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Abstract Nanohole arrays in metal films allow extraordinary
optical transmission (EOT); the phenomenon is highly advan-
tageous for biosensing applications. In this article, we theoret-
ically investigate the performance of refractive index sensors,
utilizing square and hexagonal arrays of nanoholes, that can
monitor the spectral position of EOTsignals. We present near-
and far-field characteristics of the aperture arrays and investi-
gate the influence of geometrical device parameters in detail.
We numerically compare the refractive index sensitivities of
the two lattice geometries and show that the hexagonal array
supports larger figure-of-merit values due to its sharper EOT
response. Furthermore, the presence of a thin dielectric film
that covers the gold surface and mimics a biomolecular layer
causes larger spectral shifts within the EOT resonance for the
hexagonal array. We also investigate the dependence of the
transmission responses on hole radius and demonstrate that
hexagonal lattice is highly promising for applications de-
manding strong light transmission.
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Introduction

The ability of light confinement below the diffraction limit
with large near-field intensity enhancements through excita-
tion of surface plasmons [1–3] has enabled various applica-
tions in biodetection field, i.e., surface-enhanced vibrational
spectroscopy [4–10] and label-free biosensing [11–15]. Sur-
face plasmons, propagating at metal surfaces, can be utilized,
e.g., in ultra-compact electro-optic modulators [16]. Applica-
tions may also rely on different particle-based nanoantennas,
which confine electromagnetic radiation to subwavelength di-
mensions through localized surface plasmon resonances
[17–21]. Bringing localized and propagating surface plas-
mons together in a single platform, i.e., in periodic nanopillar
arrays on a conducting layer, optical antenna properties have
been significantly improved [22].

An opaque metal film perforated with a subwavelength
periodic array of holes can support an extraordinary optical
transmission (EOT) [23, 24], i.e., the transmission spectrum of
the film exhibits peaks, where the transmission efficiency is
orders of magnitude greater than expected by the standard
aperture theory [25]. The initial observation by Ebbesen
et al. [23] also provided evidence that this phenomenon is
related to the excitation of propagating surface plasmons due
to periodically patterned metallic surfaces. Since then, numer-
ical and experimental research on metal nanoapertures re-
markably increased in a variety of different fields [26–33].
Geometrical parameters (symmetry and periodicity of the ap-
erture array, hole diameter, and film thickness) and material
properties play an important role in EOT signal and enable a
fine-tuning mechanism of spectral responses [24, 34–36].
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Platforms utilizing nanoholes are highly sensitive to surface
conditions due to their highly confined local electromagnetic
fields, strongly interacting with surrounding medium. For in-
stance, binding of biomolecules triggering a spectral shift
within the EOT resonance due to the changes in the local
refractive index can be used as an indication of the presence
of the analytes on the sensing surface in a label-free manner
[37–40]. Recently, utilizing sharp plasmonic Fano resonances,
direct detection of single monolayers of antibodies with naked
eye has been successfully demonstrated [39].

In this work, we theoretically investigate the effect of geo-
metrical parameters on the performance of refractive index
sensors that are based on nanohole arrays and monitor the
spectral position of an EOT signal. We consider two aperture
systems [39] with nanoholes periodically positioned in two
different lattice geometries: square and hexagonal. For both
systems, we analyze the spectral quality of the EOTsignal and
investigate the near-field characteristics of the corresponding
plasmonic modes that play the dominant role for EOT. We
model the refractive index sensing capabilities of two systems
by introducing different refractive indices of bulk solutions as
well as a dielectric slab covering the metal interface. Finally,
we investigate the dependence of the EOT signal on hole
radius.

Methods

We consider square and hexagonal nanohole arrays that are
formed trough a gold film and a silicon nitride layer [39] as
schematically illustrated in Fig. 1. According to the classical
diffraction theory of apertures by Bethe, the transmittance
normalized to the aperture area scales with aperture radius
r and wavelength λ as (r/λ)4, which implies a strong reduction
in subwavelength regime [25]. However, nanohole arrays sup-
port strong transmission peaks that are related to excitation of
propagating surface plasmons corresponding to the different
grating orders. These EOT signals, labeled by integers (m, n)
that define the grating orders, are approximately located at
wavelengths that obey the grating coupling condition [23, 39]:
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the period of the array (the lattice constant). Dispersion rela-
tion for surface plasmon is shown in Eq. (2):
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where εm and εd are the dielectric constants of the metal and
dielectric layers, respectively, and k0 is the wavenumber in
vacuum. Utilizing Eqs. (1) and (2), one can estimate the spec-
tral positions of the EOT signals at normal incidence support-
ed by the nanohole arrays within the square, Eq. (3), and
hexagonal, Eq. (4), lattice format:
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In our analysis, we focus on Au/Air(1,0) mode (m=1, n=0,
εd=1). The dielectric constant of gold εm is taken from ref.
[41], and the refractive index of silicon nitride (required for
rigorous simulations) is set to 2.16, which is the average re-
fractive index within the visible spectrum. We assume a nor-
mally incident plane wave, linearly polarized along the x-di-
rection and propagating along the z-direction (as schematical-
ly illustrated in Fig. 1a). For rigorous simulations, we employ
the finite-difference time-domain (FDTD) technique [42],
where we use 2-nm mesh size in all directions.

Results

Figure 2a shows the transmission response of the two
nanohole arrays. Square and hexagonal lattices have different

Fig. 1 Schematic view of nanohole arrays with a square and b hexagonal lattices; yellow and blue colors mark gold and silicon nitride layers,
respectively. Polarization and propagation directions of incident light are also shown in (a)
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periods in order to have Au/Air(1,0) modes at the similar
spectral positions. Here, the nanoholes with hexagonal lattice
show sharper linewidth compared to those with square lattice,
i.e., 15.1 vs. 16.6 nm. Figure 2b shows the resonance wave-
length with respect to array periodicity, where the solid lines
(black=square lattice and green=hexagonal lattice) represent
the FDTD results while the dashed curves were calculated
from Eqs. (3) and (4), respectively. The discrepancy between
theoretical estimations and rigorous simulations is mainly due

to the presence of air holes in the metal film. The theoretical
model only accounts for the propagating surface plasmons,
while the plasmonic nanoholes can also excite localized sur-
face plasmons whose properties depend on the aperture geom-
etry. Thus, the EOT phenomenon uniquely combines propa-
gating and localized surface plasmons as will be shown in the
following section. As a result, an increase in the hole radius
shifts the EOT resonance to longer wavelengths (see also
Fig. 6). Similarly, the increase in metal thickness shifts the

Fig. 2 a EOT spectra of the nanoholes for square lattice with period P=
600 nm (black) and hexagonal lattice with period P=684 nm (green). b
Resonance wavelength vs. period calculated for Au/Air(1,0) mode; solid
lines indicate the FDTD calculation (square lattice = black, hexagonal

lattice = green) while dashed lines indicate the theoretical model
(square lattice = black, hexagonal lattice = green). Other geometrical
parameters for both (a) and (b): hole radius r =100 nm and thicknesses
of gold and silicon nitride layers are 120 and 70 nm, respectively

Fig. 3 Electric and magnetic
field intensity distributions
calculated at the Au/Air(1,0)
resonance for two nanohole
systems. Electric field intensity
distributions at the top metal
surface for a square and d
hexagonal lattices. Magnetic field
intensity distributions at the top
metal surface for b square and e
hexagonal lattices. Cross-
sectional electric field intensity
distributions for c square and f
hexagonal lattices. The structural
parameters are as in Fig. 2a
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resonance to longer wavelengths (not shown here), which has
a negligible effect here as the assumed metal film is relatively
thick.

Figure 3 shows the near-field distributions at the resonance.
Electric field intensity distributions, calculated at the top sur-
face of the metal film (Fig. 3a, d), indicate the excitation of
localized surface plasmons which have dipolar character,
allowing large near-field enhancements as well as strong
EOT signals in the far field. Here, strong near fields are local-
ized at the rims of the aperture along the polarization direction
(x). Magnetic field intensity distributions calculated at the top
surface of the metal film (Fig. 3b, e) show that the plasmonic
hot spots around the rims of the nanoholes along y-direction
are due to the excitations of localized surface plasmons. For
square lattice, the standing field pattern along x-direction is
due to the simultaneous excitation of two counter-propagating
surface plasmons that correspond to Au/Air(±1,0) modes
(Fig. 3b) [12]. For hexagonal lattice, the standing field pattern
has more complex form as it appears along two directions that
make angles of +30° and −30° with x-axis and correspond to
the excitation of Au/Air(±1,0) and Au/Air(±1,∓1) modes, re-
spectively (Fig. 3e). As shown in the cross-sectional field
profile (xz-direction) in Fig. 3c, f, large electromagnetic fields
are localized at the aperture tips (top gold surface) and extend
extensively within the medium in the vicinity of the aperture
arrays. These large and highly accessible local electromagnet-
ic fields strongly improve the sensitivity of the aperture sys-
tems to the change in the local refractive index, which will be
analyzed in the following section.

As nanohole arrays support large and accessible near fields,
the spectral location of their strong transmission resonances
highly depends on the change in the refractive index of the
adjacent medium n. We then quantify this dependence through
wavelength sensitivity, which is defined as the ratio between
the resonance wavelength shift and the change in refractive

index (S=Δλ/Δn) [39]. Figure 4 presents the calculated reso-
nance wavelength of Au/Medium(1,0) mode for various me-
dia including DI water (n=1.33), acetone (n=1.35), ethanol
(n=1.36), and IPA (n=1.37). Here, nanohole arrays with
square lattice (black line) show a wavelength sensitivity of
640 nm/refractive index unit (RIU), whereas the one with
hexagonal lattice (green line) support a smaller sensitivity of
610 nm/RIU. On the other hand, supporting sharper reso-
nances with full-width half maximum (FWHM) of 15.1 vs.
16.6 nm, hexagonal lattice exhibits larger figure-of-merit
values (FOM=S/FWHM) compared to square one as 40.4
vs. 38.5.

In order to better quantify the sensing capabilities of the
nanohole systems, we numerically analyzed the apertures, in
which the gold surface was covered with a 10-nm dielectric
film with a refractive index of n=1.6, which accounts for a
biomolecular layer sticking on the surface. As shown in
Fig. 5a, b, hexagonal lattice shows larger sensitivity compared
to square one, i.e., Au/Air(1,0) modes shift to longer wave-
lengths by Δλ=24.8 nm vs. Δλ=23.8 nm. Furthermore, as

Fig. 4 Resonance wavelength of Au/Medium(1,0) mode vs. refractive
index of the adjacent medium (air, DI water, acetone, ethanol, IPA) for
square (black line) and hexagonal (green line) lattices. The other
structural parameters are as in Fig. 2a

Fig. 5 Variations of EOT spectra for a square and b hexagonal lattice;
Bare indicates results of Fig. 2a, and With dielectric layer indicates the
gold surface covered with a 10-nm dielectric film with the refractive
index n=1.6. c Spectral shift of Au/Air(1,0) mode caused by the
dielectric film vs. the period for both the lattices
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presented in Fig. 5c, increasing periodicity decreases the spec-
tral shifts in both arrays. Figure 5c also shows that for the same
periodicity, hexagonal lattice supports much larger spectral
shifts compared to square one; the increase in the shift is about
7 nm, which is highly important for biosensing applications.

Finally, we investigate the effect of radius on the transmis-
sion spectra in Fig. 6a, b for square and hexagonal lattices,
respectively. As inferred from the conventional diffraction
theory, transmission of light from apertures increases for larg-
er hole diameters. In order to eliminate this additional effect,
we compare the transmittivity (the transmission normalized to
the area occupied by the holes) of each structure for different
hole diameters. For both aperture systems, we observe a sim-
ilar behavior such that transmittivity increases for larger aper-
ture radiuses. Here for the same radius, hexagonal lattice sup-
ports larger transmittivity. More importantly, for the nanoholes
with hexagonal lattice, Au/Air(1,0) mode is well defined even
for larger radiuses while improving the transmission capabil-
ity. This characteristic is highly important for imaging-based
biosensing studies demanding strong light transmission with-
out suffering from undesired variations within spectral line
shape. In contrast, the system with square lattice strongly suf-
fers from the spectral shoulder that appears on the right side of
Au/Air(1,0) mode, which makes monitoring this spectral fea-
ture complicated. As an additional note, we observe that
changes in the thicknesses of metal and dielectric layers result
in identical variations within transmission spectra (not shown
here) for both systems as they have identical effects on phys-
ical phenomena playing the role for EOT.

Conclusion

In this article, we theoretically investigated EOT responses of
nanohole arrays with square and hexagonal lattice symmetries
that are applicable in refractive index sensing. For similar
resonance wavelengths, both arrays yield similar wavelength
sensitivities; however, hexagonal array supports larger figure-
of-merit values due to its spectrally sharp EOT signal

compared to square one. In order to demonstrate the sensing
capabilities of both lattice configurations, we modeled bio-
molecules sticking on the gold surface by a 10-nm dielectric
layer. In this case, spectral resonance shift caused by the di-
electric film is larger for hexagonal lattice; the difference in-
creases when the lattices have the same period. Finally, we
found that the resonance in hexagonal lattice is well defined
even for larger hole radiuses; the observation demonstrates
that this lattice is highly advantageous over the square one
for applications demanding strong light transmission.
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