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GENERALIZED BLOW-UP OF CORNERS

AND FIBER PRODUCTS

CHRIS KOTTKE AND RICHARD B. MELROSE

Abstract. Real blow-up, including inhomogeneous versions, of boundary
faces of a manifold (with corners) is an important tool for resolving singulari-
ties, degeneracies and competing notions of homogeneity. These constructions
are shown to be particular cases of generalized boundary blow-up in which a
new manifold and blow-down map are constructed from, and conversely de-
termine, combinatorial data at the boundary faces in the form of a refinement
of the basic monoidal complex of the manifold. This data specifies which no-
tion of homogeneity is realized at each of the boundary hypersurfaces in the
blown-up space.

As an application of this theory, the existence of fiber products is examined
for the natural smooth maps in this context, the b-maps. Transversality of the
b-differentials is shown to ensure that the set-theoretic fiber product of two
maps is a binomial variety. Properties of these (extrinsically defined) spaces,
which generalize manifolds but have mild singularities at the boundary, are
investigated, and a condition on the basic monoidal complex is found under
which the variety has a smooth structure. Applied to b-maps this additional
condition with transversality leads to a universal fiber product in the context
of manifolds with corners. Under the transversality condition alone the fiber
product is resolvable to a smooth manifold by generalized blow-up and then
has a weaker form of the universal mapping property requiring blow-up of the
domain.

Introduction

Real blow-up of a submanifold introduces a new manifold (always here implicitly
meaning ‘with corners’) in which the submanifold in question is replaced by one
or more boundary hypersurfaces in a prescribed manner. Here we introduce the
notion of the generalized boundary blow-up of a manifold with corners, Y, which is
a new manifold X along with a smooth and proper ‘blow-down’ map β : X −→ Y .
The latter is by definition a b-map, restricting to a diffeomorphism on the interiors,
with bijective b-differential. It includes standard radial blow-up of boundary faces,
iterated boundary blow-up, and inhomogeneous blow-up as special cases.

It is shown here that such blow-down maps are, up to diffeomorphism, charac-
terized in an essentially algebraic manner by a ‘monoidal complex’, a consistent
choice of certain combinatorial data at each face of Y . One application of the con-
structive part of this result is to fiber products of maps. Working in the category
of smooth manifolds and b-maps, it is shown that under the natural condition of
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652 CHRIS KOTTKE AND RICHARD B. MELROSE

b-transversality the fiber product of two maps can be decomposed and smoothed
by generalized blow-up, and this resolved fiber product has a weakened form of the
universal factoring property for fiber products in which generalized blow-up of the
domain may be required.

Although this paper is concerned with geometric and algebraic questions, one
of the contexts in which blow-up appears is analytic. Most analytic problems on
a manifold with corners do not have solutions ‘within the smooth category’. For
instance, harmonic forms with absolute or relative boundary conditions are not
typically smooth up to corners. Rather they lie in conormal spaces which themselves
are only ‘resolved’ to polyhomogeneity by blow-up. Here polyhomogeneity is to be
thought of as the natural extension of smoothness, in which C∞(Y ) is extended
to include functions which have non-integral (including possibly negative) powers
in their ‘Taylor series’ at the boundary. The selection of the correct resolution, in
the sense of blow-up, of spaces and their (fiber) products, on which the kernels of
operators are defined, is one of the prime motivations for the discussion here.

A manifold (meaning from now on a manifold with corners) Y is a topological
manifold with boundary which is locally diffeomorphic to the model space [0,∞)k×
Rn−k with its sheaf of smooth functions. The set of (connected) boundary faces of Y
is denoted M(Y ), with Ml(Y ) denoting those faces of codimension l ∈ {0, . . . , k}.
We require that boundary hypersurfaces of a manifold be embedded, which means
that the functions vanishing on each such hypersurface form a principal ideal IH ⊂
C∞(Y ), H ∈ M1(Y ). A smooth map f : X −→ Y is an (interior) boundary map
or ‘b-map’ as defined in [Mel,Mel92] provided it pulls back each of these principal
ideals to a product

(I.1) f∗IH =
∏

G∈M1(Y )

Iα(H,G)
G , α(·, ·) ∈ N

of similar ideals in C∞(X).
For each face F ∈ Ml(X) the freely generated monoid

σF =
⊕

H∈M1(X),F⊆H

NeH

along with the inclusions iGF : σG ↪−→ σF for F ⊂ G constitute what we call the
‘basic monoidal complex’ of X:

PX = {(σF , iGF ) ; F ⊆ G ∈ M(X)} ,
and a b-map f : X −→ Y defines a morphism of the complexes

(I.2)
f� : PX −→ PY ,

σF
f�−→ σf#(F ),

which is fundamental to our discussion. Here f# : M(X) −→ M(Y ) maps each
boundary face of X to the boundary face of the largest codimension in Y which
contains its image, and the coefficients of f� : σF −→ σf#(F ) are the relevant
exponents α(·, ·) ∈ N occuring in (I.1).

In general, the monoidal complexes and their morphisms capture only limited
combinatorial information regarding the boundary faces of X and Y . However in
certain special cases, such as when X is the blow-up of a boundary face F in Y ,
this information is enough to completely specify, up to diffeomorphism, the domain
X = [Y ;F ] and the map β : X −→ Y in terms of the range space Y. In such a case
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GENERALIZED BLOW-UP OF CORNERS AND FIBER PRODUCTS 653

the morphism (I.2) forms what is called below a ‘smooth refinement’ of PY , and on
the analytical side β satisfies additional properties, namely

β : X \ ∂X −→ Y \ ∂Y is a diffeomorphism and(I.3)

bβ∗ : bTpX −→ bTβ(p)Y is an isomorphism for all p ∈ X,(I.4)

where bβ∗ is the differential acting on the b-tangent bundles.
Our first main result consists of two parts: a generalization of this ‘boundary

blow-up’ with respect to arbitrary smooth refinements of PY , and an analytical
characterization of such a map.

Theorem A. To any smooth refinement R −→ PY there corresponds a manifold
denoted X = [Y ;R], unique up to diffeomorphism and with PX = R, and a unique
b-map f : X = [Y ;R] −→ Y satisfying (I.3) and (I.4). Conversely, any smooth
proper b-map satisfying (I.3) and (I.4) determines a smooth refinement PX −→ PY .

The manifold [Y ;R] is referred to as the ‘generalized blow-up’ of Y by the
refinement R, and the lifting problem for b-maps under generalized blow-ups of
the domain and/or range is resolved by examining the corresponding lifting of the
monoidal complex morphisms.

Our second main result is an application of this theory to fiber products. Recall
that a (smooth) fiber product of two maps fi : Xi −→ Y , i = 1, 2, does not generally
exist, even in the category of smooth manifolds without boundary. There is however
a sufficient condition for existence, namely that f1 and f2 be transversal, meaning
that if f1(p1) = f2(p2) = q ∈ Y , then

(I.5) (f1)∗(Tp1
X1) + (f2)∗(Tp2

X2) = TqY,

for in this case the set-theoretic fiber product

(I.6)
X1 ×Y X2 = {(p1, p2) ; f1(p1) = f2(p2)} ⊂ X1 ×X2,

hi(p1, p2) = pi

is a smooth manifold and the maps afforded by the universal property of fiber
products are smooth.

The natural analog, ‘b-transversality’, of (I.5) in the setting of manifolds with
corners is the requirement that

(I.7) b(f1)∗(
bTp1

X1) +
b(f2)∗(

bTp2
X2) =

bTqY.

Under this condition, (I.6) is not necessarily a manifold, but can be decomposed as
a union of what are here called ‘interior binomial subvarieties’. These are objects
generalizing manifolds with corners, with smooth interiors but mild singularities
at the boundary and boundary faces which are of the same type. They can be
resolved, by generalized boundary blow-up, to manifolds with corners.

As for a manifold, there is a natural monoidal complex PD defined over the
boundary faces of an interior binomial subvariety D ⊂ X, the difference being that
the monoids may not be freely generated, i.e. may not be smooth. If the monoidal
complex is smooth, then D has a natural structure of a smooth manifold, although
this may not be induced from X, in that D may not be embedded. Even if the
complex is not smooth, there is a smooth manifold [D;R] −→ D corresponding to
every smooth refinement R −→ PD.
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654 CHRIS KOTTKE AND RICHARD B. MELROSE

In the case of fiber products, the monoids in the monoidal complex overX1×Y X2

are of the form

(I.8) σF1
×σG

σF2
, Fi ∈ M(Xi),

where G = (f1)#(F1) ∩ (f2)#(F2) ∈ M(Y ).

Theorem B. If fi : Xi −→ Y are b-normal b-maps which satisfy (I.7), if X̊1 ×Y

X̊2 �= ∅, and if each of the monoids (I.8) is freely generated, then there exists
a natural smooth structure on (I.6) with respect to which it is the universal fiber
product of f1 and f2 in the category of manifolds with corners.

This result extends a theorem of Joyce [Joy09] on fiber products of more re-

stricted maps. The condition that X̊1 ×Y X̊2 �= ∅ can be weakened: see Theorem
11.6.

In the general case, when the monoids are not necessarily smooth, there is no
such universal object and it is in general necessary to blow up to get smoothness
and also to factor maps.

Theorem C. For every smooth refinement R of the complex PX1×Y X2
, there is a

manifold [X1 ×Y X2 ; R] with b-maps to Xi commuting with the fi : Xi −→ Y
and such that if gi : Z −→ Xi, i = 1, 2, are b-maps commuting with the fi, then
there exists a generalized blow-up [Z;S] −→ Z and a canonical map g : [Z;S] −→
[X1 ×Y X2 ; R] giving a commutative diagram

[Z;S]

Z [X1 ×Y X2;R] X2

X1 Y.

g
βS

h2

h1

f1

f2

g2

g1

There is a close relationship between the material discussed here and the the-
ory of logarithmic structures in algebraic geometry. The monoidal complexes we
describe are related to ‘fans’ as defined by Kato [Kat94], which essentially are to
(toric) monoids what schemes are to rings. Our generalized blow-up is then related
to a result of Kato, which produces a resolution of a logarithmic scheme with ‘toric
singularities’ (also called a ‘log-smooth scheme’) from a subdivision of the fan as-
sociated to the scheme. Our manifolds with corners and binomial subvarieties can
be viewed as log smooth spaces, albeit with a stronger differentiable structure than
is usually considered in algebraic geometry. There is however an important free-
dom afforded by working over R+ (as is the case for manifolds with corners and
boundary blow-up) rather than R or C which is that affine charts may be glued
together by maps involving radicals and still result in smooth objects (as opposed
to quite singular objects like stacks in the more conventional toric settings). We
make heavy use of this fact and note that many of the smooth maps we produce
would not even be birational in an algebraic setting over C.

In Section 1 we briefly recall the theory of manifolds with corners and b-maps,
and establish some notation. Section 2 contains a discussion of monoids (here
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GENERALIZED BLOW-UP OF CORNERS AND FIBER PRODUCTS 655

always meaning what are often called ‘toric monoids’) and their refinements, which
is enough to establish the local version of generalized blow-up in Section 3. In
Sections 4 and 5 we discuss the theory of monoidal complexes and the refinements
of these. In Section 6 we complete one half of Theorem A, showing the existence of
a generalized blow-up of X given a smooth refinement of PX , along with the lifting
results for b-maps, before exhibiting ordinary boundary blow-up and its iterated
version as special cases in Section 7. Section 8 completes Theorem A, giving the
characterization of generalized blow-down maps by the properties (I.3) and (I.4).
In Sections 9 and 10 we discuss the theory of interior binomial varieties and their
resolution, finally applying this to fiber products in Section 11.

1. Manifolds with corners

In this section, we fix notation used for manifolds with corners and b-maps. For
background, see [Mel] and [Mel92]. Set

R+ = [0,∞) and N = {0, 1, 2, . . .} .

The model manifold with corners is a product

Rn,k = Rk
+ × Rn−k,

for k ∈ {0, . . . , n} , on which the smooth functions, forming the ring C∞(Rn,k) =
C∞(Rn)

∣∣
Rn,k , are taken to be those obtained by restriction from the smooth func-

tions on Rn.
In general, a manifold with corners X is a (paracompact, Hausdorff) topological

manifold with boundary, X, with a ring of smooth functions, C∞(X), with respect
to which it is everywhere locally diffeomorphic to one of these model spaces. Thus,
X has a covering by coordinate patches with homeomorphisms to open subsets
of the local model spaces such that u ∈ C∞(X) if and only if its image in each
coordinate system is smooth on the model. The pull-backs of the functions on the
model spaces give local coordinate systems.

Each point p ∈ X necessarily has a well-defined (boundary) codimension given
by the number of independent non-negative coordinate functions vanishing at p in
such a coordinate system. A boundary face of codimension k is the closure of one of
the components of the set of points of codimension k; the set of such faces is denoted
Mk(X). In particular, M1(X) consists of boundary hypersurfaces and M0(X) = X
(or the set of components of X if it is not connected). We set M(X) =

⋃
k Mk(X);

this is a partially ordered set under inclusion.
As part of the definition of a manifold with corners, we require that all boundary

hypersurfaces H ∈ M1(X) be embedded; this is equivalent to insisting that the
ideal of smooth functions vanishing on H, IH ⊂ C∞(X), is principal. A non-
negative generator ρH ∈ C∞(X) of this ideal is a defining function, so IH =
ρH ·C∞(X). It follows that each boundary face ofX is itself a manifold with corners.
While it would be possible to drop this requirement of embedded hypersurfaces and
still retain many of the results in this paper, manifolds violating this property tend
to be very ill-behaved from an analytical standpoint, and often the first step when
encountering such a space is to resolve it via boundary blow-up to a space with
embedded hypersurfaces. In light of this, the simplification in the combinatorial
description of boundary faces which results from the stronger requirement is a
worthy trade-off.
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656 CHRIS KOTTKE AND RICHARD B. MELROSE

The diffeomorphisms of X, homeomorphisms which map C∞(X) to itself, must
preserve the stratification by boundary codimension, and the infinitesimal diffeo-
morphisms correspond to the Lie subalgebra

(1.1) Vb(X) ⊂ V(X)

of the usual algebra of real smooth vector fields, consisting of those vector fields
which are tangent to each of the boundary faces of X. This subalgebra is the space
of global smooth sections of the b-tangent bundle, bTX −→ X. Locally, whenever
(x, y) : U −→ Rk

+ × Rn−k are coordinates centered at p,

bTpX = span
R

{
x1∂x1

, . . . , xk∂xk
, ∂yk+1

, . . . , ∂yn

}
.

From (1.1), there is a natural evaluation map

(1.2) bTX −→ TX

which is an isomorphism over the interior of X but not over the boundary. Over
interior points p ∈ F̊ ∈ Mk(X) (and extending to all of F by continuity), the kernel
of (1.2) defines the b-normal bundle:

bNF −→ F, bNpF = span
R
{x1∂x1

, . . . , xk∂kk
} , locally.

In fact, up to reordering, the sections xi∂xi
, i = 1, . . . , k, of bNF are well defined

independent of coordinates since any other set (x′
1, . . . , x

′
k) must have the form

(reordering if necessary) x′
i = ai(x, y)xi with ai > 0, so

x′
i∂x′

i
= xi∂xi

+O(x)Vb(X),

and hence x′
i∂x′

i
≡ xi∂xi

at F.

Thus, bNF −→ F is canonically trivial, with a well-defined lattice

(1.3) (bNF )Z = spanZ {x1∂x1
, . . . , xk∂xk

}

and cone of inward-pointing vectors

bN+F = span
R+

{x1∂x1
, . . . , xk∂xk

} .

These play a fundamental role in the discussion here.
A b-map f : X −→ Y between manifolds with corners is a map which is smooth,

meaning f∗C∞(Y ) ⊂ C∞(X), and is such that f pulls back each (principal) ideal
IH to either a product of powers of such ideals on X,

(1.4) f∗IH =
∏

G∈M1(X)

Iα(G,H)
G , α(G,H) ∈ N

to the zero ideal, f∗IH = 0 or to C∞(X). If the second case does not occur we
say f is an interior b-map. Otherwise f : X −→ F is an interior b-map for some
F ∈ M(Y ). We shall mostly be concerned with interior b-maps in this paper. In
practical terms (1.4) means that f has the local form

f : Rn
+ × Rk � (x, y) �−→ (x′, y′) ∈ Rn′

+ × Rk′
,

(x′
1, . . . , x

′
n′) =

(
a1(x, y)

∏
i

x
α(i,1)
i , . . . , an′(x, y)

∏
i

xα(i,n′)

)
,

y′ = b(x, y),
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GENERALIZED BLOW-UP OF CORNERS AND FIBER PRODUCTS 657

where the ai(x, y) are strictly positive smooth functions and α(i, j) = α(G,H),
where G and H are the boundary hypersurfaces for which xi and x′

j are locally
defining functions, respectively.

For an interior b-map the differential f∗ : TX −→ TY extends by continuity
from the interior to the b-differential

bf∗ : bTpX −→ bTf(p)Y, ∀ p ∈ X.

We denote by f# : M(X) −→ M(Y ) the map which assigns to each boundary face
of X the boundary face of Y of largest codimension which contains it. Then the
differential restricts to a map

(1.5) bf∗ : bNF −→ bNf#(F )

which is integral with respect to the lattices (1.3). Indeed, (1.5) is given by a
matrix with integer entries coming from the exponents α(G,H) in (1.4), and bf∗
maps inward-pointing vectors to inward-pointing vectors since these entries are
non-negative.

It is convenient to use multi-index notation for certain maps in coordinates. If
t = (t1, . . . , tn) and x = (x1, . . . , xk) are local coordinates on spaces U and V re-
spectively, and μ ∈ Mat(n×k,R) is a matrix, the map (t1, . . . , tn) �−→ (x1, . . . , xn),
where

xi =
∏
j

t
μji

j is denoted t �−→ tμ = x.

With this convention on the order of the indices, (tμ)ν = tμν .

2. Monoids

In general terms a monoid is a set which is closed under an associative binary
operation (usually required to be commutative and have an identity element), so
in essence a group without inverses or a ring without addition. Here we restrict
attention to monoids of the special type usually known as toric monoids, which for
our purposes may be characterized as follows.

Definition 2.1. A toric monoid is a set σ, closed under a binary operation of
addition, which can be expressed as the intersection

σ = Nσ ∩ C

of a finitely generated integral lattice Nσ and a proper convex polyhedral cone
C in the vector space NR

σ = Nσ ⊗Z R which is integral with respect to Nσ, and
for which NR

σ = span
R
σ. The cone, which is determined from the monoid by

C = span
R+

σ ⊂ NR
σ , will be called the support of σ and denoted by

supp(σ) = C ⊂ NR

σ .

The minimal integral generators {v1, . . . , vk} ⊂ Nσ of the cone supp(σ) (which
do not necessarily generate σ as a monoid) will be called the extremals of σ; by
assumption no vi is a combination of the others with non-negative coefficients, but
every point of supp(σ) is a non-negative linear combination of the vi.

Toric monoids may be characterized equivalently (though more abstractly) as
follows [Ogu06]. For σ a commutative, finitely generated monoid with identity,
there is a canonical abelian group σgp which is universal with respect to monoid
homomorphisms from σ to groups. Then σ is a toric monoid provided it is sharp,
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658 CHRIS KOTTKE AND RICHARD B. MELROSE

meaning σ has no invertible elements besides 0; integral, meaning that cancellation
holds: if x + y = z + y ∈ σ, then x = z ∈ σ (equivalently the map from σ to
σgp is injective); saturated, meaning that if n v ∈ σ for some n > 0 and v ∈ σgp,
then v ∈ σ; and torsion free, meaning that σgp is torsion free. Indeed, under these
conditions Nσ := σgp is a lattice, C = span

R+
σ ⊂ Nσ ⊗Z R is a proper convex

integral cone and σ ≡ Nσ ∩ C.
For the remainder of the paper, monoid will always mean toric monoid.
The dimension dim(σ) is the dimension of NR

σ ; equivalently, dim(σ) is the maxi-
mum number of linearly independent extremals. A monoid σ is said to be simplicial
if the extremals {v1, . . . , vn} are independent, in which case dim(σ) = n and supp(σ)
is a cone over the n − 1 simplex defined by {v1, . . . , vn} . A simplicial monoid is
further said to be smooth if it is generated as a monoid by its extremals. A smooth
monoid is therefore freely generated and isomorphic to Nn. We will use the nota-
tion σ = N 〈v1, . . . , vn〉 to denote a smooth monoid freely generated by independent
vectors v1, . . . , vn.

One monoid σ′ in N is a submonoid of another σ if σ′ ⊂ σ, so the generators of
σ′ are non-negative integral combinations of the generators of σ.

A monoid τ is a face of σ, written τ ≤ σ, if τ is a submonoid such that whenever
v, w ∈ σ and v + w ∈ τ , then v, w ∈ τ . Equivalently, τ is the largest submonoid
contained in a face (in the sense of cones) of supp(σ), which is in turn equivalent
to the existence of a functional u ∈ N∗

σ such that

〈u, v〉 = 0 for v ∈ τ ,

〈u, v〉 > 0 for v ∈ σ \ τ .

In particular, the trivial monoid {0} with no generators is a face of every monoid.
A monoid homomorphism φ : σ′ −→ σ is just an addition preserving map. We

will also denote by φ the induced linear maps φ : Nσ′ −→ Nσ, φ : NR

σ′ −→ NR
σ

and φ : supp(σ′) −→ supp(σ). Note that unless φ is injective, the image of σ′ in σ
need not be a monoid in the sense we have defined, since it may not be saturated
(consider the map N2 −→ N sending (1, 0) to 2 and (0, 1) to 3, for instance). The
inverse image of a face of σ is always a face of σ′.

Definition 2.2. Given a monoid σ, a refinement of σ is a collectionR of submonoids
of σ, such that

(i) if σ′ ∈ R and τ ′ ≤ σ′, then τ ′ ∈ R,
(ii) for any two monoids σ′

1, σ
′
2 ∈ R, σ′

1 ∩ σ′
2 must be a face of both σ′

1 and σ′
2,

and
(iii)

⋃
i supp(σi) = supp(σ) (as viewed in the vector space NR

σ using the natural
inclusions NR

σi
−→ NR

σ ).

We say R is a simplicial (resp. smooth) refinement if each σi ∈ R is simplicial (resp.
smooth). The set of faces of σ (including σ itself) form the trivial refinement of σ.

These conditions imply that the cones supp(σi) form a fan — in the classical
sense used in the theory of toric varieties [Ful93] — whose support is equal to that
of σ, though it is important to note that this notion of refinement differs from the
standard one in toric geometry in that the monoids need not all be defined with
respect to a single lattice. In particular, the ‘Fulton-style’ fan refinement underlying
a smooth refinement need not be smooth.

A refinement of σ is a special case of a monoidal complex, discussed in Section 4.
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σ σsm

⊃

Figure 1. A non-smooth, simplicial monoid σ, along with its
smoothing σsm. Generators of each monoid are highlighted.

Example 2.3. A simplicial monoid, σ, with extremals {v1, . . . , vn} , has a canonical
smooth refinement consisting of the faces of the smooth monoid

σsm := N 〈v1, . . . , vn〉 .
These are of the form N 〈w1, . . . , wk〉 for all subsets {w1, . . . , wk} ⊆ {v1, . . . , vn};
this refinement will be called the smoothing of σ. See Figure 1.

This example illustrates the point that while supp(σ) is covered by supports of
the τ ∈ R, σ need not be the union of the τ ∈ R as a monoid. A simpler example of
this phenomenon is the refinement of N given by the submonoid 2N = {0, 2, 4, . . .}.

It is important to observe that this smoothing operation is rather non-standard;
in the theory of complex toric varieties for instance, it may generate a map of va-
rieties which is not even birational. However, in the category of manifolds with
corners (where ‘R+-points’ are considered and radicals are consequently well be-
haved) it becomes very useful and will be fundamental to our results below.

Lemma 2.4. If R is a refinement of σ and τ ≤ σ is a face, then

(2.1) R(τ ) = {σ′ ∈ R ; σ′ ⊂ τ}
is a refinement of τ.

Proof. Clearly R(τ ) satisfies the first two properties of a refinement, since if σ′ ∈
R(τ ) and τ ′ ≤ σ′, then τ ′ ⊂ τ and hence τ ′ ∈ R(τ ). For the third property,
choose any v ∈ supp(τ ). Since also v ∈ supp(σ), there must be a σ′ ∈ R for which
v ∈ supp(σ′). By the support condition, supp(σ′) ∩ supp(τ ) is a face of supp(σ′),
which corresponds to a monoid τ ′ ≤ σ′ such that supp(τ ′) ⊂ supp(τ ). �

A particularly important example of a refinement is the operation of star subdi-
vision, which is well known in toric geometry [Ful93] and its generalizations, though
the definition below is not standard. (In the classical toric theory, the subdivision
of a smooth fan need not be smooth, for instance.)

Proposition 2.5. If σ is a monoid and 0 �= v ∈ σ, the collection, S(σ, v), of
monoids consisting of

(i) all faces τ ≤ σ such that v /∈ τ and
(ii) monoids τ + Nv := span

N
τ ∪ {v}, where τ ≤ σ and v /∈ τ
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is a refinement of σ. If all proper faces of σ are smooth, then S(σ, v) is a smooth
refinement.

Proof. For two monoids τ1, τ2 of the first type, the intersection τ1 ∩ τ2 is a face of
σ not containing v, hence a monoid of the first type. For two monoids τ1 +Nv and
τ2+Nv of the second type, the intersection is a monoid (τ1∩ τ2)+Nv of the second
type, and for one of each type, the intersection (τ1 + Nv) ∩ τ2 = τ1 ∩ τ2 is of the
first type. The support condition follows from the fact that any w ∈ supp(σ) lies
in some cone of the form supp(τ + Nv), with τ ≤ σ.

If τ = N 〈v1, . . . , vk〉 is smooth and v /∈ τ , then τ+Nv has independent generators
{v1, . . . , vk, v}, so τ+Nv = N 〈v1, . . . , vk, v〉 is smooth. Since σ itself is not in S(σ, v),
smoothness follows from the smoothness of all the proper faces of σ. �

In the context of a generalized blow-up, star subdivision is the operation which
realizes the ordinary blow-up of a boundary face of a manifold. There is a similar
construction, “planar refinement”, which we discuss next although it is not used
until Section 10, in which v is replaced by the intersection of σ with a subspace.

First, as a matter of notation, suppose τi ⊂ σ, i = 1, 2, are full submonoids in
the sense that each

(2.2) τi = σ ∩ supp(τi).

Then we define the join of τ1 and τ2 to be the full submonoid

(2.3) τ1 ∗ τ2 := σ ∩
(
supp(τ1) + supp(τ2)

)
,

where supp(τ1) + supp(τ2) = span
R+

(τ1 ∪ τ2) is the convex hull of the supports of
the τi.

Let σ be a smooth monoid and μ ⊂ σ be a submonoid which is obtained by
intersection with an integral subspace of NR

σ :

(2.4) μ = σ ∩M, M ⊂ NR

σ integral.

Note that μ need not be simplicial, though it is a full submonoid in the sense of
(2.2). Let Λ consist of the maximal faces of σ meeting μ trivially:

(2.5) Λ = {τ ≤ σ ; τ ∩ μ = {0} , but for all τ ′ > τ, τ ′ ∩ μ �= {0}} .

Lemma 2.6. If σ is a smooth monoid, M is an integral subspace and μ and Λ
are defined by (2.4) and (2.5), then for any τ1 �= τ2 ∈ Λ, there exists a functional
u ∈ N∗

σ such that 〈u, τ1〉 ≥ 0, 〈u, τ2〉 ≤ 0, 〈u, μ〉 = 0, and if v is a generator of
either τ1 or τ2, then v ∈ τ1 ∩ τ2 if and only if 〈u, v〉 = 0.

Proof. If M has full dimension the result is trivial, so we may assume that M is a
proper subspace. If M is a hyperplane, then u is a defining functional, u⊥ = M,
and is determined up to non-vanishing constant. Since τi∩M = {0}, u is definite on
each and cannot have the same sign on both or they would be equal by maximality.
Thus, either 〈u, τ1〉 > 0, 〈u, τ2〉 < 0 or with signs reversed. In this case their
intersection is trivial and the result clearly holds. Conversely if τ1 ∩ τ2 �= {0}, then
codim(M) > 1.

In the general case we proceed by induction on codim(M). Choose a generator
w ∈ τ1∩τ2, and consider the smooth monoid σ′ < σ generated by all the generators
of σ except w, with τ ′i := τi∩σ′. Consider the subspaceM ′ = (M+Rw)∩Nσ′ ⊂ Nσ′

and set μ′ = M ′ ∩ σ′. Since w /∈ M, M ′ has the same dimension as M ; hence the
codimension of M ′ in Nσ′ is one less than the codimension of M in Nσ.
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Now, the τ ′i are maximal faces of σ′ not meeting μ′. To see this first note that
τ ′i ∩M ′ = {0} since the generators of μ can be written el = e′l + clw, where the e′l
are generators for μ′ and cl ≥ 0. Thus, if there was a point p ∈ τ ′i ∩ μ′, necessarily
of the form p =

∑
l dle

′
l with the dl ≥ 0, then there would be a point p+

∑
l dlclw ∈

τi ∩ μ. Similarly, the τ ′i are maximal since if τ ′ > τ ′i is a face of σ′ which meets μ′

trivially then τ ′ + Nw > τi meets μ trivially, contradicting the maximality of τi.
Thus by induction on the codimension of M ′ in Nσ′ there exists a functional

u′ ∈ N∗
σ′ with the desired separating property for the τ ′i and M ′. Extending u′ to

u by requiring u(w) = 0 gives a functional in N∗
σ with the desired properties and

completes the inductive step. �

Now set μ ∗ Λ = {μ ∗ τ ; τ ∈ Λ} , defined by (2.3), and consider

(2.6) S(σ, μ) = {γ ≤ σ′ ; σ′ ∈ μ ∗ Λ} .

Proposition 2.7 (Planar refinement). If σ is smooth monoid and μ = σ ∩ M is
the intersection with an integral subspace M ⊂ NR

σ , then (2.6) gives a refinement
of σ containing μ. This operation commutes with faces in the sense that for any
face τ ≤ σ, S(τ, τ ∩ μ) =

(
S(σ, μ)

)
(τ ) with notation as in (2.1).

Proof. If M = NR
σ , then μ = σ, Λ = {0} and S(σ, μ) = μ ∗ {0} consists of σ and its

faces, which is the trivial refinement of σ.
First we show that the supports of S(σ, μ) cover supp(σ); in fact,

(2.7) σ =
⋃
τ∈Λ

μ ∗ τ,

since all the monoids are full as above. Certainly μ ⊂ τ ∗ μ, so consider v ∈ σ \ μ
and choose any m1 ∈ μ. The ray from m1 through v meets some face of σ, call it
τ1, so v is a positive combination of m1 ∈ μ and t1 ∈ τ1. If τ1 ∩ μ = {0}, then
τ1 ⊂ τ ∈ Λ and we are finished. On the other hand, if τ1 meets μ, then t1 is
a positive combination of some m2 ∈ μ and t2 ∈ τ2 with τ2 a proper face of τ1.
Continuing this way eventually shows that v ∈ μ ∗ τk for some τk which does not
meet μ, since the dimension decreases and v /∈ μ. Thus v ∈ μ ∗ τ for some τ ∈ Λ
with τ ≥ τk, and (2.7) follows.

Next consider the intersection of two elements in the union (2.7). We will show
that

(2.8) (μ ∗ τ1) ∩ (μ ∗ τ2) = μ ∗ (τ1 ∩ τ2), τi ∈ Λ.

Certainly the right side is contained in the left. Lemma 2.6 applies and gives a
functional u. If v is in the intersection it follows that u(v) ≥ 0 and u(v) ≤ 0, so
u(v) = 0 and from the last property of u this implies v ∈ μ ∗ (τ1 ∩ τ2). Since u is a
supporting hyperplane for both μ∗ τi, it follows that μ∗ (τ1∩ τ2) is a boundary face
of each of these full submonoids. This in turn implies that the intersection of any
two elements of S(σ, μ) is a common boundary face of both and hence an element
of S(σ, μ). Indeed, such an intersection must be contained in two μ∗ τi with τi ∈ Λ.
If they are the same, the conclusion is immediate, and if not, then they are both
contained in the common boundary face (2.8) and again the result follows.

That μ is a boundary face of each μ ∗ τ, τ ∈ Λ follows from the existence of a
functional u ∈ N∗

σ such that u > 0 on the generators of τ and u(M) = 0. �
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For any v ∈ σ, if Nv is a full submonoid, then S(σ,Nv) is just the ordinary star
subdivision of σ along v. Note however that in the case of star subdivision we can
relax the condition that σ be smooth, as well as the condition that Nv be full.

3. Generalized blow-up of Rn
+

In preparation for the global case of generalized boundary blow-up of a manifold
with corners treated in Section 6, we first discuss the ‘local case’ of generalized blow-
up of the model space Rn

+. Associated with this basic space is the ‘basic monoid’
which is freely generated by the boundary hypersurfaces of Rn

+, with an equivalent

realization as the non-negative integral points in bN {0}, the b-normal to the maxi-
mum codimension boundary face {0}. We show how to construct a blown-up space
mapping surjectively onto Rn

+ corresponding to any smooth refinement of this basic
monoid. The functoriality of this operation with respect to diffeomorphisms and
b-maps is then considered.

Consider Rn
+ with coordinates (x1, . . . , xn) and let Hi = {xi = 0} ∈ M1(Rn

+)
denote the boundary hypersurfaces. The basic monoid of Rn

+ is the smooth monoid
freely generated by the Hi:

σRn
+
= N 〈H1, · · · , Hn〉 .

There is a natural embedding of σRn
+
into the vector space

bN {0} = span
R
{x1∂x1

, . . . , xn∂xn
} .

Indeed, as pointed out in Section 1, the vectors (x1∂x1
, . . . , xn∂xn

) are invariantly
defined up to reordering with respect to diffeomorphisms (indeed, any diffeomor-
phism of Rn

+ to itself must take 0 to 0), so σR
n
+
may be identified with the inward

pointing lattice points

σRn
+

∼= N 〈x1∂x1
, . . . , xn∂xn

〉 in bN {0} .

From now on we will identify σRn
+
with this image in bN {0}.

To any smooth refinement R of σRn
+
we proceed to associate a generalized blow-up

of Rn
+, which will be denoted, with its blow-down map,

[Rn
+;R]

β−→ Rn
+.

The blow-down map β : [Rn
+;R] −→ Rn

+ is an interior b-map from this new manifold
with corners, which is proper, surjective and restricts to a diffeomorphism on the
interior of its domain to the interior of Rn

+.We construct [Rn
+;R] and β from explicit

coordinate patches and transition diffeomorphisms.
For brevity we will say that a monoid σ ∈ R of maximal dimension n is maximal.

To any such maximal monoid σ = N 〈v1, . . . , vn〉, we associate a copy of the model
space Uσ = Rn

+ with coordinates t = (t1, . . . , tn), where the order of the coordinates
is associated to the order of the vectors. Let ν ∈ GL(n,Q) be the matrix whose
rows are the coordinates of the vectors vi so that ν has entries νij , where

vi =
n∑

j=1

νijxj∂xj

(using the realization of σRn
+

in bN {0}). Since R is a refinement of σRn
+
, ν has

non-negative integral entries:

ν ∈ Mat(n× n,N) ∩GL(n,Q).
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Then consider the smooth map

βσ : Uσ � t �−→ tν = x ∈ Rn
+

where the image space is the fixed model manifold, and we use the notational
convention established in Section 1. This is an interior b-map (which will be the
local coordinate version of the blow-down map), which is a diffeomorphism of the
interiors of its domain and range, under which

b(βσ)∗ : bN {0} ⊂ bT0Uσ −→ bN {0} ⊂ bT0R
n
+,

ti∂ti �−→
∑
j

νijxj∂xj
∼= vi.

In addition, bβσ : bTpUσ −→ bTβσ(p)R
n
+ is an isomorphism for all p.

To each face τ ≤ σ given by a collection of generators, τ = N 〈vi〉i∈I , I ⊂
{1, . . . , n}, we associate the (relatively) open set

(3.1) Uσ,τ = {(t1, . . . , tn) ∈ Uσ ; tj �= 0 if j /∈ I} ⊂ Uσ.

Thus, Uσ,τ
∼= Rk

+ × (0,∞)n−k ⊂ Rn
+, where the coordinates allowed to take the

value 0 are the ti1 , . . . , tik , corresponding to those generators of σ which are also
generators of τ.

Proposition 3.1 (Generalized blow-up of Rn
+). For any two maximal monoids

σ1 and σ2 in a smooth refinement R of σRn
+
, with common face τ = σ1 ∩ σ2, the

diffeomorphism of the interiors of the Uσi
given by β−1

σ2
βσ1

, extends by continuity
to a diffeomorphism χ12 : Uσ1,τ −→ Uσ2,τ and the quotient space

(3.2) [Rn
+;R] =

(⊔
Uσ

)/
{χ∗}

is a manifold with corners, with coordinate charts the Uσ. It is equipped with a
well-defined blow-down map β : [Rn

+;R] −→ Rn
+ given by βσ on each Uσ.

Proof. The space Uσ, with its local blow-down map βσ, really depends on the
choice of the order of the generators implicit in the definition of the map. However,
the coordinates tj are each naturally associated to the corresponding generator
and change of order of the generators corresponds to the same reordering of the
coordinates in Uσ. Thus we can freely reorder the generators.

For two maximal monoids, σ1 and σ2, τ = σ1 ∩ σ2 is generated by the common
generators of σ1 and σ2. For convenience of notation we can assume that these are
the first k generators:

τ = N 〈v1, . . . , vk〉 = σ1 ∩ σ2,

σ1 = N 〈v1, . . . , vk, vk+1, . . . , vn〉 , σ2 = N
〈
v1, . . . , vk, v

′
k+1, . . . , v

′
n

〉
.

Since the σi are smooth, their generators form bases so for i > k,

vi =
k∑

j=1

bijvj +
n∑

j=k+1

cijv
′
j , bij , cij ∈ Q,

where the coefficients are rational since both bases are integral with respect to
{x1∂x1

, . . . , xn∂xn
}.
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Now, the map χ12 = β−1
σ2

βσ1
between the interiors of the two cones is given by

t �−→ tμ = t′, where

μ =

(
Id 0
b c

)
[b]ij = bij , [c]ij = cij .

In other words,

χ12 (t1, . . . , tn) = (t′1, . . . , t
′
n) ∈ Rn

+ = Uσ2
, where

t′i = ti
∏
j>k

t
bji
j , i ≤ k, t′i =

∏
j>k

t
cji
j , i > k.

Since, in Uσ1,τ , tj > 0 for j > k, χ12 extends smoothly from the interior to Uσ1,τ .

Since the inverse, χ21(t
′) = (t′)ν

−1

, has a similar form, χ12 is a diffeomorphism onto
Uσ2,τ .

Next we show that the quotient (3.2) is Hausdorff. Consider points pi ∈ Uσi
,

i = 1, 2, which are not identified by χ12. If p1 ∈ Uσ1,τ , then its image lies in
Uσ2,τ and a sufficiently small neighborhood of p2 does not contain χ12(p1) in its
closure, so the points have neighborhoods in the Uσi

with no χ12 related points.
Using the inverse the same is true if p2 ∈ Uσ2,τ , so we may assume both are in the
complements of the respective Uσi,τ .

Since σ1 ∩ σ2 = τ, there is a separating hyperplane u⊥ for u ∈ bN∗ {0} so that

〈u, vi〉 = 0, i = 1, . . . , k,

〈u, vi〉 > 0, 〈u, v′i〉 < 0, i = k + 1, . . . , n.

Let w and w′ be the coordinates of u with respect to the bases dual to the generators
of σ1 and σ2, respectively. Thus wi = w′

i = 〈u, vi〉 = 0 for i = 1, . . . , k and
wi = 〈u, vi〉 > 0, w′

i = 〈u, v′i〉 < 0 for i > k.

Then χ∗
12(t

′)w
′
= tw, and p1 and p2 can be separated by the explicit open sets{

tw < ε
}
⊂ Uσ1

and
{
(t′)−w′} ⊂ Uσ2

since

χ12 ({tw < ε} ∩ Uσ1,τ ) =
{
(t′)w

′
< ε} ∩ Uσ2,τ =

{
(t′)−w′

> 1/ε} ∩ Uσ2,τ ,

so these sets do not meet in the quotient by χ12.
Thus [Rn

+;R] defined by the quotient (3.2) has the structure of a Hausdorff, para-
compact smooth manifold with corners arising from the covering by the coordinate
charts which are the images in [Rn

+, R] of the Uσ. Smooth functions on [Rn
+;R] are

those which are smooth in each of the coordinate patches, and the blow-down map

β : [Rn
+;R] −→ Rn

+

is a well-defined smooth b-map since it is such on each coordinate patch; these
maps form, by construction, a commutative diagram with the transition maps. �

From the point of view of algebraic geometry, the chart Uσ consists of the ‘R+-
points’ of the dual monoid σ̂, given by Hommon (σ̂,R+) (where R+ is considered
as a multiplicative monoid), though our construction equips this set with a much
stronger topology and smooth structure. In this sense [Rn

+;R] is related to the
“singular manifold with corners” [Ful93] of a toric variety, though our setup is
more closely related to toroidal embeddings [KKMSD73] and logarithmic geometry
[Kat94], [Ogu06]. It is important to point out however that the gluings between the
affine charts Uσ above are extremely ill-behaved over R or C (as opposed to R+ here)
owing to the presence of radicals (i.e. fractional powers of the coordinates), so what
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results in a smooth manifold with corners above results in a much more singular
object (like a stack) in the conventional algebraic setting. This is the ultimate
reason for our non-standard definition of monoid refinement in the previous section
and for the greater flexibility of our methods.

Next we observe that the boundary faces of [Rn
+;R] are in bijection with the

monoids in the refinement R. If τ ∈ R and σ ≥ τ is a maximal monoid of which
it is a face, then τ defines the boundary face Fσ,τ ⊂ Uσ = Rn

+ which is the closure
of Uσ,τ \ (0,∞)n, the part of the boundary where the coordinates corresponding to
the generators of τ vanish (and the other coordinates may or may not vanish).

Proposition 3.2. The manifold [Rn
+;R], determined by a smooth resolution of σRn

+
,

has interior diffeomorphic to (0,∞)n and its boundary faces are in 1-1 correspon-
dence with the monoids τ ∈ R where the face Fτ corresponding to τ is the quotient
in (3.2) of the union of the Fσ,τ ⊂ Uσ for the maximal monoids σ with τ ≤ σ. This
correspondence satisfies codim(Fτ ) = dim(τ ) and is inclusion-reversing:

Fτ ′ ⊆ Fτ ⇐⇒ τ ≤ τ ′.

Proof. The boundary faces of each Uσ = Rn
+ are, as follows from (3.1), precisely

the Fσ,τ for all faces τ ≤ σ, since these correspond to all subsets of the coordinate
functions. Under the transition maps χ12 defined above and corresponding to two
monoids, σ1 and σ2, of maximal dimension, the interior of each Fσ1,τ is mapped
onto the interior of Fσ2,τ if τ ≤ σ1 ∩σ2. Otherwise if τ is not contained in either σ1

or σ2, then Fσ1,τ does not meet the domain of definition of χ12 or does not meet
the range.

Thus the interiors of the Fσ,τ are globally well-defined subsets of [Rn
+;R]. For

each τ ∈ R, the closure in [Rn
+;R] of the interior of Fσ,τ is the image of the union of

the closures in the Uσ that it meets. It is therefore everywhere locally a manifold
with corners, and hence is globally a manifold with corners. In particular, each
boundary face is embedded in [Rn

+;R]. Finally, the fact that τ ≤ τ ′ ⇐⇒ Fτ ′ ⊆ Fτ

is evident in Uσ for a maximal monoid σ ≥ τ ′ ≥ τ . �

Now we establish a local version of a result we shall prove in more generality in
Section 6 about lifting b-maps to a generalized blow-up. Suppose

f : O ⊂ Rm
+ −→ Rn

+

is an interior b-map with its domain an open set O ⊂ Rm
+ . Without loss of generality

we may assume that 0 ∈ O and that f(0) = 0. Then f has the explicit coordinate
expression

f : x �−→ x′ = a(x) xδ =

(
a1(x)

m∏
j=1

x
δj1
j , . . . , an(x)

m∏
j=1

x
δjn
j

)
,

where δ ∈ Mat(m× n,N) and 0 < ai(x) ∈ C∞(Rm
+ ). Because of the non-negativity

and integrality of the δij , the b-differential
bf∗ : bN0 {0} −→ bN0 {0} (which is rep-

resented by the matrix δT with respect to the bases {xi∂xi
} and

{
x′
i∂x′

i

}
) restricts

to a monoid homomorphism

bf∗ = δT : σRm
+
−→ σRn

+
.

(This is a preliminary version of the morphism of monoidal complexes associated
to a b-map in Section 6.)
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Proposition 3.3. If f is an interior b-map as above such that bf∗ : σRm
+
−→ σRn

+

factors through a monoid homomorphism φ : σRm
+

−→ τ for some τ ∈ R where R

is a smooth refinement of σRn
+
, then there exists a unique b-map f ′ : O ⊂ Rm

+ −→
[Rn

+;R] such that

[Rn
+;R]

O ⊂ Rm
+ Rn

+

β

f

f ′

commutes and the range of f ′ is contained in the coordinate chart Uτ ⊂ [Rn
+;R].

Moreover, this construction is functorial in that for a b-map g : U ⊂ Rl
+ −→ O ⊂

Rm
+ , b (f ◦ g)∗ factors through τ ∈ R if and only if bf∗ does, and then (f◦g)′ = f ′◦g.

Proof. Taking a maximal dimension monoid containing τ if necessary, it suffices to
assume that dim(τ ) = n. Then let (Uτ , t = (t1, . . . , tn)) be the coordinate chart
associated to τ = N 〈v1, . . . , vn〉 ∈ R, and let ν ∈ GL(n,N) denote the matrix such
that vi =

∑
j νijx

′
j∂x′

j
as in the construction of generalized blow-up, so that the

blow-down acts by β : t �−→ x = tν on Uτ . Alternatively, one can view νT as the
matrix defining the monoid inclusion νT : τ ↪−→ σRn

+
with respect to the bases {vi}

and
{
x′
i∂x′

i

}
.

In a similar manner, let μ ∈ Mat(m× n,N) denote the matrix whose transpose
represents the given homomorphism

φ = μT : σRm
+
−→ τ = N 〈v1, . . . , vn〉

with respect to the bases {xi∂xi
} and {vi}. From the assumption that bf∗ factors

through φ it follows that

δT = νTμT = (μν)T,

where δ is the matrix of coefficients of bf∗ as above.
Define f ′ : Rm

+ −→ Uτ in coordinates by

f ′ : x �−→ a(x)ν
−1

xμ = t.

Then observe that β ◦ f ′ has the form

β ◦ f ′ : x �−→
(
a(x)ν

−1

xμ
)ν

= a(x)xμν = a(x)xδ

and is therefore equal to f. The form of any f ′ : Rm
+ −→ Uτ such that β ◦ f ′ = f is

determined in these local coordinates, giving uniqueness.
To show functoriality, suppose that g : Rl

+ −→ Rm
+ acts by z �−→ b(z)zκ = x.

We have the commutative diagram

τ

σRl
+

σRm
+

σRn
+
.

κT δT

μT

νT

The composition f ◦ g acts by

f ◦ g : z �−→ a
(
b(z)zκ

)
bδzκδ =: c(z)zκδ.
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Then on one hand (f ◦ g)′ has the form

(f ◦ g)′ : z �−→ c(z)ν
−1

zκμ = a
(
b(z)zκ

)ν−1

bδν
−1

zκμ,

while on the other hand f ′ ◦ g acts by

f ′ ◦ g : z �−→ a
(
b(z)zκ

)ν−1

(bzκ)μ ,

which is the same since δν−1 = μ. �
This result has an important corollary which is fundamental to the global con-

struction of generalized blow-up in Section 6.

Corollary 3.4. Any diffeomorphism of open submanifolds of Rn
+, f : O1 ⊂ Rn

+

∼=−→
O2 ⊂ Rn

+, which maps boundary hypersurfaces onto themselves lifts to a unique
diffeomorphism,

f ′ : O′
1 ⊂ [Rn

+;R] −→ O′
2 ⊂ [Rn

+;R],

where O′
i = β−1(Oi), such that the diagram

O′
1 O′

2

O1 O2

f ′

β

f

β

commutes and then f ′ also maps boundary hypersurfaces onto themselves.

Proof. The lift f ′ will be defined locally on coordinate patches, so let τ ∈ R be a
maximal monoid and consider the b-map

f ◦ β : O′
1 ∩ Uτ ⊂ Rn

+ −→ Rn
+.

It is evident that b(f ◦ β)∗ sends τ (identified here with σR
n
+

where Rn
+ = Uτ )

isomorphically to τ , and so it follows from Proposition 3.3 that there is a unique

(3.3) f ′
τ = (f ◦ β)′ : O′

1 ∩ Uτ −→ Uτ

such that β ◦ f ′
τ = f ◦ β. Proceeding this way for each maximal τ ∈ R, we obtain

b-maps (3.3) defined locally on the covering {O′
1 ∩ Uτ} of O′

1, and these maps patch
together to give a map f ′ : O′

1 −→ [Rn
+;R] by uniqueness, with range contained in

O′
2.
Before proving that f ′ is a diffeomorphism, consider the functoriality of these

lifts. Thus if g : O2 ⊂ Rn
+ −→ O3 ⊂ Rn

+ is another such diffeomorphism, it follows
by the uniqueness and functoriality results in Proposition 3.3 that

(g ◦ f)′ = (g ◦ f ◦ β)′ = (g ◦ β ◦ f ′)′ = g′ ◦ f ′ : O′
1 −→ O′

3.

It is also evident from the proof of Proposition 3.3 that Id′ = Id, and it then follows
that f ′ is a diffeomorphism with inverse (f−1)′. �

The following is also a straightforward consequence of Proposition 3.3.

Corollary 3.5. If R(τ ) is the refinement of τ = N 〈xi∂xi
〉i∈I ≤ σRn

+
obtained from

a smooth refinement R of σRn
+
, where I ⊂ {1, . . . , n}, and dim(τ ) = #I = k, there

is an injection

(3.4) [Rk
+;R(τ )]× (0,∞)n−k ↪−→ [Rn

+;R]
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giving a commutative diagram

[Rk
+;R(τ )]× (0,∞)n−k [Rn

+;R]

Rk
+ × (0,∞)n−k Rn

+

ββ

where the bottom map is the inclusion

(3.5) Rk
+ × (0,∞)n−k ∼= {xi �= 0 ; i /∈ I} ⊂ Rn

+.

Proof. The proof is similar to the previous one: the composition of the blow-down
and inclusion from [Rk

+;R(τ )]×(0,∞)n−k to Rn
+, considered locally on charts in the

domain, sends monoids in R(τ ) to the same monoids in R, and so factors uniquely
(and injectively) through [Rn

+;R]. �
Finally we note the following versions of Proposition 3.3 and Corollary 3.4 in-

volving additional factors without boundary. The proofs differ only in notation,
where the additional factors are simply carried along.

Proposition 3.6. If f : O ⊂ Rm
+ × Rm′ −→ Rn

+ × Rn′
is an interior b-map from

an open set containing 0 such that bf∗ : σR
m
+

−→ σR
n
+

factors through a monoid

homomorphism φ : σRm
+

−→ τ for some τ ∈ R where R is a smooth refinement of

σRn
+
, then there exists a unique b-map f ′ lifting f such that

[Rn
+;R]× Rn′

O ⊂ Rm
+ × Rm′

Rn
+ × Rn′

β

f

f ′

commutes, and these lifts are functorial.

Corollary 3.7. Any diffeomorphism of open submanifolds f : O1 ⊂ Rn
+ ×Rn′ ∼=−→

O2 ⊂ Rn
+×Rn′

which maps boundary hypersurfaces onto themselves lifts to a unique
diffeomorphism

f ′ : O′
1 ⊂ [Rn

+;R]× Rn′ −→ O′
2 ⊂ [Rn

+;R]× Rn′
,

where O′
i = (β × Id)−1(Oi), and then (β × Id) ◦ f ′ = f ◦ (β × Id).

4. Monoidal complexes

In Section 6 we show how to associate a natural monoid to each boundary face of
a manifold with corners, with the compatibility condition that whenever F ⊆ G, the
monoid associated to G is a face of the one associated to F , i.e. that face relations
persist in an inclusion-reversing sense. We have already seen such an example,
which is the association between monoids in R and faces in [Rn

+;R], where R is a
refinement of σRn

+
. The notion of a refinement (where all the monoids reside in the

same vector space) is not sufficiently flexible to capture the ways in which boundary
faces may be related for general X, so we introduce the concept of a monoidal
complex; this should be thought of by analogy to a simplicial or CW complex. It
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GENERALIZED BLOW-UP OF CORNERS AND FIBER PRODUCTS 669

is a generalization of the structure of a refinement in which the monoids are still
“attached together nicely along faces”, but in which the monoids reside in separate
vector spaces and there is no ‘base’ monoid (as when R is a refinement “of σ”). The
contents of this section are all that is needed for the discussion of the generalized
blow-up of a manifold in Section 6, apart from Theorem 6.5 which uses the fiber
product of monoidal complexes discussed in the next section.

Consider a finite partially ordered set (poset) by A = (A,≤). It is convenient to
think of A as a category, with objects the elements a ∈ A and morphisms given by
the order relation: a → b ∈ Hom(a, b) ⇐⇒ a ≤ b.

Definition 4.1. Let (A,≤) be a poset. A monoidal complex Q over A is a covariant
functor from A to the category of monoids, where all morphisms are isomorphisms
onto faces, so Q consists of a monoid σa for each a ∈ A, along with isomorphisms
called face maps,

(4.1) iab : σa

∼=−→ τ ≤ σb whenever a ≤ b,

for some τ ≤ σb. This relation will be denoted

(4.2) σa ≤ σb, for a ≤ b.

We say Q is complete, respectively reduced, if for every b ∈ A and every face
τ ≤ σb there exists at least one (resp. at most one) a ∈ A such that a ≤ b and
iab : σa

∼= τ .

Lemma 4.2. If Q is complete and reduced, then the posets (A,≤) and ΓQ =
{τ ≤ σ ; σ ∈ Q}

/
i∗ with the order (4.2) are isomorphic.

Proof. Consider the composition of the map A � a �−→ σa ∈ Q with the quotient
by the face maps (4.1). This map A −→ ΓQ intertwines the orders by (4.2); it
must be injective by the assumption that Q is reduced and be surjective by the
assumption that it is complete. �

From this it follows that for a complete, reduced monoidal complex, A is entirely
determined by the set of σ ∈ Q and the face relations (4.2). Nevertheless, it is
often convenient to be able to refer explicitly to an indexing set A, as in the case
(A,≤) = (M(X),≤) below, which we will most often encounter.

There are evidently some obstructions for a general poset to index a complete,
reduced monoidal complex, but we shall not concern ourselves with them here; all
complete reduced monoidal complexes will arise naturally.

From now on, a monoidal complex will mean a complete and reduced monoidal
complex.

Example 4.3. The faces of a single monoid σ form a monoidal complex over the
poset {τ ; τ ≤ σ}.

More generally, any refinement R of σ forms a monoidal complex over the set R
with the order coming from the face relations.

For an example which is not a refinement, consider the following.

Example 4.4. Let σ0 = {0}, σa = N(1, 0) ⊂ R2, σb = N(0, 1) ⊂ R2, and let σc and
σd be two distinct copies of the monoid N 〈(1, 0), (0, 1)〉 ⊂ R2. Let the face maps
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c

a

d

b

0

Figure 2. A manifold whose boundary face relations do not index
a monoid refinement.

be the obvious ones in the diagram

σa σc

σ0

σb σd.

This complex cannot be realized as a refinement, since otherwise σc and σd would
have to be identified; here they remain distinct. The poset underlying this complex
is the same as the one given by the boundary faces (with the order of reverse
inclusion) of the 2-dimensional manifold with corners pictured in Figure 2.

Definition 4.5. A morphism of monoidal complexes φ : QA −→ QB consists of
a map of posets φ# : (A,≤) −→ (B,≤) and monoid homomorphisms φab : QA �
σa −→ σb ∈ QB for all a ∈ A, where b = φ#(a) ∈ B. These are required to
commute with the homomorphisms iaa′ for a ≤ a′, so that

σa σb

σa′ σb′

φab

ibb′ibb′

φa′b′

iaa′

commutes, where a ≤ a′, φ#(a) = b, φ#(a
′) = b′, and thus b ≤ b′. We say φ is

injective if all the morphisms φab are injective, though we do not necessarily require
that φ# : A −→ B be injective.

An elementary example of a morphism is the inclusion of a subcomplex:

Definition 4.6. Let Q be a monoidal complex over (A,≤). A monoidal subcomplex
of Q is a complex Q0 obtained by restricting Q to a subset A0 ⊂ A:

Q0 = {σa ; a ∈ A0}
such that Q0 is complete and reduced. There is then an injective morphism

Q0 ↪−→ Q
consisting of the identity homomorphisms over A0 ⊂ A.

In Section 6, we will show that a b-map f : X −→ Y gives rise to a morphism
f� : PX −→ PY of the basic monoidal complexes associated to X and Y .

Another important class of morphisms consists of refinements.
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GENERALIZED BLOW-UP OF CORNERS AND FIBER PRODUCTS 671

R Q

Figure 3. A refinement of monoidal complexes. Only maximal
dimension monoids are pictured. In this example, R → Q is injec-
tive, though R is not smooth, and the individual monoid homo-
morphisms do not cover their targets.

Definition 4.7. Let Q be a monoidal complex. A refinement of Q is a morphism
φ : R −→ Q all of whose homomorphisms are injective, and for all σ ∈ Q,

(i)
⋃

τ∈φ−1
# (σ) φ

(
supp(τ )

)
= supp(σ) and

(ii) for τ1, τ2 ∈ φ−1
# (σ), relint

[
φ
(
supp(τ1)

)]
∩ relint

[
φ
(
supp(τ2)

)]
= ∅ unless τ1 =

τ2,

where the relative interior of a cone C = span
R+

{v1, . . . , vk} is the set relint[C] =

span(0,∞) {v1, . . . , vk}.

Condition (i) requires that the support of each monoid in Q is covered by the
supports of monoids in R, and condition (ii) demands that these supports only
intersect along mutual faces. These, along with our assumption that R is complete
and reduced, are analogous to the conditions in Definition 2.2 for the refinement of
a monoid. Figure 3 depicts a refinement.

Proposition 4.8. If φ : R −→ Q is a refinement, then for each σ ∈ Q, the
collection

(4.3) R(σ) :=
{
φ(σ′) ; σ′ ∈ φ−1

# (τ ), τ ≤ σ
}

is a refinement of σ. Conversely, let {R (σ) ; σ ∈ Q} be a collection of refinements
which are compatible in that whenever τ ≤ σ, the refinement R(τ ) is identical to the
induced refinement

(
R(σ)

)
(τ ) as in Lemma 2.4. Then the quotient R =

⋃
R(σ)

/
i∗

of the set of all monoids in the collection by the face maps i∗ of Q forms a refinement
φ : R −→ Q of monoidal complexes.

Proof. Let R(σ) be the set in (4.3). Certainly

R(σ) ⊇
{
φ(σ′) ; σ′ ∈ φ−1

# (σ)
}
,

and it follows that R(σ) satisfies property (iii) of Definition 2.2 for a refinement of
σ by property (i) in Definition 4.7 above.

To see that R(σ) satisfies the other two properties of a refinement, let τ ′i ∈ R,
i = 1, 2, with φ(τ ′i) ∈ R(σ), and for convenience of notation, identify these with
their images in σ. Let τ ≤ σ be the smallest face such that τ ′1 ∩ τ ′2 ⊂ τ . Since φ is
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a morphism it follows that each τ ′i ∩ τ is a face of τ ′i , hence also in R, and it must
be that τ ′i ∩ τ ∈ φ−1

# (τ ) (or else there would be a smaller τ ), so it follows that the

face τ ′i ∩ τ ≤ τ is also in R(σ).
By property (ii) above for τ ′i ∩ τ ∈ φ−1

# (τ ), it follows that τ ′1 ∩ τ ′2 = (τ ′1 ∩ τ ) ∩
(τ ′2 ∩ τ ) must be a face of each. To see that R(σ) contains the faces of all its
monoids, simply let τ ′1 be the face in question of τ ′2; we conclude that τ

′
1 = τ ′1∩ τ ′2 ∈

R(σ). Thus R(σ) is a refinement of σ.
For the converse, let R be the set of all monoids in the refinements R(σ), σ ∈ Q,

modulo the identification of monoids in (R(σ))(τ ) with those in R(τ ) for τ ≤ σ, as
above. That R is a complex follows easily from the fact that each R(σ) forms a
monoidal complex.

For notational clarity, denote the posets for R and Q by (A,≤) and (B,≤),
respectively. We take φ# : A −→ B to be the map which sends a to the smallest
b ∈ B such that σ′

a ∈ R is in the refinement Rσb
, and then φab : σ

′
a −→ σb is given

by the inclusion Rσb
� σ′

a ⊂ σb which is of course injective.
Finally, it follows directly from the fact that the R(σ) are refinements that

φ : R −→ Q satisfies the properties in Definition 4.7. �
The remainder of this section is devoted to specific algorithms for obtaining and

extending various refinements of complexes.
A primary means of obtaining refinements is star subdivision; we extend this to a

monoidal complex. The proof of the following follows directly from Propositions 4.8
and 2.5.

Proposition 4.9 (Star subdivision). Let Q be a monoidal complex, σa ∈ Q, and
v ∈ σa. The monoids

S(Q, v)(σb) =

{
S
(
σb, (iabv)

)
if σa ≤ σb and

σb otherwise

form a monoidal complex which refines Q. If Q is smooth, then S(Q, v) is smooth.

Recall that in Section 2 an extension of star subdivision is discussed, giving a
refinement S(σ, μ) of a smooth monoid σ with respect to a monoid μ given by
the intersection of σ with an integral subspace. We now extend this to monoidal
complexes, which will be of use in Section 10.

Proposition 4.10 (Planar refinement). Let P a smooth monoidal complex and
suppose i : Q −→ P is an injective morphism such that for all σ ∈ P, (i#)

−1(σ) ⊂
Q contains at most one monoid μ, and if i(μ) ⊂ σ is the intersection of σ with an
integral subspace, then

S(P,Q)(σ) = S(σ, μ), μ = (i#)
−1(σ),

form a complex, containing Q as a subcomplex, which refines P.

Proof. This follows directly from Proposition 2.7, using the fact that S(τ, μ∩ τ ) =
S(σ, μ)(τ ). �

The smoothing of a simplicial monoid also extends to monoidal complexes.

Proposition 4.11 (Smoothing). Let Q be a simplicial complex. Then the collection
of monoid refinements σsm −→ σ, where σsm = N 〈v1, . . . , vn〉 is freely generated by
the extremals of σ as in Example 2.3, forms a smooth refinement Qsm −→ Q, in
which the indexing posets are the same.
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GENERALIZED BLOW-UP OF CORNERS AND FIBER PRODUCTS 673

Proof. This follows directly from the fact that the faces of σsm, namely the monoids
N 〈vi〉i∈I , I ⊂ {1, . . . , n}, are the smoothings of the corresponding faces of σ. �

5. Fiber products of complexes

Below we frequently need to address the problem of finding a refinement R1 −→
Q1 of a complex which is compatible with a given refinement R2 −→ Q2 with
respect to a morphism Q1 −→ Q2, meaning that

R1 R2

Q1 Q2

commutes. This section is therefore devoted to the basic constructions and proper-
ties of fiber products in the category of monoidal complexes. Apart from the proof
of Theorem 6.5, the material here is not used until Section 10.

First consider fiber products in the categories of posets and monoids. Thus, let
(A,≤), (B,≤) and (C,≤) be posets, with order preserving maps (φ1)# : A −→ C
and (φ2)# : B −→ C.

The product A×B is a poset with elements (a, b) : a ∈ A, b ∈ B and order given
by

(a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2 and b1 ≤ b2,

and the fiber product is the subset

A×C B = {(a, b) ∈ A×B ; (φ1)#(a) = (φ2)#(b) = c} ⊂ A×B,

with the order induced from A×B, which is well defined since the (φi)# are order
preserving.

Proposition 5.1 (Fiber products of monoids). If φi : σi −→ σ, i = 1, 2, are
(toric) monoid homomorphisms, then there is a unique toric monoid fiber product
σ1 ×σ σ2, with homomorphisms to σi such that

σ1 ×σ σ2 σ2

σ1 σ

φ′
2

φ2

φ1

φ′
1

commutes, and which has the usual universal property.
Its faces can be described as follows. Let A1, A2 and A be the posets whose

elements are faces of σ1, σ2, and σ, respectively, and define (φi)# : Ai −→ A by
taking (φi)#(τi) to be the smallest τ ∈ A such that φi(τi) ⊂ τ . Then faces of
σ1 ×σ σ2 are indexed by an ordered subset of A1 ×A A2.

Faces of σ1 ×σ σ2 are not necessarily in bijection with A1 ×A A2, since there
will generally be distinct pairs (τ1, τ2) �= (τ ′1, τ

′
2) ∈ A1 ×A A2 (with τ ′i ≤ τi and

φ#(τi) = φ#(τ
′
i) = τ , i = 1, 2) such that τ1 ×τ τ2 = τ ′1 ×τ τ ′2.
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Proof. σ1×σ2 is a toric monoid in Nσ1
×Nσ2

, generated by {(vi, 0), (0, wj)} where
{v1, . . . , vn} generate σ1 and {w1, . . . , wk} generate σ2, and the set

σ1 ×σ σ2 = {(v, w) ∈ σ1 × σ2 ; φ1(v) = φ2(w)}

(which might be trivial) is evidently closed under addition. It is the intersection of
Nσ1

×Nσ2
with the cone

supp(σ1)×supp(σ) supp(σ2) = supp(σ1)× supp(σ2) ∩NR

σ1
×NR

σ
NR

σ2
,

and hence is a toric monoid.
We will construct a map I from faces of σ1×σ σ2 to A1×AA2. Let τ ≤ σ1×σ σ2

be a face. Since σ1 ×σ σ2 ⊂ σ1 × σ2, there is a smallest face of σ1 × σ2 containing
τ which must be of the form τ1 × τ2 for some τi ≤ σi, i = 1, 2. Observe that
(φ1)#(τ1) = (φ2)#(τ2) ∈ A: indeed, (φ1)#(τ1) and (φ2)#(τ2) must have a common
face (containing the image of τ ), and then passing to the inverse images of this face
with respect to the (φi)# would give a smaller face of σ1 × σ2 containing τ unless
(φ1)#(τ1) = (φ2)#(τ2). Thus (τ1, τ2) ∈ A1 ×A A2 and we set I(τ ) = (τ1, τ2).

Next observe that τ ≤ τ1×σ τ2; however, τ meets the interior of τ1×τ2 (otherwise
τ1 × τ2 would not be minimal) and any proper face of τ1 ×σ τ2 would have to lie in
a proper face of τ1× τ2 (which follows from the fact that τ1×σ τ2 is the intersection
of the lattice Nτ1 × Nτ2 , the proper convex cone C = suppτ1 × suppτ2 and the

subspace NR
τ1 ×NR

σ
NR

τ2), so in fact τ = τ1 ×σ τ2. It follows that I is injective.
The universal property of σ1 ×σ σ2 in the category of monoids follows from the

analogous property in the category of sets, since the maps factoring through σ1×σσ2

are additive. �

Note that σ1 ×σ σ2 need not be smooth (or even simplicial) even if σ1 and σ2

are, as the example φ1 = φ2 : N2 −→ N, (m,n) �−→ m+ n shows.

Proposition 5.2 (Fiber product of monoidal complexes). Products and fiber prod-
ucts exist in the category of monoidal complexes. Thus if Q1, Q2 are monoidal
complexes over A and B, respectively, and if φi : Qi −→ Q are morphisms to a
complex Q over C, then there exist (complete and reduced) monoidal complexes
Q1 × Q2 over A × B and Q1 ×Q Q2 over A ×C B with the requisite universal
properties.

Proof. To define Q1 × Q2, let σ(a,b) = σa × σb for each (a, b) ∈ A × B. Likewise,
define Q1 ×Q Q2 to consist of the distinct σ(a,b) = σa ×σc

σb for (a, b) ∈ A ×C B.
The only issue is to show that these are complete and reduced.

Consider first Q1 × Q2. The faces of σa × σb are the monoids σa′ × σb′ where
σa′ ≤ σa and σb′ ≤ σb. Since theQi are complete and reduced, these are in bijection
with the elements (a′, b′) ∈ A×B such that (a′, b′) ≤ (a, b).

Next, it follows from Proposition 5.1 that the faces of σa ×σc
σb are monoids

of the form σa′ ×σc
σb′ = σa′ ×σc′ σb′ where (φ1)#(a

′) = (φ2)#(b
′) = c′ ≤ c, and

for such a face (a′, b′) ≤ (a, b) ∈ A ×C B is unique, so Q1 ×Q Q2 is complete and
reduced.

The universal properties of Q1×Q2 and Q1×QQ2 follow from the corresponding
universal properties of A×B and A×CB among posets, and of σ1×σ2 and σ1×σσ2

among monoids. �
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Proposition 5.3 (Refinements pull-back). If φ : R −→ Q is a refinement and
ψ : Q1 −→ Q is any morphism of complexes, then

φ′ : Q1 ×Q R −→ Q1 is a refinement.

In particular, the fiber product R1×QR2 of two refinements is a mutual refinement
of each.

Proof. Fix σ ∈ Q, and consider τ ∈ R(σ) and σ1 ∈ Q1 such that ψ : σ1 −→ σ. If
we identify τ with its image in σ, then as noted above,

φ′ : σ1 ×σ τ ∼= ψ−1(τ ) ↪−→ σ1

is identified with an inclusion and therefore injective. From the identity

ψ−1(τ1 ∩ τ2) = ψ−1(τ1) ∩ ψ−1(τ2)

it then follows that σ1 ×σ R(σ) = {σ1 ×σ τ ; τ ∈ R(σ)} is a refinement of σ1 and
that by commutativity of φ and ψ with the face maps Q1 ×Q R −→ Q1 forms a
refinement of complexes. �

The complex Q1 ×Q Q2 need not be smooth, even if Q1 and Q2 are smooth and
even if they are refinements. For this and other reasons, it is desirable to know that
smooth refinements exist.

Like the classical algorithms for obtaining smooth refinements in toric geometry
([Ful93], [DCP83]), the following algorithm consists of two steps. The first step
results in a simplicial refinement and is similar in spirit to the usual algorithms
except for the novelty of subdividing monoids from largest dimension downwards
rather than the other way — this strategy has the desirable feature of being func-
torial with respect to the inclusion of complexes. The second step is to produce a
smooth refinement from a simplicial one, and here we make use of the smoothing
operation of Proposition 4.11 which, as previously noted, is not available in the
conventional algebraeo-geometric settings.

Theorem 5.4 (Natural smooth refinement). Let Q be a monoidal complex. Then
there exists a natural smooth refinement NS(Q) −→ Q with the following properties:

(i) If Q is smooth, then NS(Q) = Q.
(ii) If Q0 ⊂ Q is a subcomplex, then the corresponding subcomplex of NS(Q) is

the natural smooth refinement of Q0, i.e.

NS(Q0) = NS(Q)0 := {NS(Q)(σ) ; σ ∈ Q0} .

Proof. Consider a monoid σ with extremals V = {v1, . . . , vn}. Let Λ be the set
of those vi which are linearly independent from all of the others, i.e. such that
span {vi} ∩ span(V \ vi) = {0} . Then the monoid τ which is the largest face of σ
lying in the span of V \ Λ is uniquely determined and thus is either {0} or non-
simplicial. It represents the ‘essential’ non-simpliciality of σ, since σ consists of the
join of τ and the smooth face generated by Λ.

We define the non-simplicial dimension of σ by

nsdim(σ) = dim(τ ),

so in particular, σ is simplicial if and only if nsdim(σ) = 0. If nsdim(σ) = dim(σ)
(i.e. Λ = ∅, so σ = τ ), we call σ fully non-simplicial.

For j ∈ N, let
Mj(Q) = # {σ ; nsdim(σ) = j} .
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676 CHRIS KOTTKE AND RICHARD B. MELROSE

Since Q has a finite number of monoids which are each finite dimensional, each
Mj(Q) is finite, and Mj(Q) = 0 for all j ≥ N , for some N .

Proceeding by induction, assume that Mj(Q) = 0 for j > k. If there are no fully
non-simplicial monoids of dimension k, then Mk(Q) = 0 (indeed, if nsdim(σ) = k,
then it has a fully non-simplicial face τ ≤ σ as above of dimension k), and the
induction is complete. Otherwise, let σ with extremals {v1, . . . , vn} be a fully non-
simplicial monoid of dimension k, and consider the star subdivision S(Q, v), where
v = v1 + · · ·+ vn.

If v lies in a monoid μ ∈ Q, then necessarily σ ≤ μ, and by the induction
hypothesis k ≥ nsdim(μ) ≥ nsdim(σ) = k, so equality holds. Moreover, σ must
be the unique fully non-simplicial face of μ with dimension k, so any face τ ≤ μ
with nsdim(τ ) = k must have σ ≤ τ . Thus if v /∈ τ ≤ μ, then σ �≤ τ , and
therefore nsdim(τ + Nv) < k since v is independent from the generators of τ and
nsdim(τ ) < k.

Since all monoids in S(Q, v) which are not in Q are of the form τ + Nv where
v /∈ τ and τ ≤ μ � v, it follows that Mj(S(Q, v)) ≤ Mj(Q) for j ≥ k. On the
other hand, Mk must actually decrease by at least one, since Q contains a monoid
of non-simplicial dimension k which is not in S(Q, v), namely σ. Thus

Mk(S(Q, v)) < Mk(Q),

and since Mk(Q) < ∞, after a finite number of such subdivisions, we obtain a
complex Q′ for which Mj(Q′) = 0 for j ≥ k and Mj(Q′) < ∞ for j < k, completing
the inductive step.

Note that the inductive step does not depend on the order of the subdivisions.
Indeed, the result of subdividing σ1 and σ2 of dimension k in either order is the
same, unless there is a monoid μ with σ1 ≤ μ and σ2 ≤ μ. But such a μ would then
have nsdim(μ) > k, contradicting the induction hypothesis. Upon completion of
the induction, we obtain a complex NS′(Q) such that Mj

(
NS′(Q)

)
vanishes for all

j; thus NS′(Q) is simplicial. Since star subdivisions are refinements and refinements
compose, NS′(Q) −→ Q is a simplicial refinement.

Finally set NS(Q) = NS′(Q)sm. This involves a local operation on each monoid
and does not depend on any choice of order of the monoids. The first property of
NS(Q) is clear, since if Q is smooth, then Mj(Q) = 0 for all j, so NS′(Q) = Q and
Qsm = Q.

The second property follows from the fact that either
(
S(Q, v)

)
0
= Q0 if v ∈

σ /∈ Q0, or
(
S(Q, v)

)
0
= S(Q0, v) otherwise, along with the fact that NS′(Q)

depends only on the set of fully non-simplicial monoids, independent of any choice
of order. �

The following is an immediate corollary of Proposition 5.2 and Theorem 5.4.

Corollary 5.5. Let Ri i = 1, 2, be refinements of Q. Then a mutual smooth
refinement exists, namely NS(R1 ×Q R2) −→ Q.

Finally, we include here a lemma which will be of use in Section 9.

Lemma 5.6. Let Q0 ⊂ Q be a monoidal subcomplex and R0 −→ Q0 a refinement.
Then there exists a refinement R −→ Q which extends R0, meaning that it contains
R0 as a subcomplex. If R0 is smooth, then a smooth extension exists.

Proof. Say a monoid τ ∈ Q is “refined by R0” if τ ∈ Q0 and R0(τ ) −→ τ is a
non-trivial refinement (i.e. R0(τ ) �= τ ). We then say that σ ∈ Q is “damaged by
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R0” if some face τ ≤ σ is refined by R0, but σ itself is not. In particular, note that
if σ is damaged, then σ /∈ Q0; otherwise R0 −→ Q0 would fail to be a refinement.

If there are no monoids which are damaged by R0, then

R := R0 ∪Q \ Q0 −→ Q
is an extension of R0.

Let d(Q,R0) denote the minimum dimension of σ ∈ Q such that σ is damaged
by R0. We will produce a refinement R1 of a subcomplex Q1 ⊂ Q which extends
R0 and for which d(Q,R1) > d(Q,R0). Proceeding by induction, we eventually
obtain a refinement Rk of Qk ⊂ Q extending R0 which damages no monoids on Q,
since d(Q,Rk) is bounded by the maximum dimension of a monoid in Q, and then
we can take R = Rk ∪Q \ Qk as above.

For the induction, assume a refinement Rj−1 −→ Qj−1 ⊂ Q is given which
extends R0. Let Qj be the subcomplex of Q consisting of Qj−1 and all monoids
of dimension d(Q,Rj−1) which are damaged by Rj−1 along with their faces. Note
that none of their proper faces are damaged by definition of d(Q,Rj−1). Let Λj be
the set of all monoids of the form τ + Nv, where v = v1 + · · ·+ vn is the sum over
extremals of a damaged monoid σ in Qj , and either

(i) τ ≤ σ, such that τ /∈ Qj−1, or
(ii) τ ∈ Rj−1(τ

′) for some τ ′ ≤ σ.

Then set

Rj = Rj−1 ∪ Λj .

We claim Rj refines Qj and d(Q,Rj) > d(Q,Rj−1).
Indeed, identifying monoids in Rj with their images in monoids in Q, the inter-

section of a monoid in Rj−1 and one in Λj must be a face of each in Rj−1; the
intersection of two monoids in Λj is a face of each in Λj ; and it is clear that the
support of any σ ∈ Qj is covered by the supports of monoids in Rj , so Rj −→ Qj

is a refinement.
For the second claim, suppose there was a monoid σ ∈ Q with dim(σ) ≤

d(Q,Rj−1) which was damaged by Rj . As noted above, σ /∈ Qj , which means that
σ is not damaged by Rj−1 and therefore must be damaged by Rj \ Rj−1 = Λj . In
other words, σ has a proper face τ which is non-trivially refined by Λj , but then
τ ∈ Qj and dim(σ) > dim(τ ) = d(Q,Rj−1), a contradiction.

Finally, if R0 is smooth, then we can replace R by NS(R) since (NS(R))0 =
NS(R0) = R0 by Theorem 5.4. �

6. Generalized blow-up of a manifold with corners

We first describe a functor X �−→ PX which assigns to a manifold with corners
its ‘basic smooth monoidal complex’ over the poset of the boundary faces of X and
also assigns to a b-map f : X −→ Y a morphism f� : PX −→ PY . Next we show
that for any smooth refinement R −→ PX , the local construction of a generalized
blow-up in Section 3 extends to give a new manifold with corners [X;R] with a
basic complex realizing R.

Let X be a compact manifold with corners, and consider the set M(X) =⋃n
k=0Mk(X) of its boundary faces. It is partially ordered with respect to inclusion,

but here we will equip it with the reverse order (M(X),≤), in which

(6.1) (M(X),≤) � G ≤ F ⇐⇒ G ⊇ F.
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Definition 6.1 (Basic monoidal complex). The basic monoidal complex of X, de-
noted PX , consists of the smooth monoids

σF =
⊕

G∈M1(X)
F≤G

NeG, F ∈ M(X),

freely generated by the boundary hypersurfaces containing a given face, with the
obvious morphisms

σF ′ ↪−→ σF , F ′ ≤ F ∈ M(X).

It is smooth, complete and reduced, and indexed by the poset (M(X),≤).
If f : X −→ Y is a b-map, then

(6.2) f# : (M(X),≤) −→ (M(Y ),≤)

is order preserving, and f induces a morphism of monoidal complexes

(6.3) f� : PX −→ PY

where f� : σF −→ σf#(F ) is generated by the boundary exponents (1.4) of f :

(6.4)

f� : N 〈eG1
, . . . , eGk

〉 −→ N 〈eH1
, . . . , eHl

〉 ,

eGi
�−→

∑
j

α(Gi, Hj)eHj
.

The complex PX has a canonical embedding into global sections of the b-normal
bundles over the faces of X as follows. If F ∈ Mk(X), recall that bNF −→ F is
canonically trivialized by the frame (x1∂x1

, . . . , xk∂xk
), where xi are any boundary

defining functions for the hypersurfaces Gi containing F . These elements are well
defined independent of the choices of the xi, and they therefore generate a smooth
monoid which may be identified with σF :

σF
∼= N 〈x1∂x1

, . . . , xk∂xk
〉 ⊂ bNF, F ∈ M(X).

If F ⊆ F ′, then bNF ′ is trivialized by a frame (xi∂xi
)i∈I , I ⊂ {1, . . . , k}, and at

any p ∈ F there is a natural inclusion bNpF
′ ⊂ bNpF which induces over F ′ ≤ F

the natural homomorphism

iF ′F : σF ′ ∼= N 〈xi∂xi
〉i∈I ↪−→ σF

∼= N 〈x1∂x1
, . . . , xk∂xk

〉 ,
which is an isomorphism onto the corresponding face of σF and agrees with the
previous definition. Furthermore, if f : X −→ Y is a b-map, then under this
identification (6.4) is given by the b-differential

f� =
bf∗ : σF ⊂ bNF −→ σf#(F ) ⊂ bNf#(F )

since the latter is integral with respect to the bases
{
xi∂xi

}
for bNF and

{
x′
j∂x′

j

}
for bNf#(F ), and bf∗ intertwines the inclusion bNF ′ ⊆ bNF (generating the face
map iF ′F ) with the corresponding inclusion bNf#(F

′) ⊆ bNf#(F ).
Hereafter we will identify PX with its image in the b-normal spaces of X.

Theorem 6.2 (Generalized blow-up of a manifold). If X is a manifold with cor-
ners, then any smooth refinement, R of PX , defines a manifold [X;R], the gener-
alized blow-up of X with respect to R, equipped with a blow-down map

β : [X;R] −→ X,
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GENERALIZED BLOW-UP OF CORNERS AND FIBER PRODUCTS 679

restricting to a diffeomorphism of the interiors and such that β� : P[X;R] −→ PX

factors through an isomorphism

P[X;R]

∼=−→ R
of monoidal complexes.

In particular, M([X;R]) is determined as a poset by R, so [X;R] has a unique
boundary face Fτ for each τ ∈ R, with codim(Fτ ) = dim(τ ) and

Fσ ⊆ Fτ ⇐⇒ τ ≤ σ.

Proof. As a manifold X =
⋃
Wi has a locally finite open covering by coordinate

charts φi : Wi
∼= Vi ⊂ Rk(i)

+ × Rn−k(i). It can further be arranged that the cover is
‘good’ in the sense that all intersections of the coordinate sets are contractible and
that the origin is in the image of each coordinate chart, so that the codimension
k(i) is achieved. Then the image of each coordinate chart is actually diffeomorphic

to Rk(i)
+ ×Rn−k(i), so, by composing with such a diffeomorphism, it can be assumed

that each coordinate chart is surjective. The manifold is then recovered, up to
global diffeomorphism, by gluing

X ∼=
⊔
i

Vi/ ∼,

where the equivalence relation is generated by the transition maps: p ∼ q if and only
if fij(p) = q for some i and j. Here, fij = φj ◦φ−1

i : Oij −→ Oji is a diffeomorphism
on the sets Oij = φi(Wi ∩Wj) whenever Wi ∩Wj �= ∅.

In essence the blown-up manifold is obtained by blowing up each coordinate
chart and showing that the transition maps lift to be smooth.

For each i, let Fi ∈ Mk(i)(X) be the unique boundary face of (maximal) codimen-
sion k(i) such that Fi ∩Wi �= ∅ and let R(Fi) = R(σFi

) be the induced refinement
of σFi

, interpreted as a refinement of the basic monoid σFi
∼= σRn

+
of Rn

+. Whenever

Wi ∩Wj �= ∅, there is a unique smallest boundary face Gij ∈ M(X) which meets
Oij and contains both Fi and Fj , so that R(Fi) = (R(Gij)) (σFi

). Then set

V ′
i = [Rk(i)

+ ;R(Fi)]× Rn−k(i),

and for each pair (i, j), set

O′
ij = (βi × Id)−1(Oij) ⊂ [Rk(ij)

+ ;R(Gij)]× Rn−k(ij) ⊂ [Rk(i)
+ ;R(Fi)]× Rn−k(i).

In light of Corollary 3.7, there are unique diffeomorphisms

f ′
ij : O

′
ij

∼=−→ O′
ji

lifting fij , and we can therefore define

[X;R] =
⊔
i

V ′
i / ∼

where p ∼ q ⇐⇒ f ′
ij(p) = q for some pair (i, j).

Since they commute with the transition maps, f ′
ij , the local blow-down maps

βi : V
′
i −→ Vi patch together to define the global blow-down map

β : [X;R] −→ X.

Clearly [X;R] is paracompact. To verify that it is Hausdorff, let p and q be
distinct points. If β(p) �= β(q), then they can be separated by sets of the form
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680 CHRIS KOTTKE AND RICHARD B. MELROSE

β−1(Oi), where Oi for i = 1, 2 are open sets in X separating β(p) and β(q). On the
other hand, if β(p) = β(q), then p and q can be separated inside some set V ′

i , as in
the proof of Proposition 3.1.

For a fixed F ∈ M(X), it follows from Proposition 3.1 that each V ′
i for which

Fi = F has boundary faces (Fi)σ in correspondence with monoids σ ∈ R(F ).
These are connected in [X;R] for adjacent pairs such that Vi ∩ Vj ∩ F �= ∅ since
the diffeomorphisms f ′

ij preserve the identification of boundary hypersurfaces with
monoids in R(F ). Thus for each σ ∈ R there is a unique boundary face Fσ ∈
M([X;R]) given by the quotient of the union of the local boundary faces (Fi)σ,
and hence the blow-down maps give an identification

P[X;R]
∼= R. �

In fact, the blow-up can be defined globally near each boundary face since F ∈
Mk(X) has a neighborhood in X which is diffeomorphic to Rk

+ × F , and then the

preimage of this open set in [X;R] is diffeomorphic to [Rk
+;R(F )]×F obtained by

localizing the resolution to boundary faces containing F.
If f : X −→ Y is a b-map and β : [Y ;R] −→ Y is a generalized blow-down map,

we say f is compatible with β if the morphism f� : PX −→ PY factors through a
morphism φ : PX −→ R:

(6.5)

R

PX PY

f�

β�

φ

Theorem 6.3 (Lifting b-maps). If f : X −→ Y is an interior b-map compatible
with a generalized blow-up in the sense of (6.5), then f lifts uniquely to a b-map
f ′ : X −→ [Y ;R] such that

[Y ;R]

X Y
f

β
f ′

commutes and such that f ′
� = φ : PX −→ R ∼= P[Y ;R].

Proof. Again, the construction is local. We consider a covering of Y by coordinate

charts Vi
∼= Rk(i)

+ ×Rn−k(i) and, refining if necessary, a covering of X by coordinate

charts Wj
∼= Rl(j)

+ × Rm−l(j) such that for all j, f(Wj) ⊂ Vi for some i. As in
the previous proof, for each i there is a maximal codimension face Fi ∈ Mk(i)(Y )
such that Fi ∩ Vi �= ∅, and similarly for each j a face Gj ∈ Ml(j)(X) such that
Wj ∩Gj �= ∅. Shrinking the coordinate charts if necessary, we can assume without
loss of generality that f#(Gj) = Fi.

Locally, f has the form

fj = f|Wj
: Rl(j)

+ × Rm−l(j) −→ Rk(i)
+ × Rn−k(i)

which lifts by Proposition 3.6 to a b-map

f ′
j : Wj

∼= Rl(j)
+ × Rm−l(j) −→ V ′

i
∼= [Rk(i)

+ ;R(Fi)]× Rn−k(i).
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It follows from the functoriality of these local lifted maps that they are compatible
with the transition maps g′ij : O′

ij −→ O′
ji used to construct [Y ;R], and so the f ′

j

patch together to form a b-map

f ′ : X −→ [Y ;R],

as claimed. �
Corollary 6.4. If Ri, i = 1, 2, are two refinements of PX , then [X;R1] ∼= [X;R2]
over X if and only if R1

∼= R2 as refinements of PX .

Proof. The ‘if’ direction is clear. For the converse, suppose φ : [X;R1] −→ [X;R2]
is a diffeomorphism (which is necessarily a b-map) which intertwines the blow-down
maps to X. Since P[X;Ri] = Ri it follows that φ# : R1 −→ R2 is an isomorphism
of complexes which intertwines the refinement morphisms Ri −→ PX . �

Even if f : X −→ Y is not necessarily compatible with the refinement giving
the blow-up [Y ;R], there are generalized blow-ups of X through which f does
lift. Indeed, from Theorem 6.3 above a generalized blow-up [X;S] admits a map
to [Y ;R] over f : X −→ Y precisely when f� ◦ β� : S −→ PY factors through
R −→ PY . Such a blow-up always exists.

Theorem 6.5 (Blowing up the domain). Let f : X −→ Y be an interior b-map
and [Y ;R] −→ Y a generalized blow-up. Then there exists a generalized blow-up
[X;S] −→ X and a map f ′ : [X;S] −→ [Y ;R] such that

[X;S] [Y ;R]

X Y

f ′

βR
f

βS

commutes.

Proof. First we consider PX ×PY
R −→ PX , which is a refinement by Proposition

5.3. If it is a smooth refinement, then we take S = PX×PY
R and we are done. Note

that in this case [X;S] is the unique “minimal” blow-up, meaning it is universal
among blow-ups of X which lift f : any other blow-up which lifts f must factor
through [X;S] by the universality of fiber products of monoidal complexes and
Theorem 6.3. In general however, PX×PY

R is not smooth. We let S be any smooth
refinement of PX×PY

R, for instance the natural smooth refinement NS(PX×PY
R)

of Theorem 5.4. There are many other choices, none of which is universal. �
Note that this includes Theorem 6.3 as a special case, as follows from the fact

that f� : PX −→ PY is compatible with R −→ PY if and only if PX ×PY
R −→ PX

is an isomorphism, which we leave as an exercise for the reader.

7. Ordinary blow-up and examples

Recall the ordinary blow-up of [X;F ] of a boundary face F ∈ Mk(X). As a set
this is

[X;F ] = X \ F ∪ SN+F,

where SN+F
π−→ F denotes the inward-pointing spherical normal bundle and the

blow-down map β : [X;F ] −→ X is given by the identity on X \ F and by π on
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SN+F (see Figure 4). The smooth structure on [X;F ] is generated by β∗C∞(X)
as well as the quotients xi/xj (where they are finite) of boundary defining functions
for the boundary hypersurfaces Hi such that F is a component of

⋂
i Hi.

Proposition 7.1. The ordinary blow-up of X at the boundary face F is the gener-
alized blow-up corresponding to the star subdivision along the sum over generators
of σF . That is,

[X;F ] ∼= [X;S(PX , vF )],

where vF =
∑

i xi∂xi
and σF = N 〈xi∂xi

〉1≤i≤codim(F ) .

Proof. With the smooth structure above, the “front face” SN+F ∈ M([X;F ]) is a
boundary hypersurface which is fibered over F , whose fiber is a (k−1)-simplex where

k = codim(F ). In fact, for any coordinate chart (x, x′, y) : U ∼= Rk
+ × Rl−k

+ × Rn−l

in X such that F ∩ U ∼= {x1 = · · · = xk = 0}, there are k coordinate charts Ũi,
i = 1, . . . , k, covering β−1(U) in [X;F ]:

(ti, x
′, y) : Ũi

∼= Rk
+ × Rl−k

+ × Rn−l,

where

ti,j =

{
xi if i = j,

xj/xi otherwise.

Thus β : Ũi −→ U has the form

β : (ti, x
′, y) �−→ (tμi

i , x′, y) = (x, x′, y)

where μi is the identity matrix with its ith row replaced by ones:

μi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . . . . . . 0
0 1 . . . . . . . . . . . 0
...

. . .
...

1 · · · 1 1 · · · 1
...

. . .
...

0 . . . . . . . . . . . . . . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Observe that μT
i represents the monoid inclusion

N
〈
x1∂x1

, . . . , xi−1∂xi−1
, vF , . . . , xk∂xk

〉
↪−→ N 〈x1∂x1

, . . . , xk∂xk
〉 ,

where vF = x1∂x1
+ · · ·+ xk∂xk

. The collection of these μT
i , i = 1, . . . , k, therefore

gives the monoid homomorphisms from the maximal dimension τ ∈ S(P, vF ) (σF )
to σF .

All coordinate charts meeting F are blown up in this way, according to the
star subdivision S(PX , vF ), and this is precisely the construction of the generalized
blow-up [X;S(PX , vF )] −→ X. �

The inhomogeneous blow-up of F ∈ M(X) is similar to ordinary blow-up but is
more general. It consists again of the set X \F ∪SN+F , but the smooth structure

is generated over β∗C∞(X) by quotients of the form x
1/n(i)
i /x

1/n(j)
j , where the

n(i) ∈ N are consistently associated with the boundary hypersurfaces through F .
The proof of Proposition 7.1 can be modified in a straightforward manner to

give the following result.
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vF

S(PX , vF ) PX

SN+F

F

[X;F ] X

β�

β

Figure 4. The ordinary blow-up of F in X, and the associated
star subdivision. Only the monoids of maximal dimension are pic-
tured.

Proposition 7.2. Let n : {H ∈ M1(X) ; F ⊆ H} −→ N be an assignment of
integer roots to the boundary hypersurfaces through F . Then the inhomogeneous
blow-up of F with respect to n is realized by the generalized blow-up by the weighted
star subdivision [X;S(PX , vF,n)], where

vF,n =
∑
i

n(i)xi∂xi

is the corresponding weighted sum of the generators of σF = N 〈x1∂x1
, . . . , xn∂xn

〉.

Iterating either of these constructions, we find that iterated boundary blow-up is
also a special case of generalized blow-up. Recall that the lift (or proper transform)
of a submanifold Y ⊂ X under a blow-up β : [X;F ] −→ X is the set

β#(Y ) =

{
β−1(Y ) if Y ⊆ F,

clos
(
β−1 (Y \ F )

)
, otherwise.

The iterated boundary blow-up [X;FN , . . . , F1], Fi ∈ M(X), is defined by successive
lifting:

[X;F1, . . . , FN ] = [· · · [[X;F1], β
#
1 (F2)], · · · , β#

1 ◦ · · · ◦ β#
N−1(FN )],

where βi : [X;F1, . . . , Fi] −→ [X;F1, . . . , Fi−1], and can be extended similarly to
the case of inhomogeneous blow-up.
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Observe that the lift of a boundary face G ∈ M(X) to the blow-up β : [X;F ] −→
X is again a boundary face of [X;F ]. In light of the identification of boundary faces
of a generalized blow-up with monoids in the refinement, it follows directly that
iterated boundary blow-up is realized by iterated star subdivisions.

Corollary 7.3. Let F1, . . . , FN ∈ M(X), and let R1, . . . ,RN be the sequence
of refinements of PX obtained by iteratively defining Rj = S(Rj−1, v ˜Fj

), where

F̃j = β#
1 ◦ · · · ◦ β#

j−1(Fj):

[X;FN , . . . , F1] = [X;RN ].

One might wonder at this point if there are generalized blow-ups of X which
are not of the above type. In fact we will prove in Section 8 that generalized
blow-ups are determined uniquely up to diffeomorphism by their refinements. It
follows that any smooth refinement of PX which cannot be obtained by iterated
(possibly weighted) star subdivision gives a generalized blow-up which is not of this
classical type. Examples of these are easy to construct provided X has corners with
codimension at least 3.

8. Characterization of generalized blow-down maps

In this section, which is independent from the remainder of the paper, we com-
plete our treatment of generalized blow-up, showing that blow-down maps from a
generalized blow-up of the target are characterized analytically among b-maps in
general by two properties.

Definition 8.1. A generalized blow-down map between manifolds with corners,
β : X −→ Y, is a proper b-map which is a diffeomorphism of the interiors and
which has b-differential, bβ∗ : bTxX −→ bTβ(x)Y, an isomorphism for each x ∈ X.

We prove below that such a map induces a smooth refinement as its associated
morphism of monoidal complexes.

The range of a continuous proper map is closed, so it follows directly from the
definition that a generalized blow-down map is surjective. It is convenient, and
there is no restriction, to assume in the subsequent discussion that X, and hence
Y, is connected. We continue to follow the convention for local coordinates (x, y),
where xi ∈ R+ are local boundary defining functions and yi ∈ R are tangential
variables.

First we find a local normal form for a generalized blow-down map.

Lemma 8.2. Let β : X −→ Y be a generalized blow-down map between compact
manifolds, p ∈ G \ ∂G a point in the interior of a boundary face G ∈ Mk(X),
and (x′, y′) = (x′

1, . . . , x
′
k′ , y′1, . . . , y

′
n−k′) local coordinates near q = f(p) ∈ F =

β#(G) ∈ Mk′(Y ). Then there exist local coordinates (x, y, z) near p, with the zi > 0,
such that, after perhaps renumbering the x′ coordinates near q, β has the local form

(8.1) β(x, z, y) = (xν1 , . . . , xνk , z1x
νk+1 , . . . , zk′−kx

νk′ , y1, . . . , yn−k′) = (x′, y′),

where the first k of the νi ∈ Zk are linearly independent.

Proof. Let xj , j = 1, . . . , k, be local boundary defining functions for hypersurfaces
through p. Then, since β is an interior b-map,

(8.2) β∗(x′
i) = ai x

νi = ai

k∏
j=1

x
νji

j , 0 < ai ∈ C∞(X),
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where νji ∈ N. Indeed, νT ∈ Mat(k′×k,N) is the matrix representing bβ∗ : bNG →
bNF with respect to the bases

{
xi∂xi

}
and

{
x′
j∂x′

j

}
.

Since ν must have full rank (or else bβ∗ could not be bijective), relabeling the x′
i

appropriately ensures that the k× k matrix formed by the first k entries in the νji
is invertible and these entries give the vectors νi := (ν1i, . . . , νki) for i = 1, . . . , k.

Changing the xj by positive smooth factors, xj = bjxj , 0 < bj ∈ C∞(X), multi-
plies the coefficient functions ai in (8.2) by the monomials bνi . The independence
of νi, i ≤ k, means that the bj can be chosen so each ai ≡ 1 for i ≤ k. This gives
the first k equations in (8.1).

The tangential coordinates y′i pull back under β to be smooth and independent
at p, so we take yi = β∗y′i for i = 1, . . . , n − k′, ensuring the last n − k′ equations
in (8.1) and without affecting the first k.

Finally, then consider the pull-back of the last k′ − k boundary defining func-
tions. The logarithmic differentials, bβ∗(dx′

i/x
′
i), must be independent at p and

be independent of the dxj/xj , j = 1, . . . , k, and dyl, l = 1, . . . , n − k′. In view
of (8.2) this means precisely that the smooth differentials dai/ai must be linearly
independent at p for i = k+1, . . . , k′, and since the ai > 0 this in turn is equivalent
to the independence of the corresponding dai, so zi := ak−i, i = 1, . . . , k − k′, can
be introduced as additional tangential coordinates giving (8.1). �

In fact, one can take the x′
i to be globally defined boundary defining functions

on a neighborhood of F \ ∂F , and then it follows from the proof that the xi can
be taken to be global on a neighborhood of G \ ∂G. It follows similarly that the yi
and zj are globally defined on each fiber β−1(q′)∩G \ ∂G for q′ in a neighborhood
of q, and it follows that these fibers are contractible. In fact, more is true.

Lemma 8.3. The functions zi, i = 1, . . . , k′ − k, in (8.1) are globally defined on
the fibers β−1(q′) ∩G \ ∂G for q′ in a neighborhood of q, and the map

(8.3) z : β−1(q) ∩G \ ∂G −→ (0,∞)k
′−k

is surjective.

Proof. As noted, z is a globally defined map on the fiber in light of (8.2) and
the fact that zi = ak−i. Suppose then that (8.3) is not surjective, and consider
a point in the closure of the image under z of a component of β−1(q) ∩ G \ ∂G.
By compactness of G, this must be the image of a point p′ in ∂G, in the interior
of a boundary face H ⊆ G with H ∈ Mr(X), say. The assumption that z is not

surjective means that z(p′) lies inside (0,∞)k−k′
, so that 0 < zi(p

′) < ∞ for all
i ≤ k − k′.

By continuity p′ is mapped by β to q. Consider the construction of the xi and zi
in the proof of Lemma 8.2, where we now begin with additional boundary defining
functions x′

i, i = k + 1, . . . , r ≤ k′, for H. Equations (8.2) become

β∗(x′
i) = ai x

νj = a′i x
′γi xνi , 0 < a′i,

where not all the γj ∈ Nr−k can vanish without violating the isomorphism condition
on bβ∗. It follows by going through the construction in the proof that zi = eix

′μ
i ,

where μi ∈ Qr cannot all vanish (though μji may be non-integral and/or negative
since the bj may now involve the x′

i), so at least one zi tends to either zero or
infinity at H, giving a contradiction. �
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From the normal form (8.1) we derive the following path lifting result, which
determines in which face G ∈ β−1(F ) a lifted path will hit the boundary of X from
its b-tangent at t = 0.

Lemma 8.4. Let β : X −→ Y be a generalized blow-down, G ∈ M(X), F =
β#(G) ∈ M(Y ) and q ∈ F \ ∂F, with coordinates (x′, y′) centered at q. If

γ : [0, ε) � t �−→ (tκ, 0) ∈ Y

is a path with endpoint at q and initial b-tangent vector κ =
∑

κix
′
i∂x′

i
∈ bN+F ,

with all κi > 0, then the lift clos(β−1(γ((0, ε))) of the image of γ to X meets
β−1(q) ∩ G \ ∂G if and only if there exists λ =

∑
i λixi∂xi

∈ bN+G such that
bf∗(λ) = κ.

Proof. Since β is a diffeomorphism on the interiors, the smooth path γ : (0, ε) −→
Y \ ∂Y lifts to X \ ∂X. If such a λ ∈ bN+G does exist, then near a component of
β−1(q) ∩G \ ∂G it follows directly that γ has a lift

[0, ε) � t �−→ (tλ, 0, 1) = (x, y, z)

extending to t = 0, with endpoint p = (0, 0, 1) ∈ G \∂G. (Observe that p lies in the
domain of the coordinates (x, y, z) in light of Lemma 8.3.)

If no such λ exists, then every point p of β−1(q) ∩G \ ∂G has a neighborhood

D(ε, p) = {(x, y, z) ; xi < ε, i = 1, . . . , k, |y| < ε} , ε > 0,

which does not meet the lift of γ to X \ ∂X.
Indeed, the image of such a neighborhood under β contains a point of γ if and

only if
(tκ1 , . . . , tκk′ , 0) = (xν1 , . . . , xνk , z1x

νk+1 , . . . , zk′−kx
νk′ , y).

Taking the logarithm of the first k conditions gives

(8.4) κi log t =
∑
j

νji log xj = (bβ∗ log x)i

since νT is the matrix representing bβ∗. Now, in D(ε, p), the vector (log x) ∈
(−A,−∞)k where A = − log ε > 0. Thus, the right side of (8.4) lies in−bβ∗(

bN+G),
but by assumption κ /∈ bβ∗(

bN+G), so (8.4) can have no solution with 0 < t <
1. �

In fact, though we do not use this directly below, Lemmas 8.2 and 8.4 show that
for all G such that β#(G) = F , the map β : G \ ∂G −→ F \ ∂F is a fibration, with

fibers diffeomorphic to (0,∞)k
′−k.

To see this note that since β : G −→ F is an interior b-map it follows from (8.1)
that

(8.5) β : G \ ∂G −→ F \ ∂F
is a submersion. By compactness of G, any limit point of the range of (8.5) must
be the image of a point in G, so it must be surjective, or else an interior point
of F would only meet the boundary of G, which is inconsistent with the defining
properties of an interior b-map. By Lemma 8.2 it follows that z : β−1(q) ∩ G \
∂G −→ (0,∞)k

′−k is a covering map, hence the fibers of (8.5) are a disjoint union
of components diffeomorphic to the latter space. By Lemma 8.4 these fibers must
be connected, since otherwise there would be multiple preimages of γ(t) for small
t.
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Proposition 8.5. If β : X −→ Y is a generalized blow-down map, then the mor-
phism of monoidal complexes

β� : PX −→ PY

is a smooth refinement.

Proof. Since bβ∗ is bijective, β� is necessarily injective, and it suffices to verify that
the cones{

supp
(
β�(σG)

)
= β∗(

bN+G) ; β#(G) = F
}
⊂ supp(σF ) =

bN+F

have union equal to bN+F and have no common interior vectors.
First observe that the union of these cones is indeed bN+F . If not, the comple-

ment, which is open, would contain an interior point of bN+F . Thus, proceeding
by contradiction, we can suppose that there is a vector κ = (κ1, . . . , κk) ∈ bN+F ,
with positive integer entries, which is disjoint from all the β∗(

bN+G). By Lemma
8.4 there is a path γ(t) ∈ Y with an initial b-differential equal to κ and an endpoint
at q ∈ F \ ∂F whose lift to X does not meet any G with β#(G) = F . On the other
hand, by the properness of β there is a sequence 0 < tj → 0 such that the points
β−1(γ(tj)) converge in X. By continuity, the limit must be in β−1(q). However,
since q lies in the interior of F , such a point must lie in the interior of one of the G
with β#(G) = F , which is a contradiction.

Next consider two of the cones β∗(
bN+Gi), i = 1, 2, which contain an interior

vector κ of bN+F in both their relative interiors, i.e. this point is the image of an
interior vector λi of each of the bN+Gi. Lemma 8.4 applies to both faces, hence
the curve γ with endpoint q ∈ F \ ∂F and initial b-tangent vector κ has a lift
with endpoint in the interior of each boundary face. The assumption that β is a
diffeomorphism in the interior therefore ensures that these two boundary faces have
interiors which intersect and that they are therefore equal.

We conclude that β� : PX → PY is a refinement, which must be smooth since
each σG ∈ PX is smooth. �

Proposition 8.6. A generalized blow-down map β : X −→ Y is a diffeomorphism
if and only if

β� : PX −→ PY

is invertible.

Proof. That PY
∼= β�(PX) if β is a diffeomorphism is clear, since β−1

� furnishes an
inverse.

Assume then that β� : PX
∼= PY . For any F ∈ Mk′(Y ), there is therefore a

unique G ∈ Mk(X) with β#(G) = F and β� : σG
∼= σF (it follows that k = k′).

Since the νj , j = 1, . . . , k, in Lemma 8.2 are precisely the coordinates for the
generators of σG in terms of those of σF , we can arrange that ν = Id, and there are
therefore local coordinates as in (8.1) near each point in which β = Id. �

Theorem 8.7. If β : X −→ Y is a generalized blow-down map, then

X ∼= [Y ;PX ]

with respect to the simplicial refinement β� : PX −→ PY .
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Proof. Let Y0 = [Y ;PX ], and let β0 : Y0 −→ Y be the blow-down. The morphism
β� : PX −→ PY is tautologically compatible with the refinement PX −→ PY , since
β� factors through the identity morphism Id : PX −→ PX .

From Theorem 6.3 then, β lifts to a b-map

β′ : X −→ Y0

which is easily seen to be a generalized blow-down since β : X \ ∂X −→ Y \ ∂Y
factors through β′ : X \∂X −→ Y0\∂Y0, which must therefore be a diffeomorphism.
Since the lifted map on monoidal complexes is just the identity,

β′
� = Id : PX −→ PX ,

X ∼= Y0 by Proposition 8.6. �

9. Binomial subvarieties

We consider subvarieties of a manifold which near the boundary have the local
form

(9.1) aix
αi = bix

βi , yj = 0, ai, bi > 0,

which is to say they are given by the vanishing of some binomial equations with
smooth positive coefficients in the boundary defining variables and by the vanishing
of some interior variables. Such objects occur naturally in the setting of fiber
products and in other contexts, for instance the embedding under a b-map of one
manifold into another.

After verifying that such subvarieties are well defined and have a standard form,
we show that, although they are not in general smoothly embedded manifolds with
corners, they have enough structure to support the machinery of monoidal com-
plexes and b-maps. This allows us to develop their resolution theory in the next
section. While it would be possible to define an intrinsic category of abstract ‘bi-
nomial varieties’, since it suffices in our later treatment of fiber products, attention
here is restricted to the case of a binomial variety explicitly embedded in a manifold.

Observe in (9.1) that by dividing by bix
βi and also exponentiating the interior

coordinates, the equations take the unified form a′ix
γi = 1, with γi = αi − βi,

a′i = ai/bi > 0 in the first case and γi = 0, aj = exp(yj) in the second. This may
involve the cancellation of factors of xi which appear on both sides of the equation
and hence the loss of some solutions contained entirely in the boundary. In view
of this we will define binomial structures on sets which are the closure of their
intersection with the interior as in (9.4) below.

With this motivation in mind, on any manifold consider the set of functions

(9.2)

G(X) =
⋃

γ:M1(X)→Z

Gγ(X), where

Gγ(X) = {u ∈ C∞(X \ ∂X) ; u = aργ , 0 < a ∈ C∞(X)} ;

here ρ = (ρH)H∈M1(X) is a collection of global boundary defining functions. Ob-

serve that γ : M1(X) −→ Z induces a functional bγ : bNG −→ C for any
G ∈ M(X) by setting

(9.3) bγ =
∑

M1(X)�H⊇G

γ(H)
dρH
ρH

.
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The Gγ(X) are independent of the defining functions used in (9.2) and pull back
under any interior b-map f : Z −→ Y giving an inclusion f∗G(Y ) ⊂ G(X). Clearly
G(X) is an abelian group under pointwise multiplication, and Gγ1

(X) · Gγ2
(X) ⊂

Gγ1+γ2
(X).

A function f ∈ G(X) can be extended by continuity to points in ∂X at which it
has finite limits, but the logarithmic differential, df/f, extends by continuity to a
smooth global section of bT ∗X since near the boundary it reduces to

df

f
= d log a+

∑
H

γ(H)
dρH
ρH

.

Definition 9.1. A local binomial structure on a closed subset D ⊂ X near a point
p ∈ D consists of a coordinate neighborhood U � p and functions fi ∈ Gγi

(U),
i = 1, . . . , d, which have independent logarithmic differentials dfi/fi ∈ bT ∗

q U at
each q ∈ D ∩ U , and which define D locally in the sense that

(9.4) D ∩ U = closU {q ∈ U \ ∂U ; fi(q) = 1, i = 1, . . . , d} .
The codimension of D at p is d.

An exponent vector γ ∈ M1(X) −→ Z is said to be non-negative (resp. non-
positive) if γ(H) ≥ 0 (resp. ≤ 0) for all H ∈ M1(X), and γ is indefinite if it
is non-zero, and neither non-negative nor non-positive, so an indefinite γ must
have at least one positive and at least one negative coefficient. More locally, γ is
non-negative with respect to F ∈ M(X) if γ(H) ≥ 0 for all H ∈ M1(X) such
that F ⊆ H, and non-positivity and indefiniteness with respect to F are defined
similarly.

For a local binomial structure U on D ⊂ X, the boundary faces of X ∩U which
are met by D can be seen by examining the indefiniteness of the exponent vectors.

Lemma 9.2. If U, fi ∈ Gγi
(U), is a local binomial structure on D near p and U

only meets boundary hypersurfaces which pass through p, then every exponent vector
γi is either zero or indefinite. Similarly, if D meets the interior of F ∈ M(U), then
each γi is either zero or indefinite with respect to F.

Proof. By assumption all the local boundary defining functions vanish at p, so if
γi is non-zero and has all entries of a fixed sign, then aix

γi cannot be equal to 1
near p. The same argument applies to other boundary points of D where fewer of
the boundary defining functions vanish. �

Next we establish a local normal form for local binomial structures.

Lemma 9.3. If U, fi ∈ Gδi(U), is a local binomial structure on D, then near any
boundary point q ∈ D in U there are local coordinates (x, y) in a (possibly smaller)
neighborhood U ′ of q in terms of which

(9.5) D ∩ U ′ = {xγi = 1, i = 1, . . . , d′, yj = 0, j = d′ + 1, . . . , d} ,
where the γi are linearly independent and indefinite vectors with respect to the
maximal codimension boundary face through q.

Proof. By definition of local binomial structure, D ∩ U is the closure of its inter-
section with the interior, so there are interior points of D near q. Let F be the
boundary face of maximal codimension containing q; so q lies in the interior of
F. The b-cotangent space bT ∗

q U , of which the d log fi are sections, has a ‘smooth
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subspace’ bN⊥
q F consisting of the differentials of smooth functions. It is the image

in bT ∗
q U of the natural map T ∗

q U −→ bT ∗
q U and is the annihilator of the b-normal

space bNqF.
The assumed independence of the logarithmic differentials dfi/fi in U ensures

that they span a linear space of dimension d at q,

(9.6) Aq(D) := span {dfi/fi} ⊂ bT ∗
q U.

Within this space consider the intersection

Asm
q (D) = Aq(D) ∩ bN⊥

q F

with the smooth subspace and set d− d′ = dim(Asm
q (D)). In terms of local coordi-

nates (x, y) at q, the functions fi = ai x
δ′i , where the δ′i are the restrictions of the δi

to the boundary hypersurfaces through q and bN⊥
q F is the span of the dyk. Thus

Asm
q (D) is spanned by those linear combinations of logarithmic differentials∑

i

tidfi/fi =
∑
i,j

tiδ
′
ijdxj/xj +

∑
i

tid log ai

for which
∑

i tiδ
′
i ≡ 0.

Thus, after some renumbering, an independent set of the δ′i can be chosen and
renamed γi, i = 1, . . . , d′. The remaining fj , j = d′ + 1, . . . , d, can be replaced by

products f ′
j =

∏
i f

ti
i corresponding to non-trivial independent relations

∑
i tiδ

′
i =

0. Then the set
{
dfi/fi, df

′
j/f

′
j

}
is independent and spans Aq(D) and D is given

locally by the equations fi = f ′
j = 1, but the f ′

j = a′j x
0 are smooth and positive.

The functions log a′j , j = d′ + 1, . . . , d, can then be introduced in place of some
of the tangential variables yj , and their differentials span Asm

q (D). Since the γi
are now linearly independent, after changing the boundary variables from xk to
gk xk with gk > 0 and renumbering, ai x

γi is reduced to the desired form xγi giving
(9.5). �

Definition 9.4. A connected, closed subset D ⊂ X of a manifold with corners is
an interior binomial subvariety if it has a covering by local binomial structures.

The codimension of D is well defined as the local codimension by connectivity,
andD∩(X \ ∂X) is a smooth manifold of dimension dim(D) = dim(X)−codim(D).

It follows from the proof of Lemma 9.3 that the ‘b-conormal spaces’ Aq(D) ⊂
bT ∗

q X in (9.6) are well defined at each point q ∈ D and independent of the local
binomial structure used – for points in the interior Aq(D) is just the ordinary
conormal space to the smooth manifold D∩X \∂X, and its extension by continuity
to D∩∂X is unique. So we may proceed as for a smooth submanifold of a manifold
and set

(9.7)

bTqD = (Aq(D) ⊂ bT ∗
q X)⊥ ⊂ bTqX,

bNqDG = bTqD ∩ bNqG, p ∈ D ∩G, G ∈ M(X).

The b-tangent bundle bTD −→ D is actually independent of the ‘binomial em-
bedding’ of D in X once this is understood correctly, but here we persist with the
extrinsic discussion. Observe that each bNqDG is just the nullspace of the maps
bγi as in (9.3) for the γi occuring in any local binomial structure for D near p. In
particular, it is invariant with respect to replacing the γi by linear combinations
with the same span.
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From the local normal form (9.5) it follows that the intersection of D with a
boundary face through p is again a binomial subvariety, as we now show. By way
of motivation, notice the behavior of the b-tangent spaces on passage to a boundary
face of X: for p ∈ G ∈ M(X), bTpG = bTpX/bNpG.

Lemma 9.5. Suppose D ⊂ X is an interior binomial variety with codimension d.
Then for any G ∈ M(X), such that D∩(G\∂G) �= ∅, a component G′ of the closure
DG := clos (D ∩G \ ∂G) is an interior binomial subvariety of G with codimension
d− dim(bNpDG), for any p ∈ G′ and

(9.8) bTpDG = bTpD/bNpDG.

It may well happen that D ∩ (G \ ∂G) = ∅ but D ∩G �= ∅, in which case we do
not regard D ∩ G as an interior binomial subvariety of G since it lies only in the
boundary.

Proof. Let p be a limit point of G′∩G\∂G, and consider the local form for D near p
given on a neighborhood U ′ by (9.5); we can assume without loss of generality that
U ′ does not meet any other component of D ∩ G. Thus the x’s are local defining
functions for the boundary face F ⊆ G of maximal codimension through p. Divide
them as x = (x′, x′′), where the x′′ define G locally.

Following the proof of Lemma 9.3 above, a maximal subset of the γi may be
chosen so that their restrictions to the boundary faces containingG are independent,
i.e. the projections γi = (γ′

i, γ
′′
i ) �−→ γ′′

i onto the subspace corresponding to the
x′′ are independent. The remaining γj may be replaced by independent linear
combinations δj =

∑
i tiγi which are non-zero only with respect to the boundary

hypersurfaces which do not contain G, i.e. their projections δj = (δ′j , δ
′′
j ) �−→ δ′′j

vanish. The defining conditions (9.5) may therefore be rewritten, after renumbering,

(9.9)
(x′)γ

′
i(x′′)γ

′′
i = 1, i = 1, . . . , k, (x′)δ

′
i = 1, i = k + 1, . . . , d′,

yj = 0, j = d′ + 1, . . . , d,

where the γ′′
i and δ′i are separately independent, and the γ′′

i dx
′′
i /x

′′
i span bNpDG.

Then

(9.10) G′ ∩ U ′ =
{
(x′)γ

′
i = 1, i = k + 1, . . . , d′, yj = 0, j = d′ + 1, . . . , d

}
is a local binomial structure on G′. Certainly the right side of (9.10) is included
in the left. To see the converse, observe that, by the assumption that D meets
the interior of G near p, the system (9.9) must have a sequence of solutions with
x′′ → 0 and all entries of x′ positive but small.

Writing the first set of equations as the linear system γ′′
i · log x′′ = ci for the

vector log x′′, with entries the logarithms of the x′′, we see that this system must,
for each N ∈ R, have a solution with all entries less than N with ci bounded. Since
γ′′
i are linearly independent, it follows that the same is true for any ci. Thus in fact

any solution of the equations in (9.10) corresponds to a point in G′. �

In light of this result, we define the boundary faces of D to be the components
G′ of the non-empty DG = clos(D∩G \∂G). The linear space bNpG

′ := bNpDG =
Null

{
bγi
}
⊂ bNpG as in (9.7) can then be identified as the ‘b-normal space to G′

as a boundary face of D’, consistent with the smooth case. The codimension of
a boundary face G′ ⊂ DG with respect to D is given by dim(bNG′) as expected,
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and we let Mk(D) be the boundary faces of codimension k in this sense, equipping
M(D) =

⋃
k Mk(D) with the order of reverse inclusion.

The intersection of the rational subspaces bNG′, G′ ∈ M(D), with the monoids
σG, G ∈ M(X), gives the ‘basic monoidal complex’ of D.

Proposition 9.6. If D ⊂ X is an interior binomial subvariety the monoids

(9.11) σG′ = bNG′ ∩ σG, G′ ∈ M(D),

where G′ is a component of clos(D ∩ G \ ∂G), form a (not necessarily smooth)
complex PD over (M(D),≤) and there is a natural, injective morphism of complexes

(9.12) i� : PD −→ PX

over i# : M(D) −→ M(X), where i#(G
′) = G such that G′ ⊂ DG as above.

Proof. The monoids σG′ are clearly well defined and toric; it suffices to verify that
they form a complex. If F ′ ⊆ G′ ∈ M(D) and p ∈ F ′, then F ⊆ G ∈ M(X).
Since bNpG

′ = bTpD ∩ bNpG and similarly for bNpF
′, and since bNpG ⊆ bNpF ,

it follows that bNpG
′ ⊆ bNpF

′, giving an inclusion σG′ ⊂ σF ′ , which must be an
isomorphism onto a face since it is the intersection of σF with a subspace. Thus

PD = {σG ; G ∈ M(D)}

is a (complete, reduced) monoidal complex over M(D), and the inclusions σG ⊂
σi#(G) produce a necessarily injective morphism i : PD −→ PX . �

A very special instance of an interior binomial subvariety is a ‘product-’ or p-
submanifold (see [Mel] for background information). This is a smooth submanifold
D ⊂ X which meets all boundary faces of X transversally and which is covered by
coordinate neighborhoods

(
U, (x, y)

)
in X such that

D ∩ U = {yj = 0 ; j = 1, . . . , codim(Y )} .

For a p-submanifold, it is evident that bNpG
′ ≡ bNpG whenever G′ ∈ M(D) is a

component of DG, G ∈ M(X), and so the morphism i� : PD −→ PX consists of

monoid isomorphisms σG′
∼=−→ σG. In other words i� is a local isomorphism, though

it need not be a global one, since the DG may consist of multiple components, and
therefore i# : M(D) −→ M(X) need not be injective.

In fact this global issue of the failure of i# : M(D) −→ M(X) to be injective
arises as a technical obstruction to the resolution of a general interior binomial
variety D ⊂ X by the generalized blow-up of X in the next section. Indeed, if
there are multiple components G′

i ⊂ DG, there may be no way to refine σG ∈ PX

in a way which appropriately resolves the images i�(σG′
i
). Fortunately, one can

always pass to a ‘collar neighborhood’ X ′ ⊃ D in X for which this obstruction does
not arise. The following lemma guarantees the existence of such a neighborhood;
the proof follows directly from the local normal form (9.5).

Lemma 9.7. If D ⊂ X is an interior binomial subvariety, then there exists an open
submanifold X ′ ⊂ X containing D such that i# : M(D) −→ M(X ′) is injective so
that for each G ∈ M(X ′) there is at most one connected component of DG.

Finally, observe that other concepts can be extended from the ‘smooth’ case of
manifolds to binomial subvarieties.
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Definition 9.8. If D ⊂ X is a binomial subvariety and Y a manifold with corners,
then a map f : Y −→ D is a b-map if it is a b-map in the smooth sense, i.e. as a
map f : Y −→ X with f(Y ) ⊂ D.

For such a b-map, the range of the b-differential bf∗ will lie in bTD, and if
G′ ∈ M(D) is the highest codimension face such that f(F ) ⊂ G′, it follows that

(9.13) bf∗ : bNpF −→ bNf(p)G
′.

Just as in Definition 6.1 there is an induced map

(9.14) f� : PY −→ PD

of monoidal complexes.

10. Resolution of binomial subvarieties

In this section we show that a carefully chosen smooth refinement of the monoidal
complex of the ambient manifold X which also refines the monoidal complex of an
interior binomial subvariety D ⊂ X leads to a blow-up under which D lifts to
a p-submanifold; in particular, this resolves D. The resolution of D so obtained
depends essentially only on the choice of the smooth refinement of the monoidal
complex PD.

The notion of a resolution is analogous to that of a generalized blow-up defined
earlier.

Definition 10.1. If D ⊂ X is an interior binomial subvariety, then a manifold Y
with a b-map f : Y −→ X with f(Y ) ⊂ D is a resolution of D if bf∗ : bTpY −→
bTf(p)D is a bijection for all p ∈ Y and f : Y \∂Y −→ D \∂D is a diffeomorphism.

Proposition 10.2. If β : X1 −→ X is a generalized blow-down map between
manifolds and D ⊂ X is an interior binomial subvariety, then the lift (or proper
transform)

(10.1) β#(D) = closX1

(
β−1(D \ ∂X)

)
is an interior binomial subvariety of X1.

Proof. Certainly β#(D) ⊂ X1 is a closed subset. It is a smooth embedded subman-
ifold in the interior, so it suffices to show that it has a local binomial structure at
each boundary point. If p ∈ ∂X1 ∩ β#(D), then by definition, β(p) ∈ ∂X ∩D and
D has a local binomial structure given by fi ∈ G(X). The pull-backs f∗fi ∈ G(X1)
define β#(D) locally, and their logarithmic differentials are independent since the
b-differential of β is an isomorphism at each point. �

Let R −→ PX be a smooth refinement. If D ⊂ X is an interior binomial
subvariety, then R is compatible with PD if there is a subcomplex RD ⊂ R such
that RD −→ PX factors through PD giving a commutative diagram

(10.2)

RD R

PD PX

⊂

i�

where the vertical arrows are smooth refinements and the top is the inclusion of a
subcomplex.
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Proposition 10.3. If R −→ PX is a smooth refinement which is compatible
with an interior binomial subvariety D in the sense of (10.2), then D lifts to a

p-submanifold D̃ = β#(D) of the generalized blow-up

β : [X;R] −→ X.

In particular, β : D̃ −→ D is a resolution of D and β� : P ˜D −→ PD factors through
an isomorphism P

˜D
∼= RD of monoidal complexes.

Proof. Consider an arbitrary p′ ∈ D̃ = β#(D), and let p = β(p′) ∈ D. There
is a unique face G′ ∈ M(D) such that p lies in the interior of G′, and we set
G = i#(G

′) ∈ M(X). Since i� : PD → PX in (9.12) and β� : R −→ PX are both
injective, we identify monoids σG′ and τ ∈ R (G) with their respective images in
σG.

The point p′ ∈ D̃ ⊂ [X;R] lies in some coordinate chart Uτ ⊂ Rk
+ × (0,∞)n−k

with coordinates (t, y) = (t1, . . . , tk, y1, . . . , yn−k), for some τ ∈ R (G), and we can
assume that the coordinates y are pulled back identically from those on X in which
D has the local normal form (9.5). Thus the equations {yj = 0 ; j = d′ + 1, . . . , d}
are the same in Uτ . We consider the lift of the other equations, xγi = 1 under β.
On Uτ , β has the form β : t −→ tμ = x, and we obtain

β∗ (xγi) = (tμ)γi = tβi = 1,

where βi = μγi. Thus near p
′, D̃ ⊂ [X;R] has the local binomial structure

D̃ =
{
tβi = 1, yj = 0

}
.

We will show that the βi are each non-negative or non-positive.
Indeed, the compatibility assumption implies that, for all τ ∈ R (G), either

τ ∈ RD(G′) and hence τ ⊂ σG′ , or τ ∈ R \ RD; in either case the intersection
τ ∩ σG′ must be a face of τ . Since σG′ = σG ∩ Null

{
bγi
}
, it follows that

〈γidx/x, τ 〉 ≥ 0 or 〈γidx/x, τ 〉 ≤ 0, for each γi.

In other words, each vector γidx/x is either non-positive or non-negative with
respect to τ ∈ R(G). Let us assume non-negative; the other case is similar.

From this it follows that no βi is indefinite, since for any a ∈ Rk, ai > 0,

〈βi, a〉 = 〈βi dt/t, a t∂t〉 = 〈μ γi dx/x, a t∂t〉 =
〈
γidx/x, μ

T(a t∂t)
〉
≥ 0

as μT(at∂t) ∈ τ . In light of Lemma 9.2, D̃ only meets boundary faces with respect

to which the βi are zero; hence D̃ has a covering by binomial structures such that

D̃ = {yj = 0 ; j = 1, . . . , d}
and is therefore a p-submanifold.

Since D̃ is a p-submanifold, for any G̃ ∈ M(D̃), σ
˜G
∼= τ for some τ ∈ R ∼= P[X;R].

Finally, it follows from the fact that D̃ is the lift of D that σ
˜G = τ is actually in

RD; hence P
˜D −→ RD is a local isomorphism onto its image and β : D̃ −→ D is a

resolution since it is a diffeomorphism on interiors. �

The resolution of binomial ideals in polynomial and power series rings by toric
methods are well known; see [Tei] for a good overview. The previous proposition
can be seen as an extension of this theory to the interior binomial subvarieties we
have been discussing.
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Next we show that we can obtain a unique resolution of D realizing any smooth
refinement RD −→ PD; in particular, the resolution so obtained is essentially
independent of the ambient manifold X.

Theorem 10.4 (Resolution of binomial varieties). If D ⊂ X is an interior binomial
subvariety, then for every smooth refinement RD −→ PD there exists a resolution

β : [D;RD] −→ D

which realizes the refinement in the sense that

β� : P[D;RD]
∼= RD −→ PD,

and [D;RD] is unique up to diffeomorphism.
If f : Y −→ D is a b-map from a smooth manifold, and if f� : PY −→ PD

factors through RD, then f factors through a unique b-map f̃ : Y −→ [D;RD].

The notation is meant to suggest that this is in some sense the generalized
blow-up in the category of (differentiable) ‘binomial varieties’ where the objects are
treated intrinsically. Indeed, we believe that such a category exists and that gen-
eralized blow-up extends to include arbitrary refinements, not necessarily smooth.

Proof. Assume that i# : M(D) −→ M(X) is injective, passing if necessary to a
collar neighborhood X ′ ⊂ D as in Lemma 9.7. By Proposition 10.3 it suffices to
show that, given RD −→ PD, there exists a refinement RX −→ PX extending
RD (that is, containing RD as a subcomplex), and that the resulting resolution
β#(D) ⊂ [X;RX ] is well defined, independent of the choice of such an extension.

For the first step the planar refinement of Proposition 4.10, S(PX ,PD) −→ PX ,
is a (not necessarily smooth) refinement containing PD as a subcomplex. Then by
Lemma 5.6 the refinement RD −→ PD can be extended to a smooth refinement
RX −→ S(PX ,PD), and the composition RX → S(PX ,PD) → PX is therefore an
extension of RD.

Next suppose R1 and R2 are smooth refinements of PX extending RD, and set

D̃i := β#
i (D) ⊂ [X;Ri], i = 1, 2.

The blow-down β1 : D̃1 −→ D, considered as a map to X, lifts by Theorem 6.3 to

a b-map to [X;R2] whose range lies in D̃2, and vice versa. Thus we obtain b-maps

D̃1 ↔ D̃2

which are generalized blow-down maps and in fact diffeomorphisms by Proposition
8.6 since P

˜D1

∼= RD
∼= P

˜D2
.

Thus the lift D̃ ⊂ [X;RX ] is independent of the extension RX of RD up to

diffeomorphism, and we define [D;RD] = D̃ to be any such lift.
Recall that a b-map f : Y −→ D induces a monoidal complex morphism f� :

PY −→ PX which factors through PD as in (9.14). If in addition f� factors through
RD −→ PD, then it follows that f� : PY −→ PX factors through any extension
RX , and f admits a unique lift f ′ : Y −→ [X;RX ] by Theorem 6.3. The image

of Y \ ∂Y under f ′ lies in D̃ \ ∂[X;RX ], and therefore by continuity f ′(Y ) ⊂ D̃,

so f ′ : Y −→ D̃ is a b-map. Since the resolutions coming from different extensions
are diffeomorphic, it follows from the naturality of the lifted b-maps that

f ′ : Y −→ [D;RD]

is well defined, independent of the choice of extension. �
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Observe that if PD is already smooth, then the above suggests that D is in some
sense already a smooth manifold, though it may not be nicely embedded in X.
Indeed, it follows from the proof of Theorem 10.4 that there exists a refinement
RX −→ PX which is trivial on PD, and this gives a ‘minimal’ resolution of D
which is universal in this case.

Theorem 10.5. If D ⊂ X is an interior binomial variety and PD is smooth, then
there exists a universal resolution [D;PD] −→ D, with the property that any b-map
f : Y −→ D factors uniquely through [D;PD]. In particular, any other resolution
of D is a generalized blow-up of this universal resolution.

Proof. From Theorem 10.4, there exists a unique resolution [D;PD] coming from
the trivial refinement Id : PD −→ PD. Since any b-map f : Y −→ D induces a
morphism f� : PY −→ PD which necessarily factors through this trivial refinement,
f necessarily factors through [D;PD]. If f itself is a resolution, it follows that
the lift f ′ : Y −→ [D;PD] is also diffeomorphic on the interiors, with bijective
b-differential; in other words, it is a generalized blow-down map onto the manifold
[D;PD], and hence a blow-up of this space by Theorem 8.7. �

In fact, though we shall not use this below, it is possible to show that in case
PD is smooth, the spaces D and [D;PD] are actually homeomorphic. Indeed, it is
straightforward to show that the map [D;PD] is a diffeomorphism on the interiors of
boundary faces and hence globally bijective. Then since it is continuous and proper
it has a continuous inverse. Thus one can regard Theorem 10.5 as giving a natural
smooth structure on D itself, though this is not generally equal to the restriction
of the smooth structure on X, as illustrated by the example D =

{
x2
1 = x3

2

}
⊂ R2

+,

whose universal resolution is the usual one: [D;PD] = R+ � t �−→ (t3, t2) ⊂ R2
+.

11. Fiber products

We next bring the theory of the last two sections to bear on the question of fiber
products of manifolds with corners. Recall that in the category of manifolds without
boundary, smooth fiber products do not generally exist. A sufficient condition in
this context is transversality; namely, two smooth maps fi : Xi −→ Y , i = 1, 2, are
transversal if (f1)∗(Tp1

X1) + (f2)∗(Tp2
X2) = TqY for all pairs (p1, p2) ∈ X1 ×X2

such that f1(p1) = f2(p2) = q, and then

(11.1) X1 ×Y X2 = {(p1, p2) ∈ X1 ×X2 ; f1(p1) = f2(p2)} ⊂ X1 ×X2

is a smooth manifold.
We show that the analogous condition of b-transversality in the category of

manifolds with corners implies that X1 ×Y X2 ⊂ X1 × X2 is a union of binomial
subvarieties, each of which is interior to some product of faces. The theory we have
developed then gives sufficient conditions for a fiber product (with the required
universal properties) to exist in the category of manifolds with corners, and gives
a coherent system of resolution by generalized blow-up even when these conditions
are not fully satisfied.

Definition 11.1. Two interior b-maps fi : Xi −→ Y , i = 1, 2, are b-transversal if
for all points pi ∈ Xi such that f1(p1) = f2(p2) = q ∈ Y ,

b(f1)∗
(
bTp1

X1

)
+ b(f2)∗

(
bTp2

X2

)
= bTqY.
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If the fi are not interior, then set Yi = (fi)#(Xi) ∈ M(Y ) for i = 1, 2, so that
fi : Xi −→ Yi are interior b-maps. Consider the (possibly disconnected) manifold
Y1 ∩ Y2. The preimages may be written

(11.2)
f−1
i (Y1 ∩ Y2) =

⋃
l

Hi,l,

Hi,l ∈ M(Xi) and (fi)#(Hi,l) is a component of Y1 ∩ Y2.

In particular, for each Hi,l in (11.2), the induced b-map fi : Hi,l −→ Y1 ∩ Y2 is
interior.

Definition 11.2. Two general b-maps fi : Xi −→ Y , i = 1, 2, are b-transversal if,
in terms of the notation above, for all points pi ∈ Hi,li such that f1(p1) = f2(p2) =
q ∈ Y

b(f1)∗
(
bTp1

H1,l1

)
+ b(f2)∗

(
bTp2

H2,l2

)
= bTq(Y1 ∩ Y2).

Thus in the general case the set-theoretic fiber product (11.1) of b-transversal
maps is the union of the fiber products of interior b-maps.

Proposition 11.3 (Iterated transversality). If fi : Xi −→ Y , i = 1, 2, are b-
transversal, then for every pair of Fi ∈ M(Xi) such that (f1)#(F1) = (f2)#(F2) =
F ∈ M(Y ), the induced b-maps

(fi)|Fi
: Fi −→ F

are b-transversal.

Proof. The Fi necessarily lie in f−1
i (Y1 ∩ Y2), and replacing the Xi by maximal

dimension faces Hi,l of the latter such that Fi ≤ Hi,l, we may assume that the fi
are interior. Choose pi ∈ Fi such that f1(p1) = f2(p2) = q. Suppose Gi ⊆ Fi are the
maximal codimension boundary faces containing pi (in particular, pi ∈ Gi \ ∂Gi),
and set bNpi

(Gi;Fi) =
bNpi

Gi/
bNpi

Fi. These are the b-normal bundles to the Gi

in the manifolds Fi. The b-tangent spaces of the Gi are the quotients bTpi
Gi =

bTpi
Xi/

bNpi
Gi with respect to the natural inclusions bNpi

Gi ↪−→ bTpi
Xi, and

since the pi lie in the interior of the Gi,
bTpi

Gi = Tpi
Gi.

Using a metric to replace the quotients by orthogonal decompositions,

bTpi
Xi = Tpi

Gi ⊕ bNpi
(Gi;Fi)⊕ bNpi

Fi.

The last two factors constitute bNpi
Gi, while the first two constitute bTpi

Fi. The
b-differentials b(fi)∗ have the form

b(fi)∗ =

⎛⎝∗ 0 0
∗ ∗ 0
∗ 0 ∗

⎞⎠ :
Tpi

Gi

⊕bNpi
(Gi;Fi)

⊕bNpi
Fi

−→
TqG
⊕bNq(G;F )
⊕bNqF

with respect to the quotients, where G = (fi)#(Gi), i = 1, 2. In particular, the only
vectors with image in bTqF = TqG ⊕ bNq(G;F ) must lie in the first two factors,
namely Tpi

Gi ⊕ bNpi
(Gi;Fi) ≡ bTpi

Fi. Thus if

b(f1)∗ +
b(f2)∗ : bTp1

X1 × bTp2
X2 −→ TqY

is surjective, then

b
(
(f1)|F1

)
∗ +

b
(
(f2)|F2

)
∗ : bTp1

F1 × bTp2
F2 −→ bTqF

must be surjective. �
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Proposition 11.4. If fi : Xi −→ Y , i = 1, 2, are b-transversal maps, then the
set-theoretic fiber product (11.1) is a union of interior binomial subvarieties

D(F1, F2) = clos (F1 ×Y F2 \ ∂ (F1 × F2)) ⊂ F1 × F2, Fi ∈ M(Xi).

Proof. Every point in X1 ×Y X2 lies in the interior of some F1 × F2 and hence in
D(F1, F2). It suffices to verify that the D(F1, F2) ⊂ F1 × F2 are either empty or
interior binomial subvarieties. So we may restrict attention to the case Fi = Xi,
and assume that D(X1, X2) is nonempty (in particular, the fi are interior).

Suppose Xi � pi �−→ q ∈ Y , and choose coordinates (x′, y′) centered at p1,
(x′′, y′′) centered at p2, and (x, y) = (x1, . . . , xk, yk+1, . . . , yn) centered at q. The
maps fi have the local form

f1 : (x′, y′) �−→
(
a1(x

′, y′)(x′)ν1 , b1(x
′, y′)

)
= (x, y), and

f2 : (x′′, y′′) �−→
(
a2(x

′′, y′′)(x′′)ν2 , b2(x
′′, y′′)

)
= (x, y).

Near (p1, p2) ∈ X1 × X2, (x, y) = (x′, x′′, y′, y′′) are local coordinates in terms of
which

D(X1, X2) ⊂
{
a1(x

′, y′) (x′)
ν1 = a2(x

′′, y′′) (x′′)
ν2 , b1(x

′, y′) = b2(x
′′, y′′)

}
,

which can be written in the form

D(X1, X2) ⊂ {ci xγi = 1 ; i = 1, . . . , n} , 0 < ci ∈ C∞(X1 ×X2),

where

(ci, γi) =

{(
(a1)i/(a2)i, (ν1 ⊕ 0)i − (0⊕ ν2)i

)
, i = 1, . . . , k,(

exp
(
(b1)i − (b2)i

)
, 0
)
, i = k + 1, . . . , n.

Thus it only remains to check the independence of the logarithmic differentials
of the cix

γi . Consider the b-map f1 × f2 : X1 ×X2 −→ Y × Y. There is an exact
sequence

0 → bTqY
bΔ∗→ bT(q,q) (Y × Y ) → bTqY → 0

where Δ : Y −→ Y × Y is the diagonal inclusion and the subsequent map is
the difference from bT(q,q) (Y × Y ) = bTqY × bTqY. The b-transversality condition

means that b (f1 × f2)
∗
is injective as a map

b (f1 × f2)
∗ : bT ∗

q Y −→ bT ∗
(p1,p2)

(X1 ×X2).

This can be identified with the map

bf∗
1 − bf∗

2 : bT ∗
q Y −→ bT ∗

(p1,p2)
(X1 ×X2),

which is similarly injective. Taking the coordinate basis
{
dxi/xi, dyj

}
for bT ∗

q Y ,
we obtain that {

(bf∗
1 − bf∗

2 )dxi/xi, (
bf∗

1 − bf∗
2 )dyj

}
is independent. Observe however that

(bf∗
1 − bf∗

2 )dxi/xi = d log
(
(a1x

′ν1)i
)
− d log

(
(a2x

′′ν2)i
)

= d log (cix
γi) , i = 1, . . . , k,
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and
(bf∗

1 − bf∗
2 )dyi = d(b1)i − d(b2)i

= d log
(
exp
(
(b1)i − (b2)i

))
= d log (cix

γi) , i = k + 1, . . . , n.

We conclude that D(X1, X2) has a covering by local binomial structures and is
therefore an interior binomial subvariety. �

While X1 ×Y X2 may therefore be a complicated and quite singular space, any
smooth maps factoring through it must actually factor through one of the subvari-
eties D(F1, F2).

Proposition 11.5. If gi : Z −→ Xi are b-maps from a connected smooth manifold
such that f1 ◦ g1 = f2 ◦ g2, then the maps gi : Z −→ Xi factor through a canonical
b-map h : Z −→ D(F1, F2) for some D(F1, F2):

Z

D(F1, F2) X2

X1 Y.

π2

f2π1

f1

g2

g1

h

While the map h exists and may be chosen canonically, it is not necessarily
unique, since there may be several pairs (F1, F2) such that Z factors through
D(F1, F2).

Proof. Let F1, F2 be the minimal (largest codimension) faces such that gi : Z −→ Fi

are interior b-maps. Then g1 × g2 : Z −→ F1 ×F2 ⊂ X1 ×X2 is an interior b-map,
and as such

g1 × g2 : Z \ ∂Z −→ F1 × F2 \ ∂ (F1 × F2) .

On the other hand, as a map of sets, g1 × g2 factors through (the set-theoretic)
F1 ×Y F2 by the assumption that f1 ◦ g1 = f2 ◦ g2. Finally, it follows by continuity
and taking the closure of the intersection with the interior of F1 × F2 that

h = g1 × g2 : Z −→ D(F1, F2) ⊂ X1 ×X2,

which is by definition a b-map into an interior binomial subvariety. �

Note that the monoidal complex PD(F1,F2) consists of monoids of the form
σG1

×σG
σG2

, where σGi
∈ PFi

, and G = (f1)#(G1) ∩ (f2)#(G2). Indeed, if F
is a boundary face of D(F1, F2), given by a component of D(F1, F2) ∩G1 ×G2 for
G1 ×G2 ∈ M(X1 ×X2), then

σF = σG1×G2
∩ bNF = σG1

×σG
σG2

.

It is generally not true that PD(F1,F2) is equal to PF1
×PY

PF2
as might at first be

expected, sinceD(F1, F2)∩G1×G2 may be empty or may have multiple components,
while σG1

×σG
σG2

is non-trivial and appears exactly once in PF1
×PY

PF2
.
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We next present two results guaranteeing the existence of smooth fiber products
in certain circumstances, under the assumption that the PD(F1,F2) are smooth.
Recall that a b-map f : X −→ Y is said to be b-normal if for all F ∈ M(X), the
b-differential

bf∗ : bNF −→ bNf#(F )

is surjective. In particular the codimension of f#(F ) can be at most that of F .
We also note that the set B = {D(F1, F2) �= ∅} of non-empty varieties inherits an

order from the one on M(X1)×M(X2), where D(F1, F2) ≤ D(G1, G2) if Fi ≤ Gi

for i = 1, 2. In particular if D(X1, X2) �= ∅, then it is a maximal element of B.
Theorem 11.6 (Existence of smooth fiber products). Let fi : Xi −→ Y , i = 1, 2,
be b-transversal, and suppose that σF1

×σG
σF2

is smooth for all Fi ∈ M(Xi) where
G = (f1)#(F1) ∩ (f2)#(F2) ∈ M(Y ).

(a) If the fi are interior b-maps, then [D(X1, X2);PD(X1,X2)] is a smooth fiber
product in the category of manifolds with corners and interior b-maps.

(b) If B = {D(F1, F2) �= ∅} has a maximal element D(G1, G2) (in particular if
D(X1, X2) is nonempty), and if the fi are b-normal, then [D(G1, G2);PD(G1,G2)]
is a smooth fiber product in the category of manifolds with corners and general
b-maps.

As noted in the previous section, even when the smooth fiber product exists, it
may not be smoothly embedded in X1×X2. The assumption that B have a maximal
element is important; without this condition it is easy to construct counterexamples
where the fi : Xi −→ Y are b-transversal embeddings whose fiber product (which
is just the intersection in this case) is a union of proper boundary faces.

Proof. The monoidal condition ensures that each of the complexes PD(F1,F2) is
smooth. For (a), interior b-maps must factor uniquely through D(X1, X2), and
hence by Theorem 10.5 through the universal resolution [D(X1, X2),PD(X1,X2)]. If
D(X1, X2) is empty, then there are no non-empty manifolds Z mapping through
the Xi to Y .

For (b) we show, using b-normality, that each non-empty binomial variety
D(F1, F2) is contained in the maximal one; it then follows that any Z −→ Xi

must factor uniquely through the smooth manifold [D(G1, G2);PD(G1,G2)] by The-
orem 10.5. It is sufficient to show that the interior (F1 ×Y F2) \ ∂(F1 × F2) is
contained in D(G1, G2) since the latter is closed, and also to assume that the fi
are interior b-maps, replacing the Xi by Gi and Y by (f1)#(G1) = (f2)#(G2) if
necessary.

Thus suppose (p1, p2) ∈ (F1 ×Y F2) \ ∂(F1 × F2), so in particular pi ∈ F̊i for
i = 1, 2, and that D(X1, X2) is non-empty, hence maximal. The b-normality con-
dition ensures that there exist local boundary defining functions (x′

1, . . . , x
′
k1
) and

(x′′
1 , . . . , x

′′
k2
) for F1 and F2, respectively, near p1 and p2 so that, if (x̄1, . . . , x̄k) are

boundary defining functions for F = (f1)#(F1) = (f2)#(F2) near q = f1(p1) =
f2(p2), then

f∗
1 (x̄) = x′ν1 , f∗

2 (x̄) = x′′ν2 .

Indeed, as in the proof of Lemma 8.2 we may take any set x′ = (x′
1, . . . , x

′
k1
)

of boundary defining functions for F1, for which f∗
1 (x̄) = a1x

′ν1 initially, with

0 < a1 ∈
(
C∞(X1)

)k
. Then by surjectivity of b(f1)∗ as represented by the matrix

νT1 , we may replace these by b−1
1 x′ where 0 < b1 ∈

(
C∞(Y )

)k1 satisfies a1 = bν1
1 .
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A similar procedure gives the coordinates x′′ near p2. It follows that, locally, the
defining equations for the fiber product have the form

(11.3)
x′(ν1)i = x′′(ν2)i , i = 1, . . . , k,

fj(x
′, x′′, y′, y′′) = 0, j = k + 1, . . . , n,

which are satisfied at (p1, p2) = (0, 0, 0, 0). By Proposition 11.3, the differentials
dy′,y′′fj(0, 0, y

′, y′′), j = k + 1, . . . , n, are independent, and therefore they remain
so for small (x′, x′′).Moreover, the b-normality condition ensures that the equations
x′(ν1)i = x′′(ν2)i , i = 1, . . . , k, are completely decoupled. Indeed, for each hypersur-
face H ′

i ∈ M(X1), given locally by x′
i = 0, the image (f1)#(H

′
i) ∈ M(Y ) must be

a hypersurface by b-normality and therefore x′
i can appear in at most one of the

equations, and similarly for x′′
i . It follows from the implicit function theorem that

there are nearby solutions to (11.3) in any neighborhood of (0, 0, 0, 0) with all the x′

and x′′ positive, and therefore (p1, p2) lies in the closure of (X1×Y X2)\∂(X1×X2),
which is D(X1, X2). �

In general, even if the PD(F1,F2) are smooth, X1 ×Y X2 ⊂ X1 × X2 is a non-
smooth variety which is in some sense ‘reducible’, being the union of the smooth
varieties D(F1, F2). This may be resolved by replacing X1 ×Y X2 by the disjoint
union of the D(F1, F2), with the cost of losing one of the universal properties of
the fiber product.

We define a weak fiber product of maps fi : Xi −→ Y to be a space D with
maps πi : D −→ Xi such that if gi : Z −→ Xi are maps from an additional space
satisfying f1◦g1 = f2◦g2, then there exists a canonical (but not necessarily unique)
map g : Z −→ D with gi = πi ◦ g. A weak fiber product is not necessarily unique
up to isomorphism.

Under b-transversality alone, the space

D =
⊔

Fi∈M(Xi),i=1,2

D(F1, F2)

serves as a fiber product in the category of interior binomial subvarieties with its
attendant resolution theory, which we summarize below.

Theorem 11.7. Let fi : Xi −→ Y , i = 1, 2, be b-transverse maps and define D as
above.

(a) For every smooth refinement RD −→ PD there is a smooth manifold with
corners [D;RD], with maps hi : [D;RD] −→ Xi forming a commutative square
with fi : Xi −→ Y :

[D;RD] X2

X1 Y.

h2

h1

f1

f2

(b) Any two such resolutions [D;Ri], i = 1, 2, have a mutual smooth resolution,
which is to say a third manifold [D;R0] with maps [D;R0] −→ [D;Ri], i = 1, 2,
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702 CHRIS KOTTKE AND RICHARD B. MELROSE

forming commutative diagrams with the maps [D;Ri] −→ Xj:

[D;R0] [D;R2]

[D;R1] X2

X1 Y

h12

h11

h21

h22

f2
f1

(c) If Z is a manifold with maps gi : Z −→ Xi such that f1 ◦g1 = f2 ◦g2, and if the
morphism PZ −→ PD factors through RD −→ PD, then there is a canonical
map g : Z −→ [D;RD] such that hi ◦ g = gi:

Z

[D;RD] X2

X1 Y

g

h2

h1

f1

f2

g2

g1

(d) Given a manifold Z with maps gi : Z −→ Xi such that f1 ◦g1 = f2 ◦g2, for any
resolution [D;RD] −→ D there exists a generalized blow-up β : [Z;R] −→ Z
and a canonical map g : [Z;R] −→ [D;RD] such that hi ◦ g = gi ◦ β:

[Z;R]

Z [D;RD] X2

X1 Y

g
β

h2

h1

f1

f2

g2

g1

For a manifold Z with maps gi : Z −→ Xi, it is not generally true that there
exists a resolution [D;RD] −→ D through which Z factors, without blowing up the
domain. Also note that if the fi are b-normal and D(X1, X2) �= ∅, then ‘canonical’
can be replaced by ‘unique’ in (c) and (d), since as in the proof of Theorem 11.6,
D ≡ D(X1, X2) in this case.

Proof. The smooth manifold [D;RD] is well defined by the results in Section 10,
giving (a). (b) follows from the existence of mutual refinements, letting R0 be a
smooth refinement of R1 ×PD

R2. (c) follows from Proposition 11.5 and Theorem
6.3, and (d) follows from Theorem 6.5, letting R be a smooth refinement of PZ×PD

RD. �
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˜[X;R]×X Y Y

[X;R] X

Figure 5. The fiber product of a generalized blow-down and the
inclusion of a manifold as an interior binomial subvariety.

In particular, if PD is already smooth, we may take RD = PD in (c) and obtain:

Corollary 11.8. If fi : Xi −→ Y are b-transverse maps and if in addition σF1
×σG

σF2
is a smooth monoid whenever G = (f1)#(F1) ∩ (f2)#(F2) ∈ M(Y ), then as a

union of smooth manifolds,

˜X1 ×Y X2 =
⊔

F1,F2

[D(F1, F2);PD(F1,F2)]

is a weak fiber product in the category of manifolds with corners.

Some of the situations we have already considered are interesting examples of
weak fiber products.

Example 11.9 (A blow-up and a binomial subvariety). Let Y be a smooth manifold
which is included in X as an interior binomial variety, and let X1 = [X;R] −→ X
be a generalized blow-down. Since i : Y ↪−→ X is injective, the fiber product
X1 ×X Y can be identified with β−1(Y ) ⊂ X1. The interior subvariety D(Y,X1) is
just the lift/proper transform β#(Y ), which we showed to be an interior binomial
subvariety in Section 10. Observe, however, that β−1(Y ) generally contains other
subvarieties as well, namely F ∩ β−1(G), where F ∈ M(X1) and G ∈ M(D). See
Figure 5.

Example 11.10 (Two blow-ups). We leave it as an exercise for the reader to show
that the fiber product of two blow-down maps βi : [X;Ri] −→ X, i = 1, 2, is a
subvariety with the monoidal complex R1×PX

R2. By Proposition 5.2 this is a (not
necessarily smooth) refinement of PX , which can be identified with the intersection
complex R1 ∩R2 = {σF1

∩ σF2
⊂ σF ; σFi

∈ Ri(F )}. It is not smooth in general.

Example 11.11 (Joyce’s fiber products). In [Joy09], Joyce proposes a category of
manifolds with corners in which the morphisms are what might be called ‘simple
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704 CHRIS KOTTKE AND RICHARD B. MELROSE

b-maps’ f : X −→ Y which have the property that whenever

f∗IH =
∏

G∈M1(X)

Iα(H,G)
G , H ∈ M1(Y ),

the α(·, ·) are either zero or one, and furthermore for every H there is at most one
G such that α(H,G) �= 0 (which is equivalent to b-normality). As a consequence
the morphisms

f� : σF −→ σf#(F )

are always injective, with images which have orthogonal generators {vi} all of whose
components are zero or one.

Joyce defines a transversality condition in terms of the ordinary differential.
Though he does not use the b-differential, his is an iterated transversality condi-
tion on boundary faces analogous to Proposition 11.3. Joyce shows that for two
transversal maps in his sense, the set-theoretic fiber product is a manifold with
corners.

This also follows from Theorem 11.6. Indeed, for b-transversal simple b-maps,
the monoids σF1

×σG
σF2

can be identified with the intersections σF1
∩ σF2

⊂ σG

by injectivity, and with the properties above, these intersections are automatically
smooth.
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