S(W∨(A))

λ·ω
ψ,μ−1(ιr∗,r (h))

��

̂ �� S(W∨(A))

λ·ωψ,μ(h)
��

S(W∨(A)) ̂ �� S(W∨(A)).

(3.10)

Then

FJνr,r∗(s;ϕπ , ϕσ ;�)

=
∫

GLm (k)\GLm (A)

∫

U
1r∗ ,m,1r (k)\U1r∗ ,m,1r (A)

ϕπ (ugι)ϕσ (g
ι)θν(ugι, �)| det g|−s+ 1

2
A

dudg

=
∫

GLm (k)\GLm (A)

∫

U
1r∗ ,m,1r (k)\U1r∗ ,m,1r (A)

(
ρ(wn,m)ϕ̃π

)
(wn,muιwn,m g)ϕ̃σ (g)θν(ugι, �)| det g|−s+ 1

2
A

dudg,
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which equals
∫

GLm (k)\GLm (A)

∫

U
1r∗ ,m,1r (k)\U1r∗ ,m,1r (A)

(
ρ(wn,m)ϕ̃π

)
(ug)ϕ̃σ (g)θ̃ν

(
ιr∗,r (ug),�

)

| det g|−s+ 1
2

A
dudg. (3.11)

But by the Poisson summation formula and (3.10),

θ̃ν
(
ιr∗,r (ug),�

) = ∑
w�∈W∨(k)

λ(u)
(
ωψ,μ−1

(
ιr∗,r (ug)

)
�
)
(w�)| det gι|

r∗−r
2

A

=
∑

w�∈W∨(k)
λ(u)

(
ωψ,μ−1

(
ιr∗,r (ug)

)
�
)∧

(w�)| det gι|
r∗−r

2
A

=
∑

w�∈W∨(k)
λ(u)

(
ωψ,μ(ug)�̂

)
(w�)| det g|

r−r∗
2

A

= θ̃ν(ug, �̂).

Therefore,

(3.11) =
∫

GLm (k)\GLm (A)

∫

U
1r∗ ,m,1r (k)\U1r∗ ,m,1r (A)

(
ρ(wn,m)ϕ̃π

)
(ug)ϕ̃σ (g)θ̃ν(ug, �̂)

| det g|1−s− 1
2

A
dudg

= FJνr∗,r (1− s; ρ(wn,m)ϕ̃π , ϕ̃σ ; �̂).
The theorem follows. ��
Remark 3.5. (The case n = m). We have V = W and H = GLn . We will see
that this is exactly the case of Rankin–Selberg convolution for GLn ×GLn . For
simplicity, we assume that π � σ ⊗ μ−1 is unitary. Fix a basis {v1, . . . , vn} for V
and identify V∨ with Mat1,n,k . In this case, there is no need to choose of λ.

For� ∈ S(V∨(A)), and a characterχ : k×\A× → C
× such thatμ·χ is unitary,

we define

θ∗ν (s; g,�, χ) = | det g|s−
1
2

A

∫

k×\A×

∑
v�∈Mat1,n(k)−{0}

(
ωψ,μ(ag)�

)
(v�)|a|n

(
s− 1

2

)
A

χ(a)da,

which is absolutely convergent when Re s > 1 and has a meromorphic continu-
ation to the entire complex plane that is holomorphic at s = 1

2 (see [23]). For a
holomorphic point s, θ∗ν (s; g,�, χ) is in A

(
GLn,k

)
with the central character χ−1.

Moreover,

θ∗ν
(

1

2
; g,−, χ

)
: (ν, S(V∨(A)))→ A

(
GLn,k

)
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is GLn(A)-equivariant. We denote Zn the center of GLn , χπ (resp. χσ ) the central
character of π (resp. σ ), and put

FJν0,0(s;ϕπ , ϕσ ;�) =
∫

Zn(A)GLn(k)\GLn(A)

ϕπ (g)ϕσ (g)θ
∗
ν (s; g,�, χπ · χσ )dg,

(3.12)

which is the usual Rankin–Selberg integral (see [21,23]). It is absolutely convergent
when Re s > 1. The Fourier–Jacobi period

FJν0,0(ϕπ , ϕσ ;�) := FJν0,0

(
1

2
;ϕπ , ϕσ ;�

)

defines an element in

HomGLn(A)(π ⊗ σ ⊗ ν̃μ,C) =
⊗
v∈Mk

HomHv (πv ⊗ σv ⊗ ν̃v,C).

Unfolding θ∗ν , we see that

(3.12) =
∫

Pn(k)\GLn(A)

ϕπ (g)ϕσ (g)�(eng)μ(det g)−1| det g|s
A

dg

=
∫

U1n (A)\GLn(A)

Wψ
ϕπ
(g)Wψ

ϕσ
(g)�(eng)μ(det g)−1| det g|s

A
dg. (3.13)

Denote (3.13) by�0(s;Wψ
ϕπ ,Wψ

ϕσ ⊗μ−1;�), which is absolutely convergent when

Re s � 0. Moreover, if Wψ
ϕπ = ⊗vWv , Wψ

ϕσ = ⊗vW−v and � = ⊗v�v are
factorizable, we have

FJν0,0(s;ϕπ , ϕσ ;�)
= �0(s;Wψ

ϕπ
,Wψ

ϕσ
⊗ μ−1;�) =

∏
v∈Mk

�v,0(s;Wv,W−v ⊗ μ−1
v ;�v),

where

�v,0(s;Wv,W−v ⊗ μ−1
v ;�v)

=
∫

U1n ,v\GLn,v

Wv(gv)W
−
v (gv)�v(engv)μv(det gv)

−1| det gv|svdgv.

Moreover, we have the following well-known functional equation

FJν0,0(s;ϕπ , ϕσ ;�) = FJν0,0(1− s; ϕ̃π , ϕ̃σ ; �̂).
The function FJν0,0(s;ϕπ , ϕσ ;�) will have possible simple poles at s = − i σ and
s = 1− i σ with σ real only if π ∼= σ̃ ⊗ μ| det |i σ

A
.
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By Proposition 6.1 and (6.3), we have the following corollary, which confirms
[8, Conjecture 24.1] for Fourier–Jacobi periods on split unitary groups, that is,
general linear groups.

Corollary 3.6. Let the notation be as above.

(1) Let π (resp. σ ) be an irreducible cuspidal automorphic representation2 of
GL(V )(A) (resp. GL(W )(A)). For a pair (r, r∗) such that r+r∗ = n−m and
the representation ν = ν(μ,ψ, λ) introduced above, we have, for ϕπ ∈ Aπ ,

ϕσ ∈ Aσ and � ∈ S(W∨(A)) such that Wψ
ϕπ = ⊗vWv , Wψ

ϕσ = ⊗vW−v and
� = ⊗�v are factorizable,

FJνr,r∗(ϕπ , ϕσ ;�) = L

(
1

2
, π × σ ⊗ μ−1

)

×
∏
v∈Mk

�v,r (s;Wv,W−v ⊗ μ−1
v ;�v)

Lv(s, πv × σv ⊗ μ−1
v )

|s= 1
2
,

where in the last product almost all factors are 1, and the L-functions are the
ones defined by Rankin–Selberg convolutions (see [21]).

(2) There is a nontrivial Fourier–Jacobi period of π ⊗ σ for ν if and only if
L
( 1

2 , π × σ ⊗ μ−1
) �= 0.

4. A relative trace formula for Un × Um: Bessel periods

4.1. Bessel models and periods

Let us briefly recall the definition of Bessel models and periods for unitary groups in
[8]. We will fix a (nondegenerate) hermitian line E over k. First, let us consider the
local situation. Let k′ be a local field and k/k′ an étale algebra of degree 2 with the
unique nontrivial involution τ . Let V, ( , ) be a hermitian space over k of dimension
n and W ⊂ V a subspace of dimension m such that the restricted hermitian form
( , )|W is nondegenerate. We assume that the orthogonal complement of W in V
has the decomposition W⊥ = X⊕ X∗ ⊕ E such that X , X∗ are both r -dimensional
isotropic subspaces orthogonal to E . Then n = m + 2r + 1. The hermitian form
restricted on W (resp. X ⊕ X∗) identifies W (resp. X∗) with W∨τ (resp. X∨τ ). We
denote U(V ) (resp. U(W )) the unitary group of V (resp. W ) which is a reductive
group over k′. Let P ′r,m+1 be the parabolic subgroup of U(V ) stabilizing X and
U ′r,m+1 its unipotent radical. Then U ′r,m+1 fits into the following exact sequence

0 �� ∧2
τ X �� U ′r,m+1

�� Homk(W ⊕ E, X) �� 0,

where ∧2
τ X ⊂ Xτ ⊗ X = Homk(X∨τ , X) consists of homomorphisms b such

that b∨τ = −b. Here, b∨τ is simply b∨ : X∨ → Xτ but viewed as an element in
Homk(X∨τ , X).

2 When n = m, to prevent the occurrence of a pole at s = 1
2 , we assume that the character

χπ ⊗ χσ ⊗ μ−1 is unitary for simplicity.
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Let �′X : X → k be a nontrivial k-linear homomorphism (if exists), and U ′X a
maximal unipotent subgroup of GL(X) stabilizing �′X . Let �′W : k → W ⊕ E be
a nontrivial k-linear homomorphism whose image is contained in E . We have a
homomorphism

�′ : U ′r,m+1 → Homk(W ⊕ E, X)
(�′W )∨⊗�′X−−−−−−→ k,

which is fixed by U ′X × U(W ). Thus we may extend �′ trivially to H = U ′r,m+1 �(
U ′X × U(W )

)
, which is a homomorphism to k. Let ψ ′ : k′ → C

× be a nontrivial
character and λ′ : U ′X → C

× a generic character. Put ν′ = (ψ ′ ◦ T̃r ◦�′)⊗λ′ which
is a character of H ′. We have an embedding (ε, κ) : H ′ → U(V ) × U(W ). Up to
U(V )× U(W )-conjugacy, the pair (H ′, ν′) is uniquely determined by W ⊂ V .

Let π (resp. σ ) be an irreducible admissible representation of U(V ) (resp.
U(W )). A nontrivial element in HomH ′(π ⊗ σ, ν′) is called a Bessel model of
π⊗σ . In particular, when k/k′ is split, the Bessel model is simply the (r, r)-Bessel
model for general linear groups introduced in Sect. 2.1. We have the following
multiplicity one result.

Theorem 4.1. Let k be of characteristic 0 and π , σ as above. Then

dimC HomH ′(π ⊗ σ, ν′) ≤ 1.

Proof. When m = n−1, this is due to [34], or [2] when k is non-archimedean. For
general (n,m), this is due to [27], or [8, Sect. 14] when k is non-archimedean. ��

Now we discuss the global case. Let k/k′ be a quadratic extension of number
fields. We have the notions o′, k′

v′ , o′
v′ for v′ ∈ Mk′ . Let ψ ′ : k′\A′ → C

× be a
nontrivial character and λ′ : U ′X (k)\U ′X (A)→ C

× a generic character, which give
rise to the pair (H ′, ν′) similarly in the global situation.

Let π (resp. σ ) be an irreducible representation of U(V )(A′) (resp. U(W )(A′))
which occurs with multiplicity one in the space A0(U(V )) (resp. A0(U(W ))). We
denote by Aπ ⊂ A0(U(V )) (resp. Aσ ⊂ A0(U(W ))) the unique irreducible π

(resp. σ )-isotypic subspace.

Definition 4.2. (Bessel period). For ϕπ ∈ Aπ , ϕσ ∈ Aσ , we define the following
integral

Bν′
r (ϕπ , ϕσ ) =

∫

H ′(k′)\H ′(A′)
ϕπ (ε(h

′))ϕσ (κ(h′))ν′(h′)−1dh′,

which is absolutely convergent, to be a Bessel period of π⊗σ (for a pair (H ′, ν′)).
If there exist ϕπ ∈ Aπ , ϕσ ∈ Aσ such that Bν′

r (ϕπ , ϕσ ) �= 0, then we say π ⊗ σ

has a nontrivial Bessel period. It is obvious that Bν′
r (ϕπ , ϕσ ) defines an element in

HomH ′(A)(π ⊗ σ, ν′) =
⊗

v′∈Mk′
HomH ′

v′
(πv′ ⊗ σv′, ν

′
v′).

We choose a basis {v1, . . . , vr } of X under which
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• the homomorphism �′X : X → k is given by the coefficient of vr ;
• U ′X is the unipotent radical of the parabolic subgroup P ′X stabilizing the com-

plete flag 0 ⊂ 〈v1〉 ⊂ 〈v1, v2〉 ⊂ · · · ⊂ 〈v1, . . . , vr 〉 = X ;
• the generic character λ′ is given by

λ′(u′) = ψ ′
(
T̃r
(
u′1,2 + u′2,3 + · · · + u′r−1,r

))
.

We denote by
{
v̌1, . . . , v̌r

}
the dual basis of X∨τ . We also choose a basis

{w1, . . . , wm} of W and {w0} of E , under which the homomorphism �′W : k →
W ⊕ E is given by a �→ aw0. Put β = [(wi , w j )]mi, j=1 ∈ Her×m(k′), β0 =
(w0, w0) ∈ k′×, and

β ′ =
[
β

β0

]
∈ Her×m+1(k

′). (4.1)

We identify U(V ) (resp. U(W )) with a unitary group Un (resp. Um) of n (resp. m)
variables under the basis {v1, . . . , vr , w1, . . . , wm, w0, v̌r , . . . , v̌1}, and view Um

as a subgroup of Un . Let U ′1r ,m+1 = U ′r,m+1 � U ′X be the unipotent radical of H ′.
The image of H ′(A′) in Un(A

′) consists of the matrices h′ = h′(n′, b′; u′; g′) =
u′(n′, b′; u′) · g′, where g′ ∈ Um(A

′) and

u′ = u′(n′, b′; u′) =

⎡
⎢⎢⎣

1r n′ wr

(
b′ + n′n′

β′
2

)

1m+1 n′
β ′

1r

⎤
⎥⎥⎦

×
⎡
⎣ u′

1m+1
ǔ′

⎤
⎦ ∈ U ′1r ,m+1(A

′)

for n′ ∈ Matr,m+1(A), b′ ∈ Herr (A
′), u′ ∈ U ′X (A); n′

β ′ = −β ′−1t n′τwr , and

ǔ′ = wr
t u′τ,−1wr . The character ν′ on H ′(A′) is given by

ν′(h′)=ν′(h′(n′, b′; u′; g′)) = ψ ′(u′) := ψ ′
(
T̃r
(
u′1,2 + · · · + u′r−1,r + n′r,m+1

))
,

and the Bessel period

Bν′
r (ϕπ , ϕσ ) =

∫

Um (k′)\Um (A′)

∫

U ′1r ,m+1(k
′)\U ′1r ,m+1(A

′)

ϕπ (u
′g′)ϕσ (g′)ψ ′(u′)du′dg′.

4.2. Decomposition of distributions

We describe the relative trace formula on unitary groups concerning Bessel periods.
Let fn ∈ S(Un(A

′)) (resp. fm ∈ S(Um(A
′))) be a Schwartz function on Un(A

′)
(resp. Um(A

′)). We associate to fn ⊗ fm a kernel function on (Un(k′)\Un(A
′) ×

Um(k′)\Um(A
′))2 as

K fn⊗ fm (g
′
1, g′2; g′3, g′4) =

∑
ζ ′∈Un(k′)

fn(g
′−1
1 ζ ′g′3)

∑
ξ ′∈Um (k′)

fm(g
′−1
2 ξ ′g′4), (4.2)
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and consider the following distribution

J( fn ⊗ fm)

=
∫∫

(H ′(k′)\H ′(A′))2
K fn⊗ fm

(
ε(h′1), κ(h′1); ε(h′2), κ(h′2)

)
ν′(h′−1

1 h′2)dh′1dh′2. (4.3)

Such distribution formally computes
∑
π,σ

∑
Bν′

r (ρ( fn)ϕπ , ρ( fm)ϕσ )B
ν̃′
r (ϕπ , ϕσ ),

where the inner sum is taken over orthonormal bases of Aπ and Aσ .

Remark 4.3. The integral (4.3) is not absolutely convergent in general and needs
regularization. In order to see what we should expect for these distributions, we
will not treat the convergence problem in this article. In particular, the following
calculation of decomposition into orbital integrals will be formal, unless we put
certain restrictions on fn⊗ fm to make it convergent—for example, we may assume
that the function f (4.6) supports only on regular elements. The remark applies
similarly to later distributions (4.9), (5.5), and (5.10).

Plugging in (4.2), we have

(4.3) =
∫∫

(H ′(k′)\H ′(A′))2

∑
ζ ′∈Un(k′)

fn(ε(h
′
1)
−1ζ ′ε(h′2))

∑
ξ ′∈Um (k′)

fm(κ(h
′
1)
−1ξ ′κ(h′2))ν′(h

′−1
1 h′2)dh′1dh′2

=
∫∫

(H ′(k′)\H ′(A′))2

∑
ξ ′∈Um (k′)∑

ζ ′∈Un(k′)
fn(ε(h

′
1)
−1ξ ′ζ ′ε(h′2)) fm(κ(h

′
1)
−1ξ ′κ(h′2))ν′(h

′−1
1 h′2)dh′1dh′2

=
∫∫

(H ′(k′)\H ′(A′))2

∑
ξ ′∈H ′(k′)

∑
ζ ′∈U ′1r ,m+1(k

′)\Un(k′)

fn(ε(ξ
′h′1)−1ζ ′ε(h′2)) fm(κ(ξ

′h′1)−1κ(h′2))ν′(h
′−1
1 h′2)dh′1dh′2,

which equals
∫

H ′(k′)\H ′(A′)

∫

H ′(A′)∑
ζ ′∈U ′1r ,m+1(k

′)\Un(k′)
fn(ε(h

′
1)
−1ζ ′ε(h′2)) fm(κ(h

′
1)
−1κ(h′2))ν′(h

′−1
1 h′2)dh′1dh′2.

(4.4)



Relative trace formulae 33

If we write h′i = u′i g′i , then

(4.4) =
∫

H ′(k′)\H ′(A′)

∫

U ′1r ,m+1(A
′)

∫

Um (A′)

∑
ζ ′∈U ′1r ,m+1(k

′)\Un(k′)

fn(g
′−1
1 u′−1

1 ζ ′ε(h′2)) fm(g
′−1
1 κ(h′2))ψ ′(u

′−1
1 )ν′(h′2)dg′1du′1dh′2,

which equals
∫

H ′(k′)\H ′(A′)

∫

U ′1r ,m+1(A
′)

∫

Um (A′)

∑
ζ ′∈U ′1r ,m+1(k

′)\Un(k′)

fn(g
′−1
1 κ(h′2)−1u′−1

1 ζ ′ε(h′2)) fm(g
′−1
1 )ψ ′(u′−1

1 )ν′(h′2)dg′1du′1dh′2. (4.5)

Define a function f ∈ S(Un(A
′)) by

f (g′) =
∫

Um (A′)

fn(g
′
1g′) fm(g

′
1)dg′1. (4.6)

Then

(4.5) =
∑

ζ ′∈U ′1r ,m+1(k
′)\Un(k′)

∫

H ′(k′)\H ′(A′)∫

U ′1r ,m+1(A
′)

f (κ(h′2)−1u′−1
1 ζ ′ε(h′2))ψ ′(u

′−1
1 )ν′(h′2)du′1dh′2.

The group H ′ acts on U ′1r ,m+1\Un by conjugation. Denote (U ′1r ,m+1(k
′)\Un(k′))�

H ′(k′) the set of conjugacy classes of k′-points and then the above expression equals

∑
ζ ′∈(U ′1r ,m+1(k

′)\Un(k′))�H ′(k′)

∫

StabH ′
ζ ′ (k

′)\H ′(A′)

∫

U ′1r ,m+1(A
′)

f (κ(h′2)−1u′−1
1 ζ ′ε(h′2))ψ ′(u

′−1
1 )ν′(h′2)du′1dh′2. (4.7)

We introduce a k′-algebraic group

H′ = H ′ ×
Um

H ′ ⊂ H ′ ×Spec k′ H ′,

which acts on Un from right in the following way. For a k′-algebra R, h′ =
h′(u′1, u′2; g′) ∈ H′(R) with u′i ∈ U ′1r ,m+1(R), g′ ∈ Um(R) and g ∈ Un(R),

the right action is given by [g]h′ = g′−1u′−1
1 gu′2g′. We denote by [Un(k′)]/H′(k′)

the set of k′-orbits under this action. Define a character (also denoted by) ψ ′ of
H′(A′) by

ψ ′(h′) = ψ ′
(
h′(u′1, u′2; g′)

) := ψ ′(u′−1
1 u′2).
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Then

(4.7) = J( f ) :=
∑

ζ ′∈[Un(k′)]/H′(k′)
Jζ ′( f ),

where

Jζ ′( f ) =
∫

StabH′
ζ ′ (k

′)\H′(A′)

f ([ζ ′]h′)ψ ′(h′)dh′.

We denote Un(k′)reg the set of regular k′-elements, a notion that will be defined
in Definition 4.9. In particular, the H′-stabilizer StabH′

ζ ′ is trivial for ζ ′ ∈ Un(k′)reg

by Proposition 4.12, and the corresponding term O( f, ζ ′) := Jζ ′( f ) is an orbital
integral. If f = ⊗v′ fv′ is factorizable, then

O( f, ζ ′) =
∏

v′∈Mk′
O( fv′ , ζ

′),

where

O( fv′ , ζ
′) =

∫

H′
v′

fv′([ζ ′]h′v′)ψ ′v′(h′v′)dh′v′ .

In particular, if f supports only on regular elements, then

J( f ) = Jreg( f ) =
∑

ζ ′∈[Un(k′)reg]/H′(k′)
Jζ ′( f ) =

∑
ζ ′∈[Un(k′)reg]/H′(k′)

∏
v′∈Mk′

O( fv′ , ζ
′).

Now we discuss the relative trace formula on general linear groups concern-
ing Bessel integrals. We identify GLm,k ⊂ GLn,k with GL(W ) ⊂ GL(V ), and
view GLn,k′ ⊂ Resk/k′ GLn,k (resp. GLm,k′ ⊂ Resk/k′ GLm,k) through the basis{
v1, . . . , vr , w1, . . . , wm, w0, v̌r , . . . , v̌1

}
.3 Let Z ′n (resp. Z ′m) be the center of

GLn,k′ (resp. GLm,k′ ). Put ψ = ψ ′ ◦ T̃r and

ν(h) = ν
(
ug
) = ν

(
h
(
n, n∗, b; u, u∗; g)) = ψ(u),

where ψ(u) = ψ(u1,2 + · · · + ur−1,r + nr,0 + β0n∗0,r + u∗r,r−1 + · · · + u∗2,1).
Take Fn ∈ S(GLn(A)) and Fm ∈ S(GLm(A)). Associate to Fn ⊗ Fm a ker-

nel function KFn⊗Fm (g1, g2; g3, g4) on (GLn(k)\GLn(A)×GLm(k)\GLm(A))
2

(averaged by Z ′n × Z ′m) by the formula
∫

Z ′n(k′)\Z ′n(A′)

∑
ζ∈GLn(k)

Fn(g
−1
1 z1ζg3)dz1

∫

Z ′m (k′)\Z ′m(A′)

∑
ξ∈GLm (k)

Fm(g
−1
2 z2ξg4)dz2.

(4.8)

3 Note that this basis is different from (2.3).
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Consider the following distribution

J(s; Fn ⊗ Fm) =
∫

Z ′m (A′)GLm (k′)\GLm (A′)

∫

Z ′n(A′)GLn(k′)\GLn(A′)

∫

H(k)\H(A)

KFn⊗Fm (ε(h), κ(h); g1, g2)ν(h
−1)| det h|s−

1
2

A
η(det g2)dhdg1dg2,

=
∫

Z ′m (A′)GLm (k′)\GLm (A′)

∫

Z ′n(A′)GLn(k′)\GLn(A′)

∫

Z ′m (k′)\Z ′m (A′)

∫

Z ′n(k′)\Z ′n(A′)

∫

H(k)\H(A)∑
ζ∈GLn(k)

Fn(ε(h)
−1z1ζg1)

∑
ξ∈GLm (k)

Fm(κ(h)
−1z2ξg2)

ν(h−1)| det h|s−
1
2

A
η(det g2)dhdz1dz2dg1dg2,

which equals∫

GLm (k′)\GLm (A′)

∫

GLn(k′)\GLn(A′)

∫

U1r ,m+1,1r (k)\H(A)

∑
ζ∈GLn(k)

Fn(ε(h)
−1ζg1)Fm(κ(h)

−1g2)ν(h
−1)| det h|s−

1
2

A
η(det g2)dhdg1dg2.

(4.9)

Such distribution formally computes∑
�,�

∑
Bν

r,r (s; ρ(Fn)ϕ�, ρ(Fm)ϕ�)Pn(ϕ�)Pm(ϕ�),

where the inner sum is taken over orthonormal bases of A� and A� . Decompose
h = ug and note that the group H(A) is unimodular. We make a change of variable
as g �→ g−1

2 g. Then

(4.9) =
∫

GLm (k′)\GLm (A′)

∫

GLn(k′)\GLn(A′)

∫

U1r ,m+1,1r (k)\U1r ,m+1,1r (A)

∫

GLm (A)∑
ζ∈GLn(k)

Fn(g
−1g−1

2 u−1ζg1)Fm(g
−1)ψ(u−1)

| det g|s−
1
2

A
| det g2|s−

1
2

A
η(det g2)dgdudg1dg2. (4.10)

Define a function F̃s on GLn(A), which is holomorphic in s, by

F̃s(g̃) =
∫

GLm (A)

Fn(g
−1g̃)Fm(g

−1)| det g|s−
1
2

A
dg.

We have a surjective linear map σ : S(GLn(A))→ S(Sn(A
′)) given by

σ(F)(ggτ,−1) =
∫

GLn(A′)

F(gg̃)dg̃. (4.11)
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Put Fs = σ(F̃s). Using the isomorphism GLn(k)/GLn(k′) � Sn(k′) and combin-
ing the previous two operations together, we obtain

(4.10) =
∑

ζ∈Sn(k′)

∫

GLm (k′)\GLm (A′)

∫

U1r ,m+1,1r (k)\U1r ,m+1,1r (A)

Fs(g
−1
2 u−1ζuτ g2)ψ(u

−1)| det g2|s−
1
2

A
η(det g2)dudg2. (4.12)

Similar to the case of unitary groups, we introduce the following k′-algebraic
group

H = Resk/k′(U1r ,m+1,1r ) � GLm,k′ ⊂ Resk/k′ H,

which acts on Sn from right in the following way. For a k′-algebra R, h = h(u; g)
with u ∈ U1r ,m+1,1r (R⊗ k), g ∈ GLm(R) and s ∈ Sn(R), the right action is given
by [s]h = g−1u−1suτ g. We denote by [Sn(k′)]/H(k′) the set of k′-orbits under
this action. Define a character (also denoted by ψ) of H(A′) by

ψ(h) = ψ(h(ug)) = ψ(u−1),

and put det h = det g. We have

(4.12) = J(s; Fs) :=
∑

ζ∈[Sn(k′)]/H(k′)
Jζ (s; Fs),

where

Jζ (s; Fs) =
∫

H(A′)/StabH
ζ (k
′)

Fs([ζ ]h)ψ(h)| det h|s−
1
2

A
η(det h)dh.

We denote Sn(k′)reg the set of regular k′-elements, a notion that will be defined
in Definition 4.9. In particular, the H-stabilizer StabH

ζ is trivial for ζ ∈ Sn(k′)reg by
Proposition 4.12, and the corresponding term O(s; Fs, ζ ) := Jζ (s; Fs) is an orbital
integral. If Fs = ⊗v′Fs,v′ is factorizable, then

O(s; Fs, ζ ) =
∏

v′∈Mk′
O(s; Fs,v′ , ζ ),

where

O(s; Fs,v′ , ζ ) =
∫

Hv′

Fs,v′([ζ ]hv′)ψv′(hv′)ηv′(det hv′)| det hv′ |s−
1
2

v′ dhv′ .

In particular, if Fs supports only on regular elements, then

J(s; Fs) = Jreg(s; Fs) =
∑

ζ∈[Sn(k′)reg]/H(k′)
Jζ (s; Fs)

=
∑

ζ∈[Sn(k′)reg]/H(k′)

∏
v′∈Mk′

O(s; Fs,v′ , ζ ).



Relative trace formulae 37

When s = 1
2 , the terms involving | det | disappear and we suppress s in notation.

In particular,

Jζ (F) = O(F, ζ ) =
∫

H(A′)

F([ζ ]h)ψ(h)η(det h)dh.

We expect that the above orbital integral has a close relation with the following one

Jζ ′( f ) = O( f, ζ ′) =
∫

H′(A′)

f ([ζ ′]h′)ψ ′(h′)dh′

introduced previously, assuming that ζ and ζ ′ are both regular, and match in a
natural sense defined in the next subsection.

Remark 4.4. If the original functions Fn = ⊗vFn,v and Fm = ⊗vFm,v are fac-
torizable, then F̃s = ⊗v F̃s,v and Fs = ⊗v′Fs,v′ are also factorizable. If for some
(finite) place v′, Fm,v′ has the property that

{| det g|v′ | Fm,v′(g) �= 0
} = {N } is a

singleton, then Fs,v′ = Fv′ · N s− 1
2 for a function Fv′ that is independent of s. In

particular, this is the case for almost all v′.

4.3. Matching of orbits and functions

Suppose we are in either local or global situations. We say two elements β1, β2 ∈
Her×m(k′) are similar, denoted by β1 ∼ β2, if there exists g ∈ GLm(k) such that
β2 = t gτ β1g. We denote [Her×m(k′)] the set of similarity classes. We write Wβ = W
and V β = V = Wβ ⊕ X ⊕ X∗ ⊕ E , if the matrix representing the hermitian form
on W is in the class β ∈ [Her×m(k′)], also Uβ

m (resp. Uβ
n , Hβ ) for U(Wβ) (resp.

U(V β), H′). Define

ε(β) = η
(
(−1)

m(m−1)
2 det β

)
∈ {±1}

to be the ε-factor of β, which depends only on its similarity class.
We first define the notion of pre-regular orbits. Recall that we have the action of

H (resp. H′), and hence its unipotent radical Resk/k′ U1r ,m+1,1r (resp. (U ′1r ,m+1)
2),

on Sn (resp. Uβ
n ).

Definition 4.5. (Pre-regular element). An element ζ ∈ Sn(k′) (resp. ζ β ∈ Uβ
n (k′))

is called pre-regular if its stabilizer under the action of Resk/k′ U1r ,m+1,1r (resp.
(U ′1r ,m+1)

2) is trivial.

Let B be the Borel subgroup of GLn consisting of upper-triangular matrices and
A ∼= (GL1)

n be the maximal torus consisting of diagonal matrices. Let Wn be the
Weyl group of GLn , which we identify with the subgroup of permutation matrices in
GLn . Moreover, let WS

n ⊂Wn be the subgroup consisting of elements whose square
is 1n . Let P be a standard parabolic subgroup of GLn,k whose unipotent radical is U.
Let M be a Levi subgroup of P consisting of diagonal blocks. The group Resk/k′ P
acts on Sn from right by [s]p = p−1spτ . First, we have the following lemma.



38 Y. Liu

Lemma 4.6. An element ζ ∈ Sn(k′)has trivial stabilizer under the action of U(k) ⊂
P(k) if and only if its orbit intersects with [w]M(k), where w = wn is the longest
element in Wn. Moreover, the intersection contains at most one element.

Proof. By [7, Proposition 3], we have the following Bruhat decomposition for
Sn(k′)

Sn(k
′) =

∐
w∈WS

n

[w]B(k).

It implies that for general P, we have

Sn(k
′) =

⋃
w∈WS

n

[w]P(k) =
⋃

w∈WS
n

[w]M(k)U(k).

Therefore, in a U(k)-orbit, there is a representative of the form [w]m. We assume
that ζ = [w]m = m−1wmτ . Then its stabilizer is trivial if and only if

{
u−1wuτ = w | u ∈ U(k)

}
= {1n} . (4.13)

Note that u−1wuτ = w is equivalent to wuw = uτ . Therefore, if w = w is the
longest Weyl element, u = 1n and [w]m is the only point where its orbit and
[w]M(k) intersect.

Conversely, we need to show that if (4.13) holds, then w ∈ [w]WM, where
WM ⊂Wn∩M(k) is isomorphic to the Weyl group of M. We observe thatw ∈WS

n
is a disjoint union of transpositions. We use induction on n. The case n = 1 is trivial.
Suppose that the above assertion holds for numbers less than n. If the transposition
(1, n) appears inw, then we reduce to the case of n−2 and we are done. Otherwise,
(1, a) will appear in w with 1 ≤ a < n. Suppose that M = GLn1 × · · · × GLnt

(arranged from upper-left to lower-right) with n = n1 + · · · + nt , ni > 0, and
t > 1 (otherwise, the proof is trivial). If n−a < nt , then w′ = (a, n) is an element
in WM ⊂ M(k). The conjugation w′−1ww′ ∈ WS

n will contain the transportation
(1, n) and we are done. Otherwise, n− a ≥ nt , and we consider the transportation
(b, n) inw′with 1 < b ≤ n. If b−1 < n1, then we can conjugatew by (1, b) ∈WM
and we are again done. The remaining case is that b−1 ≥ n1. We define an element
u ∈ U(k) whose entries are 1 at diagonals and positions (1, b), (a, n); 0 elsewhere.
Then wuw = u = uτ which contradicts (4.13). ��

Applying the above lemma to the parabolic subgroup P = P1r ,m+1,1r stabilizing
the flag

0 ⊂ {v1} ⊂ · · · ⊂ X ⊂ X ⊕W ⊕ E ⊂ X ⊕W ⊕ E ⊕ {v̌r
} ⊂ · · · ⊂ V,

which is standard under the basis {v1, . . . , vr , w1, . . . , wm, w0, v̌r , . . . , v̌1} adopted
in this section. Since w normalizes P1r ,m+1,1r , the U1r ,m+1,1r (k)-orbit of a pre-
regular element ζ must contain a unique element of the form
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1(ζ )
· · ·

tr (ζ )
Pr(ζ )

tr (ζ )τ,−1

· · ·
t1(ζ )τ,−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.14)

with ti (ζ ) ∈ k× and Pr(ζ ) ∈ Sm+1(k′). We call it the normal form of ζ . We say ζ
is normal if it is in the above form.

Now we consider the unitary group Uβ
n . We fix a minimal parabolic subgroup

Pβ
0 such that its unipotent radical Uβ

0 contains U ′1r ,m+1. Let Aβ
0 be a maximal torus

inside Pβ
0 , and Wβ

n the Weyl group. Let P′ be a standard parabolic subgroup of Uβ
n

with U′ its unipotent radical, and M′ ⊃ Aβ
0 a Levi subgroup. The group (P′)2 acts

on Uβ
n from right by [g](p1, p2) = p−1

1 gp2. We have the following lemma similar
to the one for symmetric spaces.

Lemma 4.7. An element ζ ′ ∈ Uβ
n (k′) has trivial stabilizer under the action of

U′(k′)2 ⊂ P′(k′)2 if and only if its orbit intersects [wβ]M′(k′)2 =M′(k′)wβM′(k′),
where wβ is the longest element in Wβ

n . Moreover, the intersection contains at most
one element.

Proof. We have the usual Bruhat decomposition

Uβ
n (k
′) =

∐
w∈WM′ \Wβ

n /WM′

P′(k′)wP′(k′)

=
∐

w∈WM′ \Wβ
n /WM′

U′(k′)M′(k′)wM′(k′)U′(k′).

Therefore, in a U′(k′)2-orbit, there is a representative of the form m1wm2. We
assume that ζ ′ = m1wm2. Then its stabilizer is trivial if and only if

wU′(k′)w−1 ∩ U′(k′) = {1n}. (4.15)

Let R+(Aβ
0 ,Uβ

n ) (resp. R+(Aβ
0 ,M′)) be the set of positive roots of Aβ

0 (resp. in M′).
Then a double coset of WM′ \Wβ

n /WM′ has a unique representative w satisfying
w(α) < 0 and w−1(α) < 0 for all α ∈ R+(Aβ

0 ,M′). Assume that w satisfies

(4.15) and the above condition. Then w(α) < 0 for α ∈ R+(Aβ
0 ,Uβ

n ). Therefore,
w = wβ .

Conversely, if w = wβ , then (4.15) holds, and the intersection is a singleton. ��

Applying the above lemma to P′ = Pβ
1r ,m+1, the standard parabolic subgroup

stabilizing the flag 0 ⊂ {v1} ⊂ · · · ⊂ X ⊂ V . Since wβ normalizes Pβ
1r ,m+1, the



40 Y. Liu

U ′1r ,m+1(k
′)2-orbit of a pre-regular element ζ β must contain a unique element of

the form ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1(ζ β)
· · ·

tr (ζ β)
Pr(ζ β)

tr (ζ β)τ,−1

· · ·
t1(ζ β)τ,−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.16)

with ti (ζ β) ∈ k× and Pr(ζ β) ∈ Uβ
m+1(k

′), where Uβ
m+1 = U(Wβ ⊕ E). We call it

the normal form of ζ β . We say ζ β is normal if it is in the above form.

Remark 4.8. There is a more natural way to define the invariants ti . For ζ ∈ Matn(k)
and i = 1, . . . , r , let ζ [i] be the left-lower i × i block of ζ , and si (ζ ) = det ζ [i]
which is invariant under the action ζ �→ uζu′ for u, u′ ∈ U1r ,m+1,1r (k). Then
ζ ∈ Sn(k′) (resp. ζ β ∈ Uβ

n (k′)) is pre-regular if and only if si (ζ ) ∈ k× (resp.
si (ζ

β) ∈ k×) for all i , where we view ζ (resp. ζ β ) as elements in Matn(k) through
the natural inclusion Sn ⊂ Resk/k′ Matn,k = End(V ) (resp. Uβ

n ⊂ Resk/k′ Matn,k).
Moreover, the invariants ti and si are related by ti (ζ ) = si−1(ζ )

τ si (ζ )
τ,−1 (s0 = 1),

and similarly for ζ β .

Recall that we have natural inclusions Sm+1 ⊂ Resk/k′ Matm+1,k = End(W ⊕
E) and Uβ

m+1 ⊂ Resk/k′ Matm+1,k .

Definition 4.9. (Regular element). An element ξ ∈ Matm+1(k) is called regular if
it satisfies

• ξ is regular semisimple as an element of Matm+1(k);
• the vectors {w0, ξw0, . . . , ξ

mw0} span W ⊕ E ;
• the vectors

{
w∨0 , w∨0 ξ, . . . , w∨0 ξm

}
span W∨ ⊕ E∨.

An element ζ ∈ Sn(k′) (resp. ζ β ∈ Uβ
n (k′)) is called regular, if it is pre-

regular and Pr(ζ ) ∈ Matm+1(k) (resp. Pr(ζ β) ∈ Uβ
m+1(k)) is regular. An H-orbit

ζ ∈ [Sn(k′)]/H(k′) (resp. Hβ -orbit ζ β ∈ [Uβ
n (k′)]/Hβ(k′)) is called regular if

some and hence all elements it contains are regular. We denote by Matm+1(k)reg,
GLm+1(k)reg := Matm+1(k)reg ∩ GLm+1(k), Sn(k′)reg (resp. [Sn(k′)reg]/H(k′))
and Uβ

n (k′)reg (resp. [Uβ
n (k′)reg]/Hβ(k′)) the various sets of regular elements (resp.

orbits).

To proceed, we recall some results from [32, Sect. 6]; see also [22,37,38]. To
include the whole action of H (resp. Hβ ), we need to consider the conjugation action
(from right) of GLm,k′ (resp. Uβ

m). We consider more generally the conjugation
action of GLm,k . Recall that, by our choice of coordinates, the group GLm,k embeds
into GLm+1,k via

g �→
[

g
1

]
.
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For ξ ∈ Matm+1(k), put

• ai (ξ) = Tr
∧i

ξ for 1 ≤ i ≤ m + 1;
• bi (ξ) = w∨0 ξ iw0 for 1 ≤ i ≤ m;
• Dξ to be the matrix [(w∨0 ξ i−1)(ξ j−1w0)]m+1

i, j=1; and

• Tξ = det[(w∨0 ξ i−1)(w j−1)]m+1
i, j=1.

It is clear that if ξ is regular, !ξ �= 0. Moreover, we have the following lemma.

Lemma 4.10. Two regular elements ξ , ξ ′ in GLm+1(k)are conjugate under GLm(k)
if and only if ai (ξ) = ai (ξ

′) (1 ≤ i ≤ m+ 1) and bi (ξ) = bi (ξ
′) (1 ≤ i ≤ m). The

GLm-stabilizer of a regular element is trivial.

Proof. See [32, Proposition 6.2 and Theorem 6.1] for the (equivalent version of
the) first and second statements, respectively. ��

To include all unitary groups at the same time, we consider the set Um+1 of
pairs (β, ξβ) where β ∈ Her×m(k′), and

ξβ ∈ Uβ
m+1(k

′)reg =
{
ξβ ∈ Matm+1(k)reg | t

(ξβ)
τ
β ′ξβ = β ′

}
,

where β ′ is defined in (4.1). The group GLm(k) acts on Um+1 by (β, ξβ)g =
(t gτ βg, g−1ξβg). For ξ ∈ Sm+1(k′)reg := Sm+1(k′) ∩Matm+1(k)reg, we denote
by ξ ⇔ (β, ξβ) if there exists g ∈ GLm(k) such that ξ = g−1ξβg. The following
lemma is also considered in [22,38].

Lemma 4.11. For ξ ∈ Sm+1(k′)reg, there exists a pair (β, ξβ), unique up to above
action of GLm(k), such that ξ ⇔ (β, ξβ). Conversely, for every pair (β, ξβ) ∈
Um+1, there exists an element ξ ∈ Sm+1(k′)reg, unique up to the conjugation action
of GLm(k′), such that ξ ⇔ (β, ξβ).

Proof. We first point out that two elements ξ, ξ ′ ∈ Sm+1(k′)reg are conjugate
under GLm(k) if and only if they are conjugate under GLm(k′). In fact, assume
g−1ξg = ξ ′. Then g−1ξg = gτ,−1ξτ,−1gτ = gτ,−1ξgτ , which implies g = gτ .

It is easy too see that for ξ ∈ Matm+1(k)reg, ξ and tξ have the same invariants
ai , bi . By the above lemma, there is a unique element g ∈ GLm(k) such that
g−1ξg = tξ . If ξ ∈ Sm+1(k′)reg, then tξ ∈ Sm+1(k′)reg. Therefore, we have gτ = g.
Also, t g tξ t g−1 = ξ ; g tξg−1 = ξ , which imply that g = t g. Together, we have

g ∈ Her×m(k′). Moreover, since tξτ (g−1)ξ = g−1, we have ξ ∈ Ug−1

m+1(k
′)reg and

ξ ⇔ (g−1, ξ).
Conversely, given (β, ξ) ∈ Um+1, we have tξβτ ξτ = βτ , and hence

βτ,−1 tξβτ = ξτ,−1. Moreover, there is an element γ ∈ GLm(k) such that
γ−1ξγ = tξ . We have βτ,−1γ−1ξγβτ = ξτ,−1, that is, (γβτ )−1ξ(γβτ ) = ξτ,−1.
By regularity, γβτ ∈ Sm(k′). Therefore, there exists g ∈ GLm(k) such that
γβτ = ggτ,−1. Then

gτ g−1ξggτ,−1ξτ = 1m+1 �⇒ g−1ξggτ,−1ξτ gτ

= 1m+1 �⇒ (g−1ξg)(g−1ξg)τ = 1m+1,

that is, g−1ξg ∈ Sm+1(k′)reg. The uniqueness part is obvious. ��
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We have the following proposition.

Proposition 4.12. Let the notation be as above.

(1) There is a natural bijection

[Sn(k
′)reg]/H(k′) N←→

∐
β∈[Her×m (k′)]

[Uβ
n (k
′)reg]/Hβ(k′).

If Nζ β = ζ , we say that they match and denote by ζ ↔ ζ β .
(2) The set Sn(k′)reg (resp. Uβ

n (k′)reg) is non-empty and Zariski open in Sn (resp.

Uβ
n ). Moreover, the H-stabilizer (resp. Hβ -stabilizer) of regular ζ (resp. ζ β )

is trivial.

Proof. For (1), we start with an element ζ ∈ Sn(k′)reg and consider its normal
form. We obtain invariants t1(ζ ), . . . , tr (ζ ) and an element Pr(ζ ) ∈ Sm+1(k′)reg.
By Lemma 4.11, there is a pair (β, ξβ) such that ξ = g−1ξβg. We fix β, and
then ξβ is uniquely determined up to the Uβ

m(k′)-conjugation. Define an element
ζ β ∈ Uβ

n (k′)reg by

ζ β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1(ζ )
· · ·

tr (ζ )
ξβ

tr (ζ )τ,−1

· · ·
t1(ζ )τ,−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By construction, ζ �→ ζ β defines a map

N : [Sn(k
′)reg]/H(k′)→

∐
β∈[Her×m (k′)]

[Uβ
n (k
′)reg]/Hβ(k′),

which is injective. The other direction is similar.
For (2), the openness is due to the following two facts: the set of pre-regular

elements in both cases corresponds to the unique open cell in the Bruhat decom-
position; and the three conditions in Definition 4.9 are open. The non-emptiness
is essentially exhibited in [22, Sect. 3] combining with the exponential map. For
the last part, we prove for ζ ∈ Sn(k′)reg, and the case of unitary groups is similar.
Write ζ in its normal form. If g−1u−1ζuτ g = ζ , then u−1

1 g−1ζguτ1 = ζ with
u1 = g−1ug ∈ U1r ,m+1,1r (k). We have g−1ζg = ζ , and then g−1 Pr(ζ )g = Pr(ζ )
which implies that g = 1n , and hence u = 1n . ��

It is clear from the above discussion that the regular orbit ζ ∈ [Sn(k′)reg]/H(k′)
or [Uβ

n (k′)reg]/Hβ(k′) is determined by its invariants ti (ζ ) (i = 1, . . . , r ), ai (ζ ) :=
ai (Pr(ζ )) (i = 1, . . . ,m + 1) and bi (ζ ) := bi (Pr(ζ )) (i = 1, . . . ,m). We have
ζ ↔ ζ β if and only if they have the same invariants. For simplicity, put Tζ = TPr(ζ ),
Dζ = DPr(ζ ) and !ζ = !Pr(ζ ).
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Conjecture 4.13. (Smooth matching). Let k′ = k′
v′ be a localization. Given

a Schwartz function F ∈ S(Sn(k′)), there exist Schwartz functions ( f β ∈
S(Uβ

n (k′)))β for each β ∈ [Her×m(k′)] such that

O(F, ζ ) = t(ζ )O( f β, ζ β)

for all ζ ∈ [Sn(k′)reg]/H(k′) and ζ ↔ ζ β which are both normal. Conversely,

given functions f β ∈ S(Uβ
n (k′)) for each β ∈ [Her×m(k′)], there exists a function

F ∈ S(Sn(k′)) such that the above identity holds. Here, t is a certain “transfer
factor” on [Sn(k′)reg]/H(k′); for example, when n is odd (and hence m is even),

t(ζ ) = η(Tζ · (det Pr(ζ ))−
m
2 ).

If F and ( f β)β satisfy the property in the above conjecture, we say they match
and denote by F ↔ ( f β)β .

Proposition 4.14. Ifv′ is split in k, then the above conjecture of smoothing matching
holds.

Proof. Suppose that v′ splits into two places v•, v◦ ∈Mk . In this case, t is trivial.
We may identify Sn,v′ with the set of pairs (g•, g◦) ∈ GLn,v• ×GLn,v◦ with g•g◦ =
1n , hence with GLn,v′ by (g•, g◦) �→ g•. Then Fv′ becomes a function on GLn,v′ ,
and

O(Fv′, ζ ) =
∫

GLm,v′

∫∫

(U1r ,m+1,1r ,v′ )2

Fv′(g
−1u−1• ζu◦g)ψ ′(u−1• u◦)du•du◦dg,

for the generic character

ψ ′(u) = ψ ′
(

j
(
u1,2 + · · · + ur−1,r + nr,0 + β0n∗0,r + u∗r,r−1 + · · · + u∗2,1

))
,

where j = ( j,− j).
On the other hand, we may identify Un,v′ with the pairs (g•, g◦) such that

g◦ = w−1
β ′◦

t g−1• wβ ′◦ , hence with GLn,v′ by (g•, g◦) �→ g•. Here,

wβ ′◦ =
⎡
⎣ wr

β ′◦
wr

⎤
⎦ ,

where β ′ = (β ′•, β ′◦). Then fv′ becomes a function on GLn,v′ , and

O( fv′ , ζ
′) =

∫

GLm,v′

∫∫

(U1r ,m+1,1r ,v′ )2

fv′(g
′−1u′−1• ζ ′u′◦g′)ψ ′(u′−1• u′◦)du′•du′◦dg′.

Moreover, in this case, that ζ and ζ ′ match exactly means ζ = ζ ′ ∈ GLn,v′ .
Therefore, if fv′ = Fv′ , we have O(Fv′ , ζ ) = O( fv′ , ζ ) for all regular ζ . ��
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4.4. The fundamental lemma

To establish the equality between two relative trace formulae, one needs to prove the
corresponding fundamental lemma. Let m be a nonnegative integer. Let k′ be a non-
archimedean local field and k/k′ a separable quadratic extension of fields. There
are only two non-isomorphic hermitian spaces of dimension m, if > 0, which are
distinguished by the factor ε(β). In the following discussion, we use the superscript
± instead of β in the way that ε(β) = ±1.

Assume that the extension k/k′ and the characterψ ′ : k′ → C
× are both unram-

ified. As before, we write o′ (resp. o) for the ring of integers of k′ (resp. k). Denote
val : k× → Z the valuation map. We also assume that β0 ∈ o′. Thus, W+ contains
a selfdual o-lattice LW that extends to a selfdual o-lattice LV in V+. The unitary
group U+m (resp. U+n ) is unramified and has a smooth model over Spec o′ defined
by LW (resp. LV ). The group of o′-points U+m(o′) (resp. U+n (o′)) is a hyperspecial
maximal subgroup of U+m(k′) (resp. U+n (k′)). We identify GLn(o) with GLn(LV ),
a hyperspecial maximal subgroup of GLn(k), and put Sn(o

′) = Sn(k′) ∩ GLn(o).
We denote by S(U+n (k′) � U+n (o′)) (resp. S(GLn(k) � GLn(o))) the spherical

Hecke algebra of U+n (resp. GLn,k). There is a base change map b : S(GLn(k) �
GLn(o))→ S(U+n (k′)�U+n (o′)), and also a linear map σ : S(GLn(k)�GLn(o))→
S(Sn(k′)) defined by (4.11), for the local situation. For the transfer factor, we have

t(ζ ) =
{
(−1)val(Tζ ·∏r

i=1 ti (ζ )) m is odd
(−1)val(Tζ ) m is even.

(4.17)

Conjecture 4.15. (The fundamental lemma) For an element F̃ ∈ S(GLn(k) �
GLn(o)), the functions F = σ(F̃) and ( f +, f −) match, where f + = b(F̃) and
f − = 0. In particular, we have

O(1Sn(o′), ζ ) =
{

t(ζ )O(1U+n (o′), ζ
+) ζ ↔ ζ+ ∈ U+n (k′)

0 ζ ↔ ζ− ∈ U−n (k′),

where ζ, ζ+ are normal, and

O(1Sn(o′), ζ ) =
∫

H(k′)

1Sn(o′)([ζ ]h)ψ(h)η(det h)dh;

O(1U+n (o′), ζ
+) =

∫

H+(k′)

1U+n (o′)([ζ+]h′)ψ ′(h′)dh′.

It is easy to see that ζ matches some element ζ+ ∈ U+n (k′) (resp. ζ− ∈ U−n (k′))
if and only if val(!ζ ) is even (resp. odd).

Proposition 4.16. If val(!ζ ) is odd, then O(1Sn(o′), ζ ) = 0.

Proof. The following argument is modified from the one in [38]. Put

w =
⎡
⎣ wr

1m+1
wr

⎤
⎦ .
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It is easy to see that 1Sn(o′)(s) = 1Sn(o′)(w
t sw). Since ζ is normal,

O(1Sn(o′), ζ ) =
∫

U1r ,m+1,1r (k)

∫

GLm (k′)

1Sn(o′)
(
w t uτ t g tζ t g−1 t u−1w

)
ψ(u−1)η(det g)dgdu

which equals
∫

U1r ,m+1,1r (k)

∫

GLm (k′)

1Sn(o′)
(
(w t uτ,−1w)−1 t g(w tζw) t g−1(w t uτ,−1w)τ

)

ψ(u−1)η(det g)dgdu. (4.18)

Since w tζw and ζ are both normal and have the same invariants, in the proof of
Lemma 4.11, we see that there exists h ∈ GLm(k′) such that w tζw = h−1ζh
and η(det h) = −1. Moreover, ψ(u) = ψ(w t uτ,−1w). After making change of
variables as w t uτ,−1w �→ u and h t g−1 �→ g, we have

(4.18) = −
∫

U1r ,m+1,1r (k)

∫

GLm (k′)

1Sn(o′)
(

u−1g−1ζguτ
)
ψ(u−1)η(det g)dgdu,

which implies O(1Sn(o′), ζ ) = 0.

5. A relative trace formula for Un × Um: Fourier–Jacobi periods

5.1. Fourier–Jacobi models and periods

Let us briefly recall the definition of Fourier–Jacobi models and periods for unitary
groups in [8]. We keep the setup in Sect. 4.1. Let V, ( , ) be a hermitian space
over k of dimension n and W ⊂ V a subspace of dimension m, such that the
restricted hermitian form ( , )|W is nondegenerate. We assume that the orthogonal
complement of W in V has the decomposition W⊥ = X ⊕ X∗ where X , X∗ are
both r -dimensional isotropic subspaces. Then n = m + 2r . The hermitian form
restricted on W (resp. X ⊕ X∗) identifies W (resp. X∗) with W∨τ (resp. X∨τ ). We
denote U(V ) (resp. U(W )) the unitary group of V (resp. W ) which is a reductive
group over k′. Let P ′r,m be the parabolic subgroup of U(V ) stabilizing X and U ′r,m
its unipotent radical. Then U ′r,m fits into the following exact sequence

0 �� ∧2
τ X �� U ′r,m �� Homk(W, X) �� 0.

Let �′X : X → k be a nontrivial k-linear homomorphism (if exists), and U ′X
a maximal unipotent subgroup of GL(X) stabilizing �′X . The homomorphism �′X
induces two homomorphisms

∧2
τ �
′
X : ∧2

τ X → ∧2
τ k = k− j ·−→ k′,

Resk/k′ �
′
X : Homk(W, X)→ Homk(W, k) = Homk′(Resk/k′ W, k′) = (Resk/k′ W )∨.
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The hermitian pair ( , ) of W induces a symplectic pair T̃r( , ) on the 2m-
dimensional k′-vector space Resk/k′ W , through which (Resk/k′ W )∨ is identified
with Resk/k′ W . Let H(Resk/k′ W ) be the Heisenberg group. We have the following
commutative diagram

0 �� ∧2
τ X

∧2
τ �
′
X

��

�� U ′r,m

��

�� Homk(W, X)

Resk/k′ �′X
��

�� 0

0 �� k′ �� H(Resk/k′ W ) �� Resk/k′ W �� 0.

(5.1)

For a nontrivial character ψ ′ : k′ → C
×, we have the Weil representation ω′

ψ ′ of

H(Resk/k′ W )� Mp(Resk/k′ W ). If we choose a character μ : k× → C
× such that

μ|k′× = η, we will have a splitting map

Mp(Resk/k′ W )

��
U(W )

� �

ιμ
�������������

� � ι �� Sp(Resk/k′ W )

(5.2)

(see [14, §§1, 2]). By restriction, we obtain the representationω′
ψ ′,μ of H(Resk/k′ W )

� U(W ), and hence a representation of U ′r,m � U(W ) through the middle vertical
map in (5.1). Let λ′ : U ′X → C

× be a generic character. Put ν′ = ν′(μ,ψ ′, λ′) =
ω′
ψ ′,μ⊗λ′ which is a smooth representation of H ′ := U ′r,m �

(
U ′X × U(W )

)
. Then

ν̃′ ∼= ν′(μ−1, ψ ′, λ′). As before, we have an embedding H ′ → U(V )×U(W ). Up
to conjugation by the normalizer of H ′ in U(V ) × U(W ), ν′ is determined by ψ ′
modulo Nm k× and μ.

Let π (resp. σ ) be an irreducible admissible representation of U(V ) (resp.
U(W )). A nontrivial element in HomH ′(π ⊗ σ ⊗ ν̃′,C) is called a Fourier–Jacobi
model ofπ⊗σ . In particular, when k/k′ is split, the Fourier–Jacobi model is simply
the (r, r)-Fourier–Jacobi model for general linear groups introduced in Sect. 3.1.
We have the following multiplicity one result.

Theorem 5.1. Let k be of characteristic 0 and π , σ as above. Then

dimC HomH ′(π ⊗ σ ⊗ ν̃′,C) ≤ 1.

Proof. It is proved in [33] (for k non-archimedean) and [34] (for k archimedean)
when r = 0. The case for general r is reduced to the previous one, as shown in
[29], or [8, Sect. 15] when k is non-archimedean. ��

Now we discuss the global case. Let k/k′ be a quadratic extension of number
fields, ψ ′ : k′\A′ → C

× nontrivial, μ : k×\A× → C
× such that μ|A′× = η, and

λ′ : U ′X (k)\U ′X (A)→ C
× a generic character, which give rise to the pair (H ′, ν′)

similarly in the global situation. To define a global period, we need to fix a model
for the Weil representation. Let L ⊂ (Resk/k′ W )∨ be a Lagrangian (k′-)subspace,
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and S(L(A′)) the space of Schwartz functions on L(A′). For φ ∈ S(L(A′)), define
the theta series to be

θν′(h
′, φ) =

∑
w∈L(k′)

λ′(h′)
(
ω′ψ ′,μ(h

′)φ
)
(w),

which is an automorphic form on H ′.
Let π (resp. σ ) be an irreducible representation of U(V )(A′) (resp. U(W )(A′))

which occurs with multiplicity one in the space A0(U(V )) (resp. A0(U(W ))).
We denote by Aπ (resp. Aσ ) the unique irreducible π ⊂ A0(U(V ) (resp. σ ⊂
A0(U(W )))-isotypic subspace.

Definition 5.2. (Fourier–Jacobi period). For ϕπ ∈ Aπ , ϕσ ∈ Aσ , and φ ∈
S(L(A′)), we define the following integral

FJν
′

r (ϕπ , ϕσ ;φ) =
∫

H ′(k′)\H ′(A′)
ϕπ (ε(h

′))ϕσ (κ(h′))θν̃′(h
′;φ)dh′,

which is absolutely convergent, to be a Fourier–Jacobi period of π ⊗ σ (for a
pair (H ′, ν′)). If there exist ϕπ ∈ Aπ , ϕσ ∈ Aσ , and φ ∈ S(L(A′)) such that
FJν

′
r (ϕπ , ϕσ ;φ) �= 0, then we say π ⊗ σ has a nontrivial Fourier–Jacobi period. It

is obvious that FJν
′

r defines an element in

HomH ′(A′)(π ⊗ σ ⊗ ν̃′,C) =
⊗

v′∈Mk′
HomH ′

v′
(πv′ ⊗ σv′ ⊗ ν̃′

v′ ,C).

We choose a basis {v1, . . . , vr } of X as in Sect. 4.1, and denote
{
v̌1, . . . , v̌r

}
the dual basis of X∨τ . We also choose a basis {w1, . . . , wm} of W . Put
β = [(wi , w j )]mi, j=1 ∈ Her×m(k′). We identify U(V ) (resp. U(W )) with
a unitary group Un (resp. Um) of n (resp. m) variables under the basis
{v1, . . . , vr , w1, . . . , wm, v̌r , . . . , v̌1}, and view Um as a subgroup of Un . Let
U ′1r ,m = U ′r,m � U ′X be the unipotent radical of H ′. The image of H ′(A′) in
Un(A

′) consists of the matrices h′ = h′(n′, b′; u′; g′) = u′(n′, b′; u′) · g′, where
g′ ∈ Um(A

′) and

u′ = u′(n′, b′; u′) =

⎡
⎢⎢⎣

1r n′ wr

(
b′ + n′n′β

2

)

1m n′β
1r

⎤
⎥⎥⎦
⎡
⎣u′

1m

ǔ′

⎤
⎦ ∈ U ′1r ,m(A

′)

for n′ ∈ Matr,m(A), b′ ∈ Herr (A
′), u′ ∈ U ′X (A), n′β = −β−1 t n′τwr and ǔ′ =

wr
t u′τ,−1wr . If r > 0, let U ‡ be the unipotent radical of the parabolic subgroup

of U(
{
vr , v̌r

} ⊕ W ) stabilizing the flag 0 ⊂ {vr }. Put H‡ = U ‡
� U(W ) (resp.

H‡ = U(W )) if r > 0 (resp. r = 0). There is a natural map H ′ → H‡. We write
h‡ = u‡g′ to be the image of h′ under this map. Then we have

ν′(h′) = ψ ′(u′)ω′ψ ′,μ(h
‡) = ψ ′

(
T̃r
(
u′1,2 + · · · + u′r−1,r

))
ω′ψ ′,μ(h

‡).
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5.2. Decomposition of distributions

This time, we start from the relative trace formula on general linear groups.
We identify GLm,k ⊂ GLn,k with GL(W ) ⊂ GL(V ), and view GLn,k′ (resp.
GLm,k′ ) as a subgroup of Resk/k′ GLn,k (resp. Resk/k′ GLm,k) via the basis{
v1, . . . , vr , w1, . . . , wm, v̌r , . . . , v̌1

}
.

Recall that we realize the Weil representation ωψ,μ on the space S(W∨(A))
where ψ = ψ ′ ◦ T̃r. Put

W+ =
r⊕

i=1

k′w∨i , W− =
r⊕

i=1

k−w∨i , W+ =
r⊕

i=1

k′wi , W− =
r⊕

i=1

k−wi ,

which are vector spaces over k′. Then Resk/k′ W = W+ ⊕W− and Resk/k′ W∨ =
W+ ⊕ W−. We also put W † = W+ ⊕ W+, which is a vector space over k′.
Define a linear isomorphism from S(W∨(A)) to S(W †(A′)) by � �→ �†, where
for � ∈ S(W∨(A)),

�†(w+, w+) =
∫

W−(A′)

�(w+, w−)ψ(w−w+)dw−. (5.3)

If r > 0, let U † be the unipotent radical of the parabolic subgroup of
GL(

{
vr , v̌r

}⊕W ) stabilizing the flag 0 ⊂ {vr } ⊂ {vr }⊕W . Put H† = U †
� GLm

(resp. H† = GLm) if r > 0 (resp. r = 0). It consists of elements h† = u†g =
u†(n+, n−, n+, n−, b†)g where

u†(n+, n−, n+, n−, b†) =
⎡
⎣1 n+ + n− b† + (n++n−)(n++n−)

2
1m n+ + n−

1

⎤
⎦

with n+ ∈ Mat1,m(k′), n− ∈ Mat1,m(k−), n+ ∈ Matm,1(k′), and n− ∈
Matm,1(k−). We have a natural quotient homomorphism H → H†.

Define a representation ω†
ψ,μ

of H(A) on S(W †(A′)) by

ω
†
ψ,μ

(h)�† =
(
ωψ,μ(h)�

)†
.

It is easy to see that ω†
ψ,μ

factors through H† and

(
ω

†
ψ,μ

(
u†
(

n+, n−, n+, n−, b†
)

g
)
�†
)
(w+, w+)

= η(det g)ψ

(
b† + w+n− + n−w+ + n+n− − n−n+

2

)
�†

×
(
(w+ + n+)g, g−1(w+ − n+)

)
(5.4)

if g ∈ GLm(k′). Moreover, we have the Poisson summation formula∑
w†∈W †(k′)

�†(w†) =
∑

w�∈W∨(k)
�(w�).
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Until the end of this subsection, we assume that n is odd, and hence m is odd
as well. Since the other case is similar and will lead to the same fundamental
lemma, we omit it in the following discussion. We proceed exactly as in Sect. 4.2
and take μ to be the character used in (5.2) which is assumed to be unitary. For
Fn ∈ S(GLn(A)), Fm ∈ S(GLm(A)) and� ∈ S(W∨(A)), we associate to Fn⊗ Fm

a kernel function KFn⊗Fm (g1, g2; g3, g4) as (4.8) and consider the distribution

Jμ(s; Fn ⊗ Fm ⊗�) =
∫

Z ′m (A′)GLm (k′)\GLm (A′)

∫

Z ′n(A′)GLn(k′)\GLn(A′)

∫

H(k)\H(A)

KFn⊗Fm (ε(h), κ(h); g1, g2)θ̃ν(h,�)| det h|s−
1
2

A
dhdg1dg2.

(5.5)

Such distribution formally computes
∑
�,�

∑
FJνr,r (s; ρ(Fn)ϕ�, ρ(Fm)ϕ�;�)P(ϕ�)P(ϕ�),

where the inner sum is taken over orthonormal bases of A� and A� . Proceeding
similarly as in (4.9), we have

(5.5) =
∫

Z ′m (A′)GLm (k′)\GLm (A′)

∫

Z ′n(A′)GLn(k′)\GLn(A′)

∫

U1r ,m,1r (k)\U1r ,m,1r (A)

∫

GLm (A)∑
ζ∈GLn(k)

Fn(g
−1g−1

2 u−1ζg1)Fm(g
−1)θ̃ν(ug2g,�)| det g|s−

1
2

A

| det g2|s−
1
2

A
dgdudg1dg2,

which equals
∫

GLm (k′)\GLm (A′)

∫

U1r ,m,1r (k)\U1r ,m,1r (A)

∫

GLm (A)∑
ζ∈Sn(k′)

σ (Fn)(g
−1g−1

2 u−1ζuτ g2gτ )Fm(g
−1)θ̃ν(ug2g,�)

| det g|s−
1
2

A
| det g2|s−

1
2

A
dgdudg2. (5.6)

Unfolding U1r ,m,1r (k), we have

(5.6) =
∑

ζ∈[Sn(k′)]/U1r ,m,1r (k)

∫

GLm (k′)\GLm (A′)

∫

Stab
U1r ,m,1r
ζ (k′)\U1r ,m,1r (A)

∫

GLm (A)

σ (Fn)(g
−1g−1

2 ([ζ ]u)g2gτ )Fm(g
−1)θ̃ν(ug2g,�)| det g|s−

1
2

A

| det g2|s−
1
2

A
dgdudg2,
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which equals

∑
ζ∈[Sn(k′)]/U1r ,m,1r (k)

∫

Stab
U1r ,m,1r
ζ (k′)\U1r ,m,1r (A)

∫

GLm (k′)\GLm (A′)

∫

GLm (A)

σ (Fn)(g
−1([g−1

2 ζg2]u)gτ )Fm(g
−1)θ̃ν

(
g2, ωψ,μ(ug)�

)
ψ(u−1)| det g|s−

1
2

A

| det g2|s−
1
2

A
dgdg2du. (5.7)

On the other hand, we have

θ̃ν

(
g2, ωψ,μ(ug)�

)
=

∑
w�∈W∨(k)

(
ωψ,μ(g2)ωψ,μ(ug)�

)
(w�)

=
∑

w†∈W †(k′)

(
ω

†
ψ,μ

(g2)
(
ωψ,μ(ug)�

)†
)
(w†)

=
∑

x∈Mat1,m (k′)

∑
y∈Matm,1(k′)

η(det g2)
(
ωψ,μ(ug)�

)†
(xg2, g−1

2 y).

To proceed, we introduce a k′-variety

Sn,m = Sn ×Mat1,m,k′ ×Matm,1,k′ .

As before, we put H = Resk/k′(U1r ,m,1r ) � GLm,k′ which acts on Sn,m from right
in the following way. For a k′-algebra R, h = h(u, g) with u ∈ U1r ,m,1r (R ⊗ k),
g ∈ GLm(R) and [s, x, y] ∈ Sn,m(R), the right action is given by [s, x, y]h =
[g−1u−1suτ g, xg, g−1 y]. Denote [Sn,m(k′)]/H(k′) the set of k′-orbits under this
action. We also put ψ(h) = ψ(u−1), and det h = det g. Then

(5.7) = Jμ(s; Fn ⊗ Fm ⊗�) :=
∑

[ζ,x,y]∈[Sn,m (k′)]/H(k′)
J
μ
[ζ,x,y](s; Fn ⊗ Fm ⊗�),

where

J
μ
[ζ,x,y](s; Fn ⊗ Fm ⊗�) =

∫

StabH[ζ,x,y](k′)\H(A′)

∫

GLm (A)

σ (Fn)(g
−1[ζ ]hgτ )Fm(g

−1)
(
ω

†
ψ,μ

(hg)�†
)
(x, y)ψ(h)| det h|s−

1
2

A
| det g|s−

1
2

A
dgdh.

(5.8)

We denote Sn,m(k′)reg the set of regular k′-elements, a notion that will be defined
in Definition 5.9. In particular, the H-stabilizer StabH[ζ,x,y] is trivial for [ζ, x, y]
regular, and the corresponding term

Oμ(s; Fn ⊗ Fm ⊗�, [ζ, x, y]) := J
μ
[ζ,x,y](s; Fn ⊗ Fm ⊗�)
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is an orbital integral. If Fn = ⊗v′Fn,v′ , Fm = ⊗v′Fm,v′ and � = ⊗v′�v′ are
factorizable, then

Oμ(s; Fn ⊗ Fm ⊗�, [ζ, x, y]) =
∏

v′∈Mk′
Oμv′ (s; Fn,v′ ⊗ Fm,v′ ⊗�v′ , [ζ, x, y]),

where the local orbital integrals Oμv′ are defined similarly as in (5.8) with A
′ (resp.

A) replaced by k′
v′ (resp. kv′). In particular, if the function

[ζ, x, y] �→
∫

GLm (A)

σ (Fn)(g
−1ζgτ )Fm(g

−1)
(
ω

†
ψ,μ

(g)�†
)
(x, y)| det g|s−

1
2

A
dg

supports only on regular elements, then

Jμ(s; Fn ⊗ Fm ⊗�) = Jμreg(Fn ⊗ Fm ⊗�)

=
∑

[ζ,x,y]∈[Sn,m (k′)reg]/H(k′)
J
μ
[ζ,x,y](s; Fn ⊗ Fm ⊗�)

=
∑

[ζ,x,y]∈[Sn,m (k′)reg]/H(k′)

∏
v′∈Mk′

Oμv′ (s; Fn,v′ ⊗ Fm,v′ ⊗�v′, [ζ, x, y]).

When s = 1
2 , we suppress s in notation. In particular, if [ζ, x, y] is regular,

J
μ
[ζ,x,y](Fn ⊗ Fm ⊗�) = Oμ(Fn ⊗ Fm ⊗�, [ζ, x, y])

=
∫

H(A′)

∫

GLm (A)

σ (Fn)(g
−1[ζ ]hgτ )Fm(g

−1)

(
ω

†
ψ,μ

(hg)�†
)
(x, y)ψ(h)dgdh. (5.9)

Now we describe the relative trace formula on unitary groups. Take fn ∈
S(Un(A

′)), fm ∈ S(Um(A
′)) and φα ∈ S(L(A′)) for α = 1, 2. As before, we

have the kernel function K fn⊗ fm (4.2). Put

Jμ( fn ⊗ fm ⊗ φ1 ⊗ φ2)

=
∫∫

(H ′(k′)\H ′(A′))2
K fn⊗ fm (ε(h

′
1), κ(h

′
1); ε(h′2), κ(h′2))θν̃′(h′1, φ1)θν′

(
h′2, φ2

)
dh′1dh′2.

(5.10)

Such distribution formally computes

∑
π,σ

∑
FJν

′
r (ρ( fn)ϕπ , ρ( fm)ϕσ ;φ1)FJν̃

′
r (ϕπ , ϕσ ;φ2),
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where the inner sum is taken over orthonormal bases of Aπ and Aσ . Collapse the
summation over ξ ′ and make a change of variable as g′−1

2 g′1 �→ g′1. We have

(5.10) =
∫

Um (k′)\Um (A′)

∫∫

(U ′1r ,m (k
′)\U ′1r ,m (A

′))2

∫

Um (A′)

∑
ζ ′∈Un(k′)

fn(g
′−1
1 g′−1

2 u′−1
1 ζ ′u′2g′2) fm(g

′−1
1 )θν̃′

(
u′1g′2, ω′ψ ′,μ(g

′
1)φ1

)

θν′
(
u′2g′2, φ2

)
dg′1du′1du′2dg′2. (5.11)

Put Un,m := Un×Resk/k′ Mat1,m,k . Recall that we have defined an k′-algebraic
group H′ in Sect. 4.2, which acts on Un,m from right in the following way. For a
k′-algebra R, h′ = h′(u′1, u′2, g′) ∈ H′(R) and [g, z] ∈ Un(R) ×Mat1,m(R ⊗ k),
the right action is given by [g, z]h′ = [g′−1u′−1

1 gu′2g′, zg′]. We also put

ψ ′(h′) = ψ ′
(
h′(u′1, u′2; g′)

) = ψ ′(u′−1
1 u′2),

and det h′ = det g′. Introduce the group

H‡ = H‡ ×
Um

H‡ (resp. Um)

if r > 0 (resp. r = 0), whose elements are denoted by h‡ = h‡(u‡
1, u‡

2; g′) where
where

u‡
i = u‡

i (n
‡
i , b‡

i ) =
⎡
⎢⎣

1 n‡
i b‡

i − n‡
i β
−1 t n‡,τ

i
2

1m −β−1 t n‡,τ
i

1

⎤
⎥⎦

for n‡
i ∈ W∨(A) and b‡

i ∈ A
−. We have a natural quotient homomorphism H′ →

H‡.

Lemma 5.3. Let ω‡
ψ ′ be the representation of H‡ on the space S(W∨(A)) defined

by the formula(
ω

‡
ψ ′(h

‡)φ
)
(z) =

(
ω

‡
ψ ′

(
h‡(u‡

1, u‡
2; g′)

)
φ
)
(z)

= ψ
(

b‡
1 − b‡

2 + zβ−1
(

t n‡,τ
2 − t n‡,τ

1

)

+n‡
1β
−1 t n‡,τ

2

)
φ
((

z + n‡
1 + n‡

2

)
g′
)
,

which we also regard as a representation of H′ via the inflation H′ → H‡. Then
(the complete projective tensor product) ω′

ψ ′,μ⊗ω′ψ ′,μ, viewed as a representation

of H′, is isomorphic to ω‡
ψ ′ , under which we have

θν̃′
(
u′1g′, φ1

)
θν′
(
u′2g′, φ2

) = ψ ′(h′)
∑

z∈W∨(k)

(
ω

‡
ψ ′(h

′) (φ1 ⊗ φ2)
‡
)
(z)

for h′ = h′(u′1, u′2, g′) ∈ H′ via restriction, where (φ1 ⊗ φ2)
‡ is the image of

φ1 ⊗ φ2 under such isomorphism.
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Proof. The isomorphism is given by [14, Proposition 2.2 (i), (ii)], which comes
from a (partial) Fourier transform, and the last formula follows from the Poisson
summation formula. ��

By the above lemma and repeating the processes in (5.6), (5.7), (5.8), we have

(5.11) = Jμ( fn ⊗ fm ⊗ φ1 ⊗ φ2)

:=
∑

[ζ ′,z]∈[Un,m (k′)]/H′(k′)
J
μ

[ζ ′,z]( fn ⊗ fm ⊗ φ1 ⊗ φ2),

where

J
μ

[ζ ′,z]( fn ⊗ fm ⊗ φ1 ⊗ φ2) =
∫

StabH′
[ζ ′,z](k

′)\H′(A′)

∫

Um (A′)

fn(g
′−1[ζ ′]h′) fm(g

′−1)

(
ω

‡
ψ ′(h

′)
(
ω′
ψ ′,μ(g

′)φ1 ⊗ φ2

)‡
)
(z)ψ ′(h′)dg′dh′.

(5.12)

We denote Un,m(k′)reg the set of regular k′-elements, a notion that will be defined
in Definition 5.9. In particular, the H′-stabilizer StabH′

[ζ ′,z] is trivial for [ζ ′, z] regular,
and the corresponding term

Oμ( fn ⊗ fm ⊗ φ ⊗ φ2, [ζ ′, z]) := J
μ

[ζ ′,z]( fn ⊗ fm ⊗ φ1 ⊗ φ2)

is an orbital integral. If fn = ⊗v′ fn,v′ , fm = ⊗v′ fm,v′ and φi = ⊗v′φi,v′ are
factorizable, then

Oμ( fn ⊗ fm ⊗ φ1 ⊗ φ2, [ζ ′, z])=
∏

v′∈Mk′
Oμv′ ( fn,v′ ⊗ fm,v′ ⊗ φ1,v′ ⊗ φ2,v′ , [ζ ′, z]),

where the local orbital integrals Oμv′ are defined similarly as in (5.12) with A
′

replaced by k′
v′ . In particular, if the function

[ζ ′, z] �→
∫

Um (A′)

fn(g
′−1ζ ′) fm(g

′−1)
(
ω′
ψ ′,μ(g

′)φ1 ⊗ φ2

)‡
(z)dg′

supports only on regular elements, then

Jμ( fn ⊗ fm ⊗ φ1 ⊗ φ2) = Jμreg( fn ⊗ fm ⊗ φ1 ⊗ φ2)

=
∑

[ζ ′,z]∈[Un,m (k′)reg]/H′(k′)
J
μ

[ζ ′,z]( fn ⊗ fm ⊗ φ1 ⊗ φ2)

=
∑

[ζ ′,z]∈[Un,m (k′)reg]/H′(k′)

∏
v′∈Mk′

Oμv′ ( fn,v′ ⊗ fm,v′ ⊗ φ1,v′ ⊗ φ2,v′, [ζ ′, z]).
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Remark 5.4. Take a place v′ of k′ and let [ζ, x, y] be a regular element. The orbital
integral Oμv′ (−, [ζ, x, y]) introduced above actually factors through (the algebraic
tensor product) S(Sn(k′v′)) ⊗ S(GLm(kv′)) ⊗ S(W∨(kv′)). Note that the (Fréchet)
space S(Sn(k′v′) × GLm(kv′) × W∨(kv′)) has a natural topology under which the
subspaceS(Sn(k′v′))⊗S(GLm(kv′))⊗S(W∨(kv′)) is dense (which is the whole space
if and only if v′ is non-archimedean). In fact, the linear functional Oμv′ (−, [ζ, x, y])
is continuous and hence extends uniquely to a continuous linear functional on
S(Sn(k′v′)×GLm(kv′)×W∨(kv′)). Similar, for a regular element [ζ ′, z], the linear
functional Oμv′ (−, [ζ ′, z]) extends uniquely to S(Un(k′v′)×Um(k′v′)× L(k′

v′)
⊕2).

If v′ splits in k, we will give a direct construction of such extensions in Proposition
5.11.

5.3. Matching of orbits and functions

Suppose we are in either local or global situations.

Definition 5.5. (Regular element). Put Mm = Matm ×Mat1,m ×Matm,1. An ele-
ment [ξ, x, y] ∈Mm(k) is called regular if it satisfies

• ξ is regular semisimple as an element of Matm(k);
• the vectors

{
x, xξ, . . . , xξm−1

}
span the k-vector space Mat1,m(k);

• the vectors
{

y, ξ y, . . . , ξm−1 y
}

span the k-vector space Matm,1(k).

For [ξ, x, y] ∈Mm(k), put

• ai ([ξ, x, y]) = Tr
∧i

ξ for 1 ≤ i ≤ m;
• bi ([ξ, x, y]) = xξ i y for 0 ≤ i ≤ m − 1;
•

T[ξ,x,y] = det

⎡
⎢⎢⎢⎣

x
xξ
...

xξm−1

⎤
⎥⎥⎥⎦ ;

• D[ξ,x,y] to be the matrix [xξ i+ j−2 y]mi, j=1; and
• ![ξ,x,y] = det D[ξ,x,y].

It is clear that ![ξ,x,y] �= 0 if [ξ, x, y] is regular. The group GLm acts on Mm from
right by [ξ, x, y]g = [g−1ξg, xg, g−1 y], under which ai , bi , D[ξ,x,y] and ![ξ,x,y]
are invariant. We denote Mm(k)reg the set of regular elements.

Lemma 5.6. Two regular elements [ξ, x, y] and [ξ ′, x ′, y′] are in the same GLm(k)-
orbit if and only if ai ([ξ, x, y]) = ai ([ξ ′, x ′, y′]) (1 ≤ i ≤ m) and bi ([ξ, x, y]) =
bi ([ξ ′, x ′, y′]) (0 ≤ i ≤ m− 1). The GLm-stabilizer of a regular element is trivial.

Proof. See [32, Proposition 6.2 and Theorem 6.1] for the first and second state-
ments, respectively. ��
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We define two more spaces

Sm =
{[ξ, x, y] ∈Mm(k)reg | ξ ∈ Sm(k

′), x ∈ Mat1,m(k
′), y ∈ Matm,1(k

′)
} ;

U"
m =

{[β; ξβ, z, z∗] | β ∈ Her×m(k′), [ξβ, z, z∗] ∈Mm(k)reg, ξ
β ∈ Uβ

m(k
′), z∗ = β−1 t zτ

}
,

where Uβ
m = U(Wβ). For U

"
m , we also define a right GLm(k)-action by

[β; ξβ, z, z∗]g = [t gτ βg; g−1ξg, zg, g−1z∗]. For [ξ, x, y] ∈ Sm , we write
[ξ, x, y] ⇔ [β; ξβ, z, z∗] if there exists g ∈ GLm(k) such that [ξ, x, y] =
[ξβ, z, z∗]g. We have the following lemma which is similar to Lemma 4.11.

Lemma 5.7. For [ξ, x, y] ∈ Sm, there exists an element [β; ξβ, z, z∗] ∈ U
"
m,

unique up to the previous GLm(k)-action, such that [ξ, x, y] ⇔ [β; ξβ, z, z∗].
Conversely, for [β; ξβ, z, z∗] ∈ U

"
m, there exists an element [ξ, x, y] ∈ Sm, unique

up to the GLm(k′)-action, such that [ξ, x, y] ⇔ [β; ξβ, z, z∗].
Proof. We first point out that two elements [ξ, x, y] and [ξ ′, x ′, y′] of Sm are
conjugate under GLm(k) if and only if they are conjugate under GLm(k′). In fact,
assume [ξ, x, y]g = [ξ ′, x ′, y′]. Then g−1ξg = ξ ′ implies that gτ,−1ξgτ = ξ ′;
xg = x ′ implies that xgτ = x ′; g−1 y = y′ implies that gτ,−1 y = y′. Therefore,
g = gτ .

It is easy to see that for [ξ, x, y] ∈M(k)reg, [ξ, x, y] and [tξ, t y, t x] have the
same invariants. Therefore, there is a unique g ∈ GLm(k) such that g−1ξg = tξ ,
xg = t y, g−1 y = t x . Now if [ξ, x, y] ∈ Sm , then [tξ, t y, t x] ∈ Sm , which
implies that g = gτ . Moreover, we have g = t g and tξτ g−1ξ = g−1. Therefore,

g−1 ∈ Her×m(k′) and ξ ∈ Ug−1

m (k′). We also have y = (g−1)−1 t xτ which means
that [g−1; ξ, x, y] ∈ U

"
m and [ξ, x, y] ⇔ [jg−1; ξ, x, y].

Conversely, given [β; ξ, z, z∗] ∈ U
"
m , since tξβτ ξτ = βτ , βτ,−1 tξβτ = ξτ,−1,

z∗ = β−1 t zτ , we have [tξ, t z∗, t z]βτ = [ξτ,−1, zτ , (z∗)τ ]. Moreover, since
[ξ, z, z∗] and [tξ, t z∗, t z] have the same invariants, there exists γ ∈ GLm(k) such
that [ξ, z, z∗]γ = [tξ, t z∗, t z]. Therefore, [ξ, z, z∗](γβτ ) = [ξτ,−1, zτ , (z∗)τ ],
which implies that γβτ ∈ Sm(k′); γβτ = ggτ,−1 for some g ∈ GLm(k). Then
(g−1ξg)(g−1ξg)τ = 1m . Moreover, zggτ,−1 = zτ implies zg = (zg)τ ; gτ g−1z∗ =
(z∗)τ implies g−1z∗ = (g−1z∗)τ . In all, [ξ, z, z∗]g = [g−1ξg, zg, g−1z∗] ∈ Sm .
The uniqueness of g is obvious. ��

For β ∈ [Her×m(k′)], we write Wβ = W and V β = V = W ⊕ X ⊕ X∗ if the

matrix representing the hermitian form on W is in the class β. Write Uβ
m (resp. Uβ

n ,
Uβ

n,m , Hβ ) for U(Wβ) (resp. U(V β), U(V β)× Resk/k′ Mat1,m,k , H′).

Definition 5.8. (Pre-regular element). An element [ζ, x, y] ∈ Sn,m(k′) (resp.
[ζ β, z] ∈ Uβ

n,m(k′)) is called pre-regular if the stabilizer of ζ (resp. ζ β ) under
the action of Resk/k′ U1r ,m,1r (resp. (U ′1r ,m)

2) is trivial.

Applying Lemma 4.6 to P = P1r ,m,1r , the U1r ,m,1r (k)-orbit of ζ for which
[ζ, x, y] is pre-regular necessarily contains a unique element of the form (4.14)
with ti (ζ ) ∈ k× and Pr(ζ ) ∈ Sm(k′). It is called the normal form of [ζ, x, y], and
we say [ζ, x, y] is normal if it is of such form. Applying Lemma 4.7 to P′ = Pβ

1r ,m ,
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the (U ′1r ,m)
2-orbit of ζ β for which [ζ β, z] is pre-regular necessarily contains a

unique element of the form (4.16) with ti (ζ β) ∈ k× and Pr(ζ β) ∈ Uβ
m(k′). It is

called the normal form of [ζ β, z], and we say [ζ β, z] is normal if it is of such form.

Definition 5.9. (Regular element). An element [ζ, x, y] ∈ Sn,m(k′) (resp. [ζ β, z] ∈
Uβ

n,m(k′)) is called regular if it is pre-regular and [Pr(ζ ), x, y] ∈ Sm (resp.
[β;Pr(ζ β), z, z∗] ∈ U

"
m). We have the notions Sn,m(k′)reg, Uβ

n,m(k′)reg for the sets
of regular elements.

As before, we have the following proposition whose proof we omit.

Proposition 5.10. Let the notation be as above.

(1) There is a natural bijection

[Sn,m(k
′)reg]/H(k′) N←→

∐
β∈[Her×m (k′)]

[Uβ
n,m(k

′)reg]/Hβ(k′).

If N[ζ β, z] = [ζ, x, y], we say that they match and denote by [ζ, x, y] ↔
[ζ β, z].

(2) The set Sn,m(k′)reg (resp. Uβ
n,m(k′)reg) is non-empty and Zariski open in

Sn,m (resp. Uβ
n,m). Moreover, the H-stabilizer (resp. Hβ -stabilizer) of regular

[ζ, x, y] (resp. [ζ β, z]) is trivial.

It is clear that the regular orbit [ζ, x, y] ∈ [Sn,m(k′)reg]/H(k′) (resp.

[ζ β, z] ∈ [Uβ
n,m(k′)reg]/Hβ(k′)) is determined by its invariants ti (ζ ) (resp.

ti (ζ β)) (i = 1, . . . , r ), ai ([ζ, x, y]) := ai ([Pr(ζ ), x, y]) (resp. ai ([ζ β, z]) :=
ai ([Pr(ζ β), z, z∗])) (i = 1, . . . ,m), and bi ([ζ, x, y]) := bi ([Pr(ζ ), x, y]) (resp.
bi ([ζ β, z]) := bi ([Pr(ζ β), z, z∗])) (i = 0, . . . ,m−1). We have [ζ, x, y] ↔ [ζ β, z]
if and only if they have the same invariants. For simplicity, we put T[ζ,x,y] :=
T[Pr(ζ ),x,y], D[ζ,x,y] := D[Pr(ζ ),x,y] and ![ζ,x,y] := ![Pr(ζ ),x,y].

Proposition 5.11. (Smooth matching at a split place). Let v′ be a place of k′ which
splits into two places v• and v◦ of k. Then [Her×m(k′)] is a singleton and we suppress
β in notation.

(1) For [ζ, x, y] ∈ Sn,m(k′)reg, we may extend the local orbital integral
Oμv′ (−, [ζ, x, y]) uniquely to a continuous linear functional on S(Sn(k′v′)×
GLm(kv′)×W∨(kv′)).

(2) For [ζ ′, z] ∈ Un,m(k′)reg, we may extend the local orbital integral
Oμv′ (−, [ζ ′, z]) uniquely to a continuous linear functional on S(Un(k′v′) ×
Um(k′v′)× L(k′

v′)
⊕2).

(3) There is a surjective continuous linear map

SM : S(Sn(k
′
v′)× GLm(kv′)×W∨(kv′))→ S(Un(k

′
v′)× Um(k

′
v′)×L(k′v′)

⊕2)

such that for all Fv′ in the former space,

Oμv′ (Fv′ , [ζ, x, y]) = Oμv′ (SM(Fv′), [ζ ′, z]), (5.13)

for every pair of normal elements [ζ, x, y] and [ζ ′, z] that match.
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Proof. Since v′ is split, we may take β = 1m . As in the proof of Proposition 4.14,
we identify Sn,v′ (resp. Un,v′ ) with GLn,v′ (resp. GLn,v′), and moreover Sn,m,v′
(resp. Un,m,v′ ) with GLn,v′ ×Mat1,m,v′ ×Matm,1,v′ (resp. GLn,v′ ×(Mat1,m,v′)2).
Then [ζ, x, y] ↔ [ζ, (x, t y)].

For (1), consider Fn,v′⊗Fm,v′⊗�v′ ∈ S(Sn(k′v′))⊗S(GLm(kv′))⊗S(W∨(kv′)).
By (5.4) and (5.9), we have

Oμv′ (Fn,v′ ⊗ Fm,v′ ⊗�v′, [ζ, x, y])
=

∫

GLm,v′

∫∫

(U1r ,m,1r ,v′ )2

∫∫

(GLm,v′ )2

Fn,v′(g
−1• g−1u−1• ζu◦gg◦)Fm,v′((g•, g◦)−1)

(
ωψ,μ(g•, g◦)�v′

)†
((

x + (nr )• + (nr )◦
2

)
g, g−1

(
y −

(
n∗r
)
• +

(
n∗r
)
◦

2

))

ψ ′
(

u−1• u◦
)
ψ ′
(

j

((
br,r
)
• −

(
br,r
)
◦ + x

(
n∗r
)
• −

(
n∗r
)
◦

2
+ (nr )• − (nr )◦

2
y

+(nr )◦(n∗r )• − (nr )•(n∗r )◦
))

dg•dg◦du•du◦dg,

where

ψ ′(u) = ψ ′
(

j
(
u1,2 + · · · + ur−1,r + u∗r,r−1 + · · · + u∗2,1

)) ; j = ( j,− j),

and

u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 u1,2
. . . n1,1 · · · n1,m b1,r · · · b1,1

. . . ur−1,r
...

...
...

...

1 nr,1 · · · nr,m br,r · · · br,1
1 n∗1,r · · · n∗1,1

. . .
...

...

1 n∗r,r · · · n∗r,1
1 u∗r,r−1

. . .

. . . u∗2,1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

nr =
[

nr,1 · · · nr,r
] ; n∗r = t [ n∗1,r · · · n∗r,r

]
.

By (5.3) and (5.4),

(
ωψ,μ(g•, g◦)�v′

)†
(x, y) = μ(det g−1• g◦)| det g•g◦|

1
2
v′∫

Mat1,m,v′

�v′ ((x + z)g•, (x − z)g◦) ψ ′( j zy)dz,
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where μ = (μ,μ−1) by abuse of notation. Therefore, the functional assigning
Fv′ ∈ S(Sn(k′v′)× GLm(kv′)×W∨(kv′)) to

Oμv′ (Fv′, [ζ, x, y]) =
∫

GLm,v′

∫∫

(U1r ,m,1r ,v′ )2

∫∫

(GLm,v′ )2

∫

Mat1,m,v′

Fv′(g
−1• g−1u−1• ζu◦gg◦, (g•, g◦)−1, w∨)

ψ ′
(

j

((
br,r
)
• −

(
br,r
)
◦ + x

(
n∗r
)
• −

(
n∗r
)
◦

2
+ (nr )• − (nr )◦

2
y

+(nr )◦(n∗r )• − (nr )•(n∗r )◦
))

ψ ′
(

u−1• u◦
)
ψ ′
(

j zg−1

(
y −

(
n∗r
)
• +

(
n∗r
)
◦

2

))
μ(det g−1• g◦)

| det g•g◦|
1
2
v′dzdg•dg◦du•du◦dg, (5.14)

where

w∨ =
((

x + (nr )• + (nr )◦
2

+ zg−1
)

gg•,
(

x + (nr )• + (nr )◦
2

− zg−1
)

gg◦
)
,

is the desired extension which is apparently unique.
For (2), consider fn,v′ ⊗ fm,v′ ⊗ φ1,v′ ⊗ φ2,v′ ∈ S(Un(k′v′)) ⊗ S(Um(k′v′)) ⊗

S(L(k′
v′))⊗ S(L(k′

v′)). By Lemma 5.3(1) and (5.12), we have

Oμv′ ( fn,v′ ⊗ fm,v′ ⊗ φ1,v′ ⊗ φ2,v′ , [ζ, (x, t y)])
=

∫

GLm,v′

∫∫

(U1r ,m,1r ,v′ )2

∫

GLm,v′

fn,v′(g
−1• g−1u−1• ζu◦g) fm,v′(g

−1• )

×
((
ω′
ψ ′,μ(g•)φ1,v′

)
⊗ φ2,v′

)‡
((

x + (nr )• + (nr )◦
2

)
g,

×
t(

y −
(
n∗r
)
• +

(
n∗r
)
◦

2

)
t g−1

)

ψ ′
(

j

((
br,r
)
• −

(
br,r
)
◦ + x

(
n∗r
)
• −

(
n∗r
)
◦

2
+ (nr )• − (nr )◦

2
y

+(nr )◦(n∗r )• − (nr )•(n∗r )◦
))

ψ ′
(

u−1• u◦
)

dg•du•du◦dg.

By Lemma 5.3, we have
((
ω′
ψ ′,μ(g•)φ1,v′

)
⊗ φ2,v′

)‡
(x, t y)

= μ(det g−1• )| det g•|
1
2
v′

∫

Mat1,m,v′

φ1,v′ ((x + z)g•) φ2,v′(x − z)ψ ′( j zy)dz.
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Therefore, the functional assigning fv′ ∈ S(Un(k′v′)× Um(k′v′)× L(k′
v′)
⊕2) to

Oμv′ (fv′, [ζ ′, z]) =
∫

GLm,v′

∫∫

(U1r ,m,1r ,v′ )2

∫

GLm,v′

∫

Mat1,m,v′

fv′(g
−1• g−1u−1• ζu◦g, g−1• , l)

ψ ′
(

j

((
br,r
)
• −

(
br,r
)
◦ + x

(
n∗r
)
• −

(
n∗r
)
◦

2
+ (nr )• − (nr )◦

2
y

+(nr )◦(n∗r )• − (nr )•(n∗r )◦
))

ψ ′
(

u−1• u◦
)
ψ ′
(

j zg−1

(
y −

(
n∗r
)
• +

(
n∗r
)
◦

2

))
μ(det g−1• )

| det g•|
1
2
v′dzdg•du•du◦dg, (5.15)

where

l =
((

x + (nr )• + (nr )◦
2

+ zg−1
)

gg•,
(

x + (nr )• + (nr )◦
2

− zg−1
)

g

)
,

is the desired extension which is apparently unique.
For (3), we put

SM(Fv′)(h, g•, (x, y))=
∫

GLm,v′

Fv′(hg◦, (g•, g−1◦ ), x, yg◦)μ(det g◦)| det g◦|
1
2
v′dg◦,

where we have naturally identified Sn(k′v′) (resp. GLm(kv•) and W∨(kv′)) with
Un(k′v′) (resp. Um(k′v′) and L(k′

v′)
⊕2). Then (5.13) follows by (5.14) and (5.15).

The continuity of SM is clear. We only need to show the subjectivity. Consider
S(Un(k′v′)×Um(k′v′)×L(k′

v′)
⊕2) as a smooth Fréchet representationρ◦ of GLm(kv◦)

via the action

(ρ◦(g◦)fv′)(h, g•, (x, y)) = fv′(hg◦, g•, (x, yg◦))μ(det g◦)| det g◦|
1
2
v′ .

By Dixmier–Malliavin theorem [5], there exist finitely many functions ϕ(i) ∈
S(GLm(kv◦)) and f (i)

v′ ∈ S(Un(k′v′) × Um(k′v′) × L(k′
v′)
⊕2) such that fv′ =∑

i ρ◦(ϕ(i))f
(i)
v′ . Put

Fv′(h, (g•, g◦), x, y) =
∑

i

ϕ(i)(g−1◦ )f (i)
v′ (h, g•, x, y).

Then SM(Fv′) = fv′ by construction. ��
Remark 5.12. For almost all split places v′ where everything is unramified, if we
take the test functions to be the characteristic functions on corresponding hyper-
special maximal compact subgroups (or the image in the symmetric space) and
lattices, then the two orbital integrals are equal. More precisely, the one for the
unitary group is the image of the one for the general linear group under SM.
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Inspired by the split case in Proposition 5.11, we conjecture that, similar to
Conjecture 4.13, the smooth matching of functions in S(Sn(k′v′) × GLm(kv′) ×
W∨(kv′)) and S(Un(k′v′) × Um(k′v′) × L(k′

v′)
⊕2) holds for all places v′. We omit

the explicit form of this conjecture in the current case.

5.4. The fundamental lemma

We now state the fundamental lemma for Fourier–Jacobi periods. We use the nota-
tion in the beginning of Sect. 4.4, except that we have

t([ζ, x, y]) =
{
(−1)val(T[ζ,x,y]·∏r

i=1 ti (ζ )) m is even
(−1)val(T[ζ,x,y]) m is odd.

(5.16)

For simplicity, we only consider the fundamental lemma for unit elements.

Conjecture 5.13. (The fundamental lemma) Assume that k/k′,ψ ′,μare all unram-
ified and j ∈ o. Then we have

Oμ(1Sn(o′);1Mat1,m (o′) ⊗ 1Matm,1(o′), [ζ, x, y])
=
{

t([ζ, x, y])Oμ(1U+n (o′);1Mat1,m (o), [ζ+, z]) [ζ, x, y] ↔ [ζ+, z]∈U+n,m(k′)
0 [ζ, x, y] ↔ [ζ−, z]∈U−n,m(k′),

where [ζ, x, y], [ζ+, z] are normal, and

Oμ(1Sn(o′);1Mat1,m (o′) ⊗ 1Matm,1(o′), [ζ, x, y])
=
∫

H(k′)

1Sn(o′)([ζ ]h)
(
ω

†
ψ,μ

(h)
(
1Mat1,m (o′) ⊗ 1Matm,1(o′)

))
(x, y)ψ(h)dh;

Oμ(1U+n (o′);1Mat1,m (o), [ζ+, z])
=

∫

H+(k′)

1U+n (o′)([ζ+]h′)
(
ω

‡
ψ ′,μ(h

′)1Mat1,m (o)

)
(z)ψ ′(h′)dh′.

When n = m, the above orbital integrals become the following ones

Oμ(1Sn(o′);1Mat1,n(o′) ⊗ 1Matn,1(o′), [ζ, x, y])
=

∫

GLn(k′)

1Sn(o′)(g
−1ζg)1Mat1,n(o′)(xg)1Matn,1(o′)(g

−1 y)η(det g)dg;

Oμ(1U+n (o′);1Mat1,n(o), [ζ+, z]) =
∫

U+n (k′)

1U+n (o′)(g
′−1ζ+g′)1Mat1,n(o)(zg′)dg′,

which are much simpler.
It is easy to see that [ζ, x, y] matches some element [ζ+, z] ∈ U+n,m(k′) (resp.

[ζ−, z] ∈ U−n,m(k′)) if and only if val(![ζ,x,y]) is even (resp. odd).
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Proposition 5.14. If val(![ζ,x,y]) is odd, then

Oμ(1Sn(o′);1Mat1,m (o′) ⊗ 1Matm,1(o′), [ζ, x, y]) = 0.

Proof. The proof is similar to Proposition 4.16. We first assume that r > 0. Put

w =
⎡
⎣ wr

1m

wr

⎤
⎦ .

Expanding all the definitions, we have

Oμ(1Sn(o′);1Mat1,m (o′) ⊗ 1Matm,1(o′), [ζ, x, y]) =
∫

U1r ,m,1r (k)

∫

GLm (k′)

1Sn(o′)
(

g−1u−1ζuτ g
)
1Mat1,m (o′)

(
(x + n+)g

)
1Matm,1(o′)

(
g−1(y − n+)

)

ψ

(
b† + xn− + n−y + n+n− − n−n+

2

)
ψ(u−1)η(det g)dgdu, (5.17)

where u†(n+, n−, n+, n−, b†) is the image of u under the projection H → H†. By
the following identities

1Sn(o′)(s) = 1Sn(o′)(w
t sw), 1Mat1,m (o′)(x) = 1Matm,1(o′)(

t x),

1Matm,1(o′)(y) = 1Mat1,m (o′)(
t y),

we have

(5.17) =
∫

U1r ,m,1r (k)

∫

GLm (k′)

1Sn(o′)
(

t g(w t uτw)(w tζw)(w t u−1w) t g−1
)

1Mat1,m (o′)
(
(t y − t n+) t g−1

)
1Matm,1(o′)

(t g(t x + t n+)
)

ψ

(
b† + xn− + n−y + n+n− − n−n+

2

)
ψ(u−1)η(det g)dgdu. (5.18)

Since [ζ, x, y] and [w tζw, t y, t x] have the same invariants, as we see in the proof
of Lemma 5.7, there exists h ∈ GLm(k′) such that w tζw = h−1ζh, t y = xh,
t x = h−1 y, t h = h, and η(det h) = −1. Plugging h, we have

(5.18) =
∫

U1r ,m,1r (k)

∫

GLm (k′)

1Sn(o′)
(
(h t g−1)−1(hw t uτ,−1wh−1)−1

ζ(hw t uτ,−1wh−1)τ
(

h t g−1
))

1Mat1,m (o′)
(
(x + (− t n+h−1))(h t g−1)

)
1Matm,1(o′)

(
(h t g−1)−1(y − (−h t n+))

)

ψ

(
b† + xn− + n−y + n+n− − n−n+

2

)
ψ(u−1)η(det g)dgdu. (5.19)



62 Y. Liu

Note that ψ(u−1) = ψ
((

hw t uτ,−1wh−1
)−1
)

, and

ψ

(
b† + xn− + n−y + n+n− − n−n+

2

)

= ψ

(
b† + x

(
h t n−

)+ (t n−h−1
)

y + n+n− − n−n+
2

)

= ψ
(
−b†,τ + x

(
h t n−

)+ (t n−h−1
)

y

+
(− t n+h−1

) (
h t n−

)− (t n−h−1
) (−h t n+

)
2

)
.

If we make the following change of variables: hw t uτ,−1wh−1 �→ u, h t g−1 �→ g,
then

− t n+h−1 �→ n+; t n−h−1 �→ n−; −h t n+ �→ n+; h t n− �→ n−; −b†,τ �→ b†.

Therefore, (5.19)= η(det h)× (5.19)= − (5.19), which confirms the proposition.
The case r = 0 follows from a similar, but much simpler argument. ��
Theorem 5.15. (Fundamental lemma for Un × Un). Assume char(k) > n, or
char(k) = 0 and the residue characteristic is sufficiently large with respect to
n. Then the fundamental lemma holds for Un × Un, that is, we have the following
equality

∫

GLn(k′)

1Sn(o′)(g
−1ζg)1Mat1,n(o′)(xg)1Matn,1(o′)(g

−1 y)η(det g)dg

=
∫

U+n (k′)

1U+n (o′)(g
′−1ζ+g′)1Mat1,n(o)(zg′)dg′

when [ζ, x, y] and [ζ+, z] match with ζ+ ∈ U+n (k′).

The proof uses the Cayley transform to reduce the statement to the Lie algebra
version of the fundamental lemma for Un+1×Un , which is proved in [37]. The idea
of using Cayley transform is inspired by the work of Zhang [38]. In what follows,
we fix a basis of V+ = W+ such that β+ is simply the matrix 1n . We first recall
the following well-known lemma.

Lemma 5.16. (Cayley transform) Let sn(k′) (resp. un(k′)) be the subset of Matn(k)
consisting of matrices A such that Aτ = −A (resp. t Aτ = −A). Let sn(o

′) (resp.
un(o

′)) be the intersection of sn(k′) (resp. un(k′)) with Matn(o).

(1) If A is in sn(k′), then 1n+ A is invertible and (1n− A)(1n+ A)−1 is in Sn(k′);
conversely, if A is in Sn(k′) for which−1 is not an eigenvalue, then 1n + A is
invertible and (1n− A)(1n+ A)−1 is in sn(k′). Moreover, A belongs to sn(o

′)
if and only if (1n − A)(1n + A)−1 belongs to Sn(o

′);
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(2) If A is in un(k′), then 1n+A is invertible and (1n−A)(1n+A)−1 is in U+n (k′);
conversely, if A is in U+n (k′) for which−1 is not an eigenvalue, then 1n+ A is
invertible and (1n− A)(1n+ A)−1 is in un(k′). Moreover, A belongs to un(o

′)
if and only if (1n − A)(1n + A)−1 belongs to U+n (o′).

The following lemma in linear algebra will be used shortly.

Lemma 5.17. Let A be a matrix in un(k′) that is regular semisimple. Then for every
element z ∈ Mat1,n(k) there exists an element d ∈ o ∩ k− such that

[
A j t zτ

j z −d

]
, (5.20)

which is a matrix in un+1(k′), is also regular semisimple.

Proof. Let Pd(λ) be the characteristic polynomial of (5.20). Then

Pd(λ) = (λ+ d)PA(λ)+ Q(λ),

where PA is the characteristic polynomial of A, and Q is a polynomial of degree
n−1, whose leading coefficient is j2z t zτ . The matrix (5.20) is regular semisimple if
and only if the resultant Res(Pd , P ′d) of Pd and P ′d is nonzero. Since Res(Pd , P ′d) =
det S(Pd , P ′d), where S(Pd , P ′d) is the Sylvester matrix of Pd and P ′d , which is a
(2n + 1)× (2n + 1) matrix here. A simple calculation shows that det S(Pd , P ′d) is
a polynomial in d whose highest degree term is (−1)n Res(PA, P ′A)d2n . Since A
is regular semisimple, Res(PA, P ′A) �= 0. Therefore, there are only finitely many d
such that (5.20) is not regular semisimple. The lemma follows immediately. ��
Proof of Theorem 5.15. By multiplying a scalar α ∈ k×,1, we may assume that ζ+
does not have−1 as an eigenvalue. By Lemma 5.16(1), A+ = (1n−ζ+)(1n+ζ+)−1

is in un(k′), and 1U+n (o′)(g
′−1ζ+g′) = 1un(o′)(g

′−1 A+g′). Applying Lemma 5.17
to the matrix A+ and z, we may choose an element d ∈ o ∩ k− such that

Ã+ =
[

A j t zτ

j z −d

]

is regular semisimple. Then

1U+n (o′)(g
′−1ζ+g′)1Mat1,n(o)(zg′) = 1un+1(o′)(g

′−1 Ã+g′),

where U+n embeds into U+n+1 via

g′ �→
[

g′
1

]
.

We do the same process to the symmetric space. Since [ζ, x, y] and [ζ+, z]match,
ζ does not have−1 as an eigenvalue. By Lemma 5.16(2), A = (1n − ζ )(1n + ζ )−1

is in sn(k′). Put

Ã =
[

A j t y
j x −d

]
,
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which is in sn+1(k′). Then

1Sn(o′)(g
−1ζg)1Mat1,n(o′)(xg)1Matn,1(o′)(g

−1 y) = 1sn+1(o′)(g
−1 Ãg),

where GLn embeds into GLn+1 via

g �→
[

g
1

]
.

By definition, Ã+ is strongly regular semisimple in the sense of [37, Definition
2.2.1]. Moreover, Ã and Ã+ match in the sense of [37, Definition 2.5.1] (and hence
Ã is strongly regular semisimple as well). By the main theorem of [37] (under the
assumption on the characteristic), we have∫

GLn(k′)

1sn+1(o′)(g
−1 Ãg)η(det g)dg =

∫

U+n (k′)

1un+1(o′)(g
′−1 Ã+g′)dg′,

which is equivalent to the identity in the theorem.
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A. Appendix: A brief summary on local Whittaker integrals

We collect some facts about integrals of local Whittaker functions that are used in
this article. All the results here can be found in [4,18,21,23–25].
Let k be a local field, ψ : k → C

× a nontrivial character. We write | | = | |k , and
Matr,s = Matr,s(k) for simplicity. Let π (resp. σ ) be an irreducible admissible rep-
resentation of GLn = GLn(k) (resp. GLm = GLm(k)). Let W(ψ) = IndGLn

U1n (ψ) be
the space of all smooth functions W (g) on GLn satisfying W (ug) = ψ(u)W (g) :=
ψ(u1,2+· · ·+un−1,n)W (g) for all u = (ui j ) ∈ U1n , the group of upper-triangular
unipotent matrices. It is a smooth representation of GLn by right translation. Let
Vπ be the space where π realizes. If k is archimedean, then we take Vπ as the
canonical Casselman–Wallach completion of the corresponding Harish–Chandra
module of π . A fundamental theorem of Gelfand–Kazhdan and Shalika states that
there is at most one GLn-equivariant map, up to a constant multiple, from Vπ to
W(ψ). If it exists, then we say π is generic. Being generic is independent of ψ we
choose. Same arguments apply to σ . In what follows, we will assume that π and
σ are generic. We denote by W(π,ψ) (resp. W(σ, ψ)) the nontrivial image of Vπ
(resp. Vσ ) in W(ψ) (resp. W(ψ)). Moreover, we have

W(π̃, ψ) =
{

W̃ (g) := W (wn
t g−1) |W ∈W(π,ψ)

}
.

Put em = [0, . . . , 0, 1] ∈ Mat1,m . For W ∈ W(π, σ ), W− ∈ W(σ, ψ) and � ∈
S(Mat1,m), we consider following integrals
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(1) For n > m and 0 ≤ r ≤ n − m − 1,

�r (s;W,W−) =
∫

U1m \GLm

∫

Matr,m

W

⎛
⎝
⎡
⎣ g 0 0

x 1r 0
0 0 1n−m−r

⎤
⎦
⎞
⎠W−(g)

| det g|s− n−m
2 dxdg. (6.1)

(2) For n > m and 1 ≤ r ≤ n − m,

�r (s;W,W−;�) =
∫

U1m \GLm

∫

Matr−1,m

∫

Mat1,m

W

⎛
⎜⎜⎝

⎡
⎢⎢⎣

g 0 0 0
x 1r−1 0 0
y 0 1 0
0 0 0 1n−m−r

⎤
⎥⎥⎦

⎞
⎟⎟⎠W−(g)�(y)

| det g|s− n−m
2 dydxdg. (6.2)

(3) For n ≥ m,

�0(s;W,W−;�) =
∫

U1m \GLm

W

([
g 0
0 1n−m

])
W−(g)�(em g)

| det g|s− n−m
2 dg. (6.3)

We put

Jr (π × σ) = {�r (s;W,W−) |W ∈W(π, σ ),W− ∈W(σ, ψ)
}

for 0 ≤ r ≤ n − m − 1, and

J′r (π × σ)={�r (s;W,W−;�) |W ∈W(π, σ ),W− ∈W(σ, ψ),� ∈ S(Mat1,m)
}

for 0 ≤ r ≤ n − m, which are complex vector spaces.
The following proposition is proved in [4,18,21,25]. For simplicity, we state

the result for k non-archimedean only, while the statement for k archimedean can
be found, for example, in [18, Sect. 2].

Proposition 6.1. Let π and σ be as above, and ωσ the central character of σ . Then

(1) Each element in Jr (π×σ) and J′r (π×σ) is absolutely convergent for Re s �
0, and has a meromorphic continuation to the entire complex plane.

(2) There exists a unique function L(s, π × σ) of the form P(q−s)−1, where
P ∈ C[X ] and q is the cardinality of the residue field of k, such that

Jr (π × σ) = J′r (π × σ) = L(s, π × σ) · C[q−s, qs]
for every possible r . In particular, for every s0 ∈ C, there exist W , W− (resp.
and �) such that

�r (s;W,W−)
L(s, π × σ)

|s=s0 resp.
�r (s;W,W−;�)

L(s, π × σ)
|s=s0

is nonzero.
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(3) There is a factor ε(s, π × σ,ψ), depending only on π , σ and ψ , of the form
cq− f s such that

�n−m−1−r (1− s; W̃ , W̃−)
L(1− s, π̃ × σ̃ )

= ωσ (−1)n−1ε(s, π × σ,ψ)
�r (s;W,W−)

L(s, π × σ)

for n > m, and

�n−m−r (1− s; W̃ , W̃−; �̂)
L(1− s, π̃ × σ̃ )

= ωσ (−1)n−1ε(s, π × σ,ψ)
�r (s;W,W−;�)

L(s, π × σ)

for n ≥ m, where �̂ is the ψ-Fourier transform of �, that is,

�̂(y) =
∫

Mat1,m

�(x)ψ(x t y)dx,

in which the measure dx is selfdual.

Proof. The proof of these statements can be found in the literature mentioned
previously, except for J′r (π × σ) when n > m. We provide a proof for the latter
case, following [21].

By the functional equation, we can assume that 0 ≤ r < n − m. Put

W1 =
∫

Matm,1

ρ

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1m u
1r

1
1n−m−r−1

⎤
⎥⎥⎦

⎞
⎟⎟⎠W �̂(− t u)du,

which is in W(π,ψ). Then�r (s;W1,W−) = �r (s;W,W−;�). To conclude, we
only need to show that �n−m−1−r (s; ρ(wn,m)W̃1, W̃−) = �n−m−r (s; ρ(wn,m)W̃ ,

W̃−; �̂), which is implied by the Fourier inversion formula.

Put

�"
r (W,W−) = �r (s;W,W−)

L(s, π × σ)
|s= n−m

2
,

�"
r (W,W−;�) = �r (s;W,W−;�)

L(s, π × σ)
|s= n−m

2
. (6.4)

Corollary 6.2. Assume π and σ are both generic.

(1) When n > m, the Whittaker integral�"
r (W,W−) (6.4) defines a nonzero element

in HomH (π ⊗ σ, ν) by choosing a suitable basis as in Sect. 2.2.
(2) When n ≥ m, the Whittaker integral �"

r (W,W−;�) (6.4) (with σ replaced by
σ ⊗ μ−1) defines a nonzero element in HomH (π ⊗ σ ⊗ ν̃μ,C) by choosing a
suitable basis as in Sect. 3.2.

When k is archimedean, or the representations π and σ are unramified, we can use
the Langlands parameter to define the representationπ�σ , its L-factor L(s, π�σ)

and ε-factor ε(s, π � σ,ψ). We have the following proposition.
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Proposition 6.3. [4,18,23–25] Let the notation be as above.

(1) If k is archimedean, then L(s, π × σ) = L(s, π � σ) and ε(s, π × σ,ψ) =
ε(s, π � σ,ψ).

(2) If k is non-archimedean with o its ring of integers, take ψ to be unramified.
Let π (resp. σ ) be an unramified representation associated to a semisimple
conjugacy class Aπ ∈ GLn(C) (resp. Aσ ∈ GLm(C)). Let W◦ (resp. W−◦ )
be the unique GLn(o)- (resp. GLm(o)-) fixed Whittaker functions such that
W (1n) = 1 (resp. W−(1m) = 1), and �◦ the characteristic function of
Mat1,m(o). Then

�r (s;W◦,W−◦ ) = �r (s;W◦,W−◦ ;�◦) = det(1− q−s Aπ ⊗ Aσ )
−1

= L(s, π × σ) = L(s, π � σ)

for every possible r .

Proof. In (2), the proof for the integral �0(s;W◦,W−◦ ) when n > m, and for the
integral�0(s;W◦,W−◦ ;�◦)when n = m can be found in [23]. The remaining part
follows easily as in Proposition 6.1. ��
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