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Abstract The little Grothendieck problem consists of maximizing
∑

i j Ci j xi x j for
a positive semidefinite matrix C , over binary variables xi ∈ {±1}. In this paper we
focus on a natural generalization of this problem, the little Grothendieck problem
over the orthogonal group. Given C ∈ R

dn×dn a positive semidefinite matrix, the

objective is to maximize
∑

i j tr
(
CT
i j Oi OT

j

)
restricting Oi to take values in the group

of orthogonal matrices Od , where Ci j denotes the (i j)-th d × d block of C . We
propose an approximation algorithm, which we refer to as Orthogonal-Cut, to solve
the little Grothendieck problem over the group of orthogonal matricesOd and show a
constant approximation ratio. Our method is based on semidefinite programming. For
a given d ≥ 1, we show a constant approximation ratio of αR(d)2, where αR(d) is the
expected average singular value of a d×d matrixwith randomGaussianN (

0, 1
d

)
i.i.d.

entries. For d = 1 we recover the known αR(1)2 = 2/π approximation guarantee
for the classical little Grothendieck problem. Our algorithm and analysis naturally
extends to the complex valued case also providing a constant approximation ratio for
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the analogous little Grothendieck problem over the Unitary Group Ud . Orthogonal-
Cut also serves as an approximation algorithm for several applications, including the
Procrustes problem where it improves over the best previously known approximation
ratio of 1

2
√
2
. The little Grothendieck problem falls under the larger class of problems

approximated by a recent algorithm proposed in the context of the non-commutative
Grothendieck inequality. Nonetheless, our approach is simpler and provides better
approximation with matching integrality gaps. Finally, we also provide an improved
approximation algorithm for the more general little Grothendieck problem over the
orthogonal (or unitary) group with rank constraints, recovering, when d = 1, the
sharp, known ratios.

Keywords Approximation algorithms · Procrustes problem · Semidefinite
programming

Mathematics Subject Classification 68 Computer science · 90 Mathematical
programming

1 Introduction

The little Grothendieck Problem [3] in combinatorial optimization is written as

max
xi∈{±1}

n∑

i=1

n∑

j=1

Ci j xi x j , (1)

where C is a n × n positive semidefinite matrix real matrix.
Problem (1) is known to be NP-hard. In fact, if C is a Laplacian matrix of a graph

then (1) is equivalent to the Max-Cut problem. In a seminal paper in the context of the
Max-Cut problem, Goemans and Williamson [19] provide a semidefinite relaxation
for (1):

sup
m∈N

max
Xi∈Rm

‖Xi‖2=1

n∑

i=1

n∑

j=1

Ci j X
T
i X j . (2)

It is clear that in (2), one can take m = n. Furthermore, (2) is equivalent to a semi-
definite program and can be solved, to arbitrary precision, in polynomial time [39].
In the same paper [19] it is shown that a simple rounding technique is guaranteed to
produce a solution whose objective value is, in expectation, at least a multiplicative
factor 2

π
min0≤θ≤π

θ
1−cos θ

≈ 0.878 of the optimum.

A few years later, Nesterov [27] showed an approximation ratio of 2
π
for the general

case of an arbitrary positive semidefinite C � 0 using the same relaxation as [19].
This implies, in particular, that the value of (1) can never be smaller than 2

π
times the

value of (2). Interestingly, such an inequality was already known from the influential
work of Grothendieck on norms of tensor products of Banach spaces [17] (see [31]
for a survey on this).

Severalmore applications have since been found for theGrothendieck problem (and
variants), and its semidefinite relaxation. Alon and Naor [3] showed applications to
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estimating the cut-normof amatrix; Ben-Tal andNemirovski [10] showed applications
to control theory; Brietet al. [6] explored connections with quantum non-locality. For
many more applications, see for example [2] (and references therein).

In this paper, we focus on a natural generalization of problem (1), the little
Grothendieck problem over the orthogonal group, where the variables are now ele-
ments of the orthogonal groupOd , instead of {±1}. More precisely, givenC ∈ R

dn×dn

a positive semidefinite matrix, we consider the problem

max
O1,...,On∈Od

n∑

i=1

n∑

j=1

tr
(
CT
i j Oi O

T
j

)
, (3)

where Ci j denotes the (i, j)-th d × d block of C , and Od is the group of d × d
orthogonal matrices (i.e., O ∈ Od if and only if OOT = OT O = Id×d ).

We will also consider the unitary group variant, where the variables are now ele-
ments of the unitary group Ud (i.e., U ∈ Ud if and only if UUH = UHU = Id×d ).
More precisely, given C ∈ C

dn×dn a complex valued positive semidefinite matrix, we
consider the problem

max
U1,...,Un∈Ud

n∑

i=1

n∑

j=1

tr
(
CH
i j UiU

H
j

)
. (4)

Since C is Hermitian positive semidefinite, the value of the objective function in (4)
is always real. Note also that when d = 1, (3) reduces to (1). Also, since U1 is the
multiplicative group of the complex numbers with unit norm, (4) recovers the classical
complex case of the little Grothendieck problem. In fact, the work of Nesterov was
extended [25] to the complex plane (corresponding to U1, or equivalently, the special
orthogonal group SO2) with an approximation ratio of π

4 for C � 0. As we will see
later, the analysis of our algorithm shares many ideas with the proofs of both [27]
and [25] and recovers both results.

As we will see in Sect. 2, several problems can be written in the forms (3) and (4),
such as the Procrustes Problem [26,33,36] andGlobal Registration [13].Moreover, the
approximation ratio we obtain for (3) and (4) translates into the same approximation
ratio for these applications, improving over the best previously known approximation
ratio of 1

2
√
2
in the real case and 1

2 in the complex case, given by [30] for these problems.
Problem (3) belongs to a wider class of problems considered by Nemirovski [26]

called quadratic optimization under orthogonality constraints (QO-OC), which itself
is a subclass of quadratically constrainted quadratic programs (QC-QP). Please refer
to Sect. 2 for a more detailed comparison with the results of Nemirovski [26]. More
recently, Naor et al. [30] proposed an efficient rounding scheme for the non commu-
tative Grothendieck inequality that provides an approximation algorithm for a vast
set of problems involving orthogonality constraints, including problems of the form
of (3) and (4). We refer to Sect. 1.2 for a comparison between this approach and
ours.

Similarly to (2)we formulate a semidefinite relaxationwename theOrthogonal-Cut
SDP:
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sup
m∈N

max
Xi XT

i =Id×d

Xi∈Rd×m

n∑

i=1

n∑

j=1

tr
(
CT
i j Xi X

T
j

)
. (5)

Analogously, in the unitary case, we consider the relaxation

sup
m∈N

max
Yi Y H

i =Id×d

Yi∈Cd×m

n∑

i=1

n∑

j=1

tr
(
CH
i j YiY

H
j

)
. (6)

Since C is Hermitian positive semidefinite, the value of the objective function in (6)
is guaranteed to be real. Note also that we can take m = dn as the Gram matrix
[Xi XT

j ]i, j does not have a rank constraint for this value of m. In fact, both Problems
(5) and (6) are equivalent to the semidefinite program

max
G∈Kdn×dn

Gii=Id×d , G�0

tr(CG), (7)

for K respectively R and C, which are generally known to be computationally
tractable1 [1,28,39]. At first glance, one could think of Problem (5) as having d2n
variables and that we would have to take m = d2n for (5) to be tractable (in fact,
this is the size of the SDP considered by Nemirovski [26]). The savings in size (cor-
responding to number of variables) of our proposed SDP relaxation come from the
group structure of Od (or Ud ).

One of the main contributions of this paper is showing that Algorithm 3 (Sect. 1.1)
gives a constant factor approximation to (3), and its unitary analog (4), with an optimal
approximation ratio for our relaxation (Sect. 6). It consists of a simple generalization
of the rounding in [19] applied to (5), or (4).

Theorem 1 Let C � 0 and real. Let V1, . . . , Vn ∈ Od be the (random) output of the
orthogonal version of Algorithm 3. Then

E

⎡

⎣
n∑

i=1

n∑

j=1

tr
(
CT
i j Vi V

T
j

)
⎤

⎦ ≥ αR(d)2 max
O1,...,On∈Od

n∑

i=1

n∑

j=1

tr
(
CT
i j Oi O

T
j

)
,

where αR(d) is the constant defined below.
Analogously, in the unitary case, if W1, . . . ,Wn ∈ Ud are the (random) output of

the unitary version of Algorithm 3, then for C � 0 and complex,

E

⎡

⎣
n∑

i=1

n∑

j=1

tr
(
CH
i j WiW

H
j

)
⎤

⎦ ≥ αC(d)2 max
U1,...,Un∈Ud

n∑

i=1

n∑

j=1

tr
(
CH
i j UiU

H
j

)
,

where αC(d) is defined below.

1 We also note that these semidefinite programs satisfy Slater’s condition as the identity matrix is a feasible
point. This ensures strong duality, which can be exploited by many semidefinite programming solvers.
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Definition 2 Let GR ∈ R
d×d and GC ∈ C

d×d be, respectively, a Gaussian random
matrix with i.i.d real valued entries N (

0, d−1
)
and a Gaussian random matrix with

i.i.d complex valued entries N (
0, d−1

)
. We define

αR(d) := E

⎡

⎣ 1

d

d∑

j=1

σ j (GR)

⎤

⎦ and αC(d) := E

⎡

⎣ 1

d

d∑

j=1

σ j (GC)

⎤

⎦ ,

where σ j (G) is the j th singular value of G.

Although we do not have a complete understanding of the behavior of αR(d) and
αC(d) as functions of d, we can, for each d separately, compute a closed form expres-
sion (see Sect. 4). For d = 1 we recover the sharp αR(1)2 = 2

π
and αC(1)2 = π

4
results of, respectively, Nesterov [27] and Man-Cho So et al. [25]. One can also show

that limd→∞ αK(d)2 = ( 8
3π

)2
, for both K = R and K = C. Curiously,

αR(1)2 = 2

π
<

(
8

3π

)2

<
π

4
= αC(1)2.

Our computations strongly suggest that αR(d) is monotonically increasing while its
complex analog αC(d) is monotonically decreasing. We find the fact that the approxi-
mation ratio seems to get, as the dimension increases, better in the real case and worse
in the complex case quite intriguing. One might naively think that the problem for
a specific d can be formulated as a degenerate problem for a larger d, however this
does not seem to be true, as evidenced by the fact that α2

R
(d) is increasing. Another

interesting point is that αR(2) �= αC(1) which suggests that the little Grothendieck
problem overO2 is quite different from the analog inU1 (which is isomorphic to SO2).
Unfortunately, we were unable to provide a proof for the monotonicity of αK(d) (Con-
jecture 8).Nevertheless,we can show lower bounds for bothα2

R
(d) andα2

C
(d) that have

the right asymptotics (see Sect. 4). In particular, we can show that our approximation
ratios are uniformly bounded below by the approximation ratio given in [30].

In some applications, such as the Common Lines problem [37] (see Sect. 5), one
is interested in a more general version of (3) where the variables take values in the
Stiefel manifold O(d,r), the set of matrices O ∈ R

d×r such that OOT = Id×d . This
motivates considering a generalized version of (3) formulated as, for r ≥ d,

max
O1,...,On∈O(d,r)

n∑

i=1

n∑

j=1

tr
(
CT
i j Oi O

T
j

)
, (8)

for C � 0. The special case d = 1 was formulated and studied in [6] and [7] in the
context of quantum non-locality and quantum XOR games. Note that in the special
case r = nd, (8) reduces to (5) and is equivalent to a semidefinite program.

We propose an adaption of Algorithms 3, 9, and show an approximation ratio of
αR(d, r)2, where αR(d, r) is also defined as the average singular value of a Gaussian
matrix (see Sect. 5). For d = 1 we recover the sharp results of Briet el al. [7] giving a
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simple interpretation for the approximation ratios, as α(1, r) is simply the mean of a
normalized chi-distribution with r degrees of freedom. As before, the techniques are
easily extended to the complex valued case.

In order to understand the optimality of the approximation ratiosαR(d)2 andαC(d)2

we provide an integrality gap for the relaxations (5) and (6) that matches these ratios,
showing that they are tight. Our construction of an instance having this gap is an
adaption of the classical construction for the d = 1 case (see, e.g., [3]). As it will
become clear later (see Sect. 6), there is an extra difficulty in the d > 1 orthogonal
case which can be dealt with using the Lowner–Heinz Theorem on operator convexity
(see Theorem 13 and the notes [11]).

Besides the monotonicity of α2
K

(d) (Conjecture 8), there are several interesting
questions raised from this work, including the hardness of approximation of the prob-
lems considered in this paper (see Sect. 7 for a discussion on these and other directions
for future work).

Organization of the paper The paper is organized as follows. In Sect. 1.1 below
we present the approximation algorithm for (3) and (4). In Sect. 1.2, we compare our
results with the ones in [30]. We then describe a few applications in Sect. 2 and show
the analysis for the approximation ratio guarantee in Sect. 3. In Sect. 4 we analyze
the value of the approximation ratio constants. Section 5 is devoted to a more general,
rank constrained, version of (4).We give an integrality gap for our relaxation in Sect. 6
and discuss open problems and future work in Sect. 7. Finally, we present supporting
technical results in the “Appendices 1 and 2”.

1.1 Algorithm

We now present the (randomized) approximation algorithm we propose to solve (3)
and (4).

Algorithm 3 Compute X1, . . . , Xn ∈ R
d×nd (or Y1, . . . ,Yn ∈ C

d×nd) a solution to
(5) [or (6)]. Let R be a nd × d Gaussian random matrix whose entries are real (or
complex) i.i.d. N (0, 1

d ). The approximate solution for (3) [or (4)] is now computed
as

Vi = P(Xi R),

where P(X) = argminZ∈Od
‖Z − X‖F (or P(Y ) = argminZ∈Ud

‖Z − Y‖F ), for any

X ∈ R
d×d(or Y ∈ C

d×d) and ||X ||F =
√
tr
(
XXT

)
(||Y ||F =

√
tr
(
YY H

)
) is the

Frobenius norm.

Note that (5) and (6) can be solved with arbitrary precision in polynomial time [39]
as they are equivalent to a semidefinite program (followed by a Cholesky decomposi-
tion) with a, respectively real and complex valued, matrix variable of size dn×dn, and
d2n linear constraints. In fact, this semidefinite program has a very similar structure
to the classical Max-Cut SDP. This may allow one to adapt specific methods designed
to solve the Max-Cut SDP such as, for example, the row-by-row method [41] (see
Section 2.4 of [5]).
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Moreover, given X a d × d matrix (real or complex), the polar component P(X) is
the orthogonal (or unitary) matrix part of the polar decomposition, that can be easily
computed via the singular value decomposition of X = U�V H asP(X) = UV H (see
[15,20,21]), rendering Algorithm 3 efficient. The polar component P(X) = UV H is
the analog in high dimensions of the sign in O1 and the angle in U1 and can also be

written as P(X) = X
(
XH X

)− 1
2 .

1.2 Relation to non-commutative Grothendieck inequality

The approximation algorithm proposed in [30] can also be used to approximate prob-
lems (3) and (4). In fact, the method in [30] deals with problems of the form

sup
X,Y∈ON

∑

pqkl

Mpqkl X pqYkl , (9)

where M is a N × N × N × N real valued 4-tensor.
Problem (3) can be encoded in the form of (9) by taking N = dn and having the

d × d block of M , obtained by having the first two indices range from (i − 1)d + 1
to id and the last two from ( j − 1)d + 1 to jd, equal to Ci j , and the rest of the
tensor equal to zero [30]. More explicitly, the nonzero entries of M are given by
M(i−1)d+r,(i−1)d+r,( j−1)d+s,( j−1)d+s = [

Ci j
]
rs , for each i, j and r, s = 1, . . . , d.

Since C is positive semidefinite, the supremum in (9) is attained at a pair (X,Y ) such
that X = Y .

In order to describe the relaxation one needs to first define the space of vector-
valued orthogonal matrices ON (m) = {X ∈ R

N×N×m : XXT = XT X =
IN×N } where XXT and XT X are N × N matrices defined as

(
XXT

)
pq =

∑N
k=1
∑m

r=1 X pkr Xqkr and
(
XT X

)
pq =∑N

k=1
∑m

r=1 Xkpr Xkqr .
The relaxation proposed in [30] (which is equivalent to our relaxation when M is

specified as above) is given by

sup
m∈N

sup
U,V∈ON (m)

∑

pqkl

MpqklUpqVkl , (10)

and there exists a rounding procedure [30] that achieves an approximation ratio of
1

2
√
2
. Analogously, in the unitary case, the relaxation is essentially the same and the

approximation ratio is 1
2 . We can show (see Sect. 4) that the approximation ratios we

obtain are larger than these for all d ≥ 1. Interestingly, the approximation ratio of 1
2 ,

for the complex case in [30], is tight in the full generality of the problem considered
in [30], nevertheless αC(d)2 is larger than this for all dimensions d.

Note also that to approximate (3) with this approach one needs to have N = dn
in (10). This means that a naïve implementation of this relaxation would result in a
semidefinite program with a matrix variable of size d2n2 × d2n2, while our approach
is based on semidefinite programs with matrix variables of size dn×dn. It is however
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conceivable that when restricted to problems of the type of (3), the SDP relaxation
(10) may enjoy certain symmetries or other properties that facilitate its solution.

2 Applications

Problem (3) can describe several problems of interest. As examples, we describe below
how it encodes a complementary version of the orthogonal Procrustes problem and
the problem of Global Registration over Euclidean Transforms. Later, in Sect. 5, we
briefly discuss yet another problem, the Common Lines problem, that is encoded by
a more general rank constrained version of (3).

2.1 Orthogonal procrustes

Given n point clouds in R
d of k points each, the orthogonal Procrustes problem [33]

consists of finding n orthogonal transformations that best simultaneously align the
point clouds. If the points are represented as the columns of matrices A1, . . . , An ,
where Ai ∈ R

d×k then the orthogonal Procrustes problem consists of solving

min
O1,...,On∈Od

n∑

i, j=1

||OT
i Ai − OT

j A j ||2F . (11)

Since ||OT
i Ai − OT

j A j ||2F = ‖Ai‖2F + ‖A j‖2F − 2 tr
(
(Ai AT

j )
T Oi OT

j

)
, (11) has the

same solution as the complementary version of the problem

max
O1,...,On∈Od

n∑

i, j=1

tr
(
(Ai A

T
j )

T Oi O
T
j

)
. (12)

Since C ∈ R
dn×dn given by Ci j = Ai AT

j is positive semidefinite, problem (12)
is encoded by (3) and Algorithm 3 provides a solution with an approximation ratio
guaranteed (Theorem 1) to be at least αR(d)2.

The algorithm proposed in Naor et al. [30] gives an approximation ratio of 1
2
√
2
,

smaller than αR(d)2, for (12). As discussed above, the approach in [30] is based on a
semidefinite relaxation with a matrix variable of size d2n2 × d2n2 instead of dn × dn
as in (5) (see Sect. 1.2 for more details).

Nemirovski [26] proposed a different semidefinite relaxation [with amatrix variable
of size d2n×d2n instead of dn×dn as in (5)] for the orthogonal Procrustes problem.
In fact, his algorithm approximates the slightly different problem

max
O1,...,On∈Od

∑

i �= j

tr
(
(Ai A

T
j )

T Oi O
T
j

)
, (13)

which is an additive constant (independent of O1, . . . , On) smaller than (12). The
best known approximation ratio for this semidefinite relaxation, due to So [36], is
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O
(

1
log(n+k+d)

)
. Although an approximation to (13) would technically be stronger

than an approximation to (12), the two quantities are essentially the same provided
that the point clouds are indeed perturbations of orthogonal transformations of the
same original point cloud, as is the case in most applications [see [30] for a more
thorough discussion on the differences between formulations (12) and (13)].

Another important instanceof this problem iswhen the transformations are elements
of SO2 (the special orthogonal group of dimension 2, corresponding to rotations of the
plane). Since SO2 is isomorphic to U1 we can encode it as an instance of problem (4),
in this case we recover the previously known optimal approximation ratio of π

4 [25].
Note that, since all instances of problem (3) can be written as an instance of

orthogonal Procrustes, the integrality gap we show (Theorem 14) guarantees that
our approximation ratio is optimal for the natural semidefinite relaxation we consider
for the problem.

2.2 Global registration over euclidean transforms

The problem of global registration over Euclidean rigid motions is an extension of
orthogonal Procrustes. In global registration, one is required to estimate the positions
x1, . . . , xk of k points in R

d and the unknown rigid transforms of n local coordinate
systems given (perhaps noisy) measurements of the local coordinates of each point in
some (though not necessarily all) of the local coordinate systems. The problem differs
from orthogonal Procrustes in two aspects: First, for each local coordinate system, we
need to estimate not only an orthogonal transformation but also a translation in R

d .
Second, each point may appear in only a subset of the coordinate systems. Despite
those differences, it is shown in [13] that global registration can also be reduced to the
form (3) with a matrix C that is positive semidefinite.

More precisely, denoting by Pi the subset of points that belong to the i-th local
coordinate system (i = 1 . . . n), and given the local coordinates

x (i)
l = OT

i (xl − ti ) + ξil

of point xl ∈ Pi (where Oi denotes an unknown orthogonal transformation, ti an
unknown translation and ξil a noise term). The goal is to estimate the global coordinates
xl . The idea is to minimize the function

φ =
n∑

i=1

∑

l∈Pi

∥
∥
∥xl − (Oi x

(i)
l + ti )

∥
∥
∥
2
,

over xl , ti ∈ R
d , Oi ∈ Od . It is not difficult to see that the optimal x	

l and t	i can be
written in terms of O1, . . . , On . Substituting them back into φ, the authors in [13]
reduce the previous optimization to solving

max
Oi∈Od

n∑

i=1

n∑

j=1

tr

([
BL†BT

]

i j
Oi O

T
j

)

, (14)
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where L is a certain (n + k) × (n + k) Laplacian matrix, L† is its pseudo inverse, and
B is a (dn) × (n + k) matrix (see [13]). This means that BL†BT � 0, and (14) is of
the form of (3).

3 Analysis of the approximation algorithm

In this Section we prove Theorem 1. As (5) and (6) are relaxations of, respectively,
problem (3) and problem (4) their maximums are necessarily at least as large as the
ones of, respectively, (3) and (4). This means that Theorem 1 is a direct consequence
of the following theorem.

Theorem 4 Let C � 0 and real. Let X1, . . . , Xn be a feasible solution to (5). Let
V1, . . . , Vn ∈ Od be the output of the (random) rounding procedure described in
Algorithm 3. Then

E

⎡

⎣
n∑

i=1

n∑

j=1

tr
(
CT
i j Vi V

T
j

)
⎤

⎦ ≥ αR(d)2
n∑

i=1

n∑

j=1

tr
(
CT
i j Xi X

T
j

)
,

where αR(d) is the constant in Definition 2. Analogously, if C � 0 and complex
and Y1, . . . ,Yn is a feasible solution of (6) and W1, . . . ,Wn ∈ Ud the output of the
(random) rounding procedure described in Algorithm 3. Then

E

⎡

⎣
n∑

i=1

n∑

j=1

tr
(
CH
i j WiW

H
j

)
⎤

⎦ ≥ αC(d)2
n∑

i=1

n∑

j=1

tr
(
CT
i jYiY

H
j

)
,

where αC(d) is the constant in Definition 2.

In Sect. 6 we show that these ratios are optimal (Theorem 14).
Before proving Theorem 4 we present a sketch of the proof for the case d = 1 (and

real). The argument is known as the Rietz method (See [3]):2

Let X1, . . . , Xn ∈ R
1×n be a feasible solution to (5), meaning that Xi XT

i = 1. Let
R ∈ R

n×1 be a random matrix with i.i.d. standard Gaussian entries. Our objective is

to compare E
[∑n

i, j Ci j sign(Xi R)sign(X j R)
]
with

∑n
i, j Ci j Xi XT

j . The main obser-

vation is that although E
[
sign(Xi R)sign(X j R)

]
is not a linear function of Xi XT

j ,

the expectation E
[
sign(Xi R)X j R

]
is. In fact E

[
sign(Xi R)X j R

] = αR(1)Xi XT
j =

√
2
π
Xi XT

j —which follows readily by thinking of Xi and X j as vectors in the two
dimensional plane that they span. We use this fact (together with the positiveness of
C) to show our result. The idea is to build the matrix S � 0,

Si j =
(

Xi R −
√

π

2
sign(Xi R)

)(

X j R −
√

π

2
sign(X j R)

)

.

2 These ideas also play a major role in the unidimensional complex case treated by Man-Cho So et al. [25].
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Since both C and S are PSD, tr(CS) ≥ 0, which means that

0 ≤ E

⎡

⎣
∑

i j

Ci j (Xi R −
√

π

2
sign(Xi R))(X j R −

√
π

2
sign(X j R))

⎤

⎦ .

Combining this with the observation above and the fact that E
[
Xi RX j R

] = Xi XT
j ,

we have

E

n∑

i, j

Ci j sign(Xi R)sign(X j R) ≥ 2

π

n∑

i, j

Ci j Xi X
T
j .

Proof (of Theorem 4) For the sake of brevity we restrict the presentation of the proof
to the real case. Nevertheless, it is easy to see that all the arguments trivially adapt to
the complex case by, essentially, replacing all transposes with Hermitian adjoints and
αR(d) with αC(d).

Let R ∈ R
nd×d be a Gaussian random matrix with i.i.d entries N (

0, 1
d

)
. We want

to provide a lower bound for

E

⎡

⎣
n∑

i=1

n∑

j=1

tr
(
CT
i j Vi V

T
j

)
⎤

⎦ = E

⎡

⎣
n∑

i=1

n∑

j=1

tr
(
CT
i jP(Ui R)P(Uj R)T

)
⎤

⎦ .

Similarly to the d = 1 case, one of the main ingredients of the proof is the fact given
by the lemma below. �

Lemma 5 Let r ≥ d. Let M, N ∈ R

d×nd such that MMT = NNT = Id×d . Let
R ∈ R

nd×d be a Gaussian random matrix with real valued i.i.d entries N (
0, 1

d

)
.

Then

E

[
P(MR)(N R)T

]
= E

[
(MR)P(N R)T

]
= αR(d)MNT ,

where αR(d) is constant in Definition 2.
Analogously, if M, N ∈ C

d×nd such that MMH = NNH = Id×d , and R ∈ C
nd×r

is a Gaussian random matrix with complex valued i.i.d entries N (
0, 1

d

)
, then

E

[
P(MR)(N R)H

]
= E

[
(MR)P(N R)H

]
= αC(d)MNH ,

where αC(d) is constant in Definition 2.

Before proving Lemma 5 we use it to finish the proof of Theorem 4.
Just as above,we define the positive semidefinitematrix S ∈ R

dn×dn whose (i, j)-th
block is given by

Si j =
(
Ui R − αR(d)−1P(Ui R)

) (
Uj R − αR(d)−1P(Uj R)

)T
.
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We have

ESi j = E

[
Ui R(Uj R)T − αR(d)−1P(Ui R)(Uj R)T − αR(d)−1Ui RP(Uj R)T

+αR(d)−2P(Ui R)P(Uj R)T
]

= UiE

[
RRT

]
UT

j − αR(d)−1
E

[
P(Ui R)(Uj R)T

]

−αR(d)−1
E

[
Ui RP(Uj R)T

]
+ αR(d)−2

E

[
ViV

T
j

]

= UiU
T
j −UiU

T
j −UiU

T
j + αR(d)−2

E

[
ViV

T
j

]

= αR(d)−2
E

[
ViV

T
j

]
−UiU

T
j .

By construction S � 0. Since C � 0, tr(CS) ≥ 0, which means that

0 ≤ E [tr (CS)] = tr (CE[S]) =
n∑

i=1

n∑

j=1

tr
(
CT
i j

(
αR(d)−2

E

[
ViV

T
j

]
−UiU

T
j

))
.

Thus,

E

⎡

⎣
n∑

i=1

n∑

j=1

tr
(
CT
i j Vi V

T
j

)
⎤

⎦ ≥ αR(d)2
n∑

i=1

n∑

j=1

tr
(
CT
i jUiU

T
j

)
.

�

We now present and prove an auxiliary lemma, needed for the proof of Lemma 5.

Lemma 6 Let G be a d × d Gaussian random matrix with real valued i.i.d.N (
0, 1

d

)

entries and let αR(d) as defined in Definition 2. Then,

E

(
P(G)GT

)
= E

(
GP(G)T

)
= αR(d)Id×d .

Furthermore, if G is a d × d Gaussian random matrix with complex valued i.i.d.
N (

0, 1
d

)
entries and αC(d) the analogous constant (Definition 2), then

E

(
P(G)GH

)
= E

(
GP(G)H

)
= αC(d)Id×d .

Proof We restrict the presentation to the real case. All the arguments are equivalent
to the complex case, replacing all transposes with Hermitian adjoints and αR(d) with
αC(d).

LetG = U�V T be the singular value decomposition ofG. SinceGGT = U�2UT

is a Wishart matrix, it is well known that its eigenvalues and eigenvectors are inde-
pendent and U is distributed according to the Haar measure in Od (see e.g. Lemma
2.6 in [38]). To resolve ambiguities, we consider � ordered such that �11 ≥ �22 ≥
· · · ≥ �dd .
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Let Y = P(G)GT . Since

P(G) = P(U�V T ) = U Id×dV
T ,

we have

Y = P(U�V T )(U�V T )T = U Id×dV
T V�UT = U�UT .

Note that GP(G)T = U�UT = Y .
Denoting u1, . . . , ud the rows of U , since U is distributed according to the Haar

measure, we have that u j and −u j have the same distribution conditioned on � and
ui , for any i �= j . This implies that if i �= j,Yi j = ui�uTj is a symmetric random
variable, and so EYi j = 0. Also, ui ∼ u j implies that Yii ∼ Y j j . This means that
EY = cId×d for some constant c. To obtain c,

c = c
1

d
tr(Id×d) = 1

d
E tr(Y ) = 1

d
E tr(U�UT ) = 1

d
E

n∑

k=1

σk(G) = αR(d),

which shows the lemma. �

Proof (of Lemma 5)We restrict the presentation of proof to the real case. Nevertheless,
as before, all the arguments trivially adapt to the complex case by, essentially, replacing
all transposes with Hermitian adjoints and αR(d) with αC(d).

Let A = [
MT NT

] ∈ R
dn×2d and A = QB be the QR decomposition of A

with Q ∈ R
nd×nd an orthogonal matrix and B ∈ R

nd×2d upper triangular with non-
negative diagonal entries; note that only the first 2d rows of B are nonzero. We can
write

QT A = B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B11 B12
0d B22
0d 0d
...

...

0d 0d

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
dn×2d ,

where B11 ∈ R
d×d and B22 ∈ R

d×d are upper triangular matrices with non-negative
diagonal entries. Since

(QT MT )T11(Q
T MT )11 = (QT MT )T (QT MT ) = MQQT MT = MInd×ndM

T

= MMT = Id×d ,

B11 = (QT MT )11 is an orthogonal matrix, which together with the non-negativity
of the diagonal entries (and the fact that B11 is upper-triangular) forces B11 to be
B11 = Id×d .

Since R is a Gaussian matrix and Q is an orthogonal matrix, QR ∼ R which
implies
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E

[
P(MR)(N R)T

]
= E

[
P(MQR)(NQR)T

]
.

Since MQ = [BT
11, 0d×d , . . . , 0d×d ] = [Id×d , 0d×d , . . . , 0d×d ] and NQ =

[BT
12, B

T
22, 0d×d , . . . , 0d×d ],

E

[
P(MR)(N R)T

]
= E

[
P(R1)(B

T
12R1 + BT

22R2)
T
]
,

where R1 and R2 are the first two d×d blocks of R. Since these blocks are independent,
the second term vanishes and we have

E

[
P(MR)(N R)T

]
= E

[
P(R1)R

T
1

]
B12.

The Lemma now follows from using Lemma 6 to obtain E
[P(R1)RT

1

] = αR(d)Id×d

and noting that B12 = (QT MT )T (QT NT ) = MNT .
The sameargument,withQ′B ′ theQR decomposition of A′ = [NT MT

] ∈ R
dn×2d

instead, shows

E

[
(MR)P(N R)T

]
= E

[
R1P(R1)

T
]
MNT = αR(d)MNT .

�


4 The approximation ratios αR(d)2 and αC(d)2

The approximation ratio we obtain (Theorem 1) for Algorithm 3 is given, in the
orthogonal case, by αR(d)2 and, in the unitary case, by αC(d)2.αR(d) and αC(d) are
defined as the average singular value of a d × d Gaussian matrix G with, respectively
real and complex valued, i.i.dN (0, 1

d ) entries. These singular values correspond to the
square root of the eigenvalues of a Wishart matrixW = GGT , which are well-studied
objects (see, e.g., [34] or [12]).

For d = 1, this corresponds to the expected value of the absolute value of standard
Gaussian (real or complex) random variable. Hence,

αR(1) =
√

2

π
and αC(1) =

√
π

4
,

meaning that, for d = 1, we recover the approximation ratio of 2
π
, of Nesterov [27]

for the real case, and the approximation ratio of π
4 of Man-Cho So et al. [25] in the

complex case.
For any d ≥ 1, themarginal distribution of an eigenvalue of theWishartmatrixW =

GGT is known [12,23,24] (see Sect. 1). Denoting by p(K)
d the marginal distribution

for K = R and K = C, we have

αK(d) = 1

d1/2

∫ ∞

0
x1/2 p(K)

d (x)dx . (15)
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In the complex valued case, p(C)
d (x) can be written in terms of Laguerre polynomi-

als [12,23] and αC(d) is given by

αC(d) = d−3/2
d−1∑

n=0

∫ ∞

0
x1/2e−x Ln(x)

2dx, (16)

Where Ln(x) is the nth Laguerre polynomial. In Sect. 1 we give a lower bound to
(16). The real case is more involved [24], nevertheless we are able to provide a lower
bound for αR(d) as well.

Theorem 7 Consider αR(d) and αC(d) as defined in (2). The following holds,

αC(d) ≥ 8

3π
− 5.05

d
and αR(d) ≥ 8

3π
− 9.07

d
.

Proof These bounds are a direct consequence of Lemmas 20 and 21.

One can easily evaluate limd→∞ αK(d) (without using Theorem 7) by noting that
the distribution of the eigenvalues of the Wishart matrix we are interested in, as d →
∞, converges in probability to the Marchenko–Pastur distribution [34] with density

mp(x) = 1

2πx

√
x(4 − x)1[0,4],

for both K = R and K = C. This immediately gives,

lim
d→∞ αK(d) =

∫ 4

0

√
x

1

2πx

√
x(4 − x)dx = 8

3π
.

We note that one could also obtain lower bounds for α2
K

(d) from results on the rate of
convergence to mp(x) [18]. However this approach seems to not provide bounds with
explicit constants and to not be as sharp as the approach taken in Theorem 7.

For anyd, the exact value ofαK(d) canbe computed, by (15), usingMathematica
(See table below). Figure 1 plots these values for d = 1, . . . , 44. We also plot the
bounds for the real and complex case obtained in Theorem 7, and the approximation
ratios obtained in [30], for comparison.

d αR(d) αC(d) αR(d) ≈ αR(d)2 ≈ αC(d) ≈ αC(d)2 ≈

1
√

2
π

√
π
2 0.7979 0.6366 0.8862 0.7854

2 2
√
2−1
4

√
π

11
√

π
2

16 0.8102 0.6564 0.8617 0.7424

3 2
√
2+3π

6
√
3π

107
√

π
3

128 0.8188 0.6704 0.8554 0.7312

∞ 8
3π

8
3π 0.8488 0.7205 0.8488 0.7205
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Fig. 1 Plot showing the computed values of αK(d)2, for d ≤ 44, the limit of αK(d)2 as d → ∞, the
lower bound for αK(d)2 given by Theorem 7 as function of d, and the approximation ratio of 1

2
√
2
and 1

2
obtained in [30]

The following conjecture is suggested by our analysis and numerical computations.

Conjecture 8 Let αR(d) and αC(d) be the average singular value of a d × d matrix
with random i.i.d., respectively real valued and complex valued,N (

0, 1
d

)
entries (see

Definition 2). Then, for all d ≥ 1,

αC(d + 1) ≤ αC(d) and αR(d + 1) ≥ αR(d),

5 The little Grothendieck problem over the Stiefel manifold

In this section we focus on a generalization of (3), the little Grothendieck problem over
the Stiefel manifold O(d,r), the set of matrices O ∈ R

d×r such that OOT = Id×d . In
this exposition we will restrict ourselves to the real valued case but it is easy to see
that the ideas in this Section easily adapt to the complex valued case.

We consider the problem

max
O1,...,On∈O(d,r)

n∑

i=1

n∑

j=1

tr
(
CT
i j Oi O

T
j

)
, (17)

for C � 0. The special case d = 1 was formulated and studied in [6] and [7] in the
context of quantum non-locality and quantum XOR games.

Note that, for r = d, Problem (17) reduces to (3) and, for r = nd, it reduces to the
tractable relaxation (5). As a solution to (3) can be transformed, via zero padding, into
a solution to (17) with the same objective function value, Algorithm 3 automatically
provides an approximation ratio for (17), however we want to understand how this
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approximation ratio can be improved using the extra freedom (in particular, in the
case r = nd, the approximation ratio is trivially 1). Below we show an adaptation of
Algorithm 3, based on the same relaxation (5), for Problem (17) and show an improved
approximation ratio.

Algorithm 9 Compute X1, . . . , Xn ∈ R
d×nd a solution to (5). Let R be a nd ×

r Gaussian random matrix whose entries are real i.i.d. N (0, 1
r ). The approximate

solution for (17) is now computed as

Vi = P(d,r)(Xi R),

where P(d,r)(X) = argminZ∈O(d,r)
‖Z − X‖F , for any X ∈ R

d×r , is a generalization
of the polar component to the Stiefel manifold O(d,r).

Below we show an approximation ratio for Algorithm 9.

Theorem 10 Let C � 0. Let V1, . . . , Vn ∈ O(d,r) be the (random) output of Algo-
rithm 9. Then,

E

⎡

⎣
n∑

i=1

n∑

j=1

tr
(
CT
i j Vi V

T
j

)
⎤

⎦ ≥ αR(d, r)2 max
O1,...,On∈O(d,r)

n∑

i=1

n∑

j=1

tr
(
CT
i j Oi O

T
j

)
,

where αR(d, r) is the defined below (Definition 11).

Definition 11 Let r ≥ d and G ∈ R
d×r be a Gaussian random matrix with i.i.d real

entries N (
0, 1

r

)
. We define

αR(d, r) := E

⎡

⎣ 1

d

d∑

j=1

σ j (G)

⎤

⎦ ,

where σ j (G) is the j th singular value of G.

We investigate the limiting behavior of αR(d, r) as r → ∞ and as r, d → ∞ at a
proporitional rate in Sect. 5.2.

The proof of Theorem 10 follows the same line of reasoning as that of Theorem 1
(and Theorem 4). We do not provide the proof in full, but state and prove Lemmas 17
and 18 in the “Appendices 1 and 2”, which are the analogous, to this setting, of
Lemmas 6 and 5.

Besides the applications, for d = 1, described in [6] and [7], Problem (17) is also
motivated by an application in molecule imaging, the common lines problem.

5.1 The common lines problem

The common lines problem arises in three-dimensional structure determination of
biological molecules using Cryo-Electron Microscopy [37], and can be formulated as
follows. Consider n rotation matrices O1, . . . , On ∈ SO3. The three columns of each
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rotation matrix form a orthonormal basis to R3. In particular, the first two columns of
each rotation matrix span a two-dimensional subspace (a plane) inR3. We assume that
no two planes are parallel. Every pair of planes intersect at a line, called the common-
line of intersection. Let bi j ∈ R

3 be a unit vector that points in the direction of the
common-line between the planes corresponding to Oi and Oj . Hence, there exist unit
vectors ci j and c ji with vanishing third component (i.e., ci j = (xi j , yi j , 0)T ) such that
Oici j = Ojc ji = bi j . The common lines problem consists of estimating the rotation
matrices O1, . . . , On from (perhaps noisy) measurements of the unit vectors ci j and
c ji . The least-squares formulation of this problem is equivalent to

max
O1,...,On∈SO3

n∑

i, j=1

tr(c ji c
T
i j O

T
i O j ) (18)

However, since ci j has zero in the third coordinate, the common-line equationsOici j =
Ojc ji do not involve the third columns of the rotation matrices. The optimization
Problem (18) is therefore equivalent to

max
ÕT
1 ,...,ÕT

n ∈O(2,3)

n∑

i, j=1

tr(
(c ji )
(ci j )
T ÕT

i Õ j ), (19)

where
 : R3 → R
2 is a projection discarding the third component (i.e.,
(x, y, z) =

(x, y)) and ÕT
i ∈ O(2,3). The coefficient matrix in (19), Ci j = 
(ci j )
(c ji )T , is not

positive semidefinite. However, one can add a diagonal matrix with large enough
values to it in order to make it PSD. Although this does not affect the solution of (19)
it does increase its function value by a constant, meaning that the approximation ratio
obtained in Theorem 10 does not directly translate into an approximation ratio for
Problem (19); see Sect. 7 for a discussion on extending the results to the non positive
semidefinite case.

5.2 The approximation ratio αR(d, r)2

In this Section we attempt to understand the behavior of αR(d, r)2, the approximation
ratio obtained for Algorithm 9. Recall that αR(d, r) is defined as the average singular
value of G ∈ R

d×r , a Gaussian random matrix with i.i.d. entries N (
0, 1

r

)
.

For d = 1 this simply corresponds to the average length of a Gaussian vector in
R
r with i.i.d. entries N (

0, 1
r

)
. This means that αR(1, r) is the mean of a normalized

chi-distribution,

αR(1, r) =
√
2

r

�
( r+1

2

)

�
( r
2

) .

In fact, this corresponds to the results ofBriet et al. [7], which are known to be sharp [7].
For d > 1 we do not completely understand the behavior of αR(d, r), nevertheless

it is easy to provide a lower bound for it by a function approaching 1 as r → ∞.
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Proposition 12 Consider αR(d, r) as in Definition 11. Then,

αR(d, r) ≥ 1 −
√
d

r
. (20)

Proof Gordon’s theorem for Gaussian matrices (see Theorem 5.32 in [40]) gives us

Esmin(G) ≥ 1 −
√
d

r
,

where smin(G) is the smallest singular value. The bound follows immediately from
noting that the average singular value is larger than the expected value of the smallest
singular value.

As we are bounding αR(d, r) by the expected value of the smallest singular value
of a Gaussian matrix, we do not expect (20) to be tight. In fact, for d = 1, the stronger
αR(1, r) ≥ 1 − O ( 1r

)
bound holds [7].

Similarly to αR(d), we can describe the behavior of αR(d, r) in the limit as d → ∞
and r

d → ρ. More precisely, the singular values of G correspond to the square root
of the eigenvalues of the Wishart matrix [12] GGT ∼ Wd

( 1
r , r
)
. Let us set r = ρd,

for ρ ≥ 1. The distribution of the eigenvalues of a Wishart matrix Wd

(
1

ρd , d
)
, as

d → ∞ are known to converge to the Marchenko Pastur distribution (see [12]) given
by

dν(x) = 1

2π

√

((1 + √
λ)2 − x)(x − (1 − √

λ)2)

λx
1[(1−√

λ)2,(1+√
λ)2]dx,

where λ = 1
ρ
.

Hence, we can define φ(ρ) as

φ(ρ) := lim
d→∞ αR(d, ρd)

=
∫
(
1+
√

1
ρ

)2

(
1−
√

1
ρ

)2

√
x

1

2π

√((
1 +

√
1
ρ

)2 − x)(x −
(
1 −

√
1
ρ

)2
)

1
ρ
x

dx .

Although we do not provide a closed form solution for φ(ρ) the integral can be easily
computed numerically and we plot it below. It shows how the approximation ratio
improves as ρ increases (Fig. 2).

6 Integrality gap

In this section we provide an integrality gap for relaxation (5) that matches our approx-
imation ratio αR(d)2. For the sake of the exposition we will restrict ourselves to the
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Fig. 2 Plot of φ(ρ) = limd→∞ αR(d, ρd) for ρ ∈ [1, 5]

real case, but it is not difficult to see that all the arguments can be adapted to the
complex case.

Our construction is an adaption of the classical construction for the d = 1 case (see,
e.g., [3]). As it will become clear below, there is an extra difficulty in the d > 1 orthog-
onal case. In fact, the bound on the integrality gap of (5) given by this construction is
α∗
R
(d)2, defined as

α∗
R
(d) = max

D diagonal
‖D‖2F=d, D�0

E
1

d

d∑

i=1

σi (GD), (21)

where G is a Gaussian matrix with i.i.d. real entries N (
0, 1

d

)
.

Fortunately, using the notion of operator concavity of a function and the Lowner–
Heinz Theorem [11], we are able to show the following theorem.

Theorem 13 Let d ≥ 1. Also, let αR(d) be as defined in Definition 2 and α∗
R
(d) as

defined in (21). Then,

α∗
R
(d) = αR(d).

Proof We want to show that

max
D diagonal
‖D‖2F=d
D�0

E

∑

i=1

σi (GD) = E

∑

i=1

σi (G),

whereG is a d×d matrix with i.i.d. entriesN (
0, 1

d

)
. By taking V = D2, and recalling

the definition of singular value, we obtain the following claim (which immediately
implies Theorem 13) �
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Claim 6.1

max
V diagonal
tr(V )=d
V�0

E tr

[(
GVGT

) 1
2
]

= E tr

[(
GGT

) 1
2
]

.

Proof We will proceed by contradiction, suppose (6.1) does not hold. Since the opti-
mization space is compact and the function continuous it must have a maximum that
is attained by a certain V �= Id×d . Out of all maximizers V , let V (∗) be the one with
smallest possible Frobenius norm. The idea will be to use concavity arguments to build
an optimal V (card) with smaller Frobenius norm, arriving at a contradiction and hence
showing the theorem.

Since V (∗) is optimal we have

E tr

[(
GV (∗)GT

) 1
2
]

= α∗
R
(d).

Furthermore, since V (∗) �= Id×d , it must have two different diagonal elements. Let
V (∗∗) be a matrix obtained by swapping, in V (∗), two of its non-equal diagonal ele-
ments. Clearly, ‖V (∗∗)‖F = ‖V (∗)‖F and, because of the rotation invariance of the
Gaussian, it is easy to see that

E tr

[(
GV (∗∗)GT

) 1
2
]

= α∗
R
(d).

Since V (∗) � 0, these two matrices are not multiples of each other and so

V (card) = V (∗) + V (∗∗)

2
,

has a strictly smaller Frobenius norm than V (∗). It is also clear that V (card) is a feasible
solution. We conclude the proof by showing

E tr

[(
GV (card)GT

) 1
2
]

≥ 1

2

(

E tr

[(
GV (∗)GT

) 1
2
]

+ E tr

[(
GV (∗∗)GT

) 1
2
])

= α∗
R
(d). (22)

By linearity of expectation and construction of V (card), (22) is equivalent to

E

⎡

⎣tr

⎡

⎣

(
GV (∗)GT + GV (∗∗)GT

2

) 1
2
⎤

⎦

−1

2

(

tr

[(
GV (∗)GT

) 1
2
]

+ tr

[(
GV (∗∗)GT

) 1
2
])
⎤

⎦ ≥ 0.
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This inequality follows from the stronger statement: Given two d × d matrices A � 0
and B � 0, the following holds

(
A + B

2

) 1
2 − A

1
2 + B

1
2

2
� 0. (23)

Finally, (23) follows from the Lowner–Heinz Theorem, which states that the square
root function is operator concave (See these lecture notes [11] for a very nice intro-
duction to these inequalities). �


Theorem13guarantees the optimality of the approximation ratio obtained in Sect. 3.
In fact, we show the theorem below.

Theorem 14 For any d ≥ 1 and any ε > 0, there exists n for which there exists
C ∈ R

dn×dn such that C � 0, and

max
O1,...,On∈Od

n∑

i=1

n∑

j=1

tr
(
CT
i j Oi O

T
j

)

max
Xi XT

i =Id×d

Xi∈Rd×dn

n∑

i=1

n∑

j=1

tr
(
CT
i j Xi X

T
j

)
≤ αR(d)2 + ε. (24)

We will construct C randomly and show that it satisfies (24) with positive prob-
ability. Given p an integer we consider n i.i.d. matrix random variables Vk , with
k = 1, . . . , n, where each Vk is a d×dp Gaussian matrix whose entries areN (0, 1

dp ).

We then define C as the random matrix with d × d blocks Ci j = 1
n2
ViV T

j . The idea
now is to understand the typical behavior of both

wr = max
Xi XT

i =Id×d

Xi∈Rd×dn

n∑

i=1

n∑

j=1

tr
(
CT
i j Xi X

T
j

)
and wc= max

O1,...,On∈Od

n∑

i=1

n∑

j=1

tr
(
CT
i j Oi O

T
j

)
.

For wc, we can rewrite

wc = max
O1,...,On∈Od

1

n2
∑

i, j

tr
(
(ViV

T
j )T Oi O

T
j

)
= max

O1,...,On∈Od

∥
∥
∥
∥
∥

1

n

n∑

i=1

OT
i Vi

∥
∥
∥
∥
∥

2

F

.

If D = 1
n

∑n
i=1 O

T
i Vi∥

∥
∥ 1
n

∑n
i=1 O

T
i Vi

∥
∥
∥
F

then
√

wc = ∑n
i=1 tr

(
maxOi∈Od O

T
i ViDT

)

=∑n
i=1 tr

(P(ViDT )T ViDT
)
. The idea is that, given a fixed (direction unit frobenius-

normmatrix)D,
∑n

i=1 tr
(P(ViDT )T ViDT

)
converges to the expected value of one of

the summands and, by an ε-net argument (since the dimension of the space whereD is
depends only on d and p and the number of summands is n which can be made much
larger than d and p) we can argue that the sum is close, for all D’s simultaneously, to
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that expectation. It is not hard to see that we can assume that D = 1√
d
[D 0] where D

is diagonal and non-negative d × d matrix with ‖D‖2F = d. In that case [see (21)],

E tr
(
P(ViDT )T ViDT

)
= E

1√
pd

d∑

k=1

σk(GD) ≤
√
d

p
α∗
R
(d),

where G is a Gaussian matrix with i.i.d. real entries N (
0, 1

d

)
. This, together with

Theorem 13, gives E tr
(P(ViDT )T ViDT

) ≤
√

d
pαR(d). All of this is made precise

in the following lemma.

Lemma 15 For any d and ε > 0 there exists p0 and n0 such that, for any p > p0
and n > n0,

max
O1,...,On∈Od

∥
∥
∥
∥
∥

1

n

n∑

i=1

OT
i Vi

∥
∥
∥
∥
∥

2

F

≤ d

p
αR(d)2 + ε,

with probability strictly larger than 1/2.

Proof Let us define

A(V ) := max
O1,...,On∈Od

∥
∥
∥
∥
∥

1

n

n∑

i=1

OT
i Vi

∥
∥
∥
∥
∥
F

.

We have

A(V ) = max
D∈Rd×pd :‖D‖F=1

max
O1,...,On∈O(d)

tr

(
1

n

n∑

i=1

OT
i Vi D

T

)

= max
D∈Rd×pd :‖D‖F=1

1

n

n∑

i=1

max
Oi∈O(d)

tr
(
OT
i Vi D

T
)

= max
D∈Rd×pd :‖D‖F=1

1

n

n∑

i=1

tr

(

P
(
Vi D

T
)T

Vi D
T
)

.

For D with ‖D‖F = 1, we define

AD(V ) = 1

n

n∑

i=1

tr

(

P
(
Vi D

T
)T

Vi D
T
)

.

We proceed by understanding the behavior of AD(V ) for a specific D.
Let D = UL [� 0]UT

R , where � is a d × d non-negative diagonal matrix, be the
singular value decomposition of D. For each i = 1, . . . , n, we have (using rotation
invariance of the Gaussian distribution):
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tr

(

P
(
Vi D

T
)T

Vi D
T
)

∼ tr

(

P
(
Vi (UL [� 0]UR)T

)T
Vi (UL [� 0]UR)T

)

∼ tr
(
ULP

(
Vi
[
�
0

])T
Vi
[
�
0

]
UT

L

)

∼ tr
(
P (Vi

[
�
0

])T
Vi
[
�
0

])

∼ 1√
dp

tr

(

P
(
G

√
d�
)T

G
√
d�

)

,

where G is a d × d Gaussian matrix with N (0, 1
d ) entries.

This means that

AD(V ) = 1

n

n∑

i=1

Xi ,

with Xi i.i.d. distributed as 1√
dp

tr

(

P
(
G

√
d�
)T

G
√
d�

)

.

Since ‖√d�‖2F = d, by (21), we get

E tr

(

P
(
G

√
d�
)T

G
√
d�

)

≤ dα∗
R
(d).

This, together with Theorem 13, gives

EXi ≤
√
d

p
αR(d). (25)

In order to give tail bounds for AD(V ) = 1
n

∑n
i=1 Xi we will show that Xi is

subgaussian and use Hoeffding’s inequality (see Vershynin’s notes [40]). In fact,

Xi ∼ 1√
dp

tr

(

P
(
G

√
d�
)T

G
√
d�

)

≤ 1√
p
‖P (G�) ‖F‖G�‖F

=
√
d

p
‖GD‖F ≤

√
d

p
‖G‖F .

Note that
√

d
p‖G‖F is a subgaussian random variable as ‖G‖F is smaller than the

entry wise �1 norm of G which is the sum of d2 half-normals (more specifically, the
absolute value of a N (0, 1

d ) random variable). Since half-normals are subgaussian
and the sum of subgaussian random variables is a subgaussian random variable with
subgaussian norm at most the sum of the norms (see the Rotation invariance Lemma
in [40]) we get that Xi is subgaussian. Furthermore, the subgaussian norm of Xi , which

we define as ‖Xi‖ψ2 = supp≥1 p
−1/2(E|X |p)1/p, is bounded by ‖Xi‖ψ2 ≤ C

√
d2
p =

C d√
p , for some universal constant C .
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Hence, we can use Hoeffding’s inequality (see [40]) and get, since EXi ≤√
d
pαR(d),

Prob

[

AD ≥
√
d

p
αR(d) + t

]

≤ Prob [|AD − EXi | ≥ t] ≤ exp

(

1 − c2t2n

‖Xi‖2ψ2

)

≤ 3 exp

(

−c1
t2 p

d2
n

)

,

where ci are universal constants.
To find an upper bound for A = maxD∈Rd×pd :‖D‖F=1 AD we use a classicl ε-net

argument. There exists a setN of matrices Dk ∈ R
d×pd satisfying ‖Dk‖F = 1, such

that for any D ∈ R
d×pd with Frobenius norm 1, there exists an element Dk ∈ N such

that ||D − Dk ||F ≤ ε.N is called an ε-net, and it’s known (see [40]) that there exists
such a set with size

|N | ≤
(

1 + 2

ε

)d2 p

.

By the union-bound, with probability at least

1 − |N |Prob
[

AD ≥
√
d

p
αR(d) + t

]

≥ 1 −
[(

1 + 2

ε

)d2 p

3 exp

(

−c1
t2n

d3

)]

,

all the Dk’s in N satisfy

ADk ≤
√
d

p
α∗
R
(d) + t.

If D is not inN , there exists Dk ∈ N such that ‖D − Dk‖F ≤ ε. This means that

AD ≤ 1

n

n∑

i=1

tr

(

P
(
Vi D

T
)T

Vi D
T∗
)

+ 1

n

n∑

i=1

tr

(

P
(
Vi D

T
)T

Vi (D
T∗ − DT )

)

≤ 1

n

n∑

i=1

tr

(

P
(
Vi D

T∗
)T

Vi D
T∗
)

+ 1

n

n∑

i=1

‖P
(
Vi D

T
)T

Vi‖F‖D∗ − D‖F

≤
√
d

p
α∗
R
(d) + t + ε

(
1

n

n∑

i=1

‖Vi‖F
)

.

We can globally bound
( 1
n

∑n
i=1 ‖Vi‖F

)
by Hoeffding’s inequality as well

(see [40]). Using the same argument as above, it is easy to see that ‖Vi‖F has
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subgaussian norm bounded by
√
d, and an explicit computation shows its mean is

1√
dp

√
2�((d2 p+1)/2)

�(d2 p/2)
≤ 2

√
d , where the inequality follows from lemma 20.

This means that by Hoeffding’s inequality (see [40])

Prob

[
1

n

n∑

i=1

‖Vi‖F ≥ 2
√
d + t

]

≤ exp

(

1 − c4t2n

‖‖Vi‖F‖2ψ2

)

≤ 3 exp

(

−c3
t2n

d

)

,

with ci universal constants.
By union-bound on the two events above, with probability at least

1 − 3 exp

(

−c3
t2n

d

)

−
[(

1 + 2

ε

)d2 p

3 exp

(

−c1
t2n

d3

)]

,

we have

A ≤
√
d

p
α∗
R
(d) + t + ε(2d + t).

Choosing t = 1
2p and ε = 1

6dp we get

A ≤
√
d

p
α∗
R
(d) + 1

p
,

with probability at least

1 − 3 exp

(

−c3
n

4p2

)

−
[

(1 + 12dp)d
2 p 3 exp

(

−c1
n

4p2d3

)]

= 1 − 6

[

(1 + 12dp)d
2 p 3 exp

(

−c1
n

4p2d3

)]

which can be made arbitrarily close to 1 by taking n large enough.
This means that

max
O1,...,On∈Od

∥
∥
∥
∥
∥

1

n

n∑

i=1

OT
i Vi

∥
∥
∥
∥
∥

2

F

≤ d

p
αR(d)2 + 1

p
,

with high probability, proving the lemma.

Regarding wr , we know that it is at least the value of 1
n2
∑n

i, j tr
(
(ViV T

j )T Xi XT
j

)

for Xi = P(Vi ). Since, for p large enough, ViV T
i ≈ Id×d we essentially have wr �
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1
n2
∑n

i, j ‖ViV T
j ‖2F which should approximate E‖ViV T

j ‖2F ≈ d
p . This is made precise

in the following lemma:

Lemma 16 For any d and ε > 0 there exists p0 and n0 such that, for any p > p0
and n > n0,

1

n2

n∑

i, j

tr
(
(ViV

T
j )TP(d,dp)(Vi )P(d,dp)(Vj )

T
)

≥ d

p
− ε,

with probability strictly larger than 1/2.

Proof Recall that P(d,dp)(Vi ) is the d × dp matrix polar component of Vi , meaning
that

tr
(
P(d,dp)(Vi )

T Vi
)

=
d∑

k=1

σk(Vi ).

Hence,

1

n2

n∑

i, j

tr
(
(ViV

T
j )TP(d,dp)(Vi )P(d,dp)(Vj )

T
)

=
∥
∥
∥
∥
∥

1

n

n∑

i=1

P(Vi )
T Vi

∥
∥
∥
∥
∥

2

F

≥ 1
∥
∥Idp×dp

∥
∥2
F

[
1

n

n∑

i=1

tr
(
P(Vi )

T Vi Idp×dp

)
]2

= 1

dp

[
1

n

n∑

i=1

d∑

k=1

σk(Vi )

]2

.

Weproceed by using a lower bound for the expected value of the smallest eigenvalue
(see [40]), and get

E

d∑

k=1

σk(Vi ) ≥ d Eσmin(Vi ) = d

(

1 − 1√
p

)

.

Since
∑d

k=1 σk(Vi ) ≤ √
d‖Vi‖F , it has subgaussian norm smaller than Cd, with

C an universal constant (using the same argument as in Lemma 15). Therefore, by
Hoeffding’s inequality (see [40]),

Prob

[
1

n

n∑

i=1

d∑

k=1

σk(Vi ) ≤ d

(

1 − 1√
p

)

− t

]

≤ exp

⎛

⎜
⎜
⎝1 − c1t2

∥
∥
∥
∑d

k=1 σk(Vi )
∥
∥
∥
2

ψ2

n

⎞

⎟
⎟
⎠

≤ exp

(

1 − c2
t2

d2
n

)

,

where ci are universal constants.
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By setting t = d√
p , we get

1

n2

n∑

i, j

tr
(
(ViV

T
j )TP(d,dp)(Vi )P(d,dp)(Vj )

T
)

≥ d

p

(

1 − 2
1√
p

)2

,

with probability at least 1 − exp
(
1 − c2

1
p n
)

= 1 − on(1), proving the Lemma. �


Theorem 14 immediately follows from these two lemmas.
We note that these techniques are quite general. It is not difficult to see that these

arguments, establishing integrality gaps that match the approximation ratios obtained,
can be easily adapted for both the unitary case and the rank constrained case introduced
in Sect. 5. For the sake of exposition we omit the details in these cases.

7 Open problems and future work

BesidesConjecture 8, there are several extensions of thiswork that the authors consider
to be interesting directions for future work.

A natural extension is to consider the little Grothendieck problem (3) over other
groups of matrices. One interesting extension would be to consider the special orthog-
onal group SOd and the special unitary group SUd , these seem more difficult since
they are not described by quadratic constraints.3

In some applications, like Synchronization [9,35] (a similar problem to Orthogonal
Procrustes) and Common Lines [37], the positive semidefiniteness condition is not
natural. It would be useful to better understand approximation algorithms for a version
of (3) whereC is not assumed to be positive semidefinite. Previous work in the special
case d = 1, [2,14,29] for O1 and [25] for U1, suggest that it is possible to obtain
an approximation ratio for (3) depending logarithmically on the size of the problem.
Moreover, for O1, the logarithmic term is known to be needed in general [2].

It would also be interesting to understand whether the techniques in [3] can be
adapted to obtain an approximation algorithm to the bipartite Grothendieck problem
over the orthogonal group; this would be closer in spirit to the non commutative
Grothendieck inequality [30].

Another interesting question is whether the approximation ratios obtained in this
paper correspond to the hardness of approximation of the problem (perhaps condi-
tioned on the Unique-Games conjecture [22]). Our optimality conditions are restricted
to the particular relaxation we consider and do not exclude the existence of an effi-
cient algorithm, not relying on the same relaxation, that approximates (3) with a better
approximation ratio. Nevertheless, Raghavendra [32] results on hardness for a host
of problems matching the integrality gap of natural SDP relaxations suggest that our
approximation ratios might be optimal (see also the recent results in [8]).

3 The additional constraint that forces a matrix to be in the special orthogonal or unitary group is having
determinant equal to 1 which is not quadratic.
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Appendix 1: Technical proofs—analysis of algorithm for the Stiefel Man-
ifold setting

Lemma 17 Let r ≥ d. Let G be a d × r Gaussian random matrix with real valued
i.i.d. N (

0, 1
r

)
entries and let αR(d, r) as defined in Definition 11. Then,

E

(
Pd,r (G)GT

)
= E

(
GPd,r (G)T

)
= αR(d, r)Id×d .

Furthermore, if G is a d × r Gaussian random matrix with complex valued i.i.d.
N (

0, 1
r

)
entries and αC(d, r) the analogous constant (Definition 11), then

E

(
Pd,r (G)GH

)
= E

(
GPd,r (G)H

)
= αC(d, r)Id×d .

The proof of this Lemma is a simple adaptation of the proof of Lemma 6.

Proof We restrict the presentation to the real case. As before, all the arguments are
equivalent to the complex case, replacing all transposes with Hermitian adjoints and
αR(d, r) with αC(d, r).

Let G = U [� 0]V T be the singular value decomposition of G. Since GGT =
U�2UT is a Wishart matrix, it is well known that its eigenvalues and eigenvectors
are independent and U is distributed according to the Haar measure in Od (see e.g.
Lemma 2.6 in [38]). To resolve ambiguities, we consider � ordered such that �11 ≥
�22 ≥ · · · ≥ �dd .

Let Y = P(d,r)(G)GT . Since

P(d,r)(G) = P(d,r)(U [� 0]V T ) = U [Id×d 0]V T ,

we have

Y = P(d,r)(U [� 0]V T )(U [� 0]V T )T = U [Id×d 0]V T V�UT = U�UT .

Note that GP(d,r)(G)T = U�UT = Y .
Since Yi j = ui�uTj , where u1, . . . , ud are the rows of U , and U is distributed

according to the Haar measure, we have that u j and −u j have the same distribution
conditioned on any ui , for i �= j , and �. This implies that, if i �= j,Yi j = ui�uTj is
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a symmetric random variable, and so EYi j = 0. Also, ui ∼ u j implies that Yii ∼ Y j j .
This means that EY = cId×d for some constant c. To obtain c,

c = c
1

d
tr(Id×d) = 1

d
E tr(Y ) = 1

d
E tr(U�UT ) = 1

d
E

n∑

k=1

σk(G) = αR(d, r),

which shows the lemma. �

Lemma 18 Let r ≥ d. Let M, N ∈ R

d×nd such that MMT = NNT = Id×d . Let
R ∈ R

nd×r be a Gaussian random matrix with real valued i.i.d. entries N (
0, 1

r

)
.

Then

E

[
P(d,r)(MR)(N R)T

]
= E

[
(MR)P(d,r)(N R)T

]
= αR(d, r)MNT ,

where αR(d, r) is the constant in Definition 11.
Analogously, if M, N ∈ C

d×nd such that MMH = NNH = Id×d , and R ∈ C
nd×r

is a Gaussian random matrix with complex valued i.i.d. entries N (
0, 1

r

)
, then

E

[
P(d,r)(MR)(N R)H

]
= E

[
(MR)P(d,r)(N R)H

]
= αC(d, r)MNH ,

where αC(d, r) is the constant in Definition 11.

Similarly to above, the proof of this Lemma is a simple adaptation of the proof of
Lemma 5.

Proof We restrict the presentation of proof to the real case. Nevertheless, all the
arguments trivially adapt to the complex case by, essentially, replacing all transposes
with Hermitian adjoints and αR(d) and αR(d, r) with αC(d) and αC(d, r).

Let A = [
MT NT

] ∈ R
dn×2d and A = QB be the QR decomposition of A

with Q ∈ R
nd×nd an orthogonal matrix and B ∈ R

nd×2d upper triangular with non-
negative diagonal entries; note that only the first 2d rows of B are nonzero. We can
write

QT A = B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B11 B12
0d B22
0d 0d
...

...

0d 0d

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
dn×2d ,

where B11 ∈ R
d×d and B22 ∈ R

d×d are upper triangular matrices with non-negative
diagonal entries. Since

(QT MT )T11(Q
T MT )11 = (QT MT )T (QT MT ) = MQQT MT = MInd×ndM

T

= MMT = Id×d ,
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B11 = (QT MT )11 is an orthogonal matrix, which together with the non-negativity
of the diagonal entries (and the fact that B11 is upper-triangular) forces B11 to be
B11 = Id×d .

Since R is a Gaussian matrix and Q is an orthogonal matrix, QR ∼ R which
implies

E

[
P(d,r)(MR)(N R)T

]
= E

[
P(d,r)(MQR)(NQR)T

]
.

Since MQ = [BT
11, 0d×d , . . . , 0d×d ] = [Id×d , 0d×d , . . . , 0d×d ] and NQ =

[BT
12, B

T
22, 0d×d , . . . , 0d×d ],

E

[
P(d,r)(MR)(N R)T

]
= E

[
P(d,r)(R1)(B

T
12R1 + BT

22R2)
T
]
,

where R1 and R2 are the first two d×r blocks of R. Since these blocks are independent,
the second term vanishes and we have

E

[
P(d,r)(MR)(N R)T

]
= E

[
P(d,r)(R1)R

T
1

]
B12.

The Lemma now follows from using Lemma 17 to obtain E
[P(d,r)(R1)RT

1

] =
αR(d, r)Id×d and noting that B12 = (QT MT )T (QT NT ) = MNT .

The sameargument,withQ′B ′ theQR decomposition of A′ = [NT MT
] ∈ R

dn×2d

instead, shows

E

[
(MR)P(d,r)(N R)T

]
= E

[
R1P(d,r)(R1)

T
]
MNT = αR(d, r)MNT .

�


Appendix 2: Bounds for the average singular value

Lemma 19 Let GC ∈ C
d×d be a Gaussian random matrix with i.i.d. complex valued

N (0, d−1) entries and define αC(d) := E

[
1
d

∑d
j=1 σ j (GC)

]
. We have the following

bound

αC(d) ≥ 8

3π
− 5.05

d
.

Proof We express αC(d) as sums and products of Gamma functions and then use
classical bounds to obtain our result.

Recall that from equation (16),

αC(d) = d−3/2
d−1∑

n=0

Tn, (26)
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where

Tn =
∫ ∞

0
x1/2e−x Ln(x)

2dx,

and Ln(x) is the nth Laguerre polynomial,

Ln(x) =
n∑

k=0

(
n

k

)
(−1)k

k! xk .

This integral can be expressed as [see [16] section 7.414 equation 4(1)]

Tn = �(n + 3/2)

�(n + 1)

n∑

m=0

(−1
2

)
m (−n)m

(m!)2(−n − 1
2 )m

, (27)

where (x)m is the Pochhammer symbol

(x)m = �(x + m)

�(x)
.

The next lemma states a couple basic facts about the Gamma function that we will
need in the subsequent computations. �


Lemma 20 The Gamma function satisfies the following inequalities:

1√
n

≤ �(n)

�(n + 1/2)
≤ 1√

n − 1/2

√
n ≤ �(n + 1)

�(n + 1/2)
≤ √n + 1/2.

Proof See [4] page 255. �


We want to bound the summation in (27), which we rewrite as

n∑

m=0

(−1
2

)
m (−n)m

(m!)2(−n − 1
2 )m

=
∞∑

m=0

(−1
2 )2m

(m!)2 −
∞∑

m=n+1

(−1
2 )2m

(m!)2

−
n∑

m=0

(−1
2 )2m

(m!)2
(

1 − (−n)m

(−n − 1
2 )m

)

.
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For simplicity define

(I ) :=
∞∑

m=0

(−1
2 )2m

(m!)2

(I I ) :=
∞∑

m=n+1

(−1
2 )2m

(m!)2

(I I I ) :=
n∑

m=0

(−1
2 )2m

(m!)2
(

1 − (−n)m

(−n − 1
2 )m

)

,

so that (27) becomes

Tn = �(n + 3/2)

�(n + 1)
((I ) + (I I ) + (I I I )).

The first term we can compute explicitly (see [16]) as

(I ) = 4

π
.

For the second term we use the fact that (−1
2 )m = �(m − 1/2)/�(−1/2) to get

(I I ) =
∞∑

m=n+1

1

�(−1/2)2
�(m − 1/2)2

�(m + 1)2
= 1

4π

∞∑

m=n+1

�(m − 1/2)2

�(m + 1)2
.

Using the first inequality in Lemma 20 and the multiplication formula for the Gamma
function,

�(m − 1/2)

�(m + 1)
= 1

m − 1/2

�(m + 1/2)

�(m + 1)
≤ 1

(m − 1/2)
√
m

so we have

(I I ) ≤ 1

4π

∞∑

m=n+1

1

(m − 1/2)2m
≤ 1

4π

∫ ∞

n−1/2

1

x3
dx = 1

2π(2n − 1)2
.

For the third term, we use the formula (x)m = �(x+n)
�(x) to deduce

(I I I ) =
n∑

m=0

(−1
2 )2m

(m!)2
(

1 − (−n)m

(−n − 1
2 )m

)

= 1

4π

n∑

m=0

�(m − 1/2)2

�(m + 1)2

(

1 − �(n + 1)�(n − m + 3/2)

�(n + 3/2)�(n − m + 1)

)

= �(n + 1)

�(n + 3/2)

1

4π

n∑

m=0

�(m − 1/2)2

�(m + 1)2

(
�(n + 3/2)

�(n + 1)
− �(n − m + 3/2)

�(n − m + 1)

)

.
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Using the second bound in Lemma 20,

�(n − m + 3/2)

�(n − m + 1)
≥ √n − m + 1/2,

and also

�(n + 3/2)

�(n + 1)
≤ √

n + 1,

so that

(I I I ) ≤ 1

4π
√
n + 1/2

n∑

m=0

(
1

(m − 1/2)
√
m + 1/2

)2 (√
n + 1 −√n − m + 1/2

)
.

If we multiply top and bottom by
√
n + 1 + √

n − m + 1/2 and use the fact that

m + 1/2√
n + 1 + √

n − m + 1/2
≤ m + 1/2√

n + 1
,

then

(I I I ) ≤ 1

4π
√
n + 1/2

n∑

m=0

1

(m − 1/2)2(m + 1/2)

m + 1/2√
n + 1

≤ 1

2π(n + 1)

n∑

m=0

1

(m − 1/2)2

≤ 1

n + 1

8 + π2

2π

≤ 3

n + 1
.

Combining our bounds for (I), (II) and (III),

Tn = �(n + 3/2)

�(n + 1)
[(I ) − (I I ) − (I I I )]

≥ �(n + 3/2)

�(n + 1)

(
4

π
− 1

2π(2n − 1)2
− 3

n + 1

)

≥ √n + 1/2

(
4

π
− 1

2π(2n − 1)2
− 3

n + 1

)

,

and by (26),

αC(d) ≥ 1

d3/2

d−1∑

n=1

√
n + 1/2

(
4

π
− 1

2π(2n − 1)2
− 3

n + 1

)

.
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The term 1
d3/2

∑d−1
n=1 4

√
n + 1/2/π is the main term and can be bounded below by

1

d3/2

d−1∑

n=1

4
√
n + 1/2

π
≥ 1

d3/2
8

3π

(
(d − 1/2)3/2 − (1/2)3/2

)

≥ (1 − (2d)−1)
8

3π
− (2d)−3/2

≥ 8

3π
−
(

8

3π
+ 1

2

)

d−1.

The other error terms are at most

d−3/2
d−1∑

n=1

√
n + 1/2

(
1

2π(2n − 1)2
+ 3

n + 1

)

≤ 1

d3/2

d−1∑

n=1

4

π(n + 1)

√
n + 1/2

≤ 1

d3/2

d−1∑

n=1

4

π(n + 1)1/2

≤ 4

πd3/2
2
√
d + 1.

Combining the main and error term bounds, the lemma follows. �


Lemma 21 For GK ∈ K
d×d a Gaussian random matrix with i.i.d. K valued

N (0, d−1) entries, define αK(d) := E

[
1
d

∑d
j=1 σ j (GK)

]
. The following holds

αC(d) − αR(d) ≤ 4.02d−1.

Proof To find an explicit formula for αR(d), we need an expression for the spectral
distribution of the wishart matrix dGRG

T
R
, which we call pRd (x), given by equation

(16) in [24]:

pRd (x) = 1

2d

(

2Rd(x) − �
( d
2 + 1

2

)

�
( d
2

) Ld−1(x) {ψ1 (x) − ψ2 (x)}
)

,

where

ψ1(x) = e−x
(κ+d−2)/2∑

k=0

δk L2k+1−κ(x),

ψ2(x) =
( x

2

)−1/2
e− x

2

[

(1 − κ)
2�
( 1
2 ,

x
2

)

�
( 1
2

) + 2κ − 1

]

,
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Rd(x) = e−x
d−1∑

m=0

(Lm(x))2 ,

δk = �
(
k + 1 − κ

2

)

�
(
k + 3

2 − κ
2

) ,

κ = d mod 2 and �(a, y) = ∫∞
y ta−1e−t dt is the incomplete Gamma function.

This means that

αR(d) = d−1/2
∫ ∞

0
x1/2 pRd (x)dx

= 1

d3/2

∫ ∞

0
x1/2Rd(x)dx

− 1

2d3/2

∫ ∞

0
x1/2

�
( d
2 + 1

2

)

�
( d
2

) Ld−1(x) {ψ1 (x) − ψ2 (x)} dx .

Recall that (see Sect. 5)

αC(d) = d−3/2
d−1∑

n=0

∫ ∞

0
x1/2e−x Ln(x)

2dx

which implies

αR(d) = αC(d) − 1

2d3/2

∫ ∞

0
x1/2

�
( d
2 + 1

2

)

�
( d
2

) Ld−1(x) {ψ1 (x) − ψ2 (x)} dx . (28)

We are especially interested in the following terms which appear in the full expression
for αR(d):

Q(m, k) =
∫ ∞

0
x1/2e−x Lm(x)Lk(x)dx . (29)

From [16] section 7.414 equation 4(1), we have

Q(m, k) = 1

4π

min{m,k}∑

i=0

�(i + 3/2)

�(i + 1)

�(m − i − 1/2)

�(m − i + 1)

�(k − i − 1/2)

�(k − i + 1)
.

The following lemma deals with bounds on sums involving Q(m, k) terms. �

Lemma 22 For Q(m, k) as defined in (29) we have the following bounds

m∑

k=0

�(k + 1/2)

�(k + 1)
Q(2m, 2k) ≤ 2.8 (30)

m∑

k=1

�(k + 3/2)

�(k + 1)
Q(2m − 1, 2k − 1) ≤ 5.6 (31)
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Proof Note that in (30),

Q(2m, 2k) = 1

4π

2k∑

i=0

�(i + 3/2)

�(i + 1)

�(2m − i − 1/2)

�(2m − i + 1)

�(2k − i − 1/2)

�(2k − i + 1)

since m ≥ k.
For 0 < i < 2k − 1, the i th term in the summation of Q(2m, 2k) can be bounded

above by

�(i + 3/2)

�(i + 1)

�(2m − i − 1/2)

�(2m − i + 1)

�(2k − i − 1/2)

�(2k − i + 1)

≤ √
i + 1

1

(2k − i)
√
2k − i − 1

1

(2m − i)
√
2m − i − 1

≤ √
i + 1

1

(2k − i − 1)3/2(2m − i − 1)3/2
.

This means that

Q(2m, 2k) ≤ 1

8
√

π

�(2m − 1/2)�(2k − 1/2)

�(2m + 1)�(2k + 1)

+ 1

4π

2k−1∑

i=1

√
i + 1

1

(2k − i − 1)3/2(2m − i + 1)3/2

+ 1

4π

√
π

�(2k + 1/2)

�(2k)

�(2m − 2k + 1/2)

�(2m − 2k + 2)

+ 1

4π
max

(
�(2k + 3/2)

�(2k + 1)

�(2m − 2k − 1/2)

�(2m − 2k + 1)
(−2

√
π), 0

)

.

We bound the sum from i = 1 to 2k − 3 by

1

4π

2k−3∑

i=1

√
i + 1

1

(2k − i − 1)3/2(2m − i + 1)3/2

≤ 1

4π

2k−3∑

i=0

√
i + 1

1

(2k − i − 1)3/2
1

(2m − 2k + 1)3/2

≤ 1

4π(2m − 2k + 1)3/2

∫ 2k−2

0

√
x + 1

(2k − x − 1)3/2
dx

≤ 1

4π(2m − 2k + 1)3/2

(√
8k +

√
4k

2k − 1

)

,
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so that for k ≥ 1,

Q(2m, 2k) ≤ 1

8
√

π

�(2m − 1/2)�(2k − 1/2)

�(2m + 1)�(2k + 1)

+ 1

4π(2m − 2k + 1)3/2

(√
8k +

√
4k

2k − 1

)

+ 1

4π

√
2k − 1

(2m − 2k + 3)3/2

+ 1

4π

√
π

�(2k + 1/2)

�(2k)

�(2m − 2k + 1/2)

�(2m − 2k + 2)

+ 1

4π
max

(
�(2k + 3/2)

�(2k + 1)

�(2m − 2k − 1/2)

�(2m − 2k + 1)
(−2

√
π), 0

)

.

For k = 0, Q(2m, 0) < 0 except for the term Q(0, 0) = √
π/2 which also becomes

negative in the full sum, so we ignore these terms.
We now turn our attention to the full sum

∑m
k=0

�(k+1/2)
�(k+1) Q(2m, 2k). As before, we

define for clarity

(I ) := 1

8
√

π

m∑

k=1

�(k + 1/2)

�(k + 1)

�(2m − 1/2)�(2k − 1/2)

�(2m + 1)�(2k + 1)

(I I ) := 1

4π

m∑

k=1

�(k + 1/2)

�(k + 1)

1

(2m − 2k + 1)3/2

(√
8k +

√
4k

2k − 1

)

(I I I ) := 1

4π

m∑

k=1

�(k + 1/2)

�(k + 1)

√
2k − 1

(2m − 2k + 3)3/2

(I V ) := 1

4
√

π

m∑

k=1

�(k + 1/2)

�(k + 1)

�(2k + 1/2)

�(2k)

�(2m − 2k + 1/2)

�(2m − 2k + 2)

(V ) := 1

4π

m∑

k=1

�(k + 1/2)

�(k + 1)
max

(
�(2k + 3/2)

�(2k + 1)

�(2m − 2k − 1/2)

�(2m − 2k + 1)
(−2

√
π), 0

)

.

Using the bounds in lemma 20,

(I ) ≤
m∑

k=1

1

32
√

πk1/2
1

mk

1√
2m − 1

√
2k − 1

≤ 1

32
√

π
,

(I I ) ≤ 1

4π

m∑

k=1

1

k1/2(2m − 2k + 1)3/2
(4

√
k)

≤ 1

π

(

1 − 1√
2m − 1

)

≤ 1

π
,
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(I I I ) ≤ 1

4π

m∑

k=1

1

k1/2

√
2k − 1

(2m − 2k + 3)3/2

≤ 1√
24π

,

(I V ) ≤ 1

4
√

π

(
m∑

k=1

(2k)1/2

k1/2
1

(2m − 2k + 1)
√
2m − 2k

+ √
π

)

≤ 1

2π
+ 1

2
,

(V ) = 1

4π
4π

�(2m + 3/2)

�(2m + 1)

�(m + 1/2)

�(m + 1)

≤
√
2m + 1√

m
≤ √

3.

Finally,

m∑

k=0

�(k + 1/2)

�(k)
Q(2m, 2k) ≤ (I ) + (I I ) + (I I I ) + (I V ) + (V )

≤ 2.8.

To deduce the inequality (31), we use the previously derived bounds to show that

Q(2m − 1, 2k − 1) ≤ 1

4π

2k−3∑

i=1

√
i + 1

1

(2k − i − 2)3/2(2m − i)3/2

+ 1

4π

√
π

�(2k − 1/2)

�(2k − 1)

�(2m − 2k + 1/2)

�(2m − 2k + 2)

+ 1

4π
max

(
�(2k + 1/2)

�(2k)

�(2m − 2k + 1/2)

�(2m − 2k + 2)
(−2

√
π), 0

)

,

so that Q(2m − 1, 2k − 1) ≤ Q(2m, 2k). Now it suffices to note that in the full sum,
∑m

k=1
�(k+3/2)
�(k+1) Q(2m − 1, 2k − 1) ≤ 2

∑m
k=1

�(k+1/2)
�(k) Q(2m − 1, 2k − 1) and we get

m∑

k=1

�(k + 3/2)

�(k + 1)
Q(2m − 1, 2k − 1) ≤ 2

m∑

k=1

�(k + 1/2)

�(k)
Q(2m, 2k) ≤ 5.6.

�


We now return our focus to finding a bound on the expression for αR(d) given in
(28). Since ψ1, ψ2 depend on the parity of d, we split in to two cases.
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Odd d = 2m + 1
From (see [16] section 7.414 equation 6),

∫ ∞

0
e−x/2L2m(x)dx = 2,

thus Eq. (28) becomes

αC(2m + 1) − αR(2m + 1)

= 1

(2m + 1)3/2
�(m + 1)

�(m + 1/2)

(
m∑

k=0

�(k + 1/2)

�(k)
Q(2m, 2k) − 21/2

)

,

and using the first bound in Lemma 22,

αC(2m + 1) − αR(2m + 1) ≤ 2.8
√
m + 1/2

1

(2m + 1)3/2
≤ m−1.

Even d = 2m
For d = 2m, we have

αR(2m) = αC(2m)− 1

2(2m)3/2

∫ ∞

0
x1/2

�(m + 1/2)

�(m)
L2m−1(x){ψ1(x)−ψ2(x)}dx .

We split the integral into two parts,

(I ) := 1

2(2m)3/2

∫ ∞

0
x1/2

�(m + 1/2)

�(m)
L2m−1(x)ψ1(x)dx

(I I ) := −1

2(2m)3/2

∫ ∞

0
x1/2

�(m + 1/2)

�(m)
L2m−1(x)ψ2(x)dx .

Expanding from the definition of ψ1 above, we have

(I ) = 1

2(2m)3/2

∫ ∞

0

�(m + 1/2)

�(m)
x1/2L2m−1(x)e

−x
m−1∑

k=0

�(k)

�(k + 1/2)
L2k−1(x)dx

= 1

2(2m)3/2

�(m + 1/2)

�(m)

m∑

k=1

�(k + 3/2)

�(k + 1)
Q(2m − 1, 2k − 1),

so by Lemma 22,

(I ) ≤ 1

2(2m)3/2

�(m + 1/2)

�(m)
5.6 ≤ 1

m1/2 .
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The other part of the integral is

(I I ) = −1

2(2m)3/2

∫ ∞

0
x1/2

�(m + 1/2)

�(m)
L2m−1(x)(x/2)

−1/2

× e−x/2
[
2�(1/2, x/2)

�(1/2)
− 1

]

dx

= −1

4m1/2

∫ ∞

0

�(m + 1/2)

�(m)
L2m−1(x)e

−x/2 2�(1/2, x/2)

�(1/2)
dx

+ 1

2m3/2

�(m + 1/2)

�(m)
,

where we use the fact that for odd 2m − 1 (see [16] section 7.414 equation 6),

∫ ∞

0
L2m−1(x)e

−x/2dx = −2.

We can bound the first integral in the expression of (II) by

∣
∣
∣
∣

∫ ∞

0
L2m−1(x)e

−x/2�(1/2, x/2)dx

∣
∣
∣
∣

≤
(∫ ∞

0
e−x L2m−1(x)

2dx

)1/2 (∫ ∞

0
�(1/2, x/2)2dx

)1/2

=
[∫ ∞

0

(∫ ∞

x
t−1/2e−t dt

)2

dx

]1/2

=
[∫ 1

0

(∫ ∞

x
t−1/2e−t dt

)2

dx +
∫ ∞

1

(∫ ∞

x
t−1/2e−t dt

)2

dx

]1/2

≤
(

�(1/2)2 +
∫ ∞

1
(e−x )2dx

)1/2

≤ (π + e−2/2)1/2,

so finally

(I I ) ≤ (π + 1/2e−2)1/2

2
√

πm3/2

�(m + 1/2)

�(m)
+ m1/2

2m3/2

≤ 1.01m−1.

Combining the above bounds we see that in the case of even d = 2m,

αC(2m) − αR(2m) = (I ) + (I I ) ≤ 2.01m−1.

�
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