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Abstract

An active control system has been implemented on a low-speed single-stage
axial compressor. This control system stabilizes the perturbations which normally
lead to rotating stall, thus extending the range of operation of the compressor to a

flow coefficient 23% below the natural stall flow coefficient. Sensing of the

perturbations which precede stall is accomplished using a circumferential set of hot
wires mounted at an axial station ahead of the rotors. Actuation is accomplished by a
set of 12 high-response inlet guide vanes, whose individual deflections can be
controlled independently by a digital computer.

The feedback scheme used in this work is motivated by a recently developed
model for rotating stall. In this model, the perturbation axial velocity as a function of

circumferential position at any axial station completely determines the state of the
system. Furthermore, circumferential sinusoidal waves of the perturbation are the

fundamental eigenmodes, and these eigenmodes develop as rotating waves around the

annulus. When the eigenvalues associated with these eigenmodes become unstable,
the system diverges into rotating stall. Therefore, feedback stabilization of these
rotating waves is used as the technique to eliminate rotating stall.

The model for rotating stall is extended to include the effects of high-response
inlet-guide-vane actuation. This model is then converted from a system of partial

differential equations (PDEs) to a set of ordinary differential equations (ODEs). This

conversion will be shown to yield a model to which standard control and
identification techniques can be applied.

The experimental investigation consisted of two main parts. The first part is

systematic identification of the relevant compressor dynamics. The procedures
described yield an accurate model of the compressor input-output behavior over the
frequency range of interest (DC to twice rotor rotation frequency), for flow
coefficients which span the entire range of stable and unstable (stabilized) operation
of the system. This identification verifies the basic behavior predicted by the model
and provides quantitative information for control system design.

The second part of the experimental investigation is active stabilization. The

goal of active control is to extend the range of the compressor to the lowest flow
coefficient possible. It is shown that, in the compressor studied, the circumferential
sinusoidal modes go unstable in succession - first mode, followed by second, followed
by third, as flow coefficient is reduced. Thus, additional range of the compressor is
gained for each additional mode stabilized.
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CHAPTER 1

Introduction and Review of Previous Work

1.1 Background - Rotating Stall in Axial Compressors

The compressor is one of the three primary components of a gas turbine

engine (the other two being the combustion chamber and the turbine). Axial

compressors are distinguished from other types by their flow path - air flows axially,

or parallel to the shaft of the machine, through an annular passage. Rows of vanes or

blades span this annular passage radially; spinning blade rows (rotors) alternate with

stationary blade rows (stators) to impart a pressure rise to the fluid. Figure 1.1 shows

the layout schematically. The compressor shown has only one rotor and one stator;

thus, it is said to be a single-stage axial compressor (aircraft engines typically have 8

to 20 stages). A few other terms must be defined for the discussion of rotating stall:

the inner radius of the compressor annulus is called the hub; the outer radius is called

the casing. The tip is the outer radius of the rotor; the tip clearance is the distance

from the tip to the casing.

The operating condition of a compressor is determined by the flow coefficient

which is the ratio of the mean axial flow velocity to the velocity of the rotor at the

mean radius. Compressor performance is generally characterized by a 'speed line' or

'characteristic': that is, a plot of pressure rise delivered as a function of flow

coefficient. Figure 1.2 shows a schematic compressor characteristic: as the flow

velocity through the compressor is decreased (i.e. as the downstream throttle closes in

an experiment), the pressure rise increases. This trend continues until the system goes

into either rotating stall or surge. Both of these conditions are disruptions in the
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rotor stator

A B C D E

Figure 1.1 - Compression system components: A - Inlet duct; B - Inlet guide
vanes (IGVs); C - Compressor; D - Downstream duct; E - Throttle

A

C

B

Flow Coefficient

Figure 1.2 - Schematic compressor characteristic, showing rotating
stall condition (segment BC)
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steady, symmetric flow of air through the compressor. Rotating stall is a severely

non-axisymmetric distribution of axial velocity around the annulus of the compressor,

taking the form of a wave or 'stall cell', that propagates in the circumferential

direction at a fraction of the rotor speed. Surge, on the other hand, is an

axisymmetric, unsteady operating state involving limit-cycle type oscillation in mass

flow through the entire compression system. Rotating stall and surge are both

considered unacceptable operating conditions in gas turbine engine compressors.

The interactions between rotating stall and surge have been studied both

theoretically [1] and experimentally [2]. All indications to date are that these

phenomena are coupled, but in a way that is well enough defined that each can be

studied alone. Furthermore, one can readily set up an experimental compressor that

goes into rotating stall but does not surge. Therefore, we will discuss rotating stall

alone, mentioning surge only briefly to help motivate stabilization.

1.2 Description of Rotating Stall

The transition from normal compressor operation into rotating stall is depicted

in Figure 1.2. The lowest flow coefficient at which the compressor can operate with

axisymmetric flow is point A, the peak of the characteristic. At lower flows, an

abrupt transition occurs into rotating stall (point B). This condition will persist until

the flow is increased to point C. Thus, there exists a severe 'hysteresis', or range of

flow coefficients at which two stable operating conditions exist - steady symmetric

flow and rotating stall. The fact that a transition occurs suggests that the equilibrium

point at stall inception (point A in Figure 1.2) and, perhaps, points at lower flow

coefficients represent unstable equilibria. Stabilizing these unstable equilibrium

points is the subject of this thesis.

During rotating stall, the flow through the compressor is a function of both

time and position in the compressor. Thus even the most introductory explanation
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requires some notation and simplifying assumptions. First, we will assume that the

compressor annulus is narrow - i.e. the ratio of the hub radius to the tip radius is

nearly one. This assumption allows variations in flow velocity with radial position to

be ignored, and for the compressor annulus to be 'unwrapped' into a 2-D duct. Figure

1.3 illustrates the result: the annulus is hereafter considered as a 2-dimensional duct,

in which 2-D cascades replace the rotor and stator vanes. Circumferential (9) and

axial (x) position are the space variables. Flow coefficient is written as a function of

space and time, 4(x,6,t). Functionality with x, while strong, is relatively uninteresting

in low-speed machines, so we will look at the flow coefficient at a specific axial

location (usually upstream of the rotor), 4,i(9,t).

Functionality with t can also be eliminated when looking at fully-developed

rotating stall, because in this condition the shape of the stall cell does not change

much as it rotates around the compressor annulus. Thus, if we fix ourselves in the

reference frame of the moving stall cell, we see a wave shape xi (e- cst). Lavrich

[3] has taken great care in resolving this wave shape using ensemble averaging

techniques; his results provide a view of a typical stall cell in a low-speed

compressor, Figure 1.4. This figure illustrates the severe magnitude and abrupt nature

of the unsteadiness experienced by the blades during rotating stall - remember, this

cell is traveling at a fraction of rotor speed (38% in this case), so both the rotors and

the stators are passing through the velocity field shown.

To show rotating stall inception, the time evolution of the wave shape must be

plotted. This can be done using a 3-dimensional plot of ox(e,t), as in Figure 1.5.

One can also plot flow coefficient at a specific circumferential location, x i,ei(t), to

study stall inception. Such a plot is given in Figure 1.6. Here each dip in the local

flow coefficient represents one passage of the stall cell. Figures 1.5 and 1.6 are

difficult to interpret in detail; we will adopt a modal approach later in the thesis.

These figures do show, however, that a transient exists between steady symmetric
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Figure 1.6 - Flow coefficient time evolution at a single circumferential
position - transient leading to rotating stall
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flow and fully-developed rotating stall, thus suggesting that the former is an unstable

operating condition, and the latter is a stable limit cycle to which the unstable flow

converges. 'Unstable' here means that waves of non-axisymmetric velocity tend to

grow.

The growth of velocity waves in compressors at stall inception has been the

subject of several previous studies. The growth (or decay) of velocity waves at

operating conditions away from stall inception has not been studied. The

experimental setup used in this thesis provides the unique opportunity for study of the

entire continuum of growth rates - from negative (decaying) through zero (inception)

to significantly positive (highly unstable). That such a continuum exists, and that it

can be characterized using linear theory, are new results that are central to this thesis.

Without such results, stabilization at flow coefficients well below the 'natural stall'

flow coefficient would be much more speculative.

1.3 Motivation and Previous Efforts

To motivate the idea of stabilization, consider operation at point B in

Figure 1.2. The pressure rise delivered by the compressor drops sharply when the

compressor transitions into rotating stall. This alone compromises engine

performance. But rotating stall often induces surge as well, which can in turn cause

engine flame-out, shut-down, and damage. If the engine does not surge, then engine

re-start may be required to clear the stall. Because the rotating stall cell travels with

respect to both the rotor and the stators, all the blades in the engine see severely

unsteady loading. Thus operation in rotating stall for any length of time is deemed

unacceptable.

Traditionally, rotating stall has been avoided by avoiding operation too close

to point A. This solution necessitates leaving an ample 'stall margin', so that

transients in flow rate and ingestion of non-axisymmetric or otherwise disturbing flow
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will not drive the system to the rotating stall operating condition. Concomitantly, a

performance penalty is often paid, because the highest pressure rise and, sometimes,

the highest efficiency, lie at flow coefficients below the minimum imposed by the

stall margin. Therefore, it is desirable to reduce the minimum allowable flow

coefficient without putting the system in danger of stall and/or surge.

Theoretical and experimental investigations over the past two decades have

been aimed at two different methods to reduce the minimum allowable flow

coefficient. First, the flow coefficient at which stall occurs can be reduced, so that,

with the same stall margin, the compressor can operate at a lower flow. Second,

operation closer to the stall flow rate can be made safer, so that the stall margin itself

can be reduced.

Much research, both experimental and theoretical, has been aimed at simply

understanding the mechanisms involved in rotating stall. This understanding would

then presumably be used to help designers reduce the minimum allowable flow

coefficient by changing the initial design. Work by Takata and Nagano [4] and by

Pandolfi and Colasurdo [5] are examples of attempts to numerically simulate the

behavior found in rotating stall. These methods generally require the input of blade

row parameters such as loss and turning near or beyond stall or in unsteady situations.

Reliable correlations for cascade characteristics in the regimes of interest are needed

to insure the accuracy of this type of approach, but useful design rules have been

developed [6].

Another method of reducing the stalling flow coefficient, thus reducing the

minimum allowable flow, is motivated by the realization that stall is sometimes

strongly affected by the conditions in the tip clearance region. Significant improve-

ments in stall flow can be achieved using casing treatments, which are slots or

grooves in the casing of the compressor, usually at the tips of the rotors [7]. This

method involves a trade-off between efficiency and stalling flow coefficient, and is

28



effective only for the case of 'endwall related stall', as opposed to 'airfoil stall' [8]. In

the latter case, the entire passage stalls, while in the former, the rotor tip section stalls

first.

Finally, a form of active control has been experimentally employed in an

attempt to reduce the required stall margin [9]. In this method, the stall flow

coefficient was not significantly reduced, but the operation near stall was made

somewhat safer. This was done by detecting the onset of stall and subsequently

opening bleed doors or valves to 'back away' from the flow condition until the small

initial cell cleared. This 'stall avoidance' scheme met with only limited success, due

to difficulty in detecting the stall onset and the subsequent large control action

required for avoidance.

Recently, a new approach to the problem has been suggested, based on the

work of Moore [10], Greitzer [11], Ffowcs-WilHiams [12], and others. In their view,

fluid mechanical instabilities should be viewed at their inception as small amplitude

disturbances which are, consequently, amenable to linearized fluid mechanical

description. Stabilizing these small disturbances has proven effective in delaying the

onset of such phenomena as combustion 'reheat buzz' and compressor surge. If a

small amplitude disturbance model for rotating stall could be developed and verified,

this would pave the way for stabilization. Such stabilization would reduce the flow

coefficient at which stall occurs, potentially to a greater extent than any of the

techniques mentioned above.

Such a model exists, and its validity was the subject of research by

McDougall [13], Longley [14], and Gamier [15]. In this model, the disturbances that

lead to stall are not localized, as in many previous models of rotating stall, but take

the form of circumferential waves that propagate according to linearized fluid

mechanics. These waves either grow or shrink, depending on the flow rate. When

they grow, the system is unstable and a fully developed nonlinear stall cell results.
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The success of the studies using this model indicated that it was sufficiently

accurate to warrant the study of active control. Epstein, Ffowcs-Williams, and

Greitzer [16] presented an analysis of the feasibility of feeding back measurements of

these waves in order to stabilize them and prevent the onset of rotating stall. One

way to view this approach is shown in Figure 1.7. Since the onset of rotating stall is

seen as the growth of unstable, though initially small, perturbations, there must exist

an unstable extension of the compressor map. If this set of unstable equilibria can be

stabilized using active control, then the actual compressor map can be extended.

Epstein et al predicted significant improvement using this approach.

While this work presented strong evidence to motivate further research, several

issues were left unresolved. The control effectiveness, and the fluid mechanical

interaction of the actuation scheme with the flow field was not studied. The dynamics

of the controller were also ignored, for clarity of presentation - in fact, the partial

differential equation model used is not particularly useful for control system design.

Finally, no experimental evidence was presented - only the suggestion that such

experiments would be successful.

The details of the complex fluid mechanical interactions leading to rotating

stall are still not well understood. For this reason, considerable controversy still exists

about the validity of any one model of stall onset, especially if that model is

2-dimensional in nature, as is the Moore-Greitzer model. Recently, Day [17] showed

that certain features of the stall inception process in some compressors are not easily

predicted by this model, and proposed an alternative explanation. Based on this

explanation, Day has devised an active control scheme very different from the one

proposed here. Results of this work are presented in [2].
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Figure 1.7 - The unstable extension to the axisymmetric compressor map
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1.4 Purpose and Procedure

The primary purpose of this research is to demonstrate a reduction in the flow

coefficient at which rotating stall occurs. This demonstration will be carried out on a

low-speed single-stage compressor, described in Chapter 2. The technique used to

reduce the flow coefficient is active control; the design of the sensing, actuation, and

control laws is guided by the linearized model developed by Moore and Greitzer.

The first step in applying the Moore-Greitzer model to the problem of active

control is to extend it to include the effects of the actuators. This development is

given in Chapter 3. Once this is done, the model is converted to the ordinary

differential equation (ODE) format that is needed for the application of control theory.

This is also presented in Chapter 3. Chapter 4 further augments this model with the

sensing, computation, and actuation dynamics that exist in the experiment.

The model developed in Chapter 3 is validated and shown to be adequate for

designing stabilizing controllers in several ways. In Chapter 5, methods are

developed and applied that allow the systematic quantitative identification of the

system dynamics. If these dynamics show behavior that agrees qualitatively with the

model, then confidence in its applicability, if not its predictive capability, is increased.

In Chapter 6, the now quantitative system model is used to investigate the

stabilization of the system when it becomes unstable. The success of the model in

helping to design effective control systems is, of course, a direct measure of the

model's adequacy in the context of control. The ultimate test of the model is to see if

it can predict, based on geometry alone, the dynamic behavior of the system. The

quantitative prediction of the system dynamics is an area still under development, and

the current 'state of the art' is discussed in Appendix A. The quantitative

experimental data provided in this thesis can be used to validate predictive

procedures, when they are sufficiently mature. For this reason, Chapter 5 includes an
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extensive set of experimental results.

Finally, the purpose of this research is to investigate and elucidate the concepts

necessary for successful application of active control methods. A compressor is a

distributed fluid mechanical system, whose dynamics are poorly known a priori.

Control requires multiple measurements and actuators which must operate at high

bandwidth in a noisy environment. The system linearity is a strong function of its

state, but the relationship between linearity and operating condition remains unknown.

This thesis will present an approach to these problems that has proven to be

successful. It further provides a framework for thinking about and improving the

understanding of rotating stall stabilization.
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CHAPTER 2

Experimental Apparatus

A low-speed single-stage axial research compressor has been retrofitted with

inlet guide vanes (IGVs) whose incidences can be individually controlled at high

bandwidth. This compressor has also been fitted with hot wire anemometers, for

measuring instantaneous flow velocity, at various circumferential and axial locations.

Instrumentation and computer equipment for logging this data, together with total and

static pressure data, and for feeding back signals to the IGV actuators in real time, has

been installed. A complete description of the experimental apparatus is contained in

this chapter. Section 2.1 first describes the rationale for the design of the

experimental apparatus. Section 2.2 then describes the mechanical layout of the

compressor, IGVs and instrumentation. Section 2.3 describes the computers and

electronics, and shows the functional interconnections that exist; Section 2.4

describes the signal flow paths for various data acquisition and control tasks.

Section 2.5 gives some programming considerations. Finally, Section 2.6 describes a

typical experiment, and gives the parameters which define the configuration of a

particular run.

2.1 Design of the Experimental Apparatus

The apparatus described in this chapter constitutes the first attempt to sense

and actuate the circumferentially distributed dynamics of a compressor in a

distributed, proportional (i.e. not simply on-off) manner. For this reason, the design

of the experimental apparatus was made as straightforward as possible. Every attempt
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was made to maximize the possibility of success of the experiments, in keeping with

our purpose of demonstrating rotating stall stabilization. Nevertheless, we will assert

that the resulting apparatus is an adequate first step toward stabilization of real

compressors.

The compressor chosen for this study is the single-stage, low-speed axial

research compressor at the MIT Gas Turbine Laboratory. This compressor is

described in Section 2.2. The size and configuration of the compressor facilitate

retrofitting sensors and actuators. Furthermore, the low speed (2700 RPM, tip Mach

number -0.25) allows the modeling techniques of Moore and Greitzer [10,11] to be

applied directly. Extension to high-speed machines is a current area of

research [41,44], but measurements presented by Garnier [15] indicate that the

relevant 'prestall wave' behavior does exist in some high-speed compressors. If such

prestall wave behavior exists in the experimental compressor, then we judge the

low-speed, single-stage nature of the compressor to be secondary to the purpose of

demonstrating stabilization. Haynes [40] has demonstrated results very similar to

those presented in this thesis on a 3-stage low-speed compressor, verifying that the

single-stage nature of this compressor does not restrict the results.

Hot wires were chosen to sense axial velocity in the compressor for several

reasons. Mass flow is the relevant variable in compressor dynamics and, in a low

speed compressor, mass flow and axial velocity are proportional. Furthermore, hot

wires are the most direct, high-sensitivity, high-bandwidth technique for measuring

axial velocity. Higher speed machines would probably use high-response pressure

measurements, because pressure transducers are more rugged than hot wires, and

because pressure measurements are sensitive enough in a high-speed environment.

The hot wires are positioned relatively far upstream of the compressor, so that the

higher harmonic components of the disturbances generated by the compressor are

filtered (see discussion in Section 4.1.2). This reduces the likelihood of spatial
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aliasing of the signals. Eight hot wires are used for most of the experiments, so that

waves with 1, 2 or 3 lobes can be measured without aliasing.

There are many ways to actuate travelling waves in an axial compressor.

Techniques involving oscillating the inlet guide vanes (IGVs), vanes with oscillating

flaps, jet flaps, peripheral arrays of jets or suction ports, tip bleed above the rotor,

whirling the entire rotor, and acoustic arrays were all considered on the basis of

effectiveness, complexity, cost, and technical risk [46]. Oscillating the IGVs was

chosen on the basis of minimum technical risk - it was deemed feasible to both

implement and accurately model moving IGVs. Results of modeling the IGVs [20]

do in fact match experimental results quite well - see, for instance, Figure 4.3. The

design of the IGVs, their size and number, and the actuation hardware were all driven

by the desire to maximize control effectiveness and minimize complexity and cost.

See [46] for a discussion of the design process. The resulting configuration is

discussed in Section 2.2 and 2.3.

The bandwidth of the instrumentation in the feedback path was designed to be

adequate to stabilize the maximum projected instability rate based on measurements

and theoretical studies. Control algorithms were benchmarked, and a 80386-based

PC-type computer was judged fast enough for the application. This computer was

later upgraded to an 80486-based machine. Use of an IBM PC compatible computer

made finding off-the-shelf hardware for data acquisition and servo control relatively

easy and inexpensive.

2.2 Mechanical Layout

Figure 2.1 shows a blow-up of the single-stage axial research compressor, and

the IGV ring which has been constructed for this project. The upstream annulus and

bell mouth are mounted on a rolling cart, as is the IGV ring. These two assemblies

roll on a pair of I-beams, one of which engages the wheels on an alignment track.
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The compressor and downstream ducting are fixed to the same pair of I-beams, and

the rotor shaft is supported by struts emanating from these beams. The rotor is spun

by a 250 horsepower DC electric motor. The throttle arrangement is shown in

cutaway in Figure 2.1: it consists of a conic section mounted on a pair of screw

jacks. A variable-speed electric motor turns the screw jacks and positions the throttle,

under the control of the experimenter. Downstream of the throttle, ductwork leads to

a roof fan, which provides extra suction to overcome the losses in the ducts. The

compressor alone can only barely overcome these losses, so the extra suction provided

by the roof fan is necessary to reach certain parts of the compressor map.

The compressor which was modified for this project (also described in [19])

consists of a constant-area duct with a hub/tip ratio of .75, in which a rotor and stator

stage are mounted, each of which has a solidity of about 1.0. The geometry of the

compressor is given in Table 2.1; nomenclature of compressor geometry is defined in

Figure 2.2. For all of the experiments described in this thesis, the rotor was spun at

2700 RPM, which corresponds to a tip Mach number of .245.

The original section of casing on which the IGVs were mounted has been

removed, and replaced with a new casing ring. This ring is shown in Figure 2.3: it

has been designed so that up to 24 IGV blades can be mounted. These blades can be

either mounted with bolts, so that they are fixed, or mounted on the shafts of dc

servomotors, so that their angle relative to the incoming flow can be controlled in real

time. Figure 2.3 shows the configuration which was used in this thesis: 12 motors

evenly spaced around the annulus with an IGV blade mounted on the shaft of each

motor. The casing ring is split, to allow the motors to be mounted easily. It also

provides stops for the motors, so they cannot spin continuously, and mounting holes

for instrumentation downstream of the IGVs. There are 25 such holes, evenly spaced.

The combination of 24 blade stations with 25 instrumentation holes means that each

hole is behind a different location with respect to the IGV blade passages. Thus, the
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Table 2.1 Compressor geometry

Number of stages
Tip diameter
Hub diameter
Hub/tip radius ratio
Mean radius
IGV/rotor gap
Rotor/stator gap

1
0.591 m
0.445 m

0.75
0.259 m
18 mm
48 mm

(23.75 in)
(17.5 in)

(10.187 in)
(+ 14.5 mm when spacer ring is in)

Number
of blades

Chord1

(mm)
Camber

(deg)
Stagger

(@ mean radius) Twist 2 Solidity

Inlet Guide Vanes- 12 81 U U U U.0 U.3)14
NACA 0009
pivoted at 42% chord
hub clearance: 1mm 0.5

Rotor- 44 38 25 yr=35 30 1.03 0.147

NACA 64-009 (at midspan*)
pivoted at 50% chord
tip clearance: 1mm 0.6

Stator- 45 38 30 ys=22.5 -5 1.08 0.151
Unknown 9% thickness airfoil
pivoted at 50% chord
hub clearance: 1.5 mm

Notes:
1) chord and camber are constant across span,

*EXCEPT for rotor, which has variable camber
2) twist is a linear function of span - twist column

indicates (tip stagger) - (hub stagger)
3) b = (chord)/(mean radius)

Stage b 3
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flow field across the entire blade passage can be studied by mounting instrumentation

in different holes.

Silkowski [20] studied the control effectiveness expected from a set of moving

IGVs, and this information was used to determine the size and number of IGV blades

required. By choosing a blade with a relatively long chord, and eliminating stationary

IGV blades between the moving IGV blades, it was determined that 12 moving blades

would provide sufficient control power [20,46]. IGVs with zero incidence and

symmetrical airfoil shape were chosen to allow both positive and negative deflections.

NACA 0009 was chosen as the IGV airfoil shape because of its ability to operate at

high angles of attack ( 15 degrees).

The final consideration for design of the IGV blades was bandwidth. In order

to provide the highest possible actuation bandwidth, the inertia of both the

servomotors and the blades was minimized. Low-inertia, high-current capacity DC

servo motors, type 4VM62-220-1, from Pacific Scientific, were chosen as the highest

bandwidth servomotors available. The inertia of the IGV blades was kept to a

minimum by casting them out of epoxy. Metal blades of exactly the same shape as

the cast blades were numerically machined; these are used when stationary blades are

desired.

Photographs of the IGV ring, servo motors, and IGV blades are given in

Figures 2.4 and 2.5.

To complete the mechanical description of the rig, the instrumentation layout

is shown in Figure 2.6. The static pressure ports are wall taps flush with the casing.

The dynamic pressure taps are kiel-head probes. Upstream total and static pressure

measurements are combined to give an annulus-averaged axial velocity. A pitot-static

tube provides another check of the axial flow velocity. Downstream static pressure

ports are used when measuring the total-to-static pressure rise of the compressor for

speed lines. Mountings for hot wires exist upstream of the IGVs, between the IGVs
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Figure 2.4 - IGV ring, servo motors, and IGVs
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Figure 2.5 - Close-up of servo motors and epoxy inlet guide vanes
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and the rotor, and behind the rotor. To mount hot wires behind the IGVs, an extra

0.57" spacer ring must be added to the casing ring, so that the rotor does not hit the

hot wires (see Figure 2.1). Figure 2.6 shows where all the probes are located; a more

complete description of the way that the measurements are taken, calibrated and used

is given in Section 2.3.

2.3 Sensors, Signal Processors, and Computers

The high-response measurement and actuation equipment is depicted in

Figure 2.7. This is the feedback loop used for active control of rotating stall. In

parallel, low-response (time-averaged) pressure data can be acquired. Figure 2.8

shows the equipment used for pressure data acquisition. The individual elements in

these two diagrams are described in this section.

2.3.1 Hot Wire Probes and Anemometers

Dantec type 55-P11 hot-wire probes are used for time-resolved axial velocity

measurements. Each probe consists of a 20 pm tungsten wire, about 1.2 mm long,

extending between two posts. A Dantec 56C17 CTA Bridge anemometer unit

provides the current necessary to keep the tungsten wire at a constant resistance level,

which, due to the properties of the wire, implies constant temperature. The current

required to keep the wire at constant temperature is a function of the cooling provided

by air passing over the wire, which is in turn a function of the airflow velocity

perpendicular to the wire. Thus, the current provided to the hot wire probe is an

indirect measure of the flow velocity over the probe. The anemometer unit has a

voltage output which is proportional to the current provided to the probe. The

relationship between anemometer output voltage and velocity is given by King's

law [21]:

E2 = AO + A1 Vn, (2.1)

where E is the voltage output of the anemometer (expressed in A/D counts), AO and
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A, are calibration constants, V is the velocity at the hot wire in m/s, and n is a

calibration constant (usually about .5). The calibration constants in this equation must

be determined experimentally, each time the experiment is run, because the

calibration tends to drift dramatically over time.

The sensitivity of velocity measurements was found to be about .10 to .15 m/s

per A/D count, or .08 to .12 m/s per mV. The bandwidth of the measurements (as

claimed by the manufacturer) is 50 kHz, well above the sampling frequency used in

these experiments.

2.3.2 Low-Pass Filters

Each hot wire signal is filtered by a 4-pole analog Bessel filter, whose cutoff

frequency has been set at 1000 Hz. This frequency is well below the blade passing

frequency (1980 Hz for a 44 blade rotor spinning at 2700 RPM). At the same time,

the cutoff frequency is well above the Nyquist frequency of the control system

(250 Hz), so that the lag seen by the control system due to the filters is negligible.

Anti-aliasing filters are usually chosen to roll off at frequencies below the Nyquist

frequency, to prevent aliasing. It has been verified that, in this compressor, a signal

measured at 5000 Hz provides no significant spectral information beyond that found

in a signal measured at 500 Hz. Thus, aliasing is not a problem when the filter cutoff

frequency is set to 1000 Hz.

2.3.3 A/D Board

The outputs of the Bessel filters are fed into a Metrabyte DASH-16F analog to

digital converter, mounted in a HP Vectra 486 computer (see next section). The A/D

unit mounts directly in an expansion slot and provides direct memory access (DMA),

sampling at 100kHz. The range is set to 0 to 5 volts, and the sensitivity is 12 bits, or

4096 divisions, about 1.22 mV per A/D count. Since the hot wire signal consists of

small fluctuations (typically 10-25 mV) modulating a DC signal of about 2.5 Volts,
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the sensitivity of the A/D is barely adequate. Fortunately, the noise introduced by the

A/D is extraordinarily low, on the order of 1 to 3 A/D counts, so that meaningful

feedback can still be accomplished. Combining the incoming channels into Fourier

coefficients (described in later chapters) also increases the effective signal-to-noise

ratio of the overall sensing system.

2.3.4 HP Vectra 486 Computer

The primary computer for real-time data acquisition and control is a

Hewlett-Packard Vectra 80486-based microcomputer, running at 25 MHz and hosting

the A/D and Motion Control Boards. This computer has a 80487 Math Coprocessor,

8 Mb of RAM, a 300 Mb hard disk, and a tape drive to back up data. Programs to

interface with the A/D, take hot wire data, compute control commands, and

communicate with the motion control boards (which ultimately control the servo

motor positions) were written in Fortran and Assembly. Utilities to quickly plot out

data, and to do data reduction, were also written. Some of the more interesting

programming considerations are discussed in Section 2.5.

2.3.5 Servo Motion Control Boards

Also mounted in the HP computer expansion slots are 4 Galil DMC-430 servo

motion control boards. Each of these boards controls 3 servomotors, for a total of 12.

Each motion control 'axis' is a completely independent set of special-purpose

electronics which perform the following functions:

1. Decoding optical encoder information from the servo-motor;

2. Operating a digital proportional-integral-derivative (PID) control
loop, which feeds back encoder information to a current command;

3. Computing and sending out an analog (-10V to 1V) current
command;

4. Communicating with the PC's main (80486) processor, to get
information about the desired position of the servomotor.
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It is important to note that these operations are performed 'off line' as far as the main

computer processor is concerned; the 80486 needs only to provide the commanded

position of each blade. Thus an enormous computational burden is lifted from the

main processor; accuracy and repeatability of servo operation is also insured by using

industry-developed off-the-shelf hardware.

Figure 2.9 illustrates the operation of one axis of a DMC-430 board. Each

servomotor feedback loop is operating at 2 kHz, feeding back optical encoder counts

from the motor and comparing this information with the command from the computer.

The algorithm is the discrete-time equivalent of a PID controller:

(current command) = D(w) -(commanded - actual position), (2.2)

where

D(w) =K w A + w C

and w~1 is the .5 msec delay operator. The computer updates the commanded blade

angles every 2 msec, and the command is assumed constant between updates. The

output of the motion control boards is updated every .5 msec through a zero-order

hold. The constants K, A, B, and C are set by the experimenter. These constants

have been tuned so the bandwidth of the servos is about 80 Hz.

2.3.6 Amplifiers

Each DC motor must be driven by an amplifier. The amplifiers chosen for

this system are Copley Controls Model 240H pulse-width modulated DC amplifiers.

The switching frequency is 22kHz, the maximum current capability is 30A, and the

RMS current capability is 15A. The 12 amplifiers are mounted in 3 instrumentation

rack drawers, each of which houses 4 amplifiers and a transformer/rectifier

combination rated at 60A @ 60VDC. These mounting drawers also display an LED

bar-graph of the current command to the motors. Figure 2.10 is a photograph of the

amplifier rack. A low voltage current command for each servo comes into the unit,
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Figure 2.10 - Amplifier Rack
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and the commanded current comes out.

2.3.7 DC Servo Motors

Pacific Scientific 4VM62-220-1 permanent magnet servo motors position the

inlet guide vanes (see Figures 2.4 and 2.5). These motors are of hollow-core

construction - that is, the windings are impregnated in an epoxy cylinder, and the

metal core does not rotate. This construction provides a very low-inertia, high-torque

servo motor, a combination that allows for extremely high response. The motors are

air-cooled by a blower which draws air through the motors at approximately 1

standard cubic foot per minute. At this cooling rate, the motors can dissipate

100 Watts of heat (I2 R) power. The inertia of the motors is 3.8x10- 6 kg-m2 , the

maximum current capability is 40 amps (short duration), and the rms current

capability is 7.2A.

2.3.8 IGV Blades

Figure 2.11 shows an IGV blade, giving the dimensions and airfoil shape,

which is NACA 0009. These blades were cast from low specific gravity (about .7)

epoxy; the estimated inertia which resulted is 3.32x10-6 kg-m2

This completes the description of all the elements in the feedback path, from the hot

wire probes to the moving blades. There is another signal path whose elements must

be described: the pressure-probe to logged-data path. The elements are the probes,

the Scanivalve, the VAX A/D, and the VAX computer (see Figure 2.8).

2.3.9 Pressure Probes

Three types of pressure probe are used in the compressor. For static pressure,

simple wall static taps are used. For stagnation pressure, kiel-head probes are used,

mounted at midspan. This type of probe provides insensitivity to errors in the angle
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of the probe with respect to the flow direction (up to at least 300 [3]) Finally, a

pitot-static tube provides a second way to check the axial flow velocity.

2.3.10 Scanivalve

A Scanivalve is used to acquire steady-state pressure measurements. The

pressure transducer in the Scanivalve was a Spectra strain-gauge type transducer with

a pressure range of 2.5 psid. Periodic calibration of the pressure transducer in the

Scanivalve was performed using an MKS Baratron unit.

2.3.11 A/D

The Scanivalve pressure transducer voltage output is fed into a Data

Translations DT3382 A/D mounted in a VAXStation II computer. This A/D operates

at 1 kHz; signals are averaged over a .1 second interval (100 samples).

2.3.12 VAX

A VAXStation II workstation is a part of the data acquisition and reduction

equipment. The Scanivalve is controlled via an IEEE bus hosted by the VAX, so

pressure data is taken using the VAX. This setup allows annulus-averaged, low

bandwidth (about once per 10 seconds) monitoring of the compressor pressure rise

during an experiment. The VAXStation is also used for much of the data reduction

and plotting.

The VAX and the HP computer are connected via a serial communication line.

This allows information from the pressure measurements to be transferred to the HP,

when necessary. An Ethernet network interconnection between the two computers

also exists, to allow fast transfer of large quantities of data.

2.4 Signal Flow Paths

The primary operations performed by the experimental setup will now be

described. Refer to Figures 2.7 and 2.8.
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2.4.1 Calibration

Calibration requires use of all of the instrumentation, computers, and their

interconnections. The purpose of the calibration procedure is to provide a relationship

between velocity (in m/s) at a hot wire probe, and voltage (in A/D counts) measured

by the corresponding channel of the Metrabyte A/D in the HP computer. An estimate

of the velocity at the hot wire probe is obtained by measuring the upstream total and

static pressure, and computing the velocity as

V = 2. V Pt - Ps (2.3)
p

Pt and Ps are taken as average measurements from the upstream total and static

pressure ports, respectively. The Scanivalve steps through these pressure ports, the

VAX determines the average pressures, and these pressures are transferred to the HP

computer via the serial interconnect. At the same condition, the HP samples the

on-board A/D for the voltage (in counts) at each hot wire channel. It computes the

velocity using the transmitted pressure measurements, and puts a point on the

calibration relationship. This procedure can be repeated at different flow velocities

until enough points for a calibration curve have been obtained.

2.4.2 Speed Line and Operating Condition Monitoring

Measuring the speed line and monitoring the compressor's position on the

speed line are tasks performed by the VAX computer and the Scanivalve. Once the

ambient conditions are recorded, pressure data is all that is required to determine the

flow coefficient and pressure rise, so these can be determined by the VAX alone,

scanning through the pressure taps. Print-out on the terminal, as well as a

continuously updated plot of the speed line data provide a real-time (although

extremely low bandwidth) monitor of the operating condition.
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2.4.3 High-Response Data Acquisition and Control

High bandwidth data acquisition and control requires the use of the hot wires

and the HP computer and A/D. The VAX and Scanivalve are not used for high-speed

operation.

Signal flow is from the hot wire anemometers, through the analog filters, into

the A/D, where digital velocity samples are placed in the HP computer memory via

direct memory access. Velocity data can then be stored in arrays, and eventually on

disk. In addition, the computer can compute (as feedback) or generate (open loop)

IGV angle commands, which it communicates to the motion control boards via ports.

These boards compute the necessary current commands to send to the servo motors,

based on a PID algorithm, which compares motor encoder positions to commanded

IGV angles. These current commands are then converted to analog signals, which are

sent to the amplifiers, which in tum send current to the motors.

2.4.4 Data Reduction

Data stored in memory during a run is transferred to the HP hard disk at the

end of the run. This data can then be transferred to the VAX via the Ethernet

connection, in order to perform data reduction. MATLAB is the primary software

tool used for data reduction, analysis, and plotting.

2.5 Programming Considerations

A few interesting features of the routines used for data acquisition and control

will be detailed here.

2.5.1 A/D interface routines

Assembly language software, provided by Metrabyte, was modified for the

specific mode of A/D operation used in this project. Since it was desired to sample

between 10 and 16 channels of data as fast as possible, and do so at the beginning of
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every control sample period, a two-clock structure was set up. Both clocks are

programmable clocks on the Metrabyte A/D board. One clock is set to the sample

rate of the control loop, 500 Hz. This is called the 'slow clock'. The other clock, the

'fast clock', is set to run at 100 kHz. This is the maximum sample rate available on

the A/D. At every tick of the slow clock, a direct memory access (DMA) data

transfer from the A/D to the memory of the HP computer is set up. This DMA then

proceeds, for one scan of the A/D channels, at the fast clock rate. This method

minimizes skew between channels, and leaves the maximum amount of time between

slow clock ticks for computation of feedback commands, communication with the

motion control boards, and other operations which must be performed during each

sample time of the control loop.

Metrabyte Assembly language routines for DMA transfer were modified to

wait for the slow clock tick before proceeding. In addition, the code was translated

from 16-bit (80286) assembly language to 32-bit (80386) protected-mode assembly.

Finally, translation of the input from the A/D, which is a 12-bit integer, into a 2-byte

real number specifying the velocity, takes place in Assembly language via a look-up

table. This look-up table is based on the calibration, and allows near-instantaneous

translation of A/D samples into velocity information.

2.5.2 Motion Control Board Interface Routines

The Galil motion control boards are basically designed for profile control -

that is, through simple ASCII commands sent to the boards via I/O ports, profiles of

angular position can easily be commanded and repeated. This however, is not the

mode of operation which is desired for this project. Instead, it is desired to send

position commands to each servo once per sample period (i.e. at 500 Hz), and to do

so in a fraction of the sample period. Since there are 12 motors, it is necessary to

communicate with each in less than 100 psec, so that no more than about 1 msec of
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the 2 msec sample time will be spent in communication with the servos.

To provide this type of communication, an option of the motion control boards

is initialized at the beginning of a run. This option, sent as an ASCII command, tells

the board that subsequent commands are not ASCII commands, but integers

representing the increment in IGV position command. From that point on, the board

takes each byte received on its I/O port as an increment to the IGV position

command. This command is then compared to the actual IGV position (from the

motor optical encoder) and the error drives the PID algorithm to generate current

commands. Thus, the system is in a command-following mode.

Each board is internally clocked at 2 kHz, and can thus receive an increment

to the position command once every 500 psec. Since the boards have independent

clocks, they run asynchronously. Thus, communication with all of the boards is

actually possible within 500 psec. Assembly language software was written to

initialize and execute this communication; experience has shown that, in fact, all of

the boards can have their commands updated within 500 psec, well within the desired

time.

2.5.3 Feedback Control Program

The feedback control program is written in NDP Fortran, which compiles into

protected mode assembly language, so that the full capabilities of the 80486 processor

can be realized. The program operates as follows:

I. Initialization
A. Initialize A/D clocks
B. Prompt user for desired gains, initialize control gains
C. Initialization sequence for servomotors

1) Initialize slow gains for PID loop
2) Drive IGVs to clockwise stop
3) Drive IGVs counter-clockwise until they reach the encoder

index (the index is a once per revolution pulse which
provides a reference position)

4) Initialize fast gains in PID loops
5) Position all IGVs at axial (the index is not necessarily at

axial)
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D. Place servomotors in 'incremental command' mode
E. Prompt user for type of run
F. Sample hot wires for 5 seconds, obtain a mean velocity estimate for

each channel

II. Control Loop
A) Wait for slow (500 Hz) clock tick
B) Take hot wire data at fast clock rate (100 kHz)
C) Compute spatial Fourier coefficients of hot wire signals (discrete

Fourier transform)
D) Compute feedback commands to IGVs in spatial Fourier

coefficients
E) Compute individual IGV commands (inverse discrete Fourier

transform)
F) Check commands, send increment to motion control boards
G) Save data for this time step
H) Increment counter, return to A)

III. Control Loop Proceeds for N cycles, N determined by user. At the end of
N cycles, check keyboard for a quit or reconfigure command from
keyboard.

A) If quit, prompt to store data on disk and exit program
B) If reconfigure, increment gains or change input as commanded
C) If no command from keyboard, go to II and repeat N cycles of

control loop.

It is clear from the description above that data is taken in blocks of N samples. If the

user does not halt operation after these N samples have been taken, they are discarded

and a new set of N samples is taken.

2.6 A Typical Run

A typical experimental run will be described, in order to tie together all the

concepts of this chapter. First, ambient pressure and temperature are measured and

recorded, for use in various routines. Then all of the equipment is turned on, and the

servomotors are initialized so that they hold position as the compressor is spun up.

The electric motor which spins the rotor is then turned on and brought up to

-1600 RPM. This speed is much lower than the speed at which actual data is taken,

which means that the compressor will stall at a lower axial through-flow velocity than

it will at full speed. Thus, a more complete calibration is possible (since we will be

stabilizing the system, we will be operating below the natural stall point, so the
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calibration curve should go down to these low flow values). The exhaust fan is next

turned on to help the compressor force air through the ductwork.

Once the compressor is running, the hot wires can be calibrated. Typically,

calibration is performed at 2 m/s increments between 20 m/s and 40 rn/s (the

manually controlled throttle position determines the mean axial velocity through the

compressor). The measured calibration points are then fit to calibration curves using

a procedure developed by Gamier [22]. These calibration curves are stored on disk

for use by the control program.

The compressor is now brought up to full speed, 2700 RPM, and the VAX

program to monitor the speed line is started. The VAX Workstation from this point

on is continually adding to a plot of pressure rise versus flow coefficient, providing a

monitor of the compressor operating point. The throttle is closed to a point near stall,

but still stable.

Now the control program is begun. After running through the initialization

procedures and setting up the feedback gains, the system begins to operate in closed

loop. The system is still open loop stable, but the feedback system is nevertheless

correcting for small perturbations which it measures. The throttle is next closed at an

extremely slow rate (less than .1% in flow coefficient per second). The compressor

flow coefficient slowly drops below the natural stall line, and the extension of the

speed line is monitored graphically on the VAX. When the compressor finally stalls,

the control loop is stopped. This allows the stall event to be stored on disk for later

use. The minimum flow coefficient to which the system operated is then recorded,

and the procedure is repeated. Typically 3 to 5 such stalls are performed to insure

consistency and repeatability of the closed-loop stall flow coefficient.

During closed loop operation, the gains of the system can be changed, to try to

allow the system to operate at lower flow coefficients. Also, an external command

can be added to the feedback signal to allow for system identification. Many other
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options are possible; these are just a few to illustrate the kind of tests done. Once the

data desired has been gathered, the system is shut down, the data is checked on the

HP (and perhaps partially reduced). Some data and/or reduced data is then sent to the

VAX for further processing.

A complete set of raw data from a one second run is displayed in Figure 2.12.

It is apparent that since there are many channels coming in and going out, a lot of

data is logged during a run - about 10,000 points/sec of velocity and IGV position

data, and about 20,000 points/sec of diagnostic data which is derivable from the

velocity and IGV position data.

2.6.1 Parameters Which Define The Configuration of a Run

Because of the complex nature of the experimental setup, there are numerous

variables in the configuration which, if changed, might affect the results. The attempt

in this thesis is to minimize the number of configurations and parametric variations,

where these variations are not of interest to the studies at hand. For instance, the

RPM at which the tests are run is consistent throughout the entire thesis - this

parameter is considered of secondary interest in the study of stabilization of rotating

stall. Parameters which are consistent throughout this thesis are:

Basic geometry of the rig:
rig dimensions (Table 2.1)
pressure tap locations
IGV, rotor and stator geometry and incidences (Table 2.1)

(Appendix C discusses variations in some of these
parameters)

Rotor rotation rate - 2700 RPM
Exhaust fan is ON
Hot wire overheat ratio - -1.5
Analog filter cutoff frequency - 1000 Hz
Sample rate (slow clock) - 500 Hz
DMA rate (fast clock) - 100 kHz
Servomotor PID gains, amplifier current limits, etc.
Mean velocity estimation procedure
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Figure 2.12 - Input velocity data and output blade deflections for one
second of a typical closed-loop run
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Parameters which may change from one run to the next are:

Flow coefficient
Number of hot wires and their locations

- this includes axial location, circumferential locations, and
radial locations

Feedback law for closed-loop runs
Stationary IGVs in or out
.57" axial extension ring in or out

The last two entries constitute changes to the compressor geometry, which can either

be put in or taken out. The first change is a set of 12 stationary metal IGVs, placed

one between each pair of moving IGVs, to study the effects of solidity and

non-moving IGVs. The second change is a .57" axial extension to the casing, which

increases the gap between the IGVs and the rotor, allowing hot wires to be placed

behind the IGVs.
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CHAPTER 3

Modeling Compressor Higher-Mode Dynamics

This chapter presents the current model of axial compressor 'higher-mode

dynamics'. Higher-mode dynamics refers to the compressor's response to disturbances

which have a circumferential mode number of 1 or greater, as distinguished from

those which are axisymmetric (i.e. mode number 0).

We postulate that higher-mode axial velocity disturbances will grow into

rotating stall when they are unstable. Thus we are interested in modeling and, subse-

quently, in stabilizing these disturbances. The terminology 'higher-mode dynamics' is

used to distinguish this model from models of 'rotating stall dynamics', which often

attempt to model the mechanisms which govern fully-developed rotating stall. As we

have seen in Chapter 1, fully-developed rotating stall involves large velocity pertur-

bations, so any model of its behavior must be inherently nonlinear. The higher-mode

dynamics presented here, on the other hand, describe the small perturbation behavior

of the compressor. We will be stabilizing these small perturbations, so they will

remain small and never grow into rotating stall. Thus we can develop a linearized

model without making unrealistic assumptions. We can then study compressor

response to small disturbances over a large range of operating conditions, some which

are stable, and others which are unstable.

The approach taken is to derive the simplest form of the model which still

retains its full structure. More detailed modeling has been conducted [18,24,25,38,42],

and some of these results are reviewed in Appendix A. These additions only change

the coefficients of the differential equations, without changing their basic form.

66



As such, they are of interest for prediction, rather than for understanding the system

behavior. We will first explain the assumptions and notation used throughout the

chapter, then proceed with the derivation. Alternate forms of the model are then

presented.

3.1 Modeling Preliminaries

3.1.1 Assumptions

Figure 3.1 shows the compression system to be modeled. It consists of an

upstream duct, a set of movable inlet guide vanes, a compressor, and a downstream

duct. The following assumptions are made:

Compressibility effects are negligible - This assumption is usually considered valid

when the Mach number is << 1. There are two relevant Mach numbers. Blade Mach

number is computed as U/a, where U is the speed of the blades at the mean radius,

and a is the speed of sound. In all the experiments described here blade Mach

number is 0.24. This implies that the pressure rise across the compressor is small

compared to atmospheric pressure (AP/Pg < 1), so that compressibility effects

within the compressor are negligable. For rotating stall disturbances, Mach number is

computed as OL/a, where (o is the reduced frequency associated with the traveling

waves and L is their characteristic length. In the current set of experiments, this

Mach number is -0.1 independent of the modal content of the perturbation waves.

The effects of viscosity are negligible outside the blade rows - The Reynolds number

in our experiments is about 5x10 5/n, where n is the highest mode number in the

disturbance. Thus even for high modal content in the disturbance waves, viscous

effects outside the blade rows are much smaller than inertial effects, and can be

ignored.

Uniform inlet flow - The upstream flow is assumed to come into the compression

system from a reservoir at uniform conditions. Far upstream it will thus be
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Figure 3.1 - Stations in a 2-D axial compression system
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axisymmetric (no distortions), and will contain no vorticity. This permits the

upstream flow to be considered as a potential flow.

No radial variation of the flow parameters (2-D flow) - For high hub-to-tip ratio

machines, one often considers only the axial and circumferential variations in the

flow. Blade row parameters (which will be imbedded in the compressor character-

istic) are used to account for 3-dimensional effects within the compresssor to some

extent, but 3-dimensional stall behavior per se is not modeled, because the flowfield

outside the compressor is considered to be 2-D.

The compressor is a semi-actuator disk - this is an extension of the classical actuator

disk approximation, which will be described first.

The actuator disk model assumes two things: infinitesimal axial length, and an

infinite number of blades. The first assumption allows the effects across the

compressor to be modeled without modeling the details of the internal flow. The

second assumption allows blade-to-blade variations in the flow field to be ignored.

Thus, only circumferential disturbances which are long compared to the blade pitch

are considered [14]. The actuator disk, then, is simply a surface across which the

quasi-steady pressure rise and flow turning are specified to match those of the actual

compressor.

The semi-actuator disk model, which must be employed when unsteady flow is

important (e.g. the situation of rotating stall), accounts in a simple way for unsteady

effects within the compressor by modeling the inertia of the fluid in the blade

passages. In every other way it resembles the actuator disk model. Details of this

modeling appear in Section 3.2.5.

Surge dynamics can be neglected - For small perturbations in the compressor flow

coefficient, surge and rotating stall are decoupled. Furthermore, because the Greitzer

'B Parameter' is < 0.1 in this experiment, surge-type (zeroth mode) oscillations are

never encountered. Therefore, we will neglect surge entirely in this discussion.
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3.1.2 Notation and Non-dimensionalization

3.1.2.1 Non-dimensionalizing Parameters

Non-dimensionalization of the equations is accomplished using parameters

which define the geometry and 'size' of a specific compressor. The

non-dimensionalizing parameters are:

r - rotor mean radius

U - wheel speed = (rotor rotation rate)xr

pU2  - 'dynamic head' based on rotor speed (p is fluid density)

3.1.2.2 Independent Variables

The independent variables of the problem are 2-D space and time. Axial posi-

tion is non-dimensionalized by the rotor radius. Circumferential position is in radians,

so it need not be non-dimensionalized. Time is non-dimensionalized by the rotor

rotation rate. The notation is as follows:

17 - (axial position)/r
The origin for q will be placed at the compressor face

6 - circumferential position in radians, positive in the direction of
rotor rotation

- (time)- U/r

3.1.2.3 Dependent Variables

The variables which determine the state of the system are the total and static

pressure, and the axial and circumferential flow velocity. Additionally, we can define

a velocity potential upstream of the compressor. We also let the IGV deflections be

variable; eventually, these will be commanded by the control system. The notation is:

Tt(19,T) - (total pressure)/pU 2

s(1,6,) - (static pressure)/pU2

0(f70,,) - 'flow coefficient' - (axial velocity)/U

V(n,19,r) - (circumferential velocity)/U

<D(17,er) - velocity potential, defined such that:

60D 64D

y(6,r) - IGV deflection angle (here we are assuming a
circumferential continuum of blades)
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3.1.2.4 Compressor Characterization

The compressor geometry and performance determine the specific behavior of the

higher-mode dynamics. The specifications of the compressor required by this model

are as follows (Section 3.2 explains the use of these parameters):

- overall compressor steady-state total-to-static pressure
rise characteristic, (7s3-7tl)ss- for instance, Figure 1.2

V(02,y) - compressor steady-state total-to-static pressure rise
characteristic not including IGVs, (Ps 3-1t2)55

17H - axial location of axial velocity measurements

- rotor fluid inertia parameter,

X [ b -'(-1

cos(yR) J 3.1)
rot ors

PC - compressor fluid inertia parameter (excluding IGVs),

C + [ cos(y) (3.2)
stat ors

pIGV - inlet guide vane fluid inertia parameter,

b b IGV(3.3)
YIGV cos ( y)

P - overall compressor fluid inertia parameter

A = IGV + PC (3.4)

In these definitions, b is the chord length of the blade specified by the
subscript, non-dimensionalized by r. 'y, yR and y are the stagger angles of the

IGV, rotor, and stator, respectively. Figure 2.2 and Table 2.1 further describe
y and b.

The use of the inertia parameters A, pc ,IGV, and y for characterizing the compressor

unsteady performance is described in Sections 3.2.4 and 3.2.5.

3.1.2.5 Perturbation Variables

We will be developing a linearized description of the flow field, and we will

use the following notation for mean flow and perturbation quantities (where q is any
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of the dependent variables defined above):

q= q+ 5q,

where q is constant in r and 6 (i.e. the background flow is axisymmetric). We will

also make use of the approximation

q(v) = 4(v) + Sq(3v)

dq
= 4(v) + Sv,

where v is any independent variable of interest.

3.1.2.6 Spatial Fourier Coefficients (SFCs)

Variables which are functions of 0, denoted here as p(6), will be decomposed

into spatial Fourier coefficients (SFCs), denoted by a tilde: pn, n=1,2,... A slightly

non-standard transform pair will be adopted, which is equivalent to the standard

formulae, as long as the functions p(6) are real:

p(6) = IRe * ein9

n>O

21r

n = - f p(6).e d1,
0

where * denotes complex conjugate. Using these definitions, the SFCs have a very

intuitive interpretation: If there is a sinusoid in p(O) with mode number n, I is its

amplitude, and ,pn is the angular position of its peak. In the above transform pair,

n=0 is omitted because surge-type disturbances are neglected in this analysis.

3.2 Modeling

3.2.1 Overview

The approach used is to write a pressure balance across the entire compression

system. This allows the flowfield assumptions upstream and downstream to be made

an integral part of the set of differential equations derived. The pressure balance is

written as follows (refer to Figure 3.1):
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3(Rs4-1t0) = 3(Ytl-lto) + 3(1't2-7ti) + 1(7's3-1t2) + 3(Ts4-Ts3),

where

5(7's4-TtO) is overall total to static pressure balance,

3(Rti-RtO) is the upstream flow field total pressure change,

3(7:2-7ti) is the total pressure change across the IGVs,

3(Rs3-7t2) is the compressor total-to-static pressure rise,

3(s4-7s3) is the downstream flow field static pressure change.

We will derive differential equations (or, in some cases, systems of differential

equations) for these expressions in Sections 3.2.2 through 3.2.6. In Section 3.2.7, the

individual terms are combined into Equation (3.5), and the resulting system of

differential equations is solved in a unique way which allows control theory to be

applied to the result.

The basic form of the derivation presented here was first given by Moore [10].

Several refinements and additions to the model followed, most notably by Moore and

Greitzer [23] and by Hynes and Greitzer [24]. All of these studies assumed stationary

IGVs. Epstein, Ffowcs-Williams, and Greitzer [16] first considered the case of 'wave

launchers' upstream of the compressor for the purpose of control. Longley [14],

Silkowski [20], and Strang [38] further developed these ideas, and the results of their

efforts are presented here and in Appendix A.

3.2.2 Overall Total to Static Pressure Balance I 3(7s4-RtO)

The upstream boundary condition has been specified as uniform flow. Thus,

3Rto = 37M(-co) = 0. Downstream, linearization of the Euler equations yields

V2(37's)=0 [10, 23]. Analysis of the solutions to this equation [14, 20] reveals that

higher-mode pressure perturbations at the compressor will decay exponentially

downstream, so that 37s4 3 3s(+o) = 0. Therefore the left hand side of (3.5) is

3(?s4-RtO) = 0 (3.6)
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(If zeroth mode dynamics were modeled, to couple surge into the problem, then

Equation (3.6) would change accordingly).

3.2.3 Upstream Flow Field Total Pressure Change ( 3(t1-ro)}

Integration of the momentum equation upstream yields the next part of the

overall pressure balance. The result is derived using the unsteady Bernoulli equation:

+ 3A = constant, (3.7)

where we have introduced 6f(,er), the velocity potential, as the most convenient

representation of the flow field upstream of the compressor. Comparing the points 0

and 1 in Figure 3.1 and realizing, as before, that d fto) =0 (i.e. all perturbations die

away far upstream), Equation (3.7) implies that

(Ri-Ro) (- .1) (3.8)

The introduction of 6c0 requires that we also solve Laplace's equation upstream of the

compressor, i.e.:

V2 (D1) upstream = 0. (3.9)

Finally, to connect the upstream flowfield to the flow in the compressor, which will

be written in terms of 34, we use the relationship

= d3 1) (3.10)

3.2.4 Total Pressure Change Across the IGVs { 3(7 2-7t 1)}

The total pressure change across the IGVs, &(t 2-t 1), is generally close to zero, if all

of the IGVs are at the same incidence y. However, if there is an incidence variation

around the annulus 8y(6,r), such as occurs in the case of active control, then certain

blade passages look like diffusers, while others look like nozzles, as in Figure 3.2.

The approximate effect can be derived by applying the unsteady Bernoulli equation

(Equation (3.7)) along the IGV passage and assuming a linear velocity change through

the blade passages [25]. The result is

&('t2 -t 1 ) = ~-IGV 3- + -lIGV }(11)
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Figure 3.2 - Effect of non-axisymmetric IGV turning
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3k can be related to the upstream flow variables by using mass conservation

across the individual IGV passages:

3k= d4i (3.12)

Figure 3.2 illustrates the effects of asymmetrical IGV turning on passage geometry.

3.2.5 Compressor Total-to-Static Pressure Rise I 3(7s3-7t 2) )

The total-to-static pressure rise across the compressor comprises the heart of

the rotating stall model. It is based on the pressure rise associated with the

quasi-steady compressor performance, plus a correction to account for the unsteady

pressure rise due to acceleration of the fluid in the blade passages.

The quasi-steady effects account for the flow coefficient and IGV stagger

sensitivity of the compressor:

(s3-t2) quasi -= 62 + - -y, (3.13)

s t eady

where v- and - are the quasi-steady, uniform flow sensitivities. The subscripts

in the derivatives will subsequently be dropped, because in quasi-steady flow there is

assumed to be no total pressure loss across the IGVs, and 02 = 01, so the derivatives

above are the same for yV as for Vfc.

To model the unsteady effects on pressure rise, yf(,y) is first broken up into

static-to-static pressure rise and dynamic pressure:

VV() = (7s3-Rs2) - 2 (3.14)

There is an unsteady component of (Ps 3-Rs2) due to acceleration of the fluid in the

compressor. If we view the blade passage as a channel, we can write a one-

dimensional expression for the static pressure rise across a single blade row:

ATS - b. dc (-5
rsunsteady = - (3.15)

where b is the non-dimensional chord-length of the passage, and c is the

non-dimensional velocity in the passage. The quantity c is different for the rotor
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passages than for the stator passages, because the rotor is moving through a

non-uniform velocity field. This must be taken into account when computing dc/dr

based on 3) for the rotor. The stagger angle of the passages must also be taken into

account; this is done by assuming that c = (axial velocity)/cosine(blade stagger). The

resulting equations for the fluid acceleration in the stator and the rotor passages are:

dc _ 1 d(#) (3.16)
stator s

dc _ 1 [ 2) + d( 2) 1 (3.17)
rotor r

where the term -(--- in the expression for rdtc accounts for the movement
d19 dr Irotor

of the rotor through the velocity field; its simplicity derives from the fact that time

has been non-dimensionalized by the rotor velocity. If the unsteady static pressure

rise effects (AIsunsteady in (3.15)) are summed across all of the rotor and stator

passages, the coefficients of .-?O2z and in Equations (3.16) and (3.17)

can be combined, yielding the terms A and A given in Section 3.1.2.4:

S'sunsteady = A 7sunsteady
rotors +]
stators J

= -c) 302). (3.18)

The steady contributions to perturbation pressure rise (Equation (3.13)) can now be

added to form an overall total-to-static pressure rise equation:

d~f AA_+ d ~)U '9(3))3193(Ts3-Rt2) = y.2 + 3y - PC- - - -. (3.19)

3.2.6 Downstream Flow Field Static Pressure Change { 3(Rs4-Rs3) }

Since RSs4 = 0 as described in Section 3.2.2, we need only determine 87s 3 -

Writing the axial Euler equation at station 3, and using continuity across the

compressor, we can write:

d(S's3) - 9(83) - '9(&2) 3.20
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Here we have assumed that the exit flow angle is constant at station 3. To solve this

differential equation, we must solve for &Ps downstream of the compressor. The

linearized equation governing downstream static pressure perturbations is Laplace's

equation, as discussed in Section 3.2.2:

V2( 3 s)downstream = 0. (3.21)

3.2.7 Combining Equations and Solving

We can summarize the results of the preceding sections with the following set

of differential equations, in which 80, &0, and 5'Ps are variables and 5y is a forcing

function:

UPSTREAM: (Equations (3.9) and (3.10))

V2(50) = 0 (3.22)

ACROSS COMPRES

0

= dGi) (3

SOR: (Substituting Equations (3.6), (3.8), (3.11) and (3.19)
into Equation (3.5)):

= d( 1) (3

d(342) .. 2 d2(37)
PIGVI 7 IGV dOdT

+ 2 + dy - d( _I dM

- 67's3

S4'2 = 0# -IGV CR

DOWNSTREAM: (Equations (3.20) and (3.21))

d(5?s 3) d(302)

V2(45s) = 0

We have 6 equations for the 4 unknowns 30, 3$1, 3$2, and 57s3. However,

tions (3.23) and (3.26) are actually boundary conditions which link Equations
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to (3.24) and (3.24) to (3.27) respectively. Thus, there is no excess of equations.

We will first present the solutions for the upstream and downstream flow

fields. We will then rewrite all of the above equations in terms of spatial Fourier

coefficients (SFCs, defined in Section 3.1.2.6), and eliminate intermediate variables.

The solution for the velocity potential upstream depends on the boundary

conditions. These boundary conditions are:

1) Periodicity in 6,

2) Upstream uniform flow: 8CD(-oo,6,r) = 0.

The solution to Laplace's equation with these boundary conditions can be written

50= I Re A*(r).en. }in . (3.28)
n>0 n

This representation of the solution leaves partials with respect to r unsolved. We will

discuss the utility of this approach in Section 3.2.8.

The downstream solution for P1s is similar to the upstream solution for &1D.

The boundary conditions are:

1) Periodicity in 6,

2) Downstream uniform static pressure: Rs(+oo,6,'r) = 0.

The solution is then:

6Rs(downstream) = 1 Re{ 6I 3*3 r). e-n. e }in , (3.29)
n>O

where we have again left the solution with respect to r undetermined.

The form of the upstream and downstream solutions can be adopted for all of

the variables in our system of equations (all summations are for n>O):

st = I Re{ j*(T)- en(n-qfw). eini9 (3.30)
upstreamn

3$, = X1Re{ O(r)-e(-nnw).ein6 } (3.31)

642 = X Re{ S r)- ein } (3.32)

3y = XRe( ~*(r)-e in}9 (3.33)n
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Note in (3.30, 3.31) that On is defined as the SFC at the measurement station fl.

Using (3.28)-(3.33), the system of Equations (3.22)-(3.27) can be written in

terms of SFCs as follows (the Laplace equations have already been solved, so they are

not included):

UPSTREAM:

exp(-nfl )
An= n w 4 n (3.34)

ACROSS COMPRESSOR:

0=1 Re{ - n i GIGV n + 9n (3.35)
n>O

+ Yn ~ ckn + 1 - 03n e}

= e(-n W).n + -IGv i n (3.36)

DOWNSTREAM:

n3n () (3.37)

Here we have used the fact that '1 = 0 at stations 1 and 2. Now it is straightforward to

eliminate An' , and @3n from these equations. Using orthogonality of e , we

can also eliminate the summation in Equation (3.35), and instead equate each of the

coefficients of einO to zero. Thus we have the following ODE for each mode n of the

velocity perturbation:

e (-nIHW). 2+ e n (-nqHw).- + in -A in(3.38)

+ [(-.~- - n~pIGV) + inp 0IGv ]n

- in p G + - I GV ~
w h ere w e an s ehpn

where we have used the fact that pL = pc+ IGv.
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3.2.8 Discussion

Equation (3.38) is a partial solution of the set of differential equations. The

partial derivatives with respect to nl and e have been eliminated ("solved"), leaving

only the derivatives with respect to time, and . It is important to recognize thatk n

we now have a set of decoupled ordinary differential equations, rather than a system

of coupled partial differential equations. Each equation in the set relates the nth SFC

of perturbation velocity, n, to the nth SFC of IGV deflection, ~n. These equations

are decoupled; that is n is unaffected by n+1' n-1' 'n+1' ~n-1, etc. This

decoupling of the spatial modes simplifies the system dynamics considerably - it

allows each mode to be modeled, identified, and stabilized separately. Such

decoupling relies on the linearity of the system and the axisymmetry of the

background flow. One purpose of this thesis is to determine whether the assumptions

inherent in this representation are reasonable in the context of control. If we can

stabilize the system using a decoupled approach, then we gain confidence in at least

the usefulness of the model, if not its complete accuracy.

The considerations in designing actuation for rotating stall are also clarified by

this approach. If we can determine the relative stability of each of the modes in

Equation (3.38), we can determine the number of modes which we would like to

stabilize, which in turn determines the complexity of the actuation. In the

experimental setup described in Chapter 2, there are 12 moving IGVs. This number

can theoretically affect the first through the fifth modes of 64 but, realistically, three

or perhaps four modes can be accessed with these actuators. Chapters 4 and 5 will

discuss whether this is enough, and what is perhaps happening to mode numbers

greater than 3 or 4.

Previous derivations of the compressor dynamics differed from the above in

two ways. First of all, the differential equations were previously unforced (except
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perhaps the model in [16], in which a forcing term was arbitrarily added with no

derivation). Second, the homogeneous dynamics were solved deterministically in

time as well as space. In other words, an explicit solution 30(n,9,T) was derived.

This solution was then checked for stability by looking at the time evolution of the

spatial modes - if they grew, the system was deemed unstable.

We have instead cast the equations into time-ODEs with general forcing

functions yn(r). This is the standard form in control theory. We can manipulate

Equation (3.38) in various ways to determine stability, input-output characteristics,

system parameterizations, feedback laws, etc. Since such manipulation is the subject

of the remainder of the thesis, Equation (3.38) is in the most useful form for our

purposes. Modifications are discussed in Section 3.3, but they are all time-ODE input-

output equations like Equation (3.38).

Finally, it should be mentioned that the perturbation IGV movement is not the

only forcing function in a real system. The system is also forced by various random

processes - such as non-uniformities in the inlet flow, vibration of the rotor and stator

vanes, turbulence, separation, imperfections in the blading, etc. These forcing

functions, aside from being of a random nature, are extremely hard to model or

measure. Therefore, they are lumped together into a nebulous quantity called 'noise

which drives the system'. Characterization of noise has yet to be carried out for axial

compressor higher-mode dynamics.

3.3 Alternate Forms of the Model

Several altemate forms for the model in Equation (3.38) have been derived

through the course of this research. The philosophy and usefulness of each form will

be discussed section by section.
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3.3.1 SISO Complex Form

Parametric representation of Equation (3.38) gives the following set of

single-input, single-output (SISO) complex-coefficient, complex state ODEs:

= (rs + i. rs)Pn + (br + i- bi)n + i-gi -yn (3.39)

nwhere, ifwe let(= ~ +

qr(n,?) = /o (3.40)

qr(n, ) = n -X/ (3.41)

br(n,f) = e(nHW). (Y - - n20AjI(3VK (3.42)

b~n~ (nflw). n 9IV-/ (3.43)bi(n,;O) = e ng)n pIV7/

gi(n,o) = -e(nHW)- nOp1 GV n + P - GV] (344)

This representation of the system dynamics employs the fewest possible parameters.

This is important in the context of identification, because redundant parameters make

it more difficult for methods to converge to a solution. It also is a convenient way to

present the system, because the dynamics of each SFC is SISO. If we use the

complex sinusoidal excitation

Yn

then the system will respond (after a transient period) with a sinusoid which has a

magnitude M and phase P which depend on the system dynamics in Equation (3.39):

n n e(O + ) 3.45)

= G eJ(e -n

where the last equality serves to define the transfer function Gn(jo). Substituting this

steady-state solution into (3.39) gives the transfer functions for the system:

jo)- M n KeJ((O + P) = (Urs + i' Ors) Mn eJ(r + f3) + (br + i-bi)eJ 'Or + j)- i-gj-eJ t

M n = jo-i-gi + (br +i-bi) (3.46)

nj - (Ur s + i. rs)
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or, if we let s=jw,

4 n(s) = Gn(s)-Yn (3.47)
where:

Gn(s)= i-gi.s + (br +i.bi) (3.48)
S - (Or s + i -(rs)

The transfer function description of the system is now in standard form, except

that the coefficients in Gn(s) are complex. This is not a trivial difference. It means

that the system does not obey typical root-locus, Nyquist, and Bode construction and

stability criteria, because the poles and zeros do not appear in complex-conjugate

pairs. However, if care is taken, many of the techniques for control system design

and analysis can still be applied. The advantages of this form are its SISO

appearance, and the fact that the parameterization is minimal. The five parameters in

Equations (3.40)-(3.44) completely characterize the nth mode of the system, so they

constitute the parameter set for that mode, at any particular flow coefficient:

ars

O)rs

O(n,?) = br (3.49)

bi

gi n

3.3.2 MIMO Real-Valued Form

In this section, we will derive a real-valued multi-input multi-output (MIMO)

form for the set of equations (3.39). The equations we will derive are sometimes

useful for design and analysis because all of the terms in them are real-valued. Thus

the eigenvalues appear in complex-conjugate pairs and all of the procedures available

in control theory can be used.

To motivate the MIMO form, consider the different representations of an nth

mode wave (which exists at some instant of time To in the annulus):

5 0n(TO) = M .cos(nO+#)

= xrncos(n6) + xinsin(ne) (3.50)

SRe{ 0*e }.
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Figure 3.3 - Different representations of a sinusoid
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Each of these representations of the wave contains two parameters which together

give the phase and magnitude of the wave. In the first case, the pair is (M, P). In the

second case, it is (xrn' xin). The third pair is ( Re In}, Im{I n) ). All of these

pairings can be related by simple trigonometric and exponential identities. The most

important such identity for this presentation is

xr = Re( {n (3.51)
xi n Im{ n)

We can use this identity to derive the MIMO dynamic system from (3.39), if

we use the fact that matrix multiplication of 2x2 matrices resembles complex multipli-

cation. For example, the following equation evaluates the product (qrs+ i -r,)-n

using matrices and vectors:

R e { (ars+ i- %s)- an rs 4 .R e,{ .(.2I =nOk Ors Rel On (3.52)
Im{( (ars+ i- rs)-On O"- I (n)

Using identities such as this, we find that the real-valued, vector-matrix representation

of Equation (3.39) is:

Fxr] Ors -As xr + b- 1~u1  +0 gi r , (3.53)

Li- u] n xirr n [ bi br.-nLuiJn gi 0 Jn d nx ytera tr [ur ugi]I

where we have replaced yn by the real vector [ur ui using the definition

ur - R e (~yn . (3.54)

ui- n I mTn) I

We can also write a transfer function description of the system:

xr(s) - Gr(s) -Gi(s) Ur(s) , (3.55)
Xi(s) n Gi(s) Gr(s) I n ui(s) Jn

where Grn and Gin are derivable from (3.53), and it can be verified that

Gn(s) = Grn(s) + i-Gin(s). (3.56)

The states xrn and xin are the real and imaginary parts of O, which can be

viewed as a phasor representation of the nth mode wave in the compressor (see
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Figure 3.3). xrn and xin are also the coefficients of the Fourier series for the wave:

5[= xr * cos(n) + xi -sin(ne)]. (3.

n>O
T thThus [xr xiln represents the state (phase and magnitude) of the n mode wave t

T th
exists in the compressor at any time T. Similarly, [ur ui] n represents the n m

wave of perturbation IGV deflection. Equations (3.53) and (3.55) relate th

quantities dynamically.

57)

hat

de

ese

3.3.3 Rotating Reference Frame Form

Both the theoretical derivation above and experimental measurements indicate

that rotating stall inception is a traveling wave phenomenon. The wave travels at a

constant speed (which depends on the rotor speed, the inertial parameters of the

compressor, and the flow coefficient). It has a first order response to IGV deflections,

which is not necessarily in spatial phase with the deflections themselves. Transients

in IGV deflection ( % i) also have a direct effect on the evolution of the wave.

The ODE representations we have presented model all of these effects. Propa-

gation of the wave is modeled by coupling the real and imaginary parts of $n (or,

equivalently, xrn and xi n) dynamically. Phase shift of the input is represented by the

relative magnitudes of br and bi. Finally, transient effects are modeled by the para-

meter gi. These various effects complicate the model and make control system design

more difficult. With a proper change of variables, however, we can transform this

system into a pair of decoupled, first order, real-valued, SISO systems in a rotating

reference frame. Once control laws are designed, they can be transformed back into

physical variables. Thus, we can temporarily incorporate the coupling between xrn

and xin into a change of reference frames, to simplify the problem of control design.

First, let us eliminate the term by introducing a new state variable 4:n

Let On - i-gj* 7n;
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then: =n~'gi' Yn

= (rs + i. ,rs)n + (br + i- bi)Tn (3.58)

= (urs+i. )rs.(4++i-gF- n) + (br+i-bi) n

= (ars+ i-rs)4 + [(ars+i -Os)i-gi + (br+ i-bi)fj;n

This form can be rewritten as

=(-rs+irs)-4+bI-n . (3.59)

The next step is to put the model into the reference frame of the rotating wave. This

is possible because, according to the model, the wave rotates at constant speed. The

state, x, and control, p, in the rotating frame are:

x = e and p = Yn e~AS . (3.60)

The dynamics can be transformed into the rotating reference frame using the chain

rule and subsequently substituting in (3.59):

x = (c5 -jo()-e~" (3.61)

= [(rs + i -)g+ b- n-

= ars.x + b-p .

Now, x and p are complex, but ars is real, so that the real and imaginary parts of the

state are no longer coupled - the wave does not rotate in this reference frame. This

system requires one more step of simplification, because b is still complex, and

couples the input-output system. Thus we introduce the control

U= - (3.62)

which preserves the magnitude of the control power, but shifts its phase, resulting in

the following equation for the system:

1 = ,.x + jbf .u. (3.63)

This is the simplest possible representation of the system, owing its form to the

unique set of variables defined. It is a completely decoupled representation and can

thus be treated as a pair of real-valued SISO systems.
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Once a control law is developed for this system, it must be put back into the

form of the physical variables. This requires only algebraic manipulations of the

above equations. If the rotating frame control law is

u(s) = K(s)x(s), (3.64)

the equivalent stationary frame control law is:

n(s) = b K(s-j O)r) (3.65)
'yn~s) + i -gi -K(s-j wrs)

The system representation (3.63) allows for a very straightforward design

methodology. It is a plant inversion of sorts and, as such, it carries the restriction that

the original system be minimum phase - if there are zeros in the left-half plane of

Gn(s), then the above defined controller may have unstable poles.

3.3.4 Lumped Parameter Model of Rotating Stall Dynamics

The lumped parameter form for the model is quite different from the models

presented previously, because it does not rely on the eigenfunction form of the

system, i.e. it is not expressed in terms of the Fourier coefficients. As such it allows

the system to be modeled under conditions which yield different eigenfunctions, such

as non-axisymmetric inlet conditions. This form is also useful when the pressure rise

characteristic O() contains significant nonlinearity that we wish to model.

Our derivation begins with a partial differential representation of the system

dynamics. We will demonstrate with the simplest PDE which captures the character

of the problem; extension to more complicated cases is straightforward. Consider the

PDE for the unforced (stationary IGVs) 2-D compressor:

0 = -- ( 1 ) + V001) - , d350) - A d(3.) (3.66)

This equation can be derived from the equations in Section 3.2.7. The perturbation

flow coefficient 30, is a function of both 9 and r. We would like to get rid of the

functionality with e, but nt by using the Fourier decomposition. Instead, we will
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create a lumped representation of 301, which we will call O :

OL(r) = [ 01(91,r) -.. - - 1(e K,) IT

We will also use the notation (= [ -- Si(6,r) -- ]T We next proceed to derive

each of the terms in the differential equation (3.66) in lumped form.

To derive the first term in (3.66), , we write the upstream flowfield

solution (3.28) at a specific position 6, with a finite number of discrete Fourier

coefficients Cn:

K/2-1

Wei(3) = 1K-
n=-K/2

C elInIl+inijn (3.68)

but we want to express this as a function of 4 , so we substitute in the DFT formula

for Cn

K/2-1

weDp3 = -1
T-/

n=-K/2

Using this, we can

I I
K

-n i+in6.elnf+j (3.69)

K

k=1

write d(601) (where the subscript '1' indicates that t9=0):

K/2- 1
d 014)(6= 1K1

n=-K/2 I
K

k=1

(501 (6 )).e -in e.e . (3.70)

If the innermost summation is replaced by an inner product, we have:

K/2-1

n=-K/2 { -_m'6[--eL

This formula gives d(301) for one value of 9, but we would like

representation for all j=1, - - -K:

- d( (1 ) -T
K/2- 1

n=-K/2

-m
[--en6 [-- e ij]T
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d(ftilej ine..e J, (3.71)

a vector

(3.72)

501(6 ) -e~ -i



This can be rearranged, using the fact that (ATB)C = C(ATB) when (ATB) is scalar:

K/2- 1

[- d3 1)(0j) -- T 1 1- j __T, - -- ]3.73)
n=-K/2

The resulting product of exponentials yields a matrix (e in(j~) jk in the summation.

Further simplification is possible if the summations for n < 0 are combined with those

for n > 0, to give cosines instead of exponentials. The result is

[- ( ) -]T = L' (3.74)

where:

K/2-1

P = - cos[K/2(6 -2k)] + os[n(6J-Ok)] }. (3.75)

n= 1jk

Equation (3.74) expresses the first term in Equation (3.66) as a matrix multiplying the

time derivative of the system state, OL. This is the form we need to write a lumped

parameter model.

To determine the lumped form of the second term in (3.66), 3y( 31), we

simply evaluate 3V at each value 34(ek). We write the resulting vector [-- (OL) --]T

The third term in (3.66), ,'1 requires no modification; we can use the

vector form OL directly.

The last term in (3.66), , requires that we derive a matrix

multiplication of which will give in an approximation to d(0 1 ) This can be

done in any number of ways; two examples will be given here. The first approach is

similar to that used for a CD). First we write out the discrete Fourier series for 541:

K/2- 1
3$1(6 ) = C-e . (3.76)

n=-K/2
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We then substitute the DFT formula for C:

K/2-1

3o$(ej) =
n=-K/2

K

k= I
51(6) - en

1 e .p e

We can then write an approximation for -(1).

K/2-1

n=-K/2{

1
K

K

- n1( )in e~n J.einei

simplifying this as before, and dropping the Nyquist component K/2, we get:

= R- I ,

where:

K/2-1
- I 2n -cos[n(j-6)] 

'jk.
n=1

Equation (3.79) expresses the last term in (3.66) as a matrix multiplying the time-

derivative of the system state, .

A second way to approximate -(30- is

imation, for instance:

d(501)( 6 ) 5 6q 1(0i+1) -

to use a finite difference approx-

~, AO=-. (3.81)

This approximation can be written as a matrix multiplication:

(3.82)

where:

[ 1 0 () -0T

F 0 1 0 0

RNR = N

-1 0 1 0 0 -

0-1 0 1 0 0

0 0 .
1 0 0 0

0 1

0

-1 0 1
-- 0 -1 0

(3.83)

Thus we have two matrix estimates R for the last term in (3.66).
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(3.79)

(3.80)

. _ , -
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We now have all of the terms necessary to write the differential

equation (3.66) in lumped-parameter form. The final result is

0 = -2PLl + L) ~~T AL - L (3.84)

(A + 2P) - [ - L) _ ~T L , (3.85)

where P and R are defined above. Note that non-linearities in 3y, or circumferential

variations in 3V due to inlet distortion, can now be modeled. Since the equation is

now in ODE form, these effects are much easier to assess than they would be in the

context of a PDE. Furthermore, the system of equations is in a form amenable to the

application of nonlinear system and control theory.

This subsection has focused on the methods used to convert to a lumped-para-

meter representation, without going into the details of converting the entire model.

Any of the modeling discussed in this thesis can be lumped using these techniques.

The main drawback of this method is that there are numerical difficulties in using R,

unless care is taken in choosing it. The examples given here for calculating R work

well only if the modal content of the initial conditions is low compared to the number

of lumps in the model. To model higher modal content, better choices for R must be

made.
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CHAPTER 4

Additional Modeling for Active Control

This chapter models the feedback system presented in Chapter 2 (Figure 2.7),

incorporating the compressor dynamics derived in Chapter 3. The discrete arrays of

sensors and actuators are represented in spatial Fourier coefficient (SFC) notation in

Section 4.1. This allows a decoupled model for each mode to be developed in

Section 4.2. Discretization of the dynamics will be discussed in Section 4.3.

4.1 Conversion to Spatial Fourier Coefficients (SFCs)

Since the plant described in Chapter 3 relates the SFCs of the inputs and

outputs, we would like to model the rest of the system on the same basis. But, except

for the plant itself, the system is not truly distributed - it is a discrete approximation

of a distributed system (see Figure 4.1). On the input side, the IGVs are discrete

elements being used to force the (spatially) continuous dynamics of the compressor.

On the output side, the continuous function 3(6,r) is measured at spatially discrete

points around the annulus. Additionally, there are filters and other dynamics which

act on each channel of the spatial array. We would like to represent all of these

signals and dynamic elements in terms of SFCs.

Because the considerations are slightly different for the IGVs, the hot wires,

and the signal processors, each will be considered separately in the following sub-

sections. The final result is the representation in Figure 4.2: all of the signals in the

system have been converted to spatially continuous Fourier coefficients. Each spatial

mode n is decoupled from the other modes in this representation - this simplifies the
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problem of identification (Chapter 5) and control (Chapter 6) considerably. Also, we

will show that the dynamics of individual channels in the spatial array become the

dynamics of the SFCs, because of the linearity of the Fourier transformation.

The notation for the signals and transfer functions in Figure 4.2 follows from

the discussions in Sections 3.2.7 and 3.3.2. SFCs can be written as complex numbers,

or as cosine and sine coefficients:

ucr
u or u n - commanded IGV angle

uci. n

n or u- - actual IGV angle (includes servo response)

[Xrl

n or LxJ - perturbation flow coefficient at i

~ yr

[n or -y- n - measured perturbation flow coefficient (includes

response of filters and delays)

The transfer functions between these signals are:

~ = S(s) -~; u S(s) 0 i ucr
uin 0 S(s) uci-n

O= G (s)-; = Gr(s) -Gi(s) ur (4.1)n n n 1] L Gi(s) Gr(s) In u n

yn = Q(s)-i n; Yl Q(s) 0 lFXrl
Yi- n 0 Q(s) xi- n

Note that the S(s) and Q(s) are transfer functions with real coefficients (hence the

diagonal form for the matrix representation). Also note that S(s) and Q(s) are the

same for every mode n. The form of S(s) and Q(s) will be justified in Section 4.1.3.
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We will now discuss the conversion of the inlet guide vanes, the hot wires,

and the signal channels into continuous Fourier coefficient form. Section 4.2 then

discusses the dynamic models S(s) and Q(s).

4.1.1 Inlet Guide Vanes

The IGV turning is represented as 3)(6,'r) in Chapter 3. The true system

consists of 12 discrete IGVs, so the actual form is

(6(m,r) where 6= 2 , m=0 1,2 -.. 11. (4.2)

Thus the IGV turning y will be approximated by the discrete IGVs as follows:n
6

= Re{ y*()- e (inm (4.3)

n=- 5

The discrete nature of the IGVs has two consequences. First, we are limited to

actuation waves with modal content no higher than mode number 6 (hence the limits

of the summation in Equation (4.3)). Second, the flow turning introduced by the

IGVs is no longer a continuous function of 6. This is because the solidity in the true

system is not infinite (in fact, because of the limited number of IGVs, the solidity is

only 0.6). Silkowski [20] computed the effects of discrete IGVs by introducing an

extra term into the computation of IGV effectiveness:

-da ,(4.4)

where 3a(6,r) is the perturbation change in flow angle relative to axial, measured at

the rotor face (station 2 in Figure 3.1). One of his results is shown in Figure 4.3:

here we see that a first mode turning of discrete IGVs actually causes the flow angle

3a to be excited in all modes, most notably the 1st and 12th mode. Unwanted modes

are small compared to the commanded mode and mix out downstream of the

IGVs [20]. Figure 4.3 shows that, at the rotor face, the 'effective IGV turning'

d -3y contains mostly the first mode, but some attenuation of this mode is

da
encountered ( -d- 0.6) and a small amount of cross-coupling to higher modes
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Figure 4.3 - A comparison of the measured and calculated flow angle
generated 0.3 chords downstream by a 10 degree cosine
stagger pattern on the inlet guide vanes. Calculated flow
angles are from Silkowski, [20].
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da
occurs. Attenuation is handled by incorporating -j- into the transfer

function Gn(s). Cross-coupling between the modes of interest in this thesis (1, 2,

and 3) is small, so we will, for the present, ignore this effect. Cross-coupling to the

12th mode is larger, but this mode will probably be well damped, based on the results

of Chapter 5.

Based on this discussion, it is reasonable to use the spatially continuous

Fourier transform y , provided we do three things:n

1) Account for the attenuation of IGV commands in some way.

2) Command modes no higher than the 5 th (phase for the Nyquist mode
cannot be specified, so use of mode 6 is impractical).

3) Check the level of cross-coupling between modes experimentally.

4.1.2 Hot Wires

The hot wires present a somewhat different problem than the IGVs. In this

case, we are measuring a continuous function of circumference, 84(iH,9,r), which

may contain any modal content. We use the discrete Fourier transform approximation

for K hot wires

K-1

Onnj '_-K1 H77W'k'T) en~k, (4.5)

k=0
where

k 2r k k 1, 2,...K.

It is possible for modal content greater than K/2 (the spatial Nyquist frequency) to

exist in 30. This information would alias into the computation of the lower modes.

According to Equation (3.30), however, these modes die away very quickly upstream

of the compressor (i.e. as 77 becomes more negative in the following expression):

27r

= inO(nW) 3de. (4.6)

0

In most of the experiments discussed in this thesis, the hot wires are located
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at 1 _ 0.5, and there are 8 hot wires. Thus mode number K/2 + 1 = 5 is the first

mode that might alias. This and higher modes are probably very well damped, based

on the results of Chapters 5 and 6. Furthermore, 05 (T) is attenuated

by e- 5 (0.5) = .082 at the measurement point; higher modes are attenuated even more.

Thus it will be assumed that aliasing is negligible upstream of the compressor.

Measurements taken behind the IGVs rely solely on the damping of the higher modes

to prevent aliasing; this may not be sufficient at low flow coefficients, where even

relatively high modes can become underdamped.

Cross-coupling between modes due to discrete hot wire measurements would

require that some mode n affect the computation of the Fourier coefficient for some

other mode m. As long as n # (m + IK/2) for some integer I (i.e. as long as n does not

alias into m), and as long as the hot wires are evenly spaced, no such cross-coupling

will occur. This is because the signal being transformed by the DFT is truly periodic

in 0, due to the annular configuration. Thus there are no 'end effects' on the DFT and,

in the absence of aliasing, the discrete Fourier coefficients match identically the

coefficients of the Fourier series for the periodic signal 3#(%F,6). Uneven spacing

of the hot wires will cause cross-coupling between modes, because orthogonality

cannot be preserved in this case. The extent of cross-coupling between modes due to

uneven hot wire spacing depends strongly on the spacing itself, and must be examined

on a case-by-case basis [22].

4.1.3 Input and Output Channels

The rest of the feedback system consists of multiple channels, each represent-

ing a discrete circumferential location. These channels can be transformed into SFCs

in the same way as the hot wire signals. Furthermore, we will show that the SFCs of

the channels are related by the same transfer functions as the individual channels.

For example, the bank of Bessel filters in Figure 2.7 is a K-input K-output
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system, and can be represented as a transfer matrix, transforming a vector of hot wire

measurements 4 to a vector of filtered measurements of:

f = G B(s) - , (4.7)

where

0 = 0 [ IS,) 30(02,s) -. - -0N'Ks) I T, and

Of= [G b(s) -0(6 1 ,s) Gb(s)- 30(02,s) ... Gb(s) -30(Ks) ].

The diagonality of GB is apparent from the definition of of. The discrete Fourier

transform of the input, 30, appears in Equation (4.5). It can be put into matrix

notation, resulting in a matrix transformation from the individual measurements to

the SFCs:

= C- 40, where (4.8)

=[0i 02 . K-1 I

and the ~ denotes the spatial Fourier coefficient (SFC). The matrix C can transform

f similarly:

= C. f, where (4.9)

f 4 lf 2  .. O2fK-1 3'

The equation for the individual elements of if can now be derived as follows:

Multiplying both sides of Equation (4.7) by C we get

C f = C-GB -. (4.10)

But, since GB = Gb-I, C and GB can commute, which gives:

S= G B.C-O=G B' (4.11)

This implies, using the definitions in (4.7), that

On = Gb(s)On- (4.12)

This shows that the dynamics which relate the individual channels and the dynamics

which relate the SFCs are identical. Note also that every mode is related by the same

transfer function ( e.g. there is no subscript 'n' on Gb(s) ).
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4.2 System Dynamics

Having shown that we can in fact use the representation in Figure 4.2, we

proceed to set up the transfer functions in this diagram. Gn(s) is discussed in

Section 3.3.1 and 3.3.2; S(s) and Q(s) are discussed in the following subsections.

4.2.1 Servos

The servo transfer function S(s) is used to represent the dynamics of the entire

servo system: motors, amplifiers, and servo motion control boards. These elements

are described in Sections 2.2.5 through 2.2.7. We take a simplified view of the

system which takes advantage of the fact that the motion controllers and amplifiers

have much higher bandwidth than the motor dynamics. The entire system is modeled

as a second order system whose frequency and damping characteristics are determined

experimentally. Thus we have:

2
S(s)= 2 + Os 2 (4.13)

s + 2 ,co, -s + Cos

where the servo natural frequency is -80 Hz (co=1.75) and the servo damping

ratio (i ) is -0.75. The digital commands to the servos go through a zero order hold

at a rate of 500 Hz (see Figure 4.2).

We will also model a fluid-mechanical delay between IGV turning and

adjustment of the flow in the compressor. The minimum possible value for this delay

would be the time necessary for sound to travel through the compressor. This is

about 0.64 msec (0.18 units non-dimensional time). The maximum possible value is

harder to compute - one could use the transport delay through the entire compressor,

but this would be unrealistically large, because all of the blade rows are adjusting to

changes in IGV angle simultaneously, rather than serially. Instead, we estimate the

maximum delay by assuming that the flow through the rotor and stator adjust in

parallel to the adjustment of flow over the IGVs. Since the IGVs are about twice as
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long as the rotor and stator, it is reasonable to assume that the entire compressor lag is

associated with the time for flow to adjust over the IGVs, with a slight additional lag

due to the speed of sound. A rough approximation for the maximum value of

fluid-dynamic lag, based on this approach and the lags measured in [26], is about

3.5 msec (about 1 unit non-dimensional time).

The fluid mechanical delay will be lumped into the delays in Q(s), so the

transfer function S(s) remains as shown in Equation (4.13).

4.2.2 Sensors, Signal Processors, and Delays

The transfer function Q(s) accounts for the dynamics of the hot wires, the

Bessel filters, the fluid mechanical delay, and the computational delay in the

computer. All of the delays can be lumped into a single delay term Td, so the transfer

function Q(s) can be written

Q(s) = Gb(s). e-sTd, (4.14)

where Gb(s) is the Bessel filter transfer function.

The hot wires are extremely high bandwidth devices (about 50 kHz) and so

their dynamics are negligible within the bandwidth of interest. They are assumed to

provide an instantaneous measure of the velocity at the hot wire locations. There is a

delay, however, between the velocity which occurs at the compressor face and the

velocity measured upstream, where the hot wires are often located. In a potential

flow this delay is assumed to be zero; in a real flow there will be a delay which

depends on the speed of sound. Therefore, the sensors are modeled as a pure delay,

whose value is estimated as the time it would take sound to travel from the com-

pressor face to the hot wire axial location. This delay is between 0.4 and 0.6 msec

(0.113 to 0.170 units non-dimensional time), depending on whether the distance to the

hot wires is measured from the face of the IGVs or the face of the rotor.
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The Bessel filters are 4th-order analog devices, and their specific linear model

is given as [27]:

52.5 (o)

Gb s)= s4 + 5- co s3 + 22.5 - s2 + 52.5-ogs + 52.5-o , (

where co is the 3 dB cutoff frequency of the filter. For our experiments, the cutoff

frequency was 1000 Hz (%0 =22.2). Where possible, Equation (4.15) is used. It is

sometimes more convenient to model the filters as pure delays, however. This is a

very good approximation up to the sample frequency of the system (500 Hz), because

Bessel filters are specifically designed to have linear phase (that is, behave like a pure

delay) up to their cutoff frequency. For 1000 Hz cutoff, the equivalent delay of the

Bessel filters is 0.32 msec (0.090 units non-dimensional time).

Within the computer, there is a delay between the sampling of the hot wires

and the output of an analog command to the servos. This delay is 0.57 msec (0.161

units non-dimensional time).

The total value for Td is between 1.6 and 4.7 msec (0.45 to 1.33 units

non-dimensional time), depending on which estimates are used for the individual

delays. If we replace Gb(s) with a pure delay, then we can write Q(s) as

Q(s) = e q, (4.16)

where Tq = Td + 0.090. Although Q(s) is a severe simplification of the high

frequency dynamics, more careful modeling would place an array of high-frequency

poles and zeros in the model, which would not affect the transfer function in the

frequency range of interest.

4.3 Time Discretization

Two types of time discretization are discussed in this section. Tustin's bilinear

transformation is used to set up a discrete-time model of the system dynamics for

identification. Zero-order hold discretization is used to discretize the system for

simulation and control.
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4.3.1 Tustin Transformation

Chapter 5 discusses identification of the system dynamics. This must be done

in the context of a discretized system, because the data is taken by a computer. The

measured inputs and outputs which will be used for identification are shown in

Figure 4.2: The input is yn(k), which does not include the effect of S(s). The output

is n (k), which includes the effect of Q(s). The effect of Q(s) can be taken out when

doing off-line identification, however, by time-shifting the output sequence n(k); that

is, applying a lead to compensate for the lag in Q(s)) by one or two samples (two or

four msec). Thus the problem is reduced to identifying Gn(s) directly.

A discretization is required for Gn(s). Note in Figure 4.2 that both the input

and the output of Gn(s) are sampled, but there is no zero-order hold in the system.

Thus a ZOH discretization of the continuous dynamics would be inappropriate. The

discretization which gives the best fidelity in the frequency response of the system is

Tustin's bilinear transformation [28],

S= z- (4.17)

With this transformation, the frequency response shape is approximately preserved for

the frequency range of interest in this thesis, which is 0 to 100 Hz, if the sample rate

is 500 Hz:

Gn(z) z G (s) for co= 0 to 2.2 (T=0.5655). (4.18)

This similarity has been verified computationally. Thus the discretization of the

dynamics between the measured input and output is

On(z) z n(z) G(z) igis + (br + i br) (4.19)

ynz) ( yz) _ 2 z-1Yns--T- z+1

where the z is used to approximately take out the time delay discussed Section 4.2.

Similar transformation, and use of the methods for converting complex to real systems
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described in Section 3.3.2, gives Grn(z) and Gin(z):

Gr (z) = (b1z + b2 ) (z+l) 4.20)
n aiz2 + a2z + a3

Gi (z) = b3z2 + b4z + b5 (4.21)
n alz7 + a 2z + a3

The coefficients of the transfer function Gn(z) can be algebraically related to the

coefficients above by using the fact that

Gn(z) = Grn(z) + i- Gin(z) (4.22)

4.3.2 Zero-Order Hold (ZOH) Transformation

For simulation and discrete-time control design, the complete continuous

dynamics must be discretized. In this case, the input is ~Cn (k), and the output is

Yn (k). To do the ZOH transformation, all of the continuous dynamics (excluding

delays) are put into a state space system:

x = Ax + Buc (4.23)

y = Cx + Duc (4.24)

The system is then discretized using the formulae [29]

Ad = eAT (4.25)

Bd = f Te Atdt-B (4.26)

Delays and digital dynamics (such as the control law) are then appended to the

system.
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CHAPTER 5

Development and Application
of Techniques for

Identification of Compressor Higher-Mode Dynamics

Identification of the system dynamics serves several purposes: first, it helps

verify the model structure hypothesized in Chapter 3. Second, it provides a data base

of quantitative information to which predictive methods can compare. Third,

quantitative models aid control system design. Finally, system identification results

should lead to a better understanding of how compressor dynamics vary with flow

coefficient, mode number, and compressor configuration.

System identification techniques fall into two categories: non-parametric and

parametric. Non-parametric or spectral techniques concentrate on determining

transfer function shapes, without determining the specifics of the model which

generates these shapes. Parametric techniques assign a model structure to the system,

and then determine the parameters of the model. Both methods will be used here;

several cross-checks will then be available between the methods.

Two non-parametric methods are described in Section 5.1. Both are methods

for determining approximate transfer-function magnitude and phase plots.

In Section 5.2, two parametric methods are described. The first estimates

model parameters by doing fits to the transfer function shapes found in Section 5.1.

The second uses a time-domain correlation technique called instrumental-variables,

which has been extended to allow identification of closed-loop, possibly unstable

systems.

Section 5.3 applies the various methods to data from the single-stage research
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compressor. The various methods are compared, and then the experimental results are

discussed in detail.

5.1 Non-Parametric Estimation

The transfer function shape that is of most direct interest for this study

is Gn(s) (Section 3.3.1). But because we are using sampled data, we determine Gn(z)

instead, and use the approximation from Section 4.3.1:

Gn(s) G z=ei(T. (5.1)

Two separate methods are used to get Gn(z) as a function of frequency. The first is

to excite the system sinusoidally at various discrete frequencies. We will call this the

sinusoidal excitation method. The second is to excite the system with random inputs.

We will call this the spectral estimation method.

5.1.1 Sinusoidal Excitation Method

Sinusoidal excitation to estimate a transfer function shape is done using

sinusoidal input, and measuring sinusoidal output:

input = sin(, er)

output = Msin() er+p) (5.2)

where Me '= Gn(w)

and o) is the excitation frequency. For multi-input multi-output systems, each input

must be excited separately, and the resulting sinusoid at each output determines the

corresponding element of the matrix of transfer functions between inputs and outputs.

As described in Section 3.3.2, each mode of the compressor model has two

inputs (urn and uin) and two outputs (xrn and xin) if looked at in the context of real

signals. Hence, one way to identify the dynamics is to do two experiments: one
A A

exciting ur, and one exciting ui. Estimates Grn(oe) and GinO O'e) can then be

determined using Equations (5.2) (actually, if the model structure in Equation (3.55) is
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correct, two estimates of Grn(j7) and Gin(jw) will be made by this method, since each
A A

appears twice in the transfer matrix (3.55)). Grn o e) and Gin(oe) can then be

combined to give Gn 0oe), using the fact that Gn(j)) = Grn(jo)) + i -Gin(0)

The complex form of the original model (Equation 3.48) suggests an

alternative excitation to the system - one which excites Gn(jw) directly.

Mathematically, the proper excitation is complex:

Yn(T) =e 'e , (5.3)

and the resulting output is also complex:

n(T) = IGnfio)e)I ej e [T+ZGn(jO .e) (5.4)

These signals correspond (using Section 3.1.2.6 definitions) to a rotating wave input:

3y(6,T) = cos(ne - 0 e), (5.5)

and a rotating wave output

(0,e,T) = IG n(o))Icos( n - oeT - Gnjwe)). (5.6)

We need only measure the magnitude and phase of the output relative to the input to

determine Gn at the frequency of the excitation, )e.

The types of excitation employed can be summarized using the MIMO

real-valued notation:

1) cosine-part excitation:
ur = a cos( e r)

uj = 0
2) sine-part excitation:

ur = 0
ui = a-cos(we r

3) rotating wave excitation:
ur = a- sin(o) e

ui = a cos(Oe )

The last pair of inputs produces the rotating wave (5.5), as can be verified using

Equation (3.54).

Once the input and output sinusoids are obtained, the transfer function

estimate at o) is computed using the correlation method described by Ljung [30].
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For example, if ur excitation is used (case 1 above), the transfer function estimate
A
Gr(z) is computed as follows:

N

Ic(N) = xrn(m)cos( mT)

m=1 (5.7)
N

I(N) = xrn(m)sin( emT)

m=1

IGn(eJ e) Il =
(5.8)

LI Grn(e oe) = -arctan-f-
c

A A
Computation of Gin and Gn proceeds in a similar fashion.

In practice, [ur Uin cannot be specified directly - the IGV commands [ucr n

are the only signals driven directly by the computer. But if the computer commands

are sinusoidal, so will be the IGV motions. Furthermore, we can accurately measure

T[ur u1] n using the optical encoders. Thus in an experiment we let ucrn and ucin be

sinusoidal and measure both the input and output. The method then proceeds exactly

as described above, where cos(oemT) and sin(o)mT) are measurements of ur and uj.
A

An example of Gn(j O) computed using the sinusoidal excitation approach,

with a rotating wave input, is shown in Figure 5.1.

5.1.2 Spectral Estimation Method

The sinusoidal excitation method is time consuming experimentally, because

each frequency point in the transfer function must be obtained separately. A more

efficient method is to excite the system with a broadband signal and form an estimate

of the transfer function using a spectral technique.

The broadband input signal chosen for these experiments is a pseudo-random

binary signal (PRBS). This is a signal which altemates between two levels, at random
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intervals. The randomness of the interval between signal changes causes the input

spectrum to be broadband. In a typical experiment, ur or ui or both are commanded to

alternate between +100 and -10*:

PRBS = 0.1745. sign( w(k)), (5.9)

where w(k) is a zero-mean random variable with Gaussian distribution. The

bandwidth of the input signal can be limited by specifying a minimum value for the

switch interval.

As in the previous section, the experiment is conducted by commanding ucrn

and ucin and measuring urn, uin' yrn and yin (see Figure 4.2). Here the actual IGV

positions will not be binary as commanded, but broadband excitation will occur

nevertheless - this technique does not rely on the exact form of the input signal.

Three types of excitation are used in the spectral estimation experiments:

1) cosine-part excitation:
ucr = PRBS
Uci = 0

2) sine-part excitation:
ucr = 0
uci = PRBS

3) general wave excitation:
Ucr = PRBS1
Uci = PRBS2

The spectral estimate is computed as (using case 1 as an example):
A

4:D (oi)
GAnA^yruy , (5.10)G ~ ~ < (h(e 5)0

Urur(w
AA

where (Yrur() is the estimated cross-spectrum between yrn and urn, and (u rur() is

the estimated spectrum of urn [30]. Similar relationships hold for all three excitation

types; in the third, multi-input case, matrix spectra must be used. In all cases, the
A A

MATLAB routine SPA.M [31] generates the estimates Gr and Gi n* These are then
A A A

combined using the relationship Gn = Grn + i* n'

Figure 5.2 shows a segment of data from a typical spectral estimation

experiment, as well as the resulting estimate of G2(j(). Note that the variance of the
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estimate becomes very large at frequencies above w = 1 (45 Hz); this is because the

excitation bandwidth chosen for this experiment was 1.1 (50 Hz). Above this

frequency, very little information about the input-output properties is available in the

signals, and high variance results.

5.2 Parametric Estimation

Two parametric estimation techniques will be described in this section. The

first method involves fitting transfer functions to the non-parametric estimates from

Section 5.1. This method, called transfer function fitting, is discussed in

Section 5.2.1. Direct parametric estimation using the instrumental-variable method is

described in Section 5.2.2.

5.2.1 Transfer Function Fitting

Once Gn(j) is obtained using the methods described in Section 5.1, a fit to

the data using the model structure obtained in Chapter 3 can be attempted. The

relevant equations are repeated here for convenience:

On(s)= Gn(s) n (5.11)

where:

G(s) i-gi-s + (br +i.bi)

n s - (U + (Ors)

The parameter vector for this system is:

ars

rs

e(n,i) = br . (5.12)

bi

gi
Lamaire [32] has developed a technique to convert the transfer-function fitting

problem into a least-squares type problem. First, cross-multiply Equation (5.11), and

rearrange:

sGn(s) = (ars + i- or,)Gn(s) + (br + i- bi)+ i- gi -s. (5.13)
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Next write this in inner-product form:

sGn(s) = [G n(s) i -Gn(s) 1 i i-s]-e. (5.14)

Now we replace Gn(s) with its estimate, and s with jo):

jW1GnO()~ = [GnM01) 1 n('i 1 i i l-E, (5.15)

where 1 = 1,2 ,..., L.

This equation can be cast as a linear regression problem by setting up matrices for the

right- and left-hand side, where each row is a different value of 1. We must also

split up the real and imaginary parts of the complex numbers, to get real matrices.

The resulting matrices are:

ReIG n 1 )) Re{i-Gn 1 1

n A 10
Re{ GfnoL)) Re(i-Gn(L) 1 0 L

A{$n Im{Gn o)} Im{i-Gn 1) (5.16)

Im(Gn cL)) Im{i-Gn(OL) 0 1 0

Re j(D1 GGn (j1i))

Re(j(L ( GnO L))

B(Gn) Im{j) -, Gn 1 (5.17)

Im(jL. nWL)

With this notation, we have

A{Gn}) = B{G ). (5.18)
A

This is a linear regression problem stated in matrix form. Thie parameter estimate E9
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is chosen to minimize the frequency weighted norm of the error vector
A A A

W- [A(Gn} - B{G n], (5.19)

where the weighting matrix is a diagonal matrix:

W = diag{ f(o)1 ) f() 2 ). - f(L) If( 1) f(0 2 ). .f(o)L) }, (5.20)

and f(o1) is a weighting function, chosen in this case to concentrate on the region

around the pole and the zero frequencies [32]. The solution to this weighted least

squares problem is computed as
A T -
0 = (ATWTWA)[ATW WB. (5.21)

Thus for every transfer-function estimate generated using the non-parametric methods
A

in Section 5.1, we can generate an estimate of the model parameters . Figures 5.1

and 5.2 show typical parametric fits, and list the resulting parameters, as examples of

the closeness of fit which can be obtained with this method.

5.2.2 The Instrumental-Variable Method

We have shown that spectral estimation methods combined with transfer

function fits can provide good estimates of the system parameters, provided the

system is operating open-loop. Some of the good properties of spectral estimates are

lost, however, during closed-loop operation. This motivates the use of the

instrumental-variable method.

Spectral estimates are able to minimize the effect of noise because the

excitation is uncorrelated with the noise. For example, if ur excitation is used, yr will

be corrupted by noise as follows:

yr =Grnur + Vr (5.22)

But, since ur and Vr are uncorrelated, the cross-spectrum will be unaffected by vr:

uryYr uGrDUrurGr + DVrur'

but

Vrur 0.
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The second equality holds (even if vr is colored noise) because the noise vr is

independent from the signal ur. In practice, we can only obtain estimates of the

desired cross-spectra, and these estimates will be affected by noise. But the variance
A

of the estimate UrYr (o) approaches zero as the number of samples becomes very

large [30], and is tractably small for realizable sample lengths, as witnessed by the

results shown in Figure 5.2.

The close-loop case is quite different, however. Here, the outputs, which are

corrupted by the noise, are being fed back, so that they actually drive the inputs.

Thus ur and vr are no longer independent in our example - in fact they are highly

correlated, rather than uncorrelated, because stabilization of unstable dynamics is a

high-gain feedback situation. Thus, for closed loop identification, we cannot use

spectral estimation.

The instrumental variable (IV) procedure can be adapted to solve the problem

of correlation between the noise and the inputs. Section 5.2.2.1 reviews the basic IV

method for SISO systems. Section 5.2.2.2 outlines Young's Refined IV -

Approximate Maximum Likelihood (RIV-AML) method. Modifications to this

approach necessary to handle the closed loop case are discussed in Section 5.2.2.3,

and modifications for unstable plants are discussed in Section 5.2.2.4. Finally, a brief

discussion of how the MIMO estimation for the rotating stall system is efficiently

computed appears in Section 5.2.2.5.

5.2.2.1 Basic IV Procedure

Consider the system

y(k) = -{ W .u(k) + v(k) (5.23)

where:

A(z) = ( 1 + abz-1 + a2z- 2 + - .

B(z) = (bi + b2z-1 + b3z-2 +---)
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and v(k) is additive noise conforming to the following model:

v(k) = C (- (k). (5.24)

In this formulation, C(z) and D(z) are monic, and 4(k) is an uncorrelated sequence

with Gaussian amplitude distribution over the sample interval:

~ N(0,62 -I) = [(l), 4(2), -.- - , 4(T)].

The variable z in (5.23) and (5.24) is the Z-transform variable, but can be interpreted

as the delay operation when manipulating causal difference equations.

We can build a one-step-ahead predictor for this system:
^ T ^
y(k) = (D (k)-e, (5.25)

where:

T (k) = [-y(k-1) -y(k-2) - u(k) u(k-2) u(k-2) ...

A A A A A A TE3 =[a, a2 -.. b1 b2 b3 -- ],

and the (A) indicates prediction or estimation. The prediction error can then be

written as

T Ae(k) = y(k) - D (k)-e. (5.26)
A

The instrumental variable (IV) method [33] finds the value of (9 which will cause the

error to be uncorrelated with some chosen set of instruments

((k) = [( 1(k) ( 2(k) ... T (5.27)

This condition can be written as follows:

N

A

e = Sol Y (k) -e(k) = 0 ,(5.28)
k= 1

where sol - indicates that $) is the value of E) for which the equation in brackets is

satisfied. Substituting in Equation (5.26):

N

e = Sol (k) (y(k) - OT(k) -0 (5.29)
Vk= 1
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The philosophy of the IV approach is this: if the instruments are chosen to be related
A

to the system inputs and outputs, and 9 does not satisfy (5.28), then there is

additional information about the input-output dynamics left in the prediction error.

Therefore, a good estimate of E should extract this information, making the

correlation in (5.28) disappear.

The solution to (5.29) is

N - 1 N

N 
= 4(k)(DT(k) -~ I (k)y(k) (5.30)

k= 1 - k= I

The IV method will have good convergence and consistency properties if the

following two conditions are met:

N

I 4(k)4T(k) nonsingular, (5.3 1a)

k= 1

, N

Ej X 4(k)v(k) = 0, (5.3 1b)

k=1

where E{l) is the expectation operator. Condition (5.31a) guarantees invertibility in

(5.30), and also indicates that 4 is correlated with the system dynamics, which is

necessary for Equation (5.28) to yield good estimates. In fact, if ((k)=O(k), then

(5.31a) is satisfied trivially and the estimate becomes the least-squares estimate of .

Condition (5.3 1b) specifies that the instruments be uncorrelated with the noise,

so that colored noise will not corrupt the estimates. This condition is often not met in

the least-squares case ( ((k) = 1D(k) ), hence the need for a different set of

instruments [30]. Pre-filtered versions of the elements of (D(k) are usually used in this

case. Ljung [30] gives a complete description of the IV method, its convergence and

consistency properties, and methods for constructing instruments which are

uncorrelated with the noise.
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5.2.2.2 Young's Refined Instrumental Variable - Approximate Maximum
Likelihood (RIV-AML) Technique [33]

Many filtering schemes have been proposed for constructing the instruments

4(k) in the IV procedure. Young [33] has developed a particularly attractive set of

pre-filters and instruments in the context of maximum likelihood estimation, for the

noise model given in (5.24). In this approach, the input-output data is first

pre-filtered, which introduces a new set of variables:

f D f D ^f B f
y (k) = y(k) ;u (k) = A -- C-u(k) ; y (k) = u (k) (5.32)

Young shows that, with these definitions, the maximum-likelihood estimation estimate

can be stated as the solution to the IV problem:

N -1 N 1

A = ((k)f (k) -(k)yf(k) (5.33)

k=1 - k= 1

where

(Df(k) = [-y (k-1) -y (k-2) ... u (k) uf(k-1) u (k-2) ... ] T

and
^f ^f f f f T((k) = [-y (k-1) -y (k-2) ... u (k) u (k-1) u (k-2) ..- ] .

A
In other words, if the above defined variables and instruments are used, then E is the

maximum likelihood estimate. This is called the refined IV, or RIV, estimate.

Of course, the polynomials A(z), B(z), C(z), and D(z) in Equation (5.32) are

not known a priori. Initial estimates of these must be made, and the RIV method
A

applied iteratively to improve the estimates. The parameters in E constitute the
A A

updates for A and B in such a scheme, so iteration on 9 is sufficient as a search on

the maximum likelihood estimates of A and B. C and D, on the other hand, are not

estimated by the procedure. Thus an estimation algorithm for C and D must be added

to the iteration.

Young provides an approximate maximum likelihood approach to do exactly

that. It provides a way to estimate C and D, based on the current estimates of A, B,

C, and D. The basic philosophy is to form an error term based on the current
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A A
estimates A and B. This error term is then considered to be the output of a dynamic

system driven by white noise, and the dynamics are estimated using a procedure

similar to the RIV procedure described above. The specifics of this procedure, called

approximate likelihood (AML), are as follows:

We first take the prediction error e(k) in (5.26) as a measurement of v(k):

v(z) = y(z) - -U(z)
A A

= v(z) = y(z) - y(z) (5.34)

= e(z).

The dynamics in (5.24) are then written

D(z) -e(z) = C(z) - (z). (5.35)

A 'one-step-ahead predictor' for this system is

v(k) = e(k) = TA , (5.36)

where:
A ^ Tp = [ -v(k-1) -v(k-2) ... 4(k-1) 4(k-2) ...

n = [ d, d2 ... C1 -C2 .-']T (5.37)

To compute an approximate maximum likelihood estimate of the noise system,

prefilter as follows:
Af 1A
v (k) = -v(k),

C(z)
A (5.38)

1 D(z) Af
(k) = -2;(k) = -I(z)V (k) .

C(z) C(z)

The estimate for the noise model is then:

N -- 1 N
#1 (k)(p T (k) q I #(kV(k) ,(5.39)

k=1 k=

where:

A(k) = [ -V(k-1) -V(k-2) ... f(k-) tf(k-2) ]T
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The notation here has been made as similar to the IV notation as possible, to show the

parallel between this procedure and the RIV procedure described above. Note that we
A A A A A

use some set of past estimates A, B, C, and D to allow us to best estimate 71, which is

the updated estimate for C and D. Young gives more detail about the properties of

the estimates, and also gives a recursive algorithm for its application.

We now have an estimation procedure for C and D, which can be integrated

into the iteration for the maximum likelihood estimates of A and B. The complete

RIV-AML recursion algorithm, then, is [33]
A A A A

1. Begin with initial estimates for A(z), B(z), C(z), and D(z).
A A

2. Use the AML procedure (Equations (5.34)-(5.39)) to update C and D.

3. Use the RIV procedure (Equations (5.32)-(5.33)), using the updated
A A A A

estimates of C and D, to update A and B.
A A

4. Go to 2, repeat with the new values of A and B.

One purpose of the filters in Equations (5.32) is to eliminate as much as

possible the effect of the colored noise on the outputs. Such 'pre-whitening' filters

attempt to insure that y (k) is uncorrelated with the disturbances v(k). y (k) must be

f
uncorrelated with v(k) in order to satisfy Equation (5.31b), because y (k) is a part of

the instruments. The filtered inputs u (k), which make up the remainder of the

instruments, must also be uncorrelated with v(k) in order to satisfy Equation (5.31b).

During open-loop operation, this condition is automatically satisfied, because ;(k) in

Equation (5.24) is uncorrelated with u(k). During closed-loop operation, however,

v(k) and u(k) are correlated (this will be shown in the next section). The above

method must, therefore, be modified for closed-loop identification. This is the subject

of the following section.

5.2.2.3 Choice of Closed-Loop Instruments

Figure 5.3 shows the layout and notation for closed-loop operation. The

system dynamics remain as in Equation (5.23). In addition, we introduce the extemal
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input signal, r(k), and the following feedback law:

u(z) = G,-(r(z) - G, -y(z)), (5.40)

where Ge(z) and G,(z) are rational transfer functions representing dynamics in the

feedback and forward paths. For the rotating stall controller, these dynamics are well

defined (see Chapter 4), so here we will assume that they are known. Since y(k) is

corrupted by v(k), u(k) will now be correlated with the noise, and Equation (5.31b)

will be violated:

u(k) = G,(z) (r(k) - G, -(G u(k) + v(k))),

N

E. I ((k)v(k) 0,
k=1

because 4(k) contains u(k). This is a very real problem which does not constitute a

mere theoretical technicality. In a high-gain feedback situation such as occurs during

stabilization of unstable dynamics, it renders the IV methods described so far useless.

Fortunately, these methods regain their applicability if the proper substitutions are

made to insure that the resulting instruments fulfill Equations (5.31).

References [34] and [35] discuss in detail the problem of closed-loop

estimation, and the methods they describe will be used here. The idea is to replace

{ y(k) , u(k) } in the computation of the instruments with some I y c(k) , u c(k) )

which are highly correlated with their respective counterparts (condition (5.31a), but

which are uncorrelated with the disturbances (condition (5.31b)). The two methods

used to accomplish this are described below. In both cases, we assume r(k) is a

known external excitation.

Method I: Test-Repeat (TR) Instrumental Variables

This method, introduced in [34], achieves uncorrelated instruments by

repeating the experiment twice, with identical r(k) in both cases. The measured

inputs and outputs for the two tests are denoted I u(k) , y(k) ) and { u c(k) , y c(k) ).
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The procedure is to use one of these input-output pairs to compute the instruments,

and the other to compute the estimates. The RIV-AML estimation proceeds exactly

as described in Section 5.2.2.2, using { u C(k) , y C(k) ) to compute the instruments and

I u(k) , y(k) ) to compute the parameter estimates (The roles of the two input-output

pairs can be switched).

Using identical r(k) in the two tests insures high correlation between the

instruments and the measurements (condition 5.3 1a), and poses no particular difficulty

in a digital control environment. Also, because v(k) and v c(k) are incurred at

different times, they are uncorrelated, which means that the instruments (from the first

test) will be uncorrelated with the disturbances (from the second test) even if the

system is operating closed loop (condition 5.31b). Reference [34] proves these

claims, and discusses the consistency properties of the Test Repeat (TR) method.

Method II: Noise-Free (NF) Instruments

Both [34] and [35] discuss this method, which uses noise-free (NF) simulation

of the test to generate the instruments. In this case ( u C(k) , yc(k) } comes from a
A

simulation, using an a priori estimate of the system dynamics (i.e. e). vc(k) will thus

be identically zero. The same input r(k) is then applied to the real system to get

{ u(k) , y(k) ). The RIV-AML algorithm can now be applied, using ( u C(k) , y'(k) )

to compute the instruments and { u(k) , y(k) } as the measurements (in this case the

roles of the two input-output pairs cannot be switched).

The same reasoning applies here as in the TR case. The noise-free instru-

ments will naturally be uncorrelated with the noise (condition (5.3 1a)). The degree of

correlation between the instruments and the measurements (condition (5.31b)) will

depend on the accuracy of the a priori estimate of the system dynamics, but (except in

trivial cases) some correlation will exist. Closed-loop operation changes none of

these observations. References [34] and [35] discuss NF estimation more rigorously.
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5.2.2.4 Modification of the RIV-AML Prefilters for Unstable Plant Dynamics

The test-repeat instrumental variable (TR/IV) and the noise-free instrumental-

variable (NF/IV) methods allow identification of system dynamics during closed-loop

operation, even when the plant is unstable. Experience with these methods has

suggested, however, that the covariance of the estimates can be large for standard

choices of instruments. Thus we have combined the TR and NF methods with the

RIV-AML method to obtain more accurate estimates. If the open-loop plant is stable,

this presents no problem: the hybrid techniques, termed TR/RIV-AML and

NF/RIV-AML, can be synthesized without additional modifications. However, if the

open-loop plant is unstable, many of the prefilters required by the RIV-AML

procedure (Equations (5.32) and (5.34)) are also unstable - they contain A

which is unstable if implemented as a causal filter.

To use the TR/RIV-AML and NF/RIV-AML procedure when the open-loop

plant is unstable, we must modify the prefiltering scheme to avoid filters which blow

up. This problem is primarily one of understanding the prefilters in the context of the

maximum-likelihood (ML) problem, and applying them properly. To develop the

RIV-AML method, Young [33] first writes the log-likelihood function for the

observations y(k), and then reduces the ML problem to the minimization of the

following term:

D B T D B
L = [ y- -N-u)] (5.41)

The RIV and AML prefilters are then formulated by writing dL/la = 0, dL/dbi = 0,
Ietc. Thus the prefilters contain --- because the log-likelihood function contains the
A

A
B

prediction error (y - ---. u).
A

When the closed-loop system is stabilizing an open-loop unstable plant, we are

faced with the following problem: y(k) and u(k) are 'stable' signals; that is, their
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Z-transforms y(z) and u(z) converge on the unit circle (I z = 1). But (z)

unstable; that is, it is the Z-transform of a causal impulse response, and it contains

poles outside the unit circle. Given these conditions, can we compute an estimate of
AA

y(k) based on u(k), A(z), and B(z) alone? If we can, then the prediction error can be

formulated, and the prefilters necessary for the RIV-AML procedure can be found.

To answer this question, consider our system representation (5.23,5.24):

y)= z )( ()z) .(5.42)

We can break A(z) into a polynomial whose roots are stable, times a polynomial

whose roots are unstable:

A(z)=As(z)- Au(z), (5.43)

where:
A s(z) = I(1-qj- z-1); q j <1 ,

i

A U(z) = (1-pi- z-1); |pi l>1 .
i

This factorization of A(z) allows us to rewrite (5.42) to reflect the possibility that the

noise dynamics are affected by the unstable poles:

y(z) A B(z) -u(z) + () 4( z).(5.44)
Au ()As z)Auz)z-

E i C Ewhere- is defined such that - A--F-* Generality is retained in this
u

formulation because E(z) cancels any poles of Au(z) that are not part of D(z). The

transfer function .4 is stable if the system is stabilizable, so we can write:

y(z)= A u z) A ) -U(z) + - ( z) (5.45)

S Au (z) ~qz

where q(z) is bounded for z = 1, because of the our conditions on As (stated in

E
5.43), F (stated above), u(k) (its Z-transform converges on the unit circle), and g(k)

(stated after (5.24) - the important point being that 4(k) is a finite-duration
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(windowed) sequence). We have also specified that a feedback system is stabilizing

the plant, so that y(z) converges for z |=1. Thus, by studying (5.45), one concludes

that q(z) must contain zeros which cancel the unstable poles of -A . We write this
U

condition as follows:

q(z) = Au(z)- w(z) (5.46)

=4 y(z) = A (z) - [Au(z)- w(z)].
u

where w(z) also converges for Iz I=1. The pole-zero cancellation implied by (5.46)

can be derived constructively (although somewhat tediously) by writing the

closed-loop transfer function from any external signal (such as r(z) or 4(z)) to y(z).

The representation (5.46) can be used to motivate a filtering scheme as

follows: AI(z) is the (two-sided) Z-transform of at least two distinct impulse
u

responses [36]: 1) a causal, unstable impulse response, which we will call hc, and 2)

an anticausal, stable impulse response, which we will call hac. The Z-transform of hc
converges in the region of convergence (ROC) z | >max(pi), while the Z-transform of

hac converges in the ROC Iz I <min(pi). The ambiguity of the Z-transform is usually

cleared up by invoking causality: because (5.42) represents a causal dynamic system,

we know that the physically meaningful inverse of is hc(k), and that the

convolution corresponding to (5.46) is:

y(k) = h c(k) * [hA(k) * w(k)], (5.47)

where * indicates convolution and

hc(k) Z-1{ A1 (z) ROC: |z I>max(pi),

hA(k) Z I Au ) ROC: all z.u

As we have noted, hc(k) is causal, but because the poles of 1 lie

outside the unit circle, hc(k) grows without bound as k -c co. However, it can be

shown that the causal, unstable impulse response hc (k) can be replaced by its
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anticausal, stable counterpart hac(k), if a pole-zero cancellation such as (5.46) occurs.

We can write this statement as follows:

h ac(k)*[ hA(k) * w(k)]= hc(k)* [hA(k) * w(k)] (5.48)

where

hac(k) = Z~{ A(z) } ROC: Iz I<min(pi).
u

Note here that the ROC overlaps the unit circle. Computing the inverse Z-transform

over this ROC gives an impulse response which is bounded for all k [36]. Thus we

expect that replacing he with hac will yield a stable (although noncausal) way to

predict y(k).

Substituting (5.48) into (5.47), we have the following equation for y(k):

y(k) = hac(k) * [ hA(k) * w(k) ]. (5.49)

Since all of the sequences in this equation are stable, their Z-transforms exist on the

unit circle, and we can convert back to the Z-domain:

y(z) = A 1(z) ac.* [A u(z) -w(z)]
u

B(z) C(z)
AT(z) sncu(z)+ D(z) snc

A
A B(z)

= y(z) = A u(z), (5.50)
A(z) snc

where we denote the Z-transform of hac as A(z) ac, to distinguish it from the

Z-transform of hc* The operations between transfer functions implied by (5.50) are

valid for the transfer functions and signals we have defined, because they all converge

on the unit circle. The subscript 'snc' is used to indicate that we will use a stable,

noncausal time-domain implementation of the filter - the anticausal part coming from

the unstable poles, and the causal part coming from the stable poles. Figure 5.4 gives

an example of the regions of convergence associated with 1 and the corres-

ponding impulse responses.
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Pole plot for
A(z)

Im

Unit Circle

Impulse responses Z- 1{ A zA(z)

t

ROC (D causal, unstable ('uc')

t

ROC(II) noncausal, stable ('snc')

t

ROC(III) anticausal. unstable ('uac')

Figure 5.4 - Example of different impulse responses associated with the same
transfer function. The inverse Z-transform of A(z) can be computed
over any of the three regions of convergence (ROCs) shown (I, II, or III).
The impulse response in each case is the sum of the truncated
exponentials shown at right.
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We have shown how the transfer function between u(z) and y(z) must be

altered when the open-loop plant is unstable. It can be shown that all of the filtering

and prediction described in Sections 5.2.2.2 can be similarly altered, without changing

the maximum-likelihood results of Young [33]. Thus, our scheme is noncausal when

the plant is unstable, and must be implemented off-line, but otherwise it proceeds as

described in Sections 5.2.2.1-5.2.2.3, with A replaced by A1)snc-

5.2.2.5 Application to the MIMO Rotating Stall System

The rotating stall system which we would like to identify can be derived by

using Equations (4.1) and (4.19-4.21):

Y'ln= Z - .xi n+ ~ln(5.51)

(b1z + b2 )(z+1) -(b3 z + b4 z + b5 ) ur] Z 1 + vralz2 + a2Z + a3Z (b3z + b4Z + b5) (biz + b2)(z+1) j. Ui nz i n

where the a's and b's are all functions of n and . Note the extra delay (indicated

by z-1), which accounts for various time delays in the system (Sections 4.2.2

and 4.3.1). n is, according to (5.51), a delayed and noise-corrupted version of n.

Its real and imaginary parts, yr and yi, evolve according to (5.51), which is a MIMO

version of (5.23). All of the states and coefficients in (5.51) are real-valued.

The system in (5.51) is both multi-modal and MIMO. The multi-modal nature

of the system requires that dynamics be identified for each mode number n. This

identification can be done mode-by-mode, since the dynamics are decoupled. But

each mode constitutes a two-input two-output system. This adds complexity, but

otherwise requires no modification to the procedure. Some specifics of the MIMO

analysis will be given as an illustration and to demonstrate an algorithmic

simplification.
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The one-step-ahead predictor for the system described in Equation (5.51) is:
A .

Yrn _T k)-
Yin -k n n

where: (5.52)

T Tl

4(k)= On

n -n -k

Yr(k-1) yr(k-2) ur(k-A)+ur(k-2) ur(k-2)+ur(k-3) -ui(k-1) -ui(k-2) -ui(k-3)]

yi(k-1) yi(k-2) ui(k-1)+ui(k-2) ui(k-2)+ui(k-3) ur(k-1) ur(k-2) ur(k-3)J n

A TE) =[ a, a2 b1 b2 b3 b4 b5 ]n

Here we have taken advantage of the structure of (5.51) to minimize the number of

parameters which need to be identified. The instruments must match the dimension

of :D, so we have:

T-
T(k) [ n] = (k) (k) . (5.53)

2n -

Equations (5.28) through (5.39) proceed as before, with the understanding that the

summations now contain matrix multiplications rather than scalar and inner products.

Equation (5.30) can be made more efficient computationally by breaking up the

matrices (n(k) and (Dn(k) into their constituent vectors. The resulting solution to the

IV problem is as follows:

+ T [in + y2n1] (5.54)

where subscripts k have been suppressed.

5.2.2.5 A Typical Run

A typical closed-loop IV parameter identification experiment is conducted as

follows: First the control system is initialized and closed loop operation begins. Next

134



the downstream throttle is used to manually set the flow coefficient to the value at

which the test will be run. This may or may not be an open-loop unstable operating

Tpoint. The signal [rr(k) ri(k)] n is then applied, and measurements are made of

[ur(k) ui(k)]T and [yr(k) yi(k)] (see Figure 5.3). The test can then be repeated for the

TR method. The complete data set is then put through the TR/RIV-AML procedure

or the NF/RIV-AML procedure described above.

A portion of a typical data set appears in Figure 5.5, taken at = 0.40 for a

mode number of one (n=l). The command is a band-limited pseudo-random binary

signal of magnitude 10* (0.1745 rads) on each channel of the input vector [rr ri] .

The bandwidth is limited to o = 1.1 (50 Hz), which is about five times the natural

frequency (os) of the system. The actual IGV deflections, [ur ui] T, are responding to

both this command and the feedback signal, as shown in Figure 5.3 and in Equa-

tion (5.40). It is apparent from the differences between [rr ri] and [ur ui]T that then n

feedback signal is a major part of the excitation to the system. The outputs [yr yJ]Tn

are also shown in Figure 5.5. Also shown in Figure 5.5 are the results of the

noise-free simulation. The good agreement between the noise-free simulation (which

relies only on [rri] T) and the actual system inputs and outputs indicates that then

method is yielding good estimates.

5.3 Results and Discussion

All of the methods described in this chapter were applied to data from the

single-stage active control research compressor. Section 5.3.1 compares the

estimation procedures we have described. Section 5.3.2 presents the parameter

estimates $(n,o) for n=1,2, and 3, and for the range of flow coefficients 4 = 0.350

to 0.550. Section 5.3.3 presents some configuration studies. Refer to Figure 6.1 for a

steady-state characteristic ( W(O) ) of the compressor.
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Scale:
ri= 0.5 rad

Re(Tr) 0

Im(i 1 ) 0

0

Scale:
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Re(~ii) 0

Im(uii) 0

Scale:
= 0.05

Re( y') 0

Im( ii) 0

First SFC of external command,71
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------- simulatec
First SFC of IGV deflections actual
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First SFC of velocity perturbations actual

0 5 10 15 20 25
Time, rotor revs (t/2n)

30 35 40 45

Figure 5.5 - Example of data for IV estimation techniques. Dotted lines are
results of a noise-free simulation, based on a NF/RIV-AML
estimate. First mode T.F., _i = 0.400, hot wires downstream of IGVs.

ONF/RIV-AML = [.0174 0.183 -0.0109 0.0001 -0.0357]
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5.3.1 Comparison of Various Methods
A A

The purpose of developing several methods to determine Gn(s) and C9 is to

provide cross-checks between methods, so that the results can be validated. Instru-

mental-variable methods are applicable over the entire range of flow coefficients, but

they converge less reliably than the transfer function fit method. The sinusoidal

excitation and spectral estimation methods are reliable, but provide no parametric

estimates (unless combined with the transfer function fit method), and they do not

work at all during closed-loop operation. Thus the less speculative methods, although

they have limited applicability, provide verification that more sophisticated methods

are actually working.

Figure 5.6 is the first such comparison of methods. It shows a first-mode

sinusoidal excitation estimate co-plotted with a spectral estimate. Agreement is quite

good, indicating that the methods are formulated and applied correctly. It is

interesting to note that the sinusoidal excitation estimate is made using rotating wave

excitation which directly excites Gn(s), while the spectral estimate uses the formula

Gn(s) = Gr(s) + i -Gi(s). Agreement between the estimates suggests that linearity

arguments are valid.

Figure 5.7 compares the spectral estimate and the RIV-AML estimate of

Gn(s). Both methods use the same data set, and yield approximately the same results.

Since the IV method is a time-domain procedure, it does not optimize the frequency

response fit explicitly; this sometimes causes discrepancies in the frequency domain

between spectral and instrument-variable estimates. Nevertheless, the parameter

estimates that result from the two methods tend to be close. Results later in this

section will verify this statement.

The closed-loop IV methods (TR/RIV-AML and NF/RIV-AML) are designed

to operate in a regime where spectral estimates are not available - that is, during

137



71(s)
j 1 (s , First Mode, 4= 0.475, Downstream Hot Wires
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1.0 2.0

Frequency, normalized to rotor frequency

Figure 5.6- Comparison between sinusoidal excitation (open circles) and
spectral estimation method (solid line). Transfer function for
the first SFC, at =0.475, hot wires downstream of the IGVs.
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02(s)
72nd Mode, (= 0.420, Upstream Hot Wires, Intermediate IGVs IN

0.1 1.0 2.0

0.1 1.0 2.0

Frequency, normalized to rotor frequency

Figure 5.7 - Comparison of spectral (solid line) and RIV-AML (dashed line)
estimates. T.F. of second SFC, at i=0.475, upstream hot wires,
intermediat IGVs IN (see Section 5.3.3):

GRIV-AML =[ -0.107 0.511 -0.0140 -0.0006 -0.0164]
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First Mode, = 0.475, Upstream Hot Wires
71(s)

* . .......... ...........
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Frequency, normalized to rotor frequency

Figure 5.8- Comparison of spectral estimate (solid line), NF/RIV-AML estimate
(dashed line) and TR/RIV-AML estimate (dotted line, barely visible
because of coincidence with NF estimate). Transfer function for first
SFC, atii= 0.475, hot wires upstream of the IGVs.

ONF = [ -0.0184 0.242 -0.0114 0.0063 -0.0367]
&rR= [ -0.0162 0.237 -0.0114 0.0066 -0.0356]
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stabilization of unstable operating points. However, closed-loop data sets can be

taken at flow coefficients which are open-loop stable. Such tests can be used to

verify that closed-loop IV methods properly account for the loop closure and still

provide good estimates. Figure 5.8 shows the results of such a test. A spectral

estimate (based on open-loop data) is compared to both a TR/RIV-AML and a

NF/RIV-AML estimate (based on closed-loop data). Good agreement between the

frequency responses is obtained, and parameter values are comparable.

5.3.2 Results for the Single-Stage Active Control Research Compressor

The parameter set E (Equation (5.12)) is a function of mode number n, mean

flow coefficient 0, and compressor configuration. Estimation of E) has been con-

ducted for n=1,2, and 3, at flow coefficients from f=0.350 to i=0.550 (to see p(O) for

this range, refer to Figures 5.16 and 6.1). There were 8 hot wires mounted upstream

of the compressor (Ti = -0.5) for these tests, and the 0.57" spacer ring was not in.

At each test point (n, ), multiple data sets were taken. The parameters were

then estimated from each data set using all of the applicable techniques. Open-loop

data was analyzed using the transfer function fit method and the RIV-AML method.

Closed-loop data was analyzed using both the NF/RIV-AML method and the

TR/RIV-AML method. At some flow coefficients (those near stall but still stable,

S= 0.475 and 0 = 0.50) both open-loop and closed-loop tests were run, to allow the

results of all of the methods to be compared.

Three different methods of presentation are used to show the results. First, the

parameter estimates are tabulated in Tables 5.1 and 5.2, which appear at the end of

this chapter. Second, the parameters are plotted as functions of 0 in Figures 5.9

through 5.11. Polynomial curve fits to the data in these plots are also shown. Third,

pole-zero loci are given for each mode number n in Figures 5.12 through 5.14. These

loci were constructed using the polynomial curve fits from Figures 5.9 through 5.11.
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Pole-Zero Migration for First Mode - Upstream Hot Wires
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First mode pole (x) and zero (o) migration with flow coefficient.
Arrows show direction of decreasing flow coefficient. Transfer
function for first mode ( G1(s) ), hot wires upstream of IGVs.
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Pole-Zero Migration for Second Mode - Upstream Hot Wires
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Figure 5.13- Second mode pole (x) and zero (o) migration with flow coefficient.
Arrows show direction of decreasing flow coefficient. Transfer
function for second mode (G2(s) ), hot wires upstream of IGVs.
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Pole-Zero Migration for Third Mode - Upstream Hot Wires
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0.1 0.2 R part

Figure 5.14 - Third mode pole (x) and zero (o) migration with flow coefficient.
Arrows show direction of decreasing flow coefficient. Transfer
function for third mode ( G3(s) ), hot wires upstream of IGVs.
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The first thing to note about the results is that all of the different parameter

estimation methods provide comparable estimates. All the curves are smooth

functions of flow coefficient, indicating that closed-loop identification does not bias

the results. The good agreement between various methods gives us confidence that

the estimates do in fact reflect the input-output behavior of the plant.

The characteristics of the compressor response can now be described in detail.

We are primarily interested in the stability of the system, characterized by arsn, the

rotating stall frequency, characterized by %, and the response of the system to IGV

control, characterized by the magnitude and zero of Gn(s).

Stability characteristics - -r n

According to the model in Chapter 3, Urs should be a function of the overall

fluid inertia y (Equation 3.4), the slope of the compressor characteristic - -, and

the mode number n:

r(n,o) =2 + p). (5.55)

This equation says that all of the modes are neutrally stable at - 0, i.e. the peak

of the compressor characteristic. It also says that the rate at which u, changes with 4

depends on 3 things:

1) The rate at which the compressor slope changes with flow coefficient,

2) The amount of inertia in the system (more inertia means stability is less
sensitive to slope and mode number),

3) The mode number (higher mode numbers are more sensitive to slope and
inertia).

Although simply computing a., using (5.55) yields poor prediction, some of the trends

predicted by this equation are bom out qualitatively in the data. Discrepancies

suggest modifications to the model, some of which are discussed in Appendix A.

The 011 curve fits for n = 1, 2, and 3 are shown on the same plot in Figure

5.15, to clarify the trends. To check the trend with discussed above, we use an

estimate of -v , shown in Figure 5.16 (W(O) is also plotted in Figure 5.16 - a more
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Figure 5.15 - Comparison of stability variation with flow coefficient for
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Figure 5.16 - Estimated slope of the compressor characteristic, based on
a 4th-order curve fit to the speed line (see Figure 6.1 for
more complete speed line information).
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complete plot of W(O) appears in Figure 6.1). The curves for -rn and -. are

qualitatively similar - they all tend from negative to positive as flow coefficient is

reduced (throttle closure). The curvature of the plots is also similar. However, the

Ursn curves go through zero at lower values of 0 than the d curve. We interpret

this as a downward shift of the Urn curves from their predicted positions - that is, at a

given 0, each mode is more stable than one would predict based on (5.55). As mode

number increases, the downward (stable) shift also increases; higher modes are

consistently more stable than lower modes.

Higher stability of higher modes is a fortuitous circumstance, because it means

that by stabilizing only the first few modes, the flow coefficient at which the system

stalls can be reduced. The results of Chapter 6 verify this claim. The higher stability

of higher modes is attributed to the effect of unsteadiness on the losses [37,38] (see

Appendix A). Taking into account unsteadiness results in changing the "effective

" seen by each individual mode. This effective slope argument will also appear

in our discussion of the IGV response.

Although the higher modes are more stable in Figure 5.15, they proceed from

stable to unstable more quickly as 0 is reduced. This trend agrees with the

appearance of 2 in the denominator of (5.55) - as mode number increases,n

sensitivity to compressor slope also increases. The effect of this trend is to reduce the

difference in stability between modes as flow coefficient is reduced. By 4 = 0.375,

the difference in stability is quite small.

We have described two competing trends. The first trend, probably due to the

effect of unsteadiness on losses, is that higher modes tend to be more stable than

lower modes. This is a desirable trend, because we would like to actuate as few

modes as possible to stabilize the system. The second trend, which agrees with

linearized fluid mechanics predictions, is that the higher modes are more sensitive to

compressor slope than lower modes. Thus, as compressor slope becomes more
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positive, the higher modes tend towards instability faster than the lower modes. This

is an undesirable trend, because it tends to nullify the advantages of the first trend and

make higher modes less stable than lower modes.

Higher modes tax both the spatial and temporal bandwidth of the control

scheme. A given control mechanization will have a mode number above which it

cannot operate. Thus the balance between the two competing trends described above

could define the limit to control for a given combination of compressor, sensors, and

actuators.

Rotating Stall Frequency - %

According to the model in Chapter 3, oq should be a function of the fluid

inertias A and y (Equation 3.1 and 3.4) and the mode number n:

2k,(n) = n)- /( n + p). (5.56)

As with the stability parameter Urs, direct prediction using this equation does not yield

good estimates. For instance this equation admits no variation in the rotating stall

frequency with flow coefficient. Figure 5.17, which plots % for the first three

modes, shows a fairly strong dependence on 0, indicating that the model needs

modification.

The primary trend with mode number n is due to the fact that higher modes

have more 'lobes', so that passage of a full cycle past a stationary point is n times as

fast for the nth mode. Thus if all modes travel at the same 'group velocity' Q, the

apparent rotating stall frequency of the nth mode (%) is nfl. To check the deviation

from this trend, qn/n is plotted in Figure 5.18. This plot allows us to check the

weaker trend with n which appears in the denominator of Equation (5.56): according

to this term, lower modes should travel at a slightly slower group velocities than

higher modes. This weak trend with mode number does show up in the data.
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IGV response

Two characteristics of the IGV response are of primary concern. First, we are

interested in the overall effectiveness or 'control power' that is available for

stabilization; this can be characterized by the steady-state gain of the transfer

function Gn(s). Second, behavior of the zero of Gn(s) is important; this depends on

the relative magnitudes of br, bi, and gi. The accuracy of predictions is again poor;

clearly more research is needed in this area. Here we will present and comment on

the experimental results, comparing them to predicted trends only when such trends

are obvious. It is hoped that this data will aid in future refinement of predictive

capability.

The steady-state magnitude of Gn(s) is computed by letting s--0 in (3.48):

M - b + jb- (5.57)
ssn Or s + JM4s n.

Figure 5.19 plots the magnitude of Mesn for the first three modes as functions

of 0. It can be seen from this plot that control effectiveness is steadily declining as

the flow coefficient is reduced. Control power is similar for the first and second

modes, but reduced by about 25% for the third mode.

Figure 5.20 shows the phase of M., for the first three modes as a function of

i. These curves indicate the phase shift (at steady state) between the input wave on

the IGVs and the output wave of axial velocity. A strong variation of ZMsn with

mode number is observed - each mode is shifted by a different amount. The net

effect is that a wave shape (of arbitrary modal content) introduced at the IGVs will

not produce the same wave shape in axial velocity. One must take this behavior into

account when designing control laws.

To characterize the actuator effectiveness during transients, the zero of the

transfer function Gn(s) must also be studied. Figures 5.12 through 5.14 show how the

zeros change with flow coefficient. The zeros of all three transfer functions go from
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minimum phase (negative real part) to non-minimum phase (positive real part) as flow

coefficient is reduced. Since the closed-loop poles of the controlled system will

approach the open-loop zeros as the feedback gain is increased, non-minimum phase

(NMP) zeros are undesirable - they tend to make the system either go unstable or

remain unstable under feedback. Thus the problem of stabilization becomes more

difficult as flow coefficient is reduced, not only because the system is going unstable

(as characterized by the poles), but also because the actuator effectiveness is

becoming NMP (as characterized by the zeros).

The real part of the zero of Gn(s) determines whether or not the system is

NMP. Chapter 3 results ( (3.43), (3.44), and (3.48) ) can be manipulated to yield the

following prediction:

dv

alp= -- 
(5.58)

+ pc + GV

Where we have introduced the notation up to indicate the similarity to ars. Both 's

represent the real part of a complex number, and both indicate that Gn(s) has

undesirable properties when they are positive (ars>O =' unstable, %P>O =->

non-minimum phase). Since the denominator of (5.58) is always positive, the sign of

a is tied to exactly the same condition as the sign of ars - namely, the slope of the

characteristic,

If we plot a, of the data for n = 1, 2, and 3 (Figure 5.21), we see that indeed

the curves are very similar to the curves in Figure 5.15 for qrs. The curves tend from

minimum phase to non-minimum phase as ~ is reduced, and higher modes tend to be

more negative than lower modes. Also, the curvature and slope of the up curves show

the same trends with mode number as the curves for Urs.

Major differences do exist between the a curves and the qrs curves.

Nevertheless, it seems clear that the slope dy affects the sign of both a, and qr,
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which means that the transfer function Gn(s) tends to become more NMP as it

become less stable. The effect of a NMP zero on our ability to stabilize the system

depends strongly on the frequency of the zero, i.e. its imaginary part. If the zero

frequency is sufficiently high, it will not alter the stabilization problem substantially.

Unfortunately, Figures 5.12-5.14 show that the zero frequencies are relatively close to

the pole frequencies. Therefore, they must be taken into account in any feedback

analysis. Section 6.2.2 further discusses the effect of NWP zeros.

5.3.3 Configuration Studies

This section describes briefly the measured effects of three separate changes to

the configuration. The technique is to change the configuration in a single way, and

then do identification experiments like those described in the previous sections.

Transfer functions or parameters are then compared to those for the configuration

discussed in Section 5.3.2.

Spacer Ring

A spacer ring can be placed between the IGVs and the rotor, increasing the

gap between these two blade rows. The experimentally determined effect of this extra

gap on Gn(s) can be seen in Figures 5.22 and 5.23, where the parameter estimates for

the first and second modes are plotted as functions of 0. Curve fits are shown, as well

as the curve-fits for the no-spacer ring results presented in Section 5.3.2. Comparing

the results with the spacer ring in and out shows several effects. The stability of the

system at a given 0 is reduced by increased gap, while the rotating stall frequency is

slightly decreased. The parameters br and bi are not affected very strongly, but gi is

reduced. This indicates that the steady-state response behavior is not strongly

affected, but the transient behavior is attenuated 10 to 20 percent. The trends with

flow coefficient are similar with or without the spacer ring.
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Intermediate IGVs

In Chapter 3, the coefficient gi is derived by looking at the unsteady affect of

non-axisymmetric IGV turning. The idea is that, when the IGVs are not turned by the

same angle, adjacent passages have different area ratios (see Section 3.2.4 and

Figure 3.2). The effect was seen to be proportional to -47X , which indicates the
dth

degree of difference between area ratios in adjacent passages. Thus an nth mode

turning in the IGVs 5AI)=cos(nO) has an effect on the nth mode of 30 proportional to

-n -sin(n9). But, if an intermediate stationary blade is placed between each pair of

moving blades, the effect is completely removed. Instead of the nth mode in 3,y

affecting the nth mode in 84, it affects the 12 th and higher modes. Figure 5.24

illustrates how intermediate IGVs make 37) effectively zero for a given mode

number n. In this case, then, gi=O according to the model.

If gi can in fact be made zero, the transfer function Gn(s) will be changed

dramatically. Because gi is the coefficient of s in the numerator of Gn(s) (Equation

3.48), gi=O implies that there is no zero in the transfer function. Thus the magnitude

response I Gn(jo)j should 'roll off at high frequencies, becoming very small rather

than reaching a constant magnitude. The phase response should also show the effect

of removing the zero: LGn(jO) should change by at most 7r over the entire frequency

range of the test, rather than the 27r phase change shown in, for example, Figure 5.1.

To test these hypotheses, spectral estimates of Gn(s) for n=1 and 2 were made

at 4=.475 and ?=.50, with stationary intermediate IGVs. The estimates are plotted in

Figures 5.25 through 5.28, along with estimates of the transfer functions without

intermediate IGVs (based on the results of Section 5.3.2). It is clear from these plots

that the transfer function shapes are not affected in the way anticipated. The zero of

Gn(s) in all cases is not significantly altered by the introduction of intermediate IGVs.

The only noticeable effects are a slight attenuation of the magnitude plot, and a slight

reduction in the rotating stall frequency (k,).
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Figure 5.25 Effect of intermediate stationary IGVs on the first mode transfer
function at T=0.475. Dotted line shows transfer function without
intermediate IGVs, solid line shows transfer function with inter-
mediate IGVs. Hot wires are upstream of the IGVs.
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Figure 5.26 -Effect of intermediate stationary IGVs on the second mode transfer
function at 7=0.475. Dotted line shows transfer function without
intermediate IGVs, solid line shows transfer function with inter-
mediate IGVs. Hot wires are upstream of the IGVs.
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Figure 5.27- Effect of intermediate stationary IGVs on the first mode transfer
function at =0.500. Dotted line shows transfer function without
intermediate IGVs, solid line shows transfer function with inter-
mediate IGVs. Hot wires are upstream of the IGVs.
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Figure 5.28 - Effect of intermediate stationary IGVs on the second mode transfer
function at =0.500. Dotted line shows transfer function without
intermediate IGVs, solid line shows transfer function with inter-
mediate IGVs. Hot wires are upstream of the IGVs.
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These experimental results show that there is a feature of the higher-mode

dynamics which is completely unexplained by the current theory. The feature can be

described as follows: The modes of the flow coefficient, n, respond not only to the

d
modes of the IGV deflections Yn, but also to their rate of change, 54in), thus

introducing a zero into Gn(s). The effect is strong enough that the zero frequency is

only about twice the pole frequency. Thus the ability to stabilize the system pole is

significantly affected by the zero. Furthermore, the introduction of intermediate IGVs

does not significantly alter the zero position.

Hot wires Downstream of the IGVs

All of the data presented so far has been taken with an array of hot wires

mounted 0.5 compressor radii upstream of the IGVs. There are also provisions for

mounting the hot wire array downstream of the IGVs. This location should have two

main effects, according to the theory presented in Chapter 3:

1) From of the form of the flowfield upstream of the compressor:

27r

n f 64,l(,r)-e(nlw) .eine, (5.59)

0

we see that n will be largest at nH = 0 (i.e. the compressor face), and

die away exponentially upstream. Thus moving the hot wires to the rotor
face should increase the magnitude of the transfer function Gn(s). The

effect will be more dramatic for larger values of n.

2) Since we are moving the hot wires from in front of to behind the IGVs,
we predict an effect due to the unsteady pressure rise across the IGVs.
The predicted effect is in Equation (3.12) where station 2 is behind the
IGVS (see Figure 3.1):

02n =(-nHW) n + IGVn (5.60)

This can be rewritten as an effect on the transfer function we will be
measuring:

2(s) e (-nnw). (s) + -p1IGV (5.61)
y(s) Y(s)

The added term inoi. -IGV will change the zero location of the transfer

function Gn(s). The effect will again be more dramatic for larger modes.
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Thus the model presented in Chapter 3 predicts that the transfer function magnitude

will be larger and the zero will shift.

To test these hypotheses, spectral estimates of Gn(s) for n=l and 2 were made

at i=.475, with the hot wires mounted downstream of the IGVs. The estimates are

plotted in Figures 5.29 and 5.30, along with estimates of the transfer functions

upstream of the IGVs (based on the results in Figures 5.22 and 5.23). These plots do

show an increase in transfer function amplitude and a shift of the zero for both G1 (s)

and G2 (s). The first mode zero moves from about 40% to about 100% rotor

frequency, and the second mode zero moves from about 90% rotor frequency to about

150% of rotor frequency. In addition, closer study of the transfer functions reveals

that the dynamics cannot be attributed to a single pole-zero combination: an

additional pole and zero are necessary to account for the dynamics shown.

Figure 5.31 shows the results of fitting the data in Figure 5.29 with a two-pole,

two-zero transfer function. The resulting estimate of the transfer function is

Gl(s) = (-0.0517+0.0158j) [ s - (0.4+1.j) [ s- (-0.125+0. ) (5.62)[I s - (-0.0U17 +0. 223j) ][s - (-U. 8:5+0.Oj)](562

The excellent fit in Figure 5.31 confinns that two poles and two zeros are necessary

to properly account for the dynamics measured at the downstream hot wire location.

Since the single-pole single-zero model presented thus far works well at the upstream

measurement location, we conclude that dynamics across the IGVs, or effects not

measurable upstream of the IGVs are responsible for the extra pole and zero.

We verify that Figure 5.31 is an accurate measure of G1 (s) in two ways. First,

we compare the estimate of G1 (s) obtained using spectral techniques with that

obtained via the sinusoidal excitation technique. Figure 5.6 shows this comparison -

both estimates have the same shape. Second, we compare the eigenvalue measured

upstream with that measured downstream. Since the homogeneous dynamics of the
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Figure 5.29 -Effect of moving the hot wires downstream of the IGVs on the first
mode transfer function atT=0.475. Dotted line shows transfer
function upstream of the IGVs, solid line shows transfer function
downstream of the IGVs. In both cases, the spacer ring is in.
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Figure 5.30 -Effect of moving the hot wires downstream of the IGVs on the second
mode transfer function at =0.475. Dotted line shows transfer function
upstream of the IGVs, solid line shows transfer function downstream
of the IGVs. In both cases, the spacer ring is in.
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, First Mode, $= 0.475, Downstream Hot Wires
71(s)
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Figure 5.31 - Transfer function fit to spectral estimate of Gi(s) downstream of the
IGVs. Two poles and two zeros are used to achieve the fit shown:

Giffi(s) = (-0.0517+0.0158j)
[ s - (0.4+1.lj) ] [ s - (-0.125+0.04j) ]

[s - (-0.017+0.223j)] [ s - (-0.85+0.6j)]
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system cannot change when the sensors are moved, one of the downstream poles must

match the upstream pole. Thus we have the following comparison:

ars + j -q = -0.022 + 0.234j (upstream measurements)

Urs + j - ors = -0.017 + 0.223j (downstream measurement)

These two measurements of the eigenvalue are the same, within the experimental

error shown in Figure 5.9.

Our main conclusion based on the downstream transfer function data is that

the dynamic effect of the IGVs on the compressor flow is poorly understood. There

are significant dynamics between the axial velocity upstream and downstream of the

IGVs, and these dynamics are captured only in part by the model presented in

Chapter 3.
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Table 5.1 a - First Mode Parameter Identification Results
(no spacer ring, upstream hot wires) [thi 1]

data set/
Wrs Crs br bi gi method

0.375 0.0182 0.168 -0.0065 0.00083 -0.0199 080790a/NF

0.400 0.0173 0.188 -0.0074 0.00258 -0.0232 080790a/NF
0.400 0.0074 0.187 -0.0076 0.00184 -0.0254 080790b/NF

0.425 0.0059 0.207 -0.0091 0.00229 -0.0299 080790a/NF
0.425 0.0026 0.207 -0.0092 0.00151 -0.0369 080790a/TR
0.425 -0.0015 0.200 -0.0085 0.00316 -0.0321 080790b/NF

0.450 -0.0148 0.226 -0.0100 0.00498 -0.0329 080790a/NF
0.450 -0.0143 0.225 -0.0100 0.00483 -0.0325 080790a/TR
0.450 0.0029 0.225 -0.0106 0.00321 -0.0320 080790b/NF
0.450 0.0021 0.226 -0.0106 0.00329 -0.0323 080790b/TR

0.475 -0.0286 0.245 -0.0116 0.00653 -0.0357 080790a/NF
0.475 -0.0258 0.246 -0.0116 0.00655 -0.0360 080790af/R
0.475 -0.0271 0.247 -0.0119 0.00626 -0.0381 080790b/NF
0.475 -0.0256 0.246 -0.0118 0.00616 -0.0370 080790b/TR
0.475 -0.0217 0.240 -0.0110 0.00695 -0.0345 073090a/NF
0.475 -0.0162 0.237 -0.0111 0.00643 -0.0347 073090a/TR
0.475 -0.0184 0.242 -0.0115 0.00637 -0.0369 073090b/NF
0.475 -0.0147 0.240 -0.0116 0.00581 -0.0370 073090b/TR
0.475 -0.0203 0.241 -0.0119 0.00544 -0.0372 073090c/GA
0.475 -0.0199 0.241 -0.0119 0.00545 -0.0372 073090c/GC
0.475 -0.0079 0.241 -0.0116 0.00583 -0.0372 073090c/IV
0.475 -0.0168 0.241 -0.0113 0.00653 -0.0367 073090d/IV
0.475 -0.0118 0.221 -0.0102 0.00626 -0.0356 072490a/NF
0.475 -0.0235 0.236 -0.0119 0.00480 -0.0369 072490b/GA
0.475 -0.0223 0.236 -0.0118 0.00486 -0.0369 072490b/GC
0.475 -0.0184 0.230 -0.0114 0.00502 -0.0342 072490b/IV
0.475 -0.0234 0.232 -0.0116 0.00494 -0.0372 052490a/GA
0.475 -0.0213 0.233 -0.0116 0.00508 -0.0373 052490a/GC
0.475 -0.0138 0.225 -0.0113 0.00468 -0.0367 052490a/IV

0.500 -0.0601 0.263 -0.0145 0.00683 -0.0450 072490a/GC

0.525 -0.0976 0.233 -0.0163 0.00284 -0.0467 072490a/GA
0.525 -0.0919 0.236 -0.0163 0.00291 -0.0468 072490a/GC
0.525 -0.1055 0.220 -0.0156 0.00319 -0.0434 072490a/LV

0.550 -0.1277 0.190 -0.0163 -0.00204 -0.0475 072490a/GA
0.550 -0.1152 0.198 -0.0163 -0.00189 -0.0477 072490a/GC
0.550 -0.1833 0.178 -0.0181 -0.00308 -0.0446 072490a/IV
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Table 5. 1b - Second Mode Parameter Identification Results
(no spacer ring, upstream hot wires) [th21]

data set/
Urs Cors br bi gi method

0.375 -0.0010 0.446 -0.0168 0.0017 -0.0228 080790a/NF
0.375 0.0000 0.445 -0.0168 0.0010 -0.0288 080790a/ITR
0.375 -0.0022 0.454 -0.0170 0.0022 -0.0247 080790b/NF
0.375 0.0003 0.445 -0.0168 0.0011 -0.0346 080790b/TR
0.375 0.0116 0.446 -0.0168 0.0009 -0.0228 080790c/NF

0.400 -0.0124 0.484 -0.0203 0.0025 -0.0259 080790a/NF
0.400 -0.0110 0.484 -0.0202 0.0028 -0.0265 080790a/TR
0.400 -0.0152 0.486 -0.0204 0.0023 -0.0267 080790b/NF
0.400 -0.0134 0.485 -0.0204 0.0020 -0.0273 080790b/TR

0.425 -0.0478 0.510 -0.0236 0.0016 -0.0299 080790a/NF
0.425 -0.0487 0.510 -0.0236 0.0015 -0.0300 080790a/TR
0.425 -0.0498 0.508 -0.0235 0.0016 -0.0298 080790b/NF
0.425 -0.0515 0.510 -0.0236 0.0017 -0.0299 080790b/TR

0.450 -0.1001 0.536 -0.0272 0.0004 -0.0316 080790a/NF
0.450 -0.0966 0.543 -0.0275 0.0010 -0.0327 080790afR
0.450 -0.1026 0.537 -0.0272 0.0002 -0.0312 080790b/NF
0.450 -0.1010 0.538 -0.0273 0.0003 -0.0316 080790b/TR

0.475 -0.1567 0.553 -0.0305 -0.0013 -0.0336 080790a/NF
0.475 -0.1610 0.574 -0.0316 -0.0005 -0.0352 080790a/TR
0.475 -0.1448 0.558 -0.0306 -0.0008 -0.0348 080790b/NF
0.475 -0.1450 0.567 -0.0311 -0.0003 -0.0352 080790b/TR
0.475 -0.0967 0.505 -0.0273 0.0003 -0.0298 072490a/NF
0.475 -0.1024 0.589 -0.0317 -0.0006 -0.0352 072490b/GC
0.475 -0.1289 0.560 -0.0305 -0.0007 -0.0338 072490b/GA
0.475 -0.1123 0.573 -0.0310 0.0009 -0.0360 072490b/IV

0.500 -0.1600 0.645 -0.0370 -0.0026 -0.0406 072490a/GC
0.500 -0.2173 0.628 -0.0370 -0.0026 -0.0398 072490a/GA
0.500 -0.1840 0.619 -0.0361 -0.0009 -0.0387 072490a/IV

0.525 -0.2147 0.713 -0.0432 -0.0048 -0.0453 072490a/GC
0.525 -0.2921 0.665 -0.0419 -0.0060 -0.0434 072490a/GA
0.525 -0.2937 0.658 -0.0416 -0.0058 -0.0421 072490a/IV

0.550 -0.2947 0.650 -0.0421 -0.0095 -0.0460 072490a/GC
0.550 -0.3475 0.584 -0.0394 -0.0116 -0.0433 072490a/GA
0.550 -0.4214 0.642 -0.0444 -0.0133 -0.0435 072490a/IV
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Table 5. 1c - Third Mode Parameter Identification Results
(spacer ring IN, upstream hot wires) [th32]

data set/
rs ors br bi gi method

0.375 -0.0395 0.769 -0.0233 -0.00150 -0.0246 051091a/NF
0.375 -0.0410 0.772 -0.0234 -0.00131 -0.0246 051091a/TR
0.375 -0.0442 0.759 -0.0229 -0.00249 -0.0246 051091b/NF
0.375 -0.0437 0.750 -0.0226 -0.00250 -0.0250 051091b/TR
0.375 -0.0401 0.785 -0.0237 -0.00172 -0.0237 051091c/NF
0.375 -0.0349 0.782 -0.0237 -0.00151 -0.0244 051091cf1R
0.375 -0.0318 0.759 -0.0230 -0.00161 -0.0243 051091d/NF
0.375 -0.0359 0.764 -0.0231 -0.00142 -0.0239 051091d/TR
0.375 -0.0640 0.772 -0.0234 -0.00100 -0.0237 013191a/GC
0.375 -0.0713 0.765 -0.0232 -0.00114 -0.0234 013191a/GA

0.400 -0.0565 0.805 -0.0260 -0.00189 -0.0276 051091a/GC
0.400 -0.0633 0.801 -0.0258 -0.00331 -0.0259 051091a/IV

0.425 -0.0739 0.860 -0.0295 -0.00186 -0.0304 051091a/GC
0.425 -0.0755 0.799 -0.0274 -0.00211 -0.0287 051091b/GC
0.425 -0.0549 0.841 -0.0288 -0.00181 -0.0299 051091c/GC
0.425 -0.0880 0.846 -0.0291 -0.00234 -0.0299 051091c/GA
0.425 -0.0989 0.816 -0.0278 -0.00497 -0.0282 051091c/IV

0.450 -0.1526 0.841 -0.0305 -0.00559 -0.0305 051091a/GC
0.450 -0.1558 0.854 -0.0305 -0.00774 -0.0298 051091a/IV

0.475 -0.1882 0.872 -0.0332 -0.00722 -0.0327 051091a/GC
0.475 -0.2001 0.932 -0.0349 -0.01022 -0.0320 051091a/IV

175



Table 5.2a - First Mode Parameter Identification Results
(spacer ring IN, upstream hot wires) [thl2]

data set/
rs Cors br bi gi method

0.400 0.0080 0.171 -0.0088 0.0012 -0.0301 010991a/NF
0.400 0.0091 0.171 -0.0087 0.0013 -0.0327 01099laf7R
0.400 0.0090 0.171 -0.0088 0.0018 -0.0310 010991b/NF
0.400 0.0103 0.171 -0.0088 0.0014 -0.0336 010991b/TR
0.400 0.0129 0.174 -0.0089 0.0011 -0.0273 010991c/NF
0.400 0.0136 0.176 -0.0091 0.0009 -0.0301 010991c/TR
0.400 0.0108 0.176 -0.0091 0.0019 -0.0296 010991d/NF
0.400 0.0107 0.177 -0.0092 0.0008 -0.0322 010991d/TR
0.400 0.0122 0.178 -0.0093 0.0001 -0.0306 122090a/NF
0.400 0.0127 0.178 -0.0093 0.0007 -0.0317 122090a/TR
0.400 0.0174 0.183 -0.0096 0.0008 -0.0313 122090b/NF
0.400 0.0171 0.183 -0.0096 0.0008 -0.0290 122090b/TR

0.425 0.0127 0.190 -0.0103 0.0023 -0.0313 010991a/NF
0.425 0.0127 0.191 -0.0105 0.0014 -0.0341 010991a/TR
0.425 0.0111 0.194 -0.0105 0.0029 -0.0321 010991b/NF
0.425 0.0111 0.194 -0.0106 0.0025 -0.0354 010991b/TR
0.425 0.0087 0.198 -0.0107 0.0021 -0.0333 010991c/NF
0.425 0.0096 0.198 -0.0108 0.0029 -0.0360 010991c/TR
0.425 0.0039 0.188 -0.0101 0.0028 -0.0352 122090a/NF

0.450 -0.0003 0.220 -0.0123 0.0044 -0.0373 010991a/NF
0.450 -0.0020 0.218 -0.0121 0.0048 -0.0388 010991a/IR
0.450 0.0109 0.212 -0.0119 0.0035 -0.0349 010991b/NF
0.450 0.0111 0.212 -0.0120 0.0033 -0.0355 010991b/TR
0.450 0.0061 0.212 -0.0118 0.0038 -0.0330 010991c/NF
0.450 0.0031 0.218 -0.0123 0.0030 -0.0363 122090a/NF

0.475 -0.0097 0.227 -0.0133 0.0045 -0.0397 010991a/NF
0.475 -0.0084 0.229 -0.0135 0.0048 -0.0435 010991a/TR
0.475 -0.0127 0.233 -0.0137 0.0044 -0.0403 010991b/NF
0.475 -0.0095 0.232 -0.0139 0.0045 -0.0406 010991b/TR
0.475 -0.0151 0.224 -0.0132 0.0045 -0.0398 010991c/NF
0.475 -0.0131 0.226 -0.0133 0.0041 -0.0413 010991cffR
0.475 -0.0108 0.228 -0.0135 0.0045 -0.0392 010991d/NF
0.475 -0.0091 0.228 -0.0136 0.0043 -0.0403 010991d/TR
0.475 -0.0120 0.229 -0.0138 0.0039 -0.0435 122090a/GC
0.475 -0.0158 0.228 -0.0138 0.0037 -0.0434 122090a/GA
0.475 -0.0076 0.226 -0.0136 0.0031 -0.0434 122090a/IV
0.475 -0.0141 0.233 -0.0140 0.0047 -0.0464 121890b/GC
0.475 -0.0175 0.230 -0.0136 0.0045 -0.0435 121890b/GA
0.475 -0.0117 0.227 -0.0135 0.0043 -0.0427 121890b/IV

0.500 -0.0378 0.253 -0.0159 0.0051 -0.0484 122090a/GC
0.500 -0.0384 0.253 -0.0160 0.0051 -0.0485 122090a/GA
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Table 5.2b - Second Mode Parameter Identification Results
(spacer ring IN, upstream hot wires) [th22]

data set/
P Urs (Ors br bi gi method

0.400 0.0016 0.486 -0.0225 0.00142 -0.0322 010991a/NF
0.400 0.0022 0.486 -0.0225 0.00102 -0.0341 010991a/TR
0.400 0.0078 0.487 -0.0225 0.00224 -0.0314 010991b/NF
0.400 0.0074 0.487 -0.0225 0.00202 -0.0316 01099lbITR
0.400 0.0099 0.489 -0.0225 0.00216 -0.0330 010991c/NF
0.400 0.0095 0.489 -0.0226 0.00178 -0.0341 010991c/TR
0.400 0.0073 0.492 -0.0227 0.00175 -0.0321 010991d/NF
0.400 0.0083 0.491 -0.0227 0.00162 -0.0345 010991d/TR
0.400 0.0027 0.490 -0.0226 0.00194 -0.0334 122090a/NF

0.425 -0.0219 0.507 -0.0253 0.00175 -0.0330 010991a/NF
0.425 -0.0186 0.508 -0.0253 0.00190 -0.0342 010991a/TR
0.425 -0.0176 0.513 -0.0255 0.00195 -0.0338 010991b/NF
0.425 -0.0153 0.510 -0.0255 0.00155 -0.0346 010991bF/R
0.425 -0.0136 0.511 -0.0255 0.00156 -0.0335 010991c/NF
0.425 -0.0147 0.510 -0.0254 0.00122 -0.0325 010991c/TR
0.425 -0.0158 0.515 -0.0256 0.00185 -0.0339 010991d/NF
0.425 -0.0162 0.517 -0.0257 0.00224 -0.0347 010991d/TR
0.425 -0.0224 0.510 -0.0254 0.00140 -0.0334 122090a/NF

0.450 -0.0552 0.536 -0.0286 0.00075 -0.0356 010991a/NF
0.450 -0.0491 0.535 -0.0285 0.00080 -0.0365 010991a/TR
0.450 -0.0446 0.537 -0.0286 0.00143 -0.0356 010991b/NF
0.450 -0.0401 0.538 -0.0286 0.00161 -0.0370 01099LbITR
0.450 -0.0452 0.535 -0.0285 0.00113 -0.0363 010991c/NF
0.450 -0.0408 0.534 -0.0284 0.00116 -0.0373 010991c/TR
0.450 -0.0499 0.538 -0.0287 0.00080 -0.0353 010991d/NF
0.450 -0.0454 0.538 -0.0287 0.00092 -0.0362 010991d/TR
0.450 -0.0522 0.538 -0.0287 0.00031 -0.0359 122090a/NF

0.475 -0.0986 0.570 -0.0323 -0.00014 -0.0377 010991a/NF
0.475 -0.0929 0.567 -0.0321 -0.00023 -0.0379 010991a/TR
0.475 -0.0922 0.561 -0.0318 -0.00046 -0.0379 010991b/NF
0.475 -0.0946 0.561 -0.0318 -0.00046 -0.0380 010991bTR
0.475 -0.0784 0.564 -0.0318 -0.00007 -0.0382 010991c/NF
0.475 -0.0725 0.560 -0.0316 -0.00010 -0.0388 010991cfR
0.475 -0.0893 0.567 -0.0321 -0.00047 -0.0376 010991d/NF
0.475 -0.0825 0.563 -0.0318 -0.00044 -0.0388 010991d/TR
0.475 -0.0898 0.547 -0.0309 -0.00210 -0.0368 122090a/GC
0.475 -0.0934 0.544 -0.0307 -0.00216 -0.0366 122090a/GA
0.475 -0.0958 0.565 -0.0320 -0.00057 -0.0384 122090a/IV
0.475 -0.0887 0.558 -0.0315 -0.00167 -0.0390 121890b/GC
0.475 -0.0975 0.550 -0.0312 -0.00177 -0.0385 121890b/GA
0.475 -0.0838 0.560 -0.0316 -0.00109 -0.0390 121890b/IV

0.500 -0.1389 0.574 -0.0342 -0.00345 -0.0403 122090a/GC
0.500 -0.1466 0.570 -0.0340 -0.00354 -0.0400 122090a/GA
0.500 -0.1338 0.582 -0.0346 -0.00261 -0.0410 122090a/IV

177



Table 5.2c - Third Mode Parameter Identification Results
(spacer ring IN, DOWNSTREAM hot wires) [th33]

data set/
C-? Or br bi g method

0.360 0.0010 0.758 -0.0428 0.00364 -0.0020 050991a/NF
0.360 0.0019 0.759 -0.0424 0.00681 -0.0179 050991b/NF
0.360 0.0117 0.753 -0.0417 0.00902 0.0008 050991c/NF
0.360 0.0058 0.755 -0.0418 0.00888 0.0012 050991d/NF
0.360 -0.0009 0.761 -0.0429 -0.00375 -0.0110 050991e/NF
0.360 -0.0097 0.755 -0.0420 0.00809 -0.0117 050991f/NF

0.375 -0.0334 0.767 -0.0433 0.00834 -0.0013 050991a/NF
0.375 -0.0329 0.768 -0.0431 0.00976 0.0024 050991a/TR
0.375 -0.0218 0.763 -0.0435 0.00538 -0.0107 050991b/NF
0.375 -0.0141 0.765 -0.0431 0.00892 -0.0091 05099lb/TR
0.375 -0.0304 0.756 -0.0424 0.00968 0.0128 050991c/NF
0.375 -0.0142 0.756 -0.0426 0.00844 -0.0141 050991c/TR
0.375 -0.0158 0.774 -0.0434 0.00977 0.0019 050991d/NF

0.380 -0.0599 0.790 -0.0422 0.01759 0.0159 022291a/GC
0.380 -0.0651 0.785 -0.0426 0.01594 0.0182 022291a/GA

0.400 -0.0702 0.801 -0.0473 0.00099 0.0020 050991a/GC
0.400 -0.0762 0.796 -0.0470 -0.00071 0.0045 050991a/GA

0.425 -0.1103 0.868 -0.0518 0.00896 0.0090 050991a/GC
0.425 -0.1321 0.834 -0.0508 0.00072 0.0205 050991a/GA

0.450 -0.1414 0.866 -0.0393 0.03693 0.0132 050991a/GC
0.450 -0.1715 0.839 -0.0444 0.02828 0.0280 050991a/GA

0.475 -0.2459 0.899 -0.0522 0.02653 0.0208 050991a/GC
0.475 -0.2486 0.865 -0.0515 0.02348 0.0314 050991a/GA
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CHAPTER 6

Active Stabilization
of a

Single-Stage Low-Speed Research Compressor

In this chapter we demonstrate the stabilization of rotating stall and subsequent

reduction of the stall flow coefficient. Furthermore, we present evidence that the

compressor higher-mode dynamics behave as anticipated by the linearized model

presented in Chapters 3, 4 and 5. We use the model to motivate the control system

configuration, feedback gain determination, and the experimental approach. Thus the

model provides a proven framework for design of rotating stall control systems.

The model motivates the control system configuration in several ways. Most

important in this respect is the conception that the fundamental states of the system

are the spatial Fourier coefficients (SFCs). The control system takes the distributed

measurements and actuators, and transforms them into SFCs. It then operates on

these as the inputs and outputs of the system. Because only the first few modes (3 at

most) are considered, the controller sees only disturbances which have significant

circumferential extent in the annulus. A very localized disturbance will go virtually

unnoticed by the control system. Similarly, actuation waves extend around the entire

annulus, rather than being localized to narrow circumferential bands.

Each SFC is the complex magnitude of an eigenmode of the compressor

higher-mode dynamics, and as such it is seen by the model as an independent entity.

Its evolution and response to actuation are completely unaffected by other SFCs.

Thus, the input-output dynamics are decoupled, and we can consider the stabilization

of each mode separately (Figure 4.2). For instance, the velocity perturbation wave
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with a circumferential mode number 2, 02, is controlled by the actuation wave with

the same mode number, ~2. Other modes (0, and 3), although derived from the

same measurements, are separate dynamic systems that can be stabilized separately

(using ji and y3 respectively). In this way, the eigenmode structure of the system is

preserved under active control.

By using our linearized understanding of the compressor higher-mode

dynamics, we simplify the control system design problem - we need design only 3

SISO control laws to stabilize the system. Such design is aided by further details

about the model. For instance, the modes go from stable to unstable sequentially as

the flow coefficient is reduced (see Chapter 5): At = 0.45 the first mode goes

unstable, at = 0.38 the second mode goes unstable, and at - 0.36 the third mode

goes unstable. Therefore, stabilization of the first mode alone should yield some

reduction in the stall flow coefficient, and extra reduction should be gained for each

additional mode stabilized.

This behavior suggests a straightforward experimental approach to control law

design. Because the first mode goes gradually from stable to unstable, while the other

modes remain stable, a single proportional feedback gain on this mode can be used to

achieve stabilization. The value of gain required can be determined experimentally,

since only a single gain is needed, and since operation at a nearly unstable flow

coefficient is possible (see the following paragraph). A gain determined in this way,

as it happens, is sufficient to allow stabilization down to = 0.38, where the second

mode goes unstable. Now the second mode feedback gain can be determined. This is

still only a single parameter search, since the first mode is stabilized and the third

mode is still naturally stable. The third mode can be stabilized with a similar

single-parameter search.

The experimental procedure for gain determination is also motivated by the

modeling. We know that, since n and n are both complex, the feedback gainOn n

180



between them may also be complex:

cn = Zn *n, Zn complex (6.1)

(here we have used the measurement (yn ) of n and the command (Ucn) to n , to

remain consistent with the modeling in previous chapters). We also know from

Sections 3.3.1 and 5.3.2 that spatial phase shift exists between the actuation and its

effect on flow perturbations:

On = (br + j -bi)-nnn

Thus we expect the stabilizing value of Zn to have non-zero phase, denoted ZZn

Presumably the best value of /Zn will also damp the resonance peak of the

underdamped system when n is nearly unstable. Using this understanding, the gain

determination proceeds as follows:

1. Pick a reasonable magnitude value for Zn, denoted IZn '
Stabilization is relatively insensitive to IZn I because the system

goes slowly from stable to unstable. Refinement of IZn I can be

conducted once /Zn is determined.

nn
2. Set the flow coefficient near the value at which On is unstable.

3. Measure the open loop resonance peak of the system, using a power

spectrum of On-
4. Measure the closed loop resonance peak, for various values of ZZn
5. Choose the value of ZZn which best damps the system.

The only step which requires the use of measured response data is step 1.

Although any 'reasonable magnitude' for Zn is theoretically sufficient to provide extra

damping and change the closed-loop resonance peak, in practice we need a value of

Zn which is large enough to produce a measurable change, yet not so large that the

actuators are saturated. The latter consideration restricts the maximum value of IZn

to about 25. The former consideration requires that we compute a minimum value for

Z n1, which will depend on the control power of the actuators.

A minimum value for I Zn I can be roughly estimated by writing the
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closed-loop eigenvalue of the system, assuming no actuators or other lags. To do this,

we let n = Z n in Equation (3.39) and find the eigenvalue of the resultingn n n

homogeneous system. The close loop eigenvalue estimated in this way is:

x _ [ (Urs + icors) + (br + ibi)Zn ]
C.l. ~ I - igiZn I

For the magnitude values that we will finally use, the denominator in this expression

is roughly one, because gi is small (see Tables 5.1 and 5.2). We can further simplify

by choosing the phase of Zn so that it modifies only the real part of A This phase

roughly maximizes the effectiveness of the feedback in attenuating the spectral peak.

An expression for the Zn which has this phase is:

Z = - (br - ibi) -jZ I.
n - -br + ibiI n

The expression for A can now be simplified to the following:

AC.1 . (ars - Ibr + ibi Zn )+ icOrs-

Here it is clear that the control power terms determine the necessary magnitude for

Zn. One can estimate reasonable magnitudes for I Zn I based on this formula, using

either predicted or measured values for the parameters. For instance, in the

experiment described in Section 6.1.1, Urs = -0.022, br = -0.012 and bi _ 0.0053.

Using the above formula, the magnitude of Zn required to double Urs (thus creating a

large change in the spectral resonance peak) is IZn I = 1.7. The value chosen for this

experiment was I Zn I = 6.4. This value is a factor of about 4 away from both the

estimated minimum (1.7) and the estimated maximum (25) allowable values for I Zn I.

Once a reasonable value for I Zn I is determined, the phase determination

procedure described above is workable as a quick method to demonstrate stabilization.

It is experimentally time-consuming, however, and there is no guarantee that the

performance will be optimum at flow coefficients other than that at which the 'best'

value of Zn is first determined. Thus a new search - somewhat more narrow, perhaps -

must be conducted to improve damping as flow coefficient is further reduced. Here, a
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quantitative model of the dynamics becomes useful. By identifying the system

dynamics as in Chapter 5, we can do the control system design theoretically rather

than experimentally, and performance limitations can be better understood.

The ultimate goal for control system design would be to develop a quantitative

model based on a geometric compressor description and a limited set of experiments.

The model could then be used to design an a priori control system. More work

remains to be done to provide the predictive capability necessary for such an

approach.

Since the approach to control system design is primarily experimental we will

present these results first, in Section 6.1. Section 6.2 then discusses some theoretical

aspects of the control system design, based on the identification results in Chapter 5.

6.1 Experimental Results

Here we present experimental evidence to support the claims of the previous

discussion. Most importantly, stabilization of compressor higher-mode dynamics is

demonstrated for the first time. This stabilization allows operation significantly below

the flow coefficient at which rotating stall normally occurs. Furthermore, we will

show that, for the axial research compressor tested,

A) Both the homogeneous and the forced dynamics of the SFCs behave

as though they are decoupled. Thus e in, n = 1, 2, 3, ... can be
treated as the mode shapes of the distributed dynamics.

B) Mode numbers 1, 2, and 3 go from stable to unstable at separate
flow coefficients, sequentially as flow coefficient is reduced.

C) Decoupled proportional feedback of the modes is sufficient to
stabilize them, if appropriate spatial phase shift between
measurement and actuation is provided.

The experimental apparatus and procedure are described in Chapter 2.

Section 2.5 is of particular interest, as it describes the basic experimental procedure

for taking data.

In Section 6.1.1, we will show the experimental results of the gain
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determination procedure described in the previous section. In the remaining sections,

we will show what happens to various measures of the system behavior as the number

of modes under control is increased from none ('no control') to first mode only

('Z1 control'), to first plus second mode ('Z1+Z2 control'), to all three modes

('Z1 +Z2 +Z3 control').

6.1.1 Feedback Phase Sensitivity of First Mode Stability

A primary goal of this research is to experimentally establish a connection

between the damping of small amplitude waves and the onset of rotating stall. We

can do this using the procedure described in the previous section for determining the

best feedback gain Zn'

Figure 6.1 shows the results of the procedure, conducted on the first mode, at a

flow coefficient 0~ 0.475. The magnitude of Z was set at IZi = 6.4, and the phase

was varied between 0 and 360 degrees. At each value of ZZ1, closed-loop data was

taken for the first mode without changing the flow coefficient. The spectral peak in

each case was either amplified or attenuated. The ratio of the closed-loop to the

open-loop resonance peak, as a function of LZ1 , is shown in Figure 6.1.

The stall point during closed-loop operation was also recorded for each value

of /Z 1 , and is shown in Figure 6.2. Note the strong resemblance between Figures 6.1

and 6.2. Clearly, the amount of improvement in compressor operating range is

directly related to the level of extra damping provided by the feedback system. For

values of phase which damp the waves, stall onset is delayed to lower flow

coefficients. Also, for values of phase which make waves larger, stall onset is moved

to higher flow coefficients - these values of phase destabilize the small amplitude

waves, causing them to go unstable at higher than normal flow coefficients.

This set of experiments demonstrates that the stability of small amplitude

sinusoidal waves determines the flow coefficient at which the system goes into

184



50 100 150 200 250 300 350
Spatial Control Phase, LZ1 (deg)

Figure 6.1-

0.50

0

0:
U

0.46

0.42

0.38

0.34

0.30

Effect of feedback phase on the magnitude of the spectral peak.
Experiments were conducted at a single flow coefficient (0.475)
with I Z, I = 6.4.

0 50 100 150 200 250 300 350

Spatial Control Phase, LZ1 (deg)

Figure 6.2- Effect of feedback phase on the stall flow coefficient.
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rotating stall. In this section, we showed the effect of first mode stability on the stall

point. The following sections show that the stability of higher modes is also

important in determining the stall point.

6.1.2 Speed Lines

The total-to-static pressure rise drops sharply when rotating stall is

encountered. Thus the pressure/flow characteristic, or speed line, is a steady-state

measurement which indicates the flow coefficients for which the system is stable. It

also shows the pressure rise performance of the compressor in the new, stabilized

regime.

Figure 6.3 shows the speed line for various levels of stabilization - no control,

Zi control, Z1+Z2 control, and ZL+Z2+Z3 control. As the number of modes

stabilized increases, the minimum flow coefficient at which the system can operate is

reduced. Zi control results in approximately 11% reduction in stall flow coefficient,

Z1+Z2 control gives about 18% reduction, and Z1+Z2+Z3 control gives about 23%

reduction.

The data points on the speed line in Figure 6.3 were taken at 10 second

intervals, so the compressor was operating for at least 10 seconds at each flow

coefficient shown. Operation for longer periods of time at the lowest values of on

this plot is usually not possible. In other words, these points are very near instability,

so the uncontrolled modes are strongly resonant; eventually the system 'trips' into a

nonlinear rotating stall condition. However, if the flow coefficient is increased by 2

or 3% above the minima shown in Figure 6.3, then 5 to 10 minute periods of

operation have been recorded, and there is every reason to believe that the system

could operate indefinitely. This description of the stall behavior applies whether or

not the feedback loop is closed; even in the no control case, the flow coefficient must

be increased slightly to avoid eventually tripping into rotating stall. We conclude,
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therefore, that the percentage reduction in flow coefficient for 'indefinite operation' is

probably very similar to the values given above for '10 seconds of operation'.

The speed lines can be interpreted as follows: adding an extra mode to the

control scheme, without changing anything else, reduces the stall flow coefficient.

Therefore, the extra mode must have been responsible for stall. Results in the

following sections clearly demonstrate that this is in fact the case.

6.1.3 Stall Events

We can judge the cause of stall in more detail by looking at the time-resolved

stall event. A circumferential array of hot wires records the axial velocity distribution

around the annulus at the inception of rotating stall, at a sample rate of 500 Hz (11.1

samples per rotor rev). The velocity traces can be studied directly, or they can be

transformed into spatial Fourier coefficients (see discussion in Section 4.1.2), which

can also be plotted as time functions.

Since the SFCs are complex numbers, their magnitude and phase are plotted

separately as functions of time. Phase is usually confined between -r and 7r, because

phases outside this range are indistinguishable from those inside this range. But when

a wave is traveling around the annulus, its phase as a function of time is continuously

increasing, which causes a plot confined between -7r and 7r to repeatedly 'jump' as in

Figure 6.4. These jumps cause confusion in noisy situations. To remedy this confu-

sion, the phase is 'unwrapped' so that it is no longer constrained to lie between -7 and

7r; an example of unwrapped phase is also shown in Figure 6.4. Such unwrapping

must be done carefully to avoid misleading results - every time the phase passes from

7r to -7r or from -7r to 7r sufficiently quickly, one must judge whether the wave actually

travelled forward or backward across the 7t/-it boundary. If done properly, unwrap-

ping does not presuppose rotation in any specific direction: in highly damped cases,

the phase executes a random walk and shows no preferred direction of rotation.
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(a)
0

0

Time

(b)
rotating stall

resonance

Time

Figure 6.5 - Examples of (a) exponential growth into stall and
(b) resonance leading into stall
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The magnitude of the nth SFC indicates the size of the nth wave of velocity

perturbation. If the mode is unstable, this magnitude should increase exponentially,

as e where ars is the stability parameter for the nt mode. Since the flow

coefficient is being reduced very slowly in the experiments described here, au for the

unstable mode should go through zero and become slightly positive immediately prior

to stall. Altematively, the system could resonate very strongly while as is still

negative (stable), eventually tripping (via some non-linear coupling) the compressor

into a rotating stall condition. These two possibilities are illustrated in Figure 6.5.

Another possibility is that the system stalls in a way which is not 'modal' at all

- in this case, no traveling waves or resonance of the modes would be sensed prior to

stall. Furthermore, the transient into stall would not be initiated by a single mode, but

instead would involve several modes. Stall must eventually show up in the SFCs,

because they are derived from signals which directly measure the effects of

fully-developed rotating stall. But if stall inception is not dominated by modal

behavior, the transient signals will 'smear' across several SFCs, and no single mode

will be clear.

Figure 6.6 shows the hot wire traces as the system goes into stall with no

control. A traveling wave is extremely clear prior to stall - the dotted line in

Figure 6.6 indicates how a trough in the waves travels from one hot wire to the next,

suggesting a wave pattem rotating around the annulus [17]. Apparently the system is

resonating strongly prior to stall, and then the traveling wave grows smoothly into

stall. Figure 6.7 shows the SFCs computed from these hot wire traces. Here we see

definitely the dominance of the first mode. The phase plot indicates that the first

mode is rotating at a steady speed for at least 40 rotor revolutions before stall. It

grows to a magnitude of 0.1 (30% of its final size) before there is any significant

contribution of the second or third modes to the wave (measured at the upstream hot

wire position). Clearly, the first mode is the unstable mode which is driving the
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system into rotating stall.

Figure 6.8 and 6.9 show the stall event for Z control. Again a traveling wave

is clear in the raw hot wire data, but the frequency of the resonance is higher - closer

inspection of the hot wire traces reveals that there are two lobes of axial velocity

deficit traveling around the compressor immediately prior to stall. The SFCs make

this behavior clearer - the magnitude of the second mode is now dominating the

signals, and the phase indicates that the wave is rotating at a steady speed for 25 rotor

revolutions before stall. The second mode is undoubtedly resonating in this case,

while the first mode is relatively well damped. The stall event is initiated by the

growth of the second mode. In fact, the fully developed stall cell is a two lobed stall!

Thus we have powerful evidence that the 1st mode (now under active control) is till

stable when the system goes into rotating stall. It is the second, as yet uncontrolled,

mode which is causing rotating stall.

The data in Figures 6.8 and 6.9 are taken at a lower flow coefficient than the

no control data (Figures 6.6 and 6.7), so the dynamics of the compressor have

changed. The first mode open-loop stability has changed somewhat (see

Section 5.3.2), but the value of Z chosen is still capable of stabilizing it. The second

mode, however, has gone from stable to unstable with the flow coefficient reduction.

Therefore, we must add Z2 to the control law if we want to operate at lower flow

coefficients.

Figures 6.10 and 6.11 show stall with Zl+Z2 control. Because we are looking

for the third or higher modes, this data was taken with 13 hot wires downstream of

the IGVs. At this axial location, the modes (especially those with large n) are no

longer attenuated. But the signals are noisier due to the proximity to the rotor, and

modes above the spatial Nyquist mode may alias down into the estimates of the first

four modes, corrupting them. Consequently, discerning the cause of stall by studying

these figures is more difficult. Nevertheless, the hot wire traces show a clear
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Figure 6.6 - Hot wire traces for a stall event with no control.
i = 0.44, hot wires upstream of IGVs
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Figure 6.8 .
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Figure 6.11 -Magnitude and phase of first four Fourier coefficients during a stall
event with Z1+Z2 control, computed from the hot wire data in Figure 6.10.
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Figure 6.12 - Hot wire traces for a stall event with Z1+Z2+Z3 control
T= 0.36, Hot wires downstream of IGVs
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resonance prior to stall at an even higher frequency than that seen in Figure 6.8. The

plots of the SFCs also clearly show a resonance in the third mode immediately prior

to stall. However, the first and second modes become large within 5-10 rotor

revolutions of the appearance of a strong third mode. Fully developed stall is

primarily second mode.

This data for Z1+Z2 control suggests that as the flow coefficient is reduced,

stall behavior becomes more complicated. The third mode resonates, but does not go

unstable independently. Instead, interaction between modes occurs at stall inception.

The clear resonance of the third mode, as well as the PSD results of the next section

do confirm, however, that the third mode is underdamped immediately before stall, so

Z1+Z2+Z3 control is justified.

Figures 6.12 and 6.13 show stall with Zl+Z2+Z3 control. Data is again taken

behind the IGVs. Here it is difficult to see resonance of the fourth mode in either the

hot wire traces or the SFCs. Also note strong spikes in the hot wire traces at stall

inception. The phase plots in both Figure 6.11 and 6.13 indicate, however, that the

fourth mode is traveling prior to stall. Such traveling indicates that the fourth mode is

either resonating, or being driven at its natural frequency. Results of the next section

confirm that the fourth mode does play a part in the compressor dynamics at stall

inception during Zl+Z2+Z3 control.

6.1.4 Power Spectra

Spectral analysis of the SFCs offers another way to look at the behavior of the

system, to help determine the causes of stall. The procedure is to plot the power

spectral density (PSD) of each SFC during a period prior to stall. The stall event

itself is not a part of the analysis, so the spectra show resonant behavior which exists

in the small amplitude (linear) behavior of the system rather than the nonlinear limit

cycle behavior. Analyzing the SFCs in this way helps verify our claim that, even
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before stall inception, the SFCs behave like a set of decoupled linear oscillators.

Because the SFCs are complex functions of time, the PSDs are not symmetric

with respect to zero frequency, as is usually the case. This is true because, for a

complex signal, the sign of the frequency has a very specific meaning. In the context

of rotating stall, the sign of the frequency indicates the direction of rotation of the

wave. To see this, consider a first-mode SFC whose PSD is a delta function at some

frequency cod alone; that is, there is no peak at -cd. The time-domain signal for this

PSD is

(=) = Od1, (6.2)

i.e. a complex signal. Converting this back to the spatial domain, we have

30(6,T) = Re{ 1 (T)- e } (6.3)

= cos(6 - Cat),

i.e. a rotating wave, whose direction of rotation depends on the sign of cod. A PSD

which is symmetrical indicates a standing wave with oscillating amplitude:

(T) = ej"dT + eJ Od (6.4)

=34(6,T) = Re( 2. cos(cot) -e }

= 2 -cos(cqdt)cos(6).

Here we see that cod is the rate at which the standing wave magnitude changes with

time, rather than the rotation rate of the wave.

With this explanation we see that when we plot a PSD, we must plot both the

negative and positive frequencies, preferably flipping the negative frequency plot to

overlay with the positive frequency plot. Then, only the peaks which do not exist at

both negative and positive frequencies indicate waves which rotate.

Figures 6.14 through 6.17 present the PSDs for no control, Zl control, Z1+Z2

control, and Z1+Z2+Z3 control. Each set of PSDs is taken immediately prior to the

stall event, which is a different flow coefficient in each case.

The behavior of the modes is clear in these figures. The controlled modes in
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Figure 6.14 - PSDs of the first three SFCs, using data immediately prior to stall,
with no control (i.e. open loop).~ = 0.44, Hot wires upstream of IGVs.
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each case are seen to be adequately damped, exhibiting low, wide peaks at their

natural frequencies. The lowest uncontrolled mode in every case shows a strong,

narrow peak, indicating resonance of that mode. These resonating modes do tend to

rotate at their natural frequency, so that negative frequencies show no peaks. This

data further validates the claim that under control of a certain number of modes,

stability will persist until the next higher mode goes unstable. Even in the Z1+Z2 and

Zl+Z2+Z3 control cases, for which the results of the previous section were unclear,

the pattern is obvious. Most notable is the strong presence of the fourth mode when

the first three modes are being stabilized (Figure 6.17). Whatever other effects are

present in the Z1+Z2 and Z1+Z2+Z3 case, resonance of the lowest uncontrolled mode

is definitely a factor in the inception of rotating stall.

These PSDs also demonstrate the decoupled nature of the modes. In every

case, although a strong peak (indicating a rotating wave) exists for one spatial mode

(the lowest uncontrolled mode), such a strong rotating wave peak does not show up in

the PSD of any other mode. This is extraordinary because all of the PSDs in a given

figure are derived from the same set of hot wire traces. Thus it seems that the

resonances are due entirely to a single spatial eigenmode rotating around the annulus.

One can detect discrepancies from the decoupled behavior described above.

For instance, in the no control case (Figure 6.14), there are small peaks at -0.20

(which is the first mode rotation frequency) in the PSDs of the 2nd and 3rd modes.

Notice, however, that these peaks appear in both the negative and the positive

frequency plots, indicating standing waves in the 2nd and 3rd mode. These peaks

could be due to slight miscalibration of the hot wires, or due to nonlinear coupling of

higher modes into the traveling wave. In any case, these peaks are small compared to

the first mode peak, and resonance of the first mode is clearly the primary effect.

Figures 6.16 and 6.17 also show some slight cross-over of spectral peaks, this

time between the 3rd and 4th modes. Again, this could indicate measurement
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difficulties, or some coupling between the modes. Such intermode coupling may

become important at very low flow coefficients, and the nonlinear stall event itself

may be dominated by such coupling. But, for the flow coefficients studied by these

PSDs, treating the modes as independent entities is clearly a good approximation, and

stabilizing the modes separately yields results which are largely consistent with our

assumptions.

6.1.5 Discussion

Most of the hypotheses advanced at the beginning of this section have been

experimentally verified. We will briefly summarize here.

A) Both the homogeneous and the forced dynamics of the SFCs behave

as though they are decoupled. Thus e , n = 1, 2, 3, ... can be
treated as the mode shapes of the distributed dynamics.

The PSDs provide the most direct evidence of the decoupled nature of the

SFCs. A resonance occurs in only one mode at a time, showing up in only one of the

3 or 4 PSDs shown in each of Figures 6.14 through 6.17. There seems to be little

'cross-feed' of resonance peaks between the modes, even when some modes are under

feedback control. Apparently, forcing the system does not couple the modes (in the

limited sense) either. In fact, by keeping the magnitudes of the controlled modes

small, feedback may actually reduce coupling between modes, because waves with

smaller amplitudes should behave more linearly.

Also supporting point A is the fact that designing control laws in a

mode-by-mode fashion successfully stabilizes the system. From a pragmatic

viewpoint, treating the system modally is very useful.

B) Mode numbers 1, 2, and 3 go from stable to unstable at separate
flow coefficients, sequentially as flow coefficient is reduced.

The stall inception data, as well as the PSDs, indicate that stabilizing m modes

is sufficient to stabilize the compressor down to the flow coefficient at which

mode m+1 becomes either unstable or very lightly damped. This has been shown to
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be the case for m = 0, 1, and 2.

At larger values of m, several effects obscure the ability to draw conclusions.

Modes higher than the third are difficult to measure with a limited number of hot

wires. Since these modes are highly attenuated upstream of the compressor, the hot

wires must be moved behind the IGVs. But, at this position, the signal to noise ratio

is lower [22], and modes above the Nyquist frequency are also potentially large.

These modes alias into the measurements and corrupt them. Finally, control of three

modes with 12 IGVs is a coarse approximation, and cross-coupling to modes above

the Nyquist frequency may be significant.

Because of these difficulties, the stall inception data does not show

unequivocally that the fourth mode is responsible for stall when three modes are

under control. The PSD data does show, however, that the fourth mode becomes

lightly damped.

C) Decoupled proportional feedback of the modes is sufficient to
stabilize the compressor, if appropriate spatial phase shift between
measurement and actuation is provided.

The speed line data in Figure 6.3, and the hot wire traces presented in

Sections 6.1.3 and 6.1.4 show that the approach to stabilization was successful. Thus

the assumptions and approximations made in modeling the compressor and

configuring the control system are justified from the point of view of stabilization.

Section 6.2 discusses the importance of properly phase shifting (in space) the

actuation wave with respect to the measured velocity perturbation wave.

6.2 Gain Determination Using Linear Control Theory

In the Section 6.1, experiments showed the qualitative accuracy and practical

applicability of our view of the compressor as a linear, decoupled, modal dynamic

system. Our qualitative understanding of the trends obeyed by the compressor

dynamics led to a workable experimental procedure for determining stabilizing
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feedback gains. In this section we briefly explore quantitative determination of

feedback gains, using the compressor dynamics identified in Chapter 5. In

Section 6.2.1, we show for an experimental example that linear control theory predicts

the closed-loop behavior of the system accurately. In Section 6.2.2, we discuss

feedback gain determination via the root locus method.

6.2.1 Prediction of Closed-Loop Performance

Active control of axial compressor higher-mode dynamics has not been studied

in detail before the work presented here. One important issue is whether linear

control theory sufficiently accounts for the main features of the process. The results

of Chapter 5 indicate that the open-loop dynamics behave 'linearly' - that is, their

input-output properties are accurately described by linear differential and difference

equations. Section 6.1 then demonstrates that linear control concepts can be

successfully applied to stabilize the compressor. To complete this picture, we will

show that (for a limited set of experiments) the experimentally determined

closed-loop compressor performance is similar to that predicted by linear control

theory.

Closed-loop performance is measured as the transfer function between the

external command and the measured output during closed-loop operation. Figure 6.18

serves to define the signals for the first mode: external commands, r1, enter the

closed loop system and modify the feedback command, Z1 -,Y. This summed signal

goes through the servo dynamics, S(s), the compressor dynamics, Gl(s), and the

sensors and delays, Q(s). Thus, the measured output is a filtered and delayed version

of the first SFC, -0. The theoretical closed-loop transfer function is

y1 (s) Q-G1 *S (6.5)

r 1(s) 1 - Q-G 1 .S-Zi

where Q(s), S(s), and Z are the known dynamics of the feedback system (presented
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in Section 4.2), and Gl(s) is the open-loop transfer function of the first SFC (the

estimate of Gi(s) that we will use here is presented in Section 5.3.3, Equation 5.62).

Equation 6.5 provides a theoretical prediction of the closed-loop transfer

function, based on open-loop data. The closed-loop transfer function can also be

measured experimentally. We use the spectral estimation technique described in

Section 5.1.2, where the input in this case is r1 and the output is y1 .

We will compare predicted and actual closed-loop transfer functions for the

first mode only, at a single flow coefficient, 4 = 0.475. At this operating point, the

compressor is open-loop stable, but the first mode is lightly damped. Thirteen hot

wires, mounted behind the IGVs, were used for data acquisition and feedback.

Closed-loop data was taken for six values of Z . The magnitude of Z was held

constant at IZ1  = 8.2 (6.5 deg per m/s), and the phase of Z was varied over a wide

range:

Z1 = -450, 00, 450, 900, 135*, and 180*.

for each value of Z1 , the closed loop transfer function was both predicted and

measured. The results are shown in Figure 6.19.

In Figure 6.19 a and b (ZZ 1 = -450 and 00), the predicted transfer functions are

slightly unstable (this statement is based on the numerical values which generated

Figures 6.19 a and b). The actual transfer functions, on the other hand, are stable,

because no rotating stall was encountered during the test. Thus, at this extreme of our

study of various phases, our predictions of stability are not accurate. But the

frequencies of the poles are in the right range, and the general frequency behavior is

similar. In Figures 6.19 c, d, and e (Zl1 = 450, 900, and 1350), the predictions are

quite accurate. All of the pole locations are well predicted, both in frequency and

damping ratio. This confirms that the experimental behavior conforms to linear

control theory. Figure 6.19 f (/Z1 = 1800) again shows a slightly unstable predicted

system, while the actual system is slightly stable - nevertheless, the frequency of the
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Figure 6.19 a) Zi = 8.2 e (phase = -45*)

1.0 2.0

1.0 2.0

Frequency, normalized to rotor frequency

Figure 6.19- Comparison of predicted (dashed lines) and actual (solid lines) closed-
loop transfer functions for the first mode. Feedback gain is shown at
top of figure. Data taken with 13 hot wires downstream of the IGVs,
at = 0.475.
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Figure 6.19 b) Zi = 8.2 (phase 00)
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Figure 6.19 c) Zi = 8.2 (phase = 450)
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Figure 6.19 d) Z1 8.2 ej~t2 (phase -90')
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Figure 6.19 e) Z1 = 8.2 e-J(-3 c/ 4 )(phase =1350)
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Figure 6.19 f) Zi = 8.2 e (phase = -180*)
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poles and the general transfer function shape are well predicted.

We can draw several conclusions from these results. The most important is

that applying linear control theory to the compressor yields accurate quantitative

results. Thus linear control law design based on the concept of modal dynamics is

justified. We can also conclude that our modeling of the feedback system is

reasonably accurate. Finally, we have shown that the best value of phase for the

feedback gain Z1 is definitely not zero - a value between 450 and 1350 is necessary to

achieve good damping.

Nonzero phase of Zn means that the commanded actuation wave is spatially

out-of-phase with the measured velocity perturbation wave. This commanded spatial

phase shift can serve two purposes. First, it compensates for the steady-state spatial

phase shift which exists between IGV deflections and the axial velocity changes they

induce. This phase shift was identified in Chapter 5 to be significant. Second, the

commanded spatial phase shift provides a way to lead the perturbation wave, thus

compensating for time lags in the feedback system and compressor dynamics. For

instance, the first mode wave travels about 7 degrees during the 2 msec time delay in

the computer, so we should base our feedback command on the measured wave,

shifted 7 degrees circumferentially. Other time lags (such as actuator dynamics and

fluid mechanical delays) can also be partially compensated using 'spatial lead'.

The model described in Chapter 4 accounts for all of these effects automat-

ically. Furthermore, applying linear control theory to this model provides an accurate

quantitative approach to stabilization, as we have demonstrated. One can also apply

slightly more sophisticated control laws (such as PID-type lead-lag controllers) to the

rotating stall problem, and experiments show that the damping of the modes at a

given flow coefficient can be improved. Such improvement does not increase the

flow range of the compressor, however, because higher modes become underdamped

or unstable before simple proportional feedback becomes inadequate. Apparently,
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stabilization of this compressor is limited not by controller performance, but by the

number of modes which are sensed and actuated.

6.2.2 Gain Determination Using Root Loci

The previous section, although limited in scope, suggests that linear control

theory is a viable tool for studying feedback stabilization. We thus expect theoretical

studies using the modeling and identification results of Chapters 3 through 5 to yield

insights which are physically meaningful. This section presents one such study,

which uses root loci to explore the implications of the system input-output dynamics.

Root loci allow the limitations of proportional control to be illustrated, and

demonstrate the behavior of the closed-loop system for different values of feedback

gains. No attempt is made here to design 'optimal' controllers, or to exhaust the

possibilities for control system design. Rather, we use the root locus method to point

out some fundamental characteristics of the system that may be of interest for future

work in active control of axial compressors. We first briefly review the method.

The eigenvalues of the closed loop system, which determine its stability, are

the 'poles' of Equation (6.5) or, equivalently, the roots of the characteristic equation:

1 - Q(s)- Gn(s)-S(s)-Zn = 0 (6.6)

A plot of the solutions to (6.6) for various values of feedback gain Zn is called a root

locus. Root loci are useful in designing feedback gains because they show the

limitations imposed by the system dynamics, and the sensitivity of the eigenvalues to

changes in the gain. The 'best' value or values of the feedback gain can be read

directly from the root locus, by choosing the gain which results in the most highly

damped set of eigenvalues.

Root loci are plotted for the first three modes in Figures 6.20, 6.21, and 6.22.

The system dynamics used to compute these root loci are based on the identification

results from Chapter 5 and the system modeling in Chapter 4. We plot the root locus
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Square indicates experimentally determined gain. Star
indicates gain with the same magnitude which yields the
best damping.

-- ----- lines of constant feedback amplitude
-------- lines of constant feedback phase

221

I



- - Z-Z=135* Z 40 50--- -- --.- --- ----- ------ ----- ----- ---.--------------
~~20:20..- - i : I '-

IZ6=15 .. 1- \ .---- .

120* -0-

. , - ~- t 5*

\ 1-Q45*

- -- - --- -------- e -- ---- -- - - - - - - - -

j 
',

Nb45

- - - - - - - - - - - - - - - - -
* S .. :~~ 6~ 0.4A

- - - --
S -b

S a .1 lb
* S lb

-0.4 -0.2

1b

lb

K
.5 .-----

10 Izi
,15

>20
30

-- ZZ=1350

/ - 1200

- - - 105*

0.2 Real part

Figure 6.21 - Root locus of dominant roots for the second mode, =0.375.
Square indicates experimentally determined gain. Star
indicates gain with the same feedback amplitude which
yields the best damping.

------- lines of constant feedback amplitude
-------- lines of constant feedback phase

222

X - Open-loop pole

0 - Open loop zero

Imaginary Part

A
0.8

0.6

0.4

0.2

-0.6



X - Open-loop pole

0 - Open loop zero

-z -o - -

.... .. .- -. .
IZI1

................

-0.6-0.9

Imaginary Part

1.2

0.9

0.6

0.3

Figure 6.22 - Root locus of dominant roots for the third mode, 0=0.375.
Squares indicates experimentally determined gain (note
that two poles become dominant at gain chosen). Stars
indicate gain with the same feedback amplitude which yields
the best damping.

----------- lines of constant feedback amplitude
---------- -lines of constant feedback phase

223

ZZ=150* 40

20. 135*-
- - I12

44F%

*%W

- - - 10

* ..- 15 Z
- 2Z

.... ... . 2 0 -.-. ..-. ..% l

........ /Ef ...

-0.3

S-zz=150 0

- - 135*

-. 1,1200

1- 1050

0.3 Real part

-



for = 0.375, which is the lowest value of 0 for which the dynamics of all the modes

are available. Different values of I yield different root loci, but we are interested in

the least stable case - gains that work well at this value of 0 yield the largest

improvement in operating range of the compressor.

Only the dominant roots are plotted in Figures 6.20 - 6.22. There are actually

11 roots to Equation 6.6, most of which are very fast because they represent ZOH,

delay, and filter dynamics. Only the servo poles can sometimes interact with the root

locus in such a way that they become dominant. This situation can be seen most

clearly in Figure 6.22, where one of the servo poles couples with the rotating stall

pole.

The pole locations for the experimental feedback gains are also shown in the

root locus figures. These gains were found to give the largest increase in operating

range for the compressor. In every case, the phase LZn of the experimental gain is

within 150 of the phase that achieves maximum damping. The magnitudes of the

experimental gains, jZn 1, are large enough to stabilize the system, but somewhat

lower than what one would choose based on the root loci. One reason for this

discrepancy is that the servo poles, not shown on these figures, can become

underdamped at high values of gain. Another reason is that there are practical

problems associated with very high feedback gains. For instance, a gain of 25 causes

a full scale (.25 rad) command to the IGVs for a measured wave magnitude of .01

(0.73 m/s, or 5 A/D counts). Thus gains above 15-20 are very susceptible to noise,

and in practice do not work well.

The desire for better stabilization and noise rejection suggests the need for

more sophisticated control laws. Experience to date suggests that such control laws

can indeed improve the stability and robustness of the modes under control. But since

our primary objective here is to increase the compressor operating range, such

improvement must be accompanied by the stabilization of additional modes. For
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instance, if one stabilizes modes 1 and 2 with sophisticated control laws, no

improvement in operating range will result unless the 3rd mode is also stabilized.

Thus the problem of increasing compressor operating range is limited (for this

particular compressor) not by the ability to design stabilizing controllers, but by the

ability to sense and actuate higher modes.

Figures 6.20 - 6.22 show that, even at = 0.375, stabilization of the first three

modes with proportional feedback is possible with realistic feedback gains. Note that

for all three modes, significant values of phase ( /.Zn ) must be used to stabilize the

system. Sensitivity to the value of phase is relatively low, however: choice of phase

can vary 15 degrees about the optimum value without significantly affecting

stability. Larger variations yield closed-loop poles which are still stable, although

underdamped. Thus an experimental approach to determining the phase has a strong

chance of success, if reasonable values of feedback magnitude ( I Zn i ) are used.

It is also clear from these plots that the zero of Gn(s) (discussed in Chapter 5)

has a strong effect on the level of stability which can be attained. Since the

closed-loop poles approach the zeros as gain is increased, and since the zeros are

either underdamped or non-minimum phase (depending on n), the zeros have a

destabilizing effect on the closed-loop poles. For the flow coefficients studied, this

effect is not severe enough to jeopardize our ability to stabilize this particular

compressor. This is because none of the modes are highly unstable, even at the

lowest flow coefficient yet achieved. Highly unstable modes (which may very well

exist in many axial compressors) would suffer more severely from the destabilizing

effect of non-minimum phase zeros.

The zeros of the feedback system can be changed by changing the sensors or

the actuators. One example of moving the sensors was discussed in Section 5.3.3.

This study showed that moving the sensors downstream of the IGVs increased the

frequency of the zeros. This is a favorable effect, but the non-minimum phase
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characteristic was not eliminated. The modeling in Chapter 3 indicates that the

actuators, rather than the sensors, are primarily responsible for the zero behavior.

Thus we tentatively conclude that IGV deflection has some unfavorable characteristics

for actuation of compressor higher-mode dynamics. Other approaches to actuation,

such as blowing and suction, may avoid non-minimum phase problems [38], and

might therefore be preferred, because we expect most compressors to be more highly

unstable than the one studied here.
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CHAPTER 7

Summary, Conclusions, and Recommendations

7.1 Summary

Small perturbation traveling waves have been modeled, identified, and actively

stabilized in a single-stage axial compressor. Stabilization of small perturbation

waves was experimentally demonstrated, and shown to eliminate the occurrence of

rotating stall in a heretofore unreachable region of the compressor map. By

eliminating rotating stall in this region, the stable operating range of the compressor

was increased by 23%. Linearized fluid mechanics and linear control theory were

sufficient tools for the design and implementation of the feedback system.

In Chapter 3, the fluid mechanical model of small perturbation waves was cast

into time ordinary differential equation form. This is a new development which

makes possible the direct application of linear control theory concepts to a distributed

fluid mechanical system. Several forms of the model were developed, each of which

may be useful for future work on active control of rotating stall. The symmetry

properties of the compressor annulus result in dynamic equations whose special

properties are elucidated in this thesis.

The experimental apparatus described in Chapter 2 is the first of its kind. It

provides a unique opportunity to investigate the distributed dynamics of a compressor.

Identification of what we term 'compressor higher-mode dynamics' was presented in

Chapter 5. When the dynamics being identified are unstable or underdamped,

identification must be conducted closed-loop. Synthesis of an instrumental-variable

technique which is applicable to closed-loop, possibly unstable
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systems was carried out in Chapter 5. This is a new combination of several methods

from the literature, and contains an extension for analyzing unstable systems. This

extension is believed to be new.

Chapter 6 presents experimental results which verify the view that instability

of small perturbation waves leads to rotating stall. By actively stabilizing these waves

in a mode-by-mode fashion, the flow rate at which stall occurs and the detailed

behavior at stall inception are altered. The behavior under active control is consistent

(over the flow range studied) with the linearized fluid mechanics model developed by

Moore and Greitzer in [23].

7.2 Conclusions

The experimental results in Chapters 5 and 6 serve to increase the current

knowledge of compressor higher-mode dynamics. Before this work, such dynamics

were studied theoretically, and experimentally at o near stall inception. Here we

have examined the dynamics over the entire range where they are significant - from

well-damped, through neutral stability, into a new region in which they are unstable.

Thus many previously untested theoretical ideas are experimentally verified by this

work. Some of the conclusions are listed here:

1) Circumferential sinusoidal waves of axial velocity perturbation behave
like eigenmodes of the compressor dynamics. Sinusoids with mode
numbers 1, 2, and 3 all appear to be eigenmodes. The magnitude and
phase (rotation) of the eigenmodes can be represented by the spatial
Fourier coefficients (SFCs) of axial velocity perturbation measured at an
axial station near the face of the compressor.

2) The eigenvalues of the compressor dynamics are such that the sinusoidal
waves ('modes') tend to rotate at a fraction of rotor rotation rate, and
grow or decay exponentially. The growth or decay rates (damping
characteristics) depend on the annulus averaged flow rate and the mode
number. Eigenvalues go from stable to unstable as flow coefficient is
reduced. When any of the first three eigenvalues becomes unstable or
severely underdamped, rotating stall is initiated in the compressor.

3) The sinusoidal axial velocity perturbation waves can be forced with a
circumferential array of high-response inlet guide vanes (IGVs). Such
forcing can be used to increase their damping or stabilize them, using
linear feedback of velocity perturbation measurements.
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4) Properly feeding back the first mode reduces the stall-onset flow rate by
11%. Properly feeding back both the first and second modes reduces the
stall-onset flow rate by 18%. Properly feeding back the first three
modes reduces the stall-onset flow rate by 23%. In each case, rotating
stall is initiated by instability or resonance of the lowest uncontrolled
mode.

5) The array of active IGVs can be used to identify the compressor
dynamics. Some of the conclusions based on this identification have
already been stated. Others are:

i) Over the flow range studied, the first mode is less stable than the
second mode, which is in turn less stable than the third mode.
This separation between eigenvalues becomes progressively
smaller as flow coefficient is reduced.

ii) The waves represented by the SFCs rotate at between 15% and
35% of the rotor speed, depending on flow rate and mode
number. The second mode travels slightly faster than the first,
and the third mode travels slightly faster than the second.

iii) The input-output dynamics from the nth SFC of IGV deflection

to the n SFC of velocity perturbation (n = 1,2, and 3) can be
identified. These dynamics are consistently and accurately
characterized by decoupled linear differential and difference
equations over the flow range studied. Identified dynamics can
be used to design successful feedback control laws.

More detailed comments on the compressor higher-mode dynamics appear in Sec-

tion 5.3. This section also compares theoretical and experimental trends, and

discusses their implications in the context of control. Section 6.1.4 discusses

experimental results during active control.

7.3 Recommendations for Future Work

The conclusions stated here apply to a specific low-speed single-stage research

compressor. It is of interest to determine the applicability of our results to other

compressors. A low-speed three-stage compressor has been fitted with sensing and

actuation hardware which is almost identical to the hardware described here. Results

to date [40] agree with the conclusions stated here (except for specific numerical

results, such as stall cell speed and flow range improvement). Research by Day [2,17]
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and others suggests, however, that instability of sinusoidal perturbation waves may

not be the only mechanism for stall inception. This research further contends that in

some compressors, rotating stall can be initiated independent of the stability of the

SFCs. The mechanism for stall inception in such compressors is not well understood,

and research is ongoing. If such research is fruitful, then the question can be asked:

under what conditions do such alternate stall-inception mechanisms dominate, and

under what conditions is it sufficient to stabilize small-perturbation waves?

The ultimate goal of the research presented here is operating range extension

in a gas turbine engine. Many extensions to the existing work are necessary to reach

this goal. We will mention only a few here, to indicate the scope of the problem.

1) Modeling - Further assessment and possible improvement of the
predictive capability of the model presented here is necessary to allow
future design of rotating stall controllers. Extensions to the model in
Chapter 2, which are discussed in Appendix A, greatly improve the
match between theoretical prediction and experimental results for the
homogeneous dynamics. Actuator models are less well developed,
especially for actuator configurations which could be applied in high-
speed compressors.

2) Although many extensions to the basic model exist, few of them have
been added to the control-theoretic form of the model. Continued
collaboration between fluid mechanics and controls specialists will help
keep control-theoretic models 'up-to-date' with their fluid-mechanics
counterparts.

3) Theoretical and experimental work on high-speed compressor stall is
ongoing [41]. The applicability of the results presented here to
high-speed compressors is still an open research question.

4) Actuators which have sufficient bandwidth and control power to control
rotating stall in high-speed compressors must be designed and tested.

5) Sensor configurations for high-speed compressors and gas turbines must
be studied and tested.
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Appendix A

Modifications to the Compression System Model

The model of axial compressor higher-mode dynamics described in Chapter 3

is presented in numerous documents, with various modifications. These modifications

will be briefly described here, to indicate the type of information that can be

incorporated into the model. More detailed descriptions can be found in the cited

references.

A.1 Upstream and Downstream Flow Fields

Sections 3.2.3 and 3.2.6 present the upstream and downstream flow field

equations. These equations were found to be adequate to describe experimental

results in a 3-stage low-speed high hub-to-tip ratio compressor by Lavrich [3]. In his

experiment, the downstream duct was a straight continuation of the annulus at the last

row of stators. In compressors which do not have a straight duct downstream, Moore

[10] suggests a modification to Equation (3.20):

d(3Ps 3) (m-1) (A.1)

where m=2 for a straight channel downstream of the compressor, and m=1 for a

sudden expansion. See [10] for more details on this approximation.

A.2 Unsteady Losses and Deviations

Chue, Greitzer, and Tan [18] suggest that losses in the compressor do not

occur in a quasi-steady manner, and that subsequently the compressor pressure rise is
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not simply 3y(30) in the case where 34 is unsteady. As an approximation, they

suggest adding extra dynamics for the losses across the rotor and stator as follows:

W(T, = 'id(4 ) - LR(T,e) - L5 (r,6) (A.2)

dL-- = L - L (A.3)

TL - -+ -R = L - LR (A.4)

where Vid is the 'ideal' pressure rise characteristic based on actual flow angles and

zero losses [42], and Lss is half the steady state loss [18], so that in steady state we

recover the measured characteristic from Equations (A.2 - A.4):

V/(O) = Vid(O) - 2-L ss (A.5)

Equations (A.2 - A.4) increase the complexity of the model, but may be necessary to

predict certain effects.

Deviation angles within the compressor may also be affected by unsteadiness.

Unsteady deviations can be modeled in a fashion similar to that shown above, further

increasing both the fidelity and the complexity of the model.

Modeling unsteady losses and deviations is discussed in detail by Strang [38].

A.3 Modifications to the Inertia Parameter, A,

Various modifications to the calculation of A (introduced in Section 3.1.2.4)

have been suggested. Moore [10] initially suggested that gaps may be important to

the inertia in the machine; he suggests multiplying A by 2 to account for this extra

inertia. Chue et al [12] use a model of unsteady losses similar to (A.2 - A.4) to

suggest an 'effective A' which depends on TL. A similar derivation can be done for

unsteady deviations. Longley presents a critical comparison of these methods in [14].
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A.4 Swirl Sensitivity

Yet another modification can be made if the sensitivity of the compression

system to inlet swirl is included. This sensitivity can be written functionally as

follows, where 3a. is the perturbation flow angle at a particular station i:

3(7's3 - 'Pt 2) quasi- = --#2 + -- y + i

steady

(A.6)

This equation modifies Equation (3.13).

The downstream flow field must also be modified, because we are no longer

assuming that the exit swirl is constant around the annulus. Longley [25] introduces

the following modification to Equation (3.20):

(6?s3) = d(42) - (D -sec(a3) )2 d(5a3) (A.7)

where:

3a3 = -*341+ 4 .ai (A.8)

and 5a, can be derived using the small angle approximation and the equation for

circumferential velocity (refer to Section 3.1.2.3):

-a =-- -- (A.9)

the additional terms in (A.6) and (A.7) can change the 'effective X' for the system

substantially, and can be added without adding complexity to the differential

equations (i.e. no new dynamics are introduced).

A.5 Other Work

Two areas of current research require significant modification of the modeling

techniques described in this thesis. These areas are inlet distortion, and

compressibility.
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Several documents [14, 24, 38, 42, 43] describe the effects of inlet distortion

on the phenomenology and modeling of rotating stall. The impact of inlet distortion

on the active stabilization problem is an area of current research.

Less work has been done to model high-speed compressors, in which

compressibility must be modeled. Bonnaure [41] and Cargill and Freeman [44] are

two references which discuss compressibility effects.
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Appendix B

Theoretical Representation of Waves in Axial Compressors

This appendix discusses some of the theoretical properties of 2-D wave

dynamics in axial compressors. These properties are derived from the results of

Chapter 3.

Consider a general sinusoidal perturbation axial velocity wave:

4n = Ancos(nO) + Bnsin(n8 ) (B.1)

This wave repeats itself every 2r, and has a phase angle and magnitude which depend

on A and B as follows:

5 = M -cos(nO +#) (B.2)

where: M =A +B

B
= atan(- An -

n

The mode number n determines the number of cycles or 'lobes' which appear in the

wave in one circumference of the compressor annulus. Because the annulus is a

closed circle, superposition of waves with integer mode numbers is sufficient to

represent any general wave within the compressor. Such superposition gives a Fourier

series for the periodic signal 64, where the period is 27r (i.e. one circumference of the

compressor):

= 3 Sn = I A cos(n9) + I B nsin(n6) (B.3)
n>O n>0 n n>0

One can discuss a single component of this summation without loss of generality,

239



because the dynamics of the waves are linear and decoupled.

To fully represent the time variable, 2-D wave which exists in the compressor

annulus, we must express An and Bn as functions of time, T, and axial position, 17.

We will leave the time dependence of An and Bn as a variable, but we can, according

to the results of Chapter 3, write the axial dependence as follows:

An( a ) = an(r) e-n I, (B.4)

Bn(r,1) = bn )n . (B.5)

These equations indicate that perturbations are largest at the compressor face (11=0),

and decay exponentially upstream and downstream. Keeping this axial dependence in

mind, we can simplify notation by introducing a measurement station somewhere

upstream of the compressor, at %, (Ij, < 0), and representing the wave as follows:

5On('9nnw,r) = an () -e(nflw) .cos(n6) + bn r) -e(nw) -sin(ne) (B.6)

= xrn(r) -cos(nO) + xin(r). sin(ne)

Where xrn () and xin(T) are defined to satisfy the identity. Equations (B.5) and (B.6)

are important, because they gives a formulae for computing the entire nth mode

perturbation flowfield, for all values of n and 9, based on xrn and xin alone.

Superposition over all n>0 then gives the general solution to the system of

equations (3.22 - 3.27).

Based on this discussion, we see that xrn(r) and xin(r) completely specify the

state of the system at time r. xrn and xin are real variables, and can be measured

directly, using the DFT of evenly spaced hot wires placed at the measurement

station q1 (provided the number of transducers satisfies the spatial Nyquist criterion

- see Section 4.1.2). Hence xrn and xin are natural choices for the state variables of

the system. If we represent the IGV deflections in a similar fashion:

3)(6,r) = urn(r)-cos(n6 ) + uin(r)-sin(nO) (B.7)
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then we can write a state-space matrix differential equation for the wave dynamics,

based on the results of Sections 3.2.7, 3.3.1, and 3.3.2. The equation for a single

mode number n is given in Equation (3.53). Here we write the equation for the first

three modes, including an output equation for a typical 8-hot wire arrangement of

sensors:

[rs Mrs

-(rs

[
[
[

br

-bi

br

-bi

br

-bi

+

30(;r/4)

W5(r/2)
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(B.8)

Xr1

xii

Xr
2

xj2
Xr

3

xi3

= [ cos(6) sin(6) cos(2e) sin(26) cos(36) sin(3e) ] - x

Some notes about these equation:

1) The block-diagonal form of the system allows it to be considered
mode-by mode.
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2) The matrix in the output equation is the inverse DFT of the state
variables. This matrix performs the superposition of sinusoids,
giving the wave shape which the 8 hot wires measure (compare this
equation to Equation (B.3)).

3) Equation (B.8) contains the implicit assumption that the spatial
Nyquist criterion is satisfied - that is, there are no waves in 3p or 3y
with mode number greater than 3.

Equations (B.8) can be recast using complex spatial Fourier coefficients

(SFCs). This greatly simplifies the mathematics and notation for compressor

higher-mode dynamics, so SFCs are used for most of the discussions in this thesis. In

Section 3.1.2.6, we defined the SFCs in such a way that the following relationships

hold:

SXrn + i-xin, (B.9)

U + i-uin. (B.10)

Use of complex notation should be considered as a shorthand method for keeping

track of the symmetry properties of the compressor. At any point, one can switch

from complex (SFC) to real-valued expressions by expanding the equations into their

real and imaginary parts (Section 3.3.2 and Equation (3.52) give examples of such

expansion). In this appendix, we avoid complex notation, in order to better

emphasize the physical (i.e. real-valued) significance of the structure of the dynamics.

Although many of the features of the dynamics are more succinctly derivable using

complex notation, confusion sometimes results from the presence of imaginary

numbers. The reader is encouraged to convert the explanations given here to the

complex plane whenever such conversion might be enlightening.

thLet us first look at the homogeneous dynamics of the n mode wave. We can

break out one diagonal block from Equation (B.8) and write (for 3 y=O):

Xr Frs %s Xr
Lx I(B.11)

-n %s ors-n l-n
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The skew-symmetric structure of the system is derived in Section 3.3.2. One can

verify (by looking at the eigenvectors, or by solving (B.11) with an initial condition)

that this structure causes the homogeneous solutions for xrn and xin to oscillate 90

degrees out of phase with one another. For instance, one solution to (B.11) is

xr = e r -cos( -t) (B.12)

xi n = ed" Ur . sin(a6 - t) (B.13)

The out-of-phase oscillation of xrn and xin causes the spatial wave 64 (which we can

reconstruct using (B.6)) to rotate around the compressor annulus, with phase speed

r r and magnitude es :

= ers . [ cos(( -t)- cos(nO) + sin(s -t)- sin(n6) (B.1

= ear T. cos(n - ar.t)

We have shown that the homogeneous behavior of the system consists of

rotating waves. But the real compressor is not a deterministic system in which we

can specify an initial condition. Rather, it is a stochastic system which is continually

forced by random processes. One way to try to capture this behavior is to add a

forcing term to the homogeneous dynamics:

xr 1rs -rs Xr Vr
. = - + (B.15)
Xi n Wr ars-n in Vin

where Vrn and Vin are random noise processes of unkown character. The question is:

in this more realistic situation, will a rotating wave develop?

To answer this question, we rely on digital simulation of Equation (B. 15). We

simulate time histories of xrn and xin, reconstruct the wave as in (B.14), and then see

if it tends to rotate. Plotting the entire wave 64 at each instant of time, however, is

tedious and unnecessary for our purposes. One can easily visualize the development
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of the wave by plotting it's magnitude and phase as functions of time:

5 = M(-r) -cos( n6 + (r) ) (B.16)

If we plot #(r) and it behaves like 4s -t, we can conclude that a rotating wave exists,

with amplitude M(r).

To run a simulation, one must decide what type of excitation noise to apply.

In a real experiment, the compressor is experiencing axial velocity perturbations due

to various sources, such as turbulence and seperation within the compressor, variation

in the tip clearance due to vibration, unsteady interaction between the rotors and the

stators, and inlet flow variations. Little is known about the modal characterization of

these phenomena. We will see, however, that underdamped rotating stall dynamics

exhibit clearly visible behavior even when the noise driving the system is of a very

general character. To see this, we run the simulations with independent white noise

sequences for vrn and Vin. This characterization is modal, but assumes that both the

magnitude and phase of the excitation wave are varying randomly with time.

Figure B.1 shows the simulation results. Four different time histories are

shown, representing various levels of stability of the system. In all four plots, the

rotating stall frequency is the same, 4, = 0.25. The excitation noise sequences Vr and

vi are also identical in all four simulations. Only the stability parameter, ar, varies -

the system becomes progressively less stable in each subsequent plot:

ars = -0.625, -0.125, -0.025, and -0.05.

Examination of Figure (B.1) supports the following conclusions: As ars

becomes smaller, the system tends to resonate more strongly in response to the

excitation. M(T) becomes progressively larger (in an rms sense), and the frequency

4s becomes progressively more prominent in /(r). For ar, values below 0.025, the

wave travels very distinctly for periods of 10 rotor revolutions or more. Thus the

linear dynamics in (B.15) are sufficient to account for the traveling wave phenomena

seen in the experiments presented in Chapter 6.

244



aS

ca

5 10 15 20 25 30 35 40 45

Time, rotor revs (t/2n)

5 10 15 20 25 30 35 40 45

5 10 15 20 25 30 35 40 45
Time, rotor revs ('c/2x)

Figure B.1 - Simulation results for a skew-symmetric dynamic system,
forced with random signals.
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Figure B. 1 (Continued) - Simulation results for a skew-symmetric dynamic
system, forced with random inputs.
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Appendix C

Stall Inception Data for Various Compressor Builds

The body of this thesis presents results for the particular compressor geometry

given in Table 2.1. This geometry can be varied in the following ways:

1) IGV mean stagger angle can be changed.

2) Rotor and stator stagger angles can be changed.

3) Rotor blades can be changed from low twist (10*) to high twist (300).

'IGV mean stagger' refers to the steady-state, axisymmetric turning of the blades,

defined as positive if pre-swirl is introduced in the direction of rotor rotation. The

terms 'stagger' and 'twist' are defined in Table 2.1. If any combination of the

geometric parameters listed above is changed, then we have a different 'compressor

build'. Each compressor build has its own performance and stall behavior. It is the

purpose of this appendix to study the effect of compressor build on stall inception

behavior for the single-stage research compressor.

Since we are studying compressor dynamics which lead to rotating stall, we

are primarily interested in the transients associated with these dynamics. These

transients are most visible at stall inception - that is, during the transition from

axisymmetric operation to the fully developed rotating stall condition. Thus we will

present several views of stall inception for each compressor build studied. We will

begin by discussing different types of fully-developed stall versus different types of

stall inception behavior.
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C.1 Fully-Developed Stall and Stall Inception Behavior

In [8], Greitzer describes two types of fully-developed rotating stall. These

two types are broad categories into which most observed stall cells fit. They are

distinguished mainly by the radial extent of the stall cells: 'Full-span stall' refers to

stall cells which extend from hub to tip, while 'part-span stall' refers to stall cells

which are confined to a specific radial region, such as the rotor tip. The stall

inception data we will present in Section C.3 also falls into these two broad

categories. Full-span stall inception consists of growing perturbations which are

essentially constant across the annulus, while part-span stall inception involves

radially localized perturbations.

Full-span stall inception, since it involves the entire radial extent of the

compressor, can potentially be modelled using the 2-D methods described in

Chapter 3. If the other assumptions in Chapter 3 are valid, we expect full-span stall

inception to involve the resonance or instability of the compressor higher-mode

dynamics. Instability is predicted to occur where the compressor characteristic

slope ( ) becomes positive. As the stall flow coefficient is approached, strong

resonance waves should be visible prior to stall - these waves are called 'prestall' or

'precursor' waves by Gamier [15], and were originally measured by McDougall [13].

These waves should, according to the theory, grow smoothly into fully developed,

full-span stall. Furthermore, stabilization of the higher-mode compressor dynamics

should damp these waves, and subsequently delay the onset of rotating stall to lower

flow coefficients.

Part-span stall inception, on the other hand, is strongly 3-dimensional in

character, and thus violates a primary assumption in the compressor modeling of

Chapter 3. Part-span stall inception also tends to be very localized both

circumferentially and axially [8,17], which makes it difficult to model using
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semi-actuator disk methods. This does not mean that higher-mode compressor

dynamics (i.e. 2-D wave phenomena) do not exist in compressors which exhibit

part-span stall inception; rather it means that such dynamics may not be resonant or

unstable at stall inception (this concept was first introduced by Day [17]). Thus the

analysis methods presented in Chapters 5 and 6 might indicate that the system is

stable, even though stall inception is imminent.

In some cases, part-span stall inception develops into part-span stall. If flow

coefficient is further reduced, this part-span stall cell usually transitions into full-span

stall. In some of the compressor builds we will present, transition to full-span stall

occurs with little or no reduction in flow coefficient. In these builds, part-span stall is

not a stable operating condition of the compressor, but instead an intermediate stage

in the development of rotating stall. Yet another case exists, in which only the

inception phase admits part-span behavior; as soon as the stall cell begins to grow, it

immediately transitions to full-span stall.

From the previous discussion we see that it is important to distinguish between

inception behavior and the fully-developed rotating stall condition. Active control

schemes attempt to stabilize the perturbations which lead to rotating stall, so that

fully-developed stall never occurs. Thus the characteristics of the inception phase

determine the type of actuation, sensing, and control which should be applied.

C.2 Description of the Experiments

Six rotor-stator geometries are presented in Figures C.1 through C.40. For

each rotor-stator geometry, data for three settings of IGV mean stagger angle are

tested, for a total of 18 compressor builds. A table of compressor builds appears in

Table C.1. Each compressor build has its own total-to-static pressure rise

characteristic, W/(O), and its own stall inception behavior.

Total-to-static characteristics, W/(O), are presented in groups of three, grouped
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according to rotor-stator geometry. See Table C.1 for the figure numbers associated

with each compressor build. Plots of W//(0) for various values of 6y (IGV stagger) give

a way to estimate

For each compressor build, hot wires are used to record the axial velocity

transients leading to rotating stall. 8 hot wires are placed upstream of the IGVs, and 8

more are placed downstream of the rotor. The upstream hot wires are placed at

midspan, because this is the configuration desired for implementation of a 2-D active

control scheme. The downstream hot wires, on the other hand, are positioned at

alternating radial locations - half are placed at 15% of rotor span (near the hub), and

the other half are placed at 85% of rotor span (near the casing). Hot wires alternate

between 15% and 85% span as their circumferential angle 9 increases. This hub/tip

alternation of the downstream hot wires allows disturbances which are not radially

constant (i.e. part-span disturbances) to be detected as they travel around the annulus.

Stall inception is recorded during extremely slow throttle transients (less

than 0.1% change in flow coefficient per second) as described in Secton 2.5. Sample

rates, hot wire calibration, hot wire axial and circumferential positions, and other

experimental details are presented in Chapter 2.

C.3 Measurements of Part-Span and Full-Span Stall Inception

Figure C.5 shows the hot wire traces behind the rotor for a part-span stall.

The velocity traces near the casing (every other trace) show a severe velocity deficit

which travels around the annulus - i.e. a stall cell. Notice that the stall cell has

relatively small circumferential extent - about 90 degrees of the compressor annulus.

More importantly, however, is the difference between the these traces and the velocity

traces at the hub. Hub traces show peaks instead of troughs when the stall cell passes.

This behavior indicates that the stall cell is radially nonuniform. One explanation of

the data is that the stall cell causes blockage of flow at the tip. The flow is
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subsequently redirected to the hub, causing a velocity peak at the hub at roughly the

same position as the stall cell.

Figure C.7 shows the hot wire traces behind the rotor for a part-span stall

inception. In this case, the stall cell in its fully-developed stage is full-span - thus the

hub and tip velocity traces look very similar by the end of the data window.

However, during the transition from axisymmetric operation to full-span stall, there is

distinct radially nonuniform behavior which closely resembles the part-span stall

behavior seen in Figure C.5. Thus we label this 'part-span stall inception'.

The hub/tip velocity traces behind the rotor are by far the easiest way to detect

part-span stall inception. However, it is important to see the effects of part-span stall

inception on the measurements which we intend to use for active control. These

measurements are all taken at mid-span, consistent with our 2-dimensional approach

to active control. They are placed upstream of the IGVs to improve signal-to-noise

ratio, under the assumption that stall inception is dominated by first, second, or

possibly third mode perturbation waves, which are measurable upstream.

Since the assumptions we used to rationalize sensor placement are not valid

when stall inception is part-span, we expect the measurements to be somewhat

ambiguous. Figures C.7 and C.8 indicate what happens. In Figure C.7, the upstream

velocity traces show what looks like a smooth, 2-D transition into rotating stall. The

plot of the first spatial Fourier coefficient (SFC) in Figure C.8 is more ambiguous:

although the stall cell seems to grow smoothly into rotating stall, no precursor waves

exist - the measured first mode does not tend to travel before stall begins, and its

magnitude is small (compare Figure C.8 to Figure 6.5). Apparently, the first mode is

not resonating at all prior to stall - the higher-mode (2-D wave) dynamics seem to be

stable.

Another indication that stall inception is part-span is the change in rotation

speed of the first SFC during transition to fully-developed stall. This change in
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rotation speed causes a noticable change in slope of the phase curve in Figure C.8.

The transition from part-span to full-span stall often causes such a kink in the SFC

phase plot.

Finally, the lack of resonance of the first mode can be verified using the PSD

method (introduced in Section 6.1.3). The PSD in Figure C.8 shows almost no

resonance in the first mode prior to stall (compare Figure C.8 to Figure 6.12). Again,

2-D interpretation of the data seems to indicate that the higher-mode dynamics are

stable.

Figures C.37 and C.38 show an example of full-span stall inception. The

hub/tip hot wire traces show slight differences between the hub and the tip, but no

indication of part span stall. In concurrance with this essentially 2-D behavior, both

the upstream hot wire traces (Figure C.37) and the first SFC plot (Figure C.38)

indicate a period of strong resonance prior to stall which is at least 100 revolutions

long. Thus it seems that the higher mode dynamics are indeed resonating. Phase of

the first mode travels at a single speed, starting well before stall and continuing

without break until stall is fully developed. The underdamped nature of the first

mode is also verified by the PSD plot in Figure C.38. Finally, the results of Chapter 6

show that damping the first mode delays stall onset for this compressor build.

C.4 Discussion

Using arguments similar to those presented in Section C.3, one can readily

interpret Figures C. 1 through C.40. We will make a few overall comments here about

the results. Rotor-stator geometries are described in Table C. 1 for reference.

Rotor-stator geometries #1, #2, and #3 all exhibit very clear part-span stall, or

part-span stall inception followed by full-span stall. Thus these geometries are not

particularly suited for the 2-D control scheme used in this thesis. The prevalence of

part span stall might be explained by two factors: First, single-stage compressors are
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more prone to part-span stall than are multi-stage compressors [39,45]. Second, the

rotor blades used in these experiments were originally designed to operate with

significant inlet swirl from the IGVs - in the range of 30 degrees. However, the

movable IGVs (which replaced the original IGVs - see Chapter 2) are uncambered, so

staggers above 10 degrees on the IGVs would cause seperation. Thus for the mean

IGV staggers used (-10*, 0', and 10') the rotor is often operating off-design, making

it difficult to achieve even loading across the span of the blades at stall inception.

Since both the number of stages in the experiment, and the spanwise loading

of the rotor are not typical of multi-stage compressors which are designed to have

balanced spanwise loading, the prevalence of part-span stall in this compressor is not

an indication of the general prevalence of part-span stall in all compressors. We

present this data to show the variations in behavior that are possible, rather than to

determine the types of stall that are most common.

Of all the builds tested, only those with rotor-stator geometry #6 exhibit clear

full-span stall inception. This geometry, with 00 mean IGV stagger, is used for all of

the experiments described in the body of this thesis.
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Table C. 1 - Compressor Builds Tested

Rotor-Stator Geometry #1:
Rotor Stagger 450
Rotor Twist 100
Stator Stagger 22.50
Speed lines: Figure C.1

Rotor-Stator Geometry #2:
Rotor Stagger 350
Rotor Twist 100
Stator Stagger 22.50
Speed lines: Figure C.6

Rotor-Stator Geometry #3:
Rotor Stagger 350
Rotor Twist 100
Stator Stagger 12.50
Speed lines: Figure C.13

Rotor-Stator Geometry #4:
Rotor Stagger 250
Rotor Twist 100
Stator Stagger 12.50
Speed lines: Figure C.20

Rotor-Stator Geometry #5:
Rotor Stagger 450
Rotor Twist 300
Stator Stagger 22.50
Speed lines: Figure C.27

Rotor-Stator Geometry #6:
Rotor Stagger 350
Rotor Twist 300
Stator Stagger 22.50
Speed lines: Figure C.34

Build #

1
2
3

IGV mean stagger

-10
0
10

Build # IGV mean stagger

4
5
6

-10
0
10

Build # IGV mean stagger

7
8
9

Build #

10
11
12

-10
0
10

IGV mean stagger

-10
0
10

Build # IGV mean stagger

13
14
15

Build #

16
17
18

-10
0
10

IGV mean stagger.

-10
0
10

Figure numbers

C.2
C.3, C.4

C.5

Figure numbers

C.7, C.8
C.9, C.10

C.11, C.12

Figure numbers

C.14, C.15
C.16, C.17
C.18, C.19

Figure numbers

C.21, C.22
C.23, C.24
C.25, C.26

Figure numbers

C.28, C.29
C.30, C.31
C.32, C.33

Figure numbers

C.35, C.36
C.37, C.38
C.39, C.40
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Flow Coefficient, 4

Figure C. 1 - 2700 RPM Speed Lines for Rotor-Stator Geometry #1

Notes:

1) Geometry is given in Table 2.1 except:
Rotor Stagger: 450

Rotor Twist: 100
Stator Stagger: 22.5*

2) Hot wire data for IGV @ -10' indicate part-span stall inception.

3) Hot wire data for IGVs @ 00, 100 show that part-span stall is a stable
operating condition for these builds.

4) Upstream hot wire traces are not available for this build.
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Hot Wire Traces, 15% and 85% Span Behind Rotor, 12-18-89
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3550, Tip

250- 3100, Hub

200 -265, Tip

2200, Hub
*= 150

175*, Tip

100 -

1300, Hub

> 50-
850, Tip

0 4 1400, Hub

-50
0 5 10 15 20 25

Time, rotor revs

Figure C.2 - Hot wire traces at stall inception for Build #1A (IGVs @ -10 deg)
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Figure C.3 - Hot wire traces at stall inception for Build #1B (IGVs @ 0 deg)
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10 First Spatial Fourier Coefficient at Stall Inception, 11-30-89
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Frequency, Hz

Figure C.4 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #1B (see Figure C.3, second plot).
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Hot Wire Traces, 15% and 85% Span Behind Rotor, 12-18-89
300
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1750, TrP
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Figure C.5 - Hot wire traces at stall inception for Build #1C (LGVs @ 10 deg)
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Flow Coefficient, 1

Figure C.6 - 2700 RPM Speed Lines for Rotor-Stator Geometry #2

Notes:

1) Geometry is given in Table 2.1 except:
Rotor Stagger: 350

Rotor Twist: 100
Stator Stagger: 22.5'

2) Hot wire data for IGV incidences -10', 0* exhibit part-span
stall inception.

3) Hot wire data for IGVs @ 10' shows that part-span stall is a stable
operating condition for this build.
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Figure C.7 - Hot wire traces at stall inception for Build #2A (IGVs @ -10 deg)
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First Spatial Fourier Coefficient at Stall
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Figure C.8 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #2A (see Figure C.7, second plot).
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Hot Wire Traces, 15% and 85% Span, Behind Rotor 1:0 R:35 S:25800 Run Date: 2 6/90
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Figure C.9 - Hot wire traces at stall inception for Build #2B (IGVs @ 0 deg)
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First Spatial Fourier Coefficient at Stall
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Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #2B (see Figure C.9, second plot).
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Figure C. 11 - Hot wire traces at stall inception for Build #2C (IGVs @ 10 deg)
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First Spatial Fourier Coefficient at Stall
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Figure C. 12 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #2C (see Figure C.1 1, second plot).
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Figure C.13 - 2700 RPM Speed Lines for Rotor-Stator Geometry #3

Notes:

1) Geometry is given in Table 2.1 except:
Rotor Stagger: 350

Rotor Twist: 100
Stator Stagger: 12.50

2) Hot wire data for IGV incidences -10', 00 exhibit part-span
stall inception.

3) Hot wire data for IGVs @ 100 shows stable part-span stall.
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Figure C.14 - Hot wire traces at stall inception for Build #3A (IGVs @ -10 deg)
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Figure C. 15 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #3A (see Figure C. 14, second plot).
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Figure C. 16 - Hot wire traces at stall inception for Build #3B (IGVs @ 0 deg)
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Figure C. 17 - Analysis of first spatial Fourier coefficient Derived from hot wire
data from Build #3B (see Figure C. 16, second plot).
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Figure C.18 - Hot wire traces at stall inception for Build #3C (IGVs @ 10 deg)
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Figure C.19 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #3C (see Figure C.18, second plot).
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Figure C.20 - 2700 RPM Speed Lines for Rotor-Stator Geometry #4

Notes:

1) Geometry is given in Table 2.1 except:
Rotor Stagger: 25'

Rotor Twist: 100
Stator Stagger: 12.50

2) The speed lines and the hot wire data suggest that there is no
clear stall point for these builds - exhibits 'soft' or 'recoverable' stall.
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Figure C.21 - Hot wire traces at stall inception for Build #4A (IGVs @ -10 deg)
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First Spatial Fourier Coefficient at Stall
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Figure C.22 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #4A (see Figure C.21, second plot).
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Figure C.23 - Hot wire traces at stall inception for Build #4B (IGVs @ 0 deg)
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Figure C.24 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #4B (see Figure C.23, second plot).
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Figure C.25 - Hot wire traces at stall inception for Build #4C (IGVs @ 10 deg)
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Figure C.26 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #4C (see Figure C.25, second plot).
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Figure C.27 - 2700 RPM Speed Lines for Rotor-Stator Geometry #5

Notes:

1) Geometry is given in Table 2.1 except:
Rotor Stagger: 450

Rotor Twist: 300
Stator Stagger: 22.50

2) Secondary curves are operation in part-span stall.

3) Hot wire traces for all IGV incidences show that part-span
stall is a stable operating condition for these builds.
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Hot Wire Traces, 15% and 85% Span, Behind Rotor I:-1O R:45 S:25
Run Date: 3/ 2/90
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Figure C.28 - Hot wire traces at stall inception for Build #5A (IGVs @ -10 deg)
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Figure C.29 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #5A (see Figure C.28, second plot).
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Figure C.30 - Hot wire traces at stall inception for Build #5B (IGVs @ 0 deg)

284

0 5 10 15 20 25 30 35 40

Time, rotor revs

Hot Wire Traces, Midspan Upstream of the IGV's 10 R45 S:25

0 5

550, Tip

100, Hub

~50, Tip

200, Hub

[750, Tip

1300, Hub

850 Tip

400, Hub

/90

342

2970

2520

2070

1620

1170

720

270
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Figure C.31 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #5B (see Figure C.30, second plot).

285

25

20

15

10-
.

0

Q
5

0
0

60

40

200

0
0

10-1
Rnin Dktel 3 t

w- w

N

a.)-e4

10-2

10-3

10-5 L
10-1

10-4



Hot Wire Traces, 15% and 85% Span, Behind Rotor 1:10 R:45 S-25
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Figure C.32 - Hot wire traces at stall inception for Build #5C (IGVs @ 10 deg)
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First Spatial Fourier Coefficient at Stall
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Figure C.33 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #5C (see Figure C.32, second plot).
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Figure C.34 - 2700 RPM Speed Lines for Rotor-Stator Geometry #6

Notes:

1) Geometry is given in Table 2.1.

2) Hot wire traces for IGVs @ 0' indicate full-span stall inception.

3) This build, with IGVs @ 0', is used for all the experiments
presented in the body of this thesis.
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Figure C.35 - Hot wire traces at stall inception for Build #6A (IGVs @ -10 deg)
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Figure C.36 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #6A (see Figure C.35, second plot).
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Hot Wire Traces, 15% and 85% Span, Behind Rotor I:0 R:35 S:25
Run Date: 3/ 3/90
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Figure C.37 - Hot wire traces at stall inception for Build #6B (IGVs @ 0 deg)
NOTE: This is the build throughout the body of the thesis.
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Figure C.38 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #6B (see Figure C.37, second plot).
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Figure C.39 - Hot wire traces at stall inception for Build #6C (IGVs @ 10 deg)
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Figure C.40 - Analysis of first spatial Fourier coefficient. Derived from hot wire
data from Build #6C (see Figure C.39, second plot).
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Appendix D

Frequency Response Data

This appendix presents transfer function shapes for the compressor

higher-mode dynamics. These transfer functions, their parameterization, and the

procedures used to estimate them, are discussed in Chapter 5. We will use nomencla-

ture and concepts from Chapter 5 to facilitate the current discussion.

In Chapter 5, the parameter set 0:

0(n,~f) =[ors %s br bi gi ]n, 9 (D. 1)n'

is used to characterize the input-output behavior of the compressor higher-mode

dynamics. Figures 5.9, 5.10, and 5.11 show the variation of (9 with flow coefficient,

, based on various identification experiments. The parameter set e can be converted

to a frequency response using Equation (3.48), repeated here for convenience:

G (s) = i-gi-s + (br+ i-bi) (D.2)
n s - (Ui ,+ 1- Om, )

Thus for every parameter set e there is a corresponding transfer function shape. We

call the transfer function shape obtained in this way the 'parametric estimate' of Gn(s).

The parametric estimate gives another way to view the experimental results, and to

see how the system behavior changes with flow coefficient and mode number.

At flow coefficients where the plant is stable, we can also get a spectral

estimate of the transfer function Gn(s). Section 5.1.2 discusses the spectral estimation

method, and several examples of spectral estimates are given throughout Chapter 5.

Spectral estimates are useful because they are non-parametric estimates of the transfer

characteristics of the plant. As such, they make no assumptions about the structure of
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the system behavior - they are simply frequency-domain presentation of experimental

input-output data.

Figures D.1 through D.21 plot the parametric estimates of Gn(s) for n=1, 2,

and 3, over the range of flow coefficients 0 = 0.375 to 0 = 0.550. Where such data is

available, a non-parametric spectral estimate of Gn(s) is plotted along with the

parametric estimate, for comparison.

Comparing the experimental spectral results and the parametric estimates

serves two purposes. First, it shows that there are no significant input-output

dynamics which are not accounted for by the model. Second, it allows one to visually

judge how well the model fits the data. This is important because of the way the

parametric estimates are derived, which is as follows: all of the estimates of E3 for a

given mode number n are curve-fit using second order polynomials in i. The

curve-fits are shown in Figures 5.9, 5.10, and 5.11. The curve-fit polynomials are

then evaluated at the flow coefficient of a given plot, and the resulting e is used to

compute Gn(s). Thus each parametric estimate represents a cumulative estimates,

rather than a curve-fit to the spectral estimate in the figure. Thus these figures (when

they include spectral estimates) allow the consistency of the estimates, as well as the

variance of the specific experimental results shown, to be qualitatively judged.

A few additional comments are necessary to interpret these results:

1) The variance of the spectral estimates becomes large for frequencies above the

rotor frequency (100 on the plots) because the excitation is small at these frequencies.

The IGVs are being driven by a command which is band-limited, to avoid overheating

the motors. Furthermore, the servos are themselves bandlimited to a frequency of

about 80 Hz (1.75 times rotor frequency), so very little blade motion above this

frequency actually occurs.

The pseudo-random binary signal (PRBS) which commands the servos is
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bandlimited by specifying the minimum switch interval in the binary trace (see

Equation (5.9) and Figure 5.5 for explanation and an example of a PRBS).

Bandlimiting the PRBS in this way causes excitation at certain frequencies to be

nearly zero. Figure D.22 shows the PSD of a typical PRBS bandlimited to 50 Hz.

This is the bandlimit chosen for most of the experiments presented here. The

near-zero amplitude of excitation at 100 Hz causes the variance of the spectral

estimates to be very large at this frequency (2.22 in non-dimensional frequency).

Thus we judge that 'bumps' in spectral estimates at or near 2.22 are due to this

artifact, and do nt represent extra dynamics.

2) Jumps in phase from -r to ir do not indicate discontinuity in the transfer

function. Such jumps result because the phase is confined to lie between -r and 'r,

instead of being allowed to vary continuously outside these limits. This artifact

sometimes causes the variance at high frequencies to appear much larger than it

actually is.

3) Spectral estimates are shown at all flow coefficients where the necessary data

is available. The data necessary to compute spectral estimates is open-loop data,

based on the discussion of Section 5.2.2. Thus data is unavailable wherever the

desired mode is unstable or underdamped. When the system is operating open-loop,

underdamped modes tend to resonate strongly enough to 'trip' the nonlinear

phenomena which lead to rotating stall, so exciting underdamped modes is

impractical. One can, however, stabilize the modes which are not being tested, and

excite the mode being tested in an open-loop fashion, if it is sufficiently well damped.

This was the procedure used to get the results for the third mode.
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Spectral and Parametric Estimates of G1 at phi = 0.550
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Figure D. 1 - Comparison of a spectral estimate and a parametric estimate of the transfer
function G1. Spectral estimate (solid line) was computed from data taken on
07/24/90 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.9.
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Spectral and Parametric Estimates of G1 at phi =0.525
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Figure D.2 -

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ -9.0715e-02 0.2235 -1.5312e-02 2.4285e-03 -4.3900e-02 ]

Comparison of a spectral estimate and a parametric estimate of the transfer

function Gl. Spectral estimate (solid line) was computed from data taken on

07/24/90 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.9.

299

0

-10

, -20

- -30

-40

-50'
10 -2

W
10
Cd

4)
W

2
04

10-2



Spectral and Parametric Estimates of G1 at phi 0.5
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Figure D.3 -

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[-5.0172e-02 0.2375 -1.3439e-02 4.5846e-03 -4.0407e-02]

Comparison of a spectral estimate and a parametric estimate of the transfer
function G1. Spectral estimate (solid line) was computed from data taken on
07/24/90 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.9.
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Spectral and Parametric Estimates of G1 at phi= 0.475
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Frequency, normalized to rotor frequency
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Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[-2.1968e-02 0.2386 -1.1696e-02 5.2888e-03 -3.6969e-02]

Figure D.4 - Comparison of a spectral estimate and a parametric estimate of the transfer
function G1. Spectral estimate (solid line) was computed from data taken on
07/24/90 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.9.
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Parametric Estimate of G1 at phi = 0.45

10-1 100

Frequency, normalized to rotor frequency

10-1 100

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ -3.7455e-03 0.2294 -1.0104e-02 4.8725e-03 -3.3432e-02 ]

Figure D.5 - Parametric estimate of the transfer function G1 (a Spectral estimate is
not available at this flow coefficient because system cannot be excited
open-loop). Parametric estimate uses the estimate of 'Theta' shown
above. This estimate comes from the curve fits in Figure 5.9.
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Parametric Estimate of G1 at phi= 0.425

10-1 100

Frequency, normalized to rotor frequency

10-1 100

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[6.851le-03 0.2123 -8.6784e-03 3.6670e-03 -2.9643e-02]

Figure D.6 - Parametric estimate of the transfer function G1 (a Spectral estimate is
not available at this flow coefficient because system cannot be excited
open-loop). Parametric estimate uses the estimate of 'Theta' shown
above. This estimate comes from the curve fits in Figure 5.9.
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Parametric Estimate of G1 at phi = 0.4

10-1 100
Frequency, normalized to rotor frequency

10-1 100

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ 1.2179e-02 0.1898 -7.4386e-03 2.0037e-03 -2.5449e-02 ]

Figure D.7 - Parametric estimate of the transfer function G1 (a Spectral estimate is
not available at this flow coefficient because system cannot be excited
open-loop). Parametric estimate uses the estimate of 'Theta' shown
above. This estimate comes from the curve fits in Figure 5.9.
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Parametric Estimate of G1 at phi = 0.375

10-1 100

Frequency, normalized to rotor frequency

101

1010-1 100

Frequency, normalized to rotor frequency

i

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[1.4596e-02 0.1644 -6.4022e-03 2.1386e-04 -2.0695e-02 ]

Figure D.8 - Parametric estimate of the transfer function Gi (a Spectral estimate is

not available at this flow coefficient because system cannot be excited
open-loop). Parametric estimate uses the estimate of 'Theta' shown
above. This estimate comes from the curve fits in Figure 5.9.
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Spectral and Parametric Estimates of G2 at phi= 0.55

10-1 100 101

Frequency, normalized to rotor frequency

2

0

-2

10-2 10-1 100 101

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ -0.3541 0.6508 -4.3323e-02 -1.1195e-02 -4.5340e-02]

Figure D.9 - Comparison of a spectral estimate and a parametric estimate of the transfer
function G2. Spectral estimate (solid line) was computed from data taken on
07/24/90 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.10.

306

-.-

.- ....... ... . .... .....-. ... ... .7 .. .... .. .. ..-. .

.- ................. ......... ...... .. ... ... ... ... .. ... .

- - - ... .. ........ .. .. .. . ..*. ... ....... .... . ....... ... .... .. .

6

j i

-

. . . . . . . . . . . . . . . ... . . . . . . . . . .. . . . . . . . . . . . ... ... .. ... .. ... ... ... .. ... ...... .. ... .. .... ..... ...... .... . . ... .. .. .. .. .... .. .. .

. .............. ........ I ..... .... ...................... ......... ...... ..... ................

------------- 
..............

..............

-.. ...



Spectral and Parametric Estimates of G2 at phi = 0.525

10-1 100

Frequency, normalized to rotor frequency

10-1 100

Figure D.10

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ -0.2645 0.6349 -3.9740e-02 -6.0778e-03 -4.1880e-02 ]

- Comparison of a spectral estimate and a parametric estimate of the transfer
function G2. Spectral estimate (solid line) was computed from data taken on
07/24/90 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.10.
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Spectral and Parametric Estimates of G2 at hi = 0.50

-10

-20

-30

-40

-50
10 -2 10-1 100 101

Frequency, normalized to rotor frequency
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10-2 10-1 100 101

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[-0.1919 0.6101 -3.5769e-02 -2.5194e-03 -3.8426e-02]

Figure D. 11 - Comparison of a spectral estimate and a parametric estimate of the transfer
function G2. Spectral estimate (solid line) was computed from data taken on
07/24/90 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.10.
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Spectral and Parametric Estimates of G2 at phi = 0.475

10-1 100

Frequency, normalized to rotor frequency

10-1 100

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ -0.1337 0.5788 -3.1597e-02 -2.3927e-04 -3.5102e-02]

Figure D.12 - Comparison of a spectral estimate and a parametric estimate of the transfer
function G2. Spectral estimate (solid line) was computed from data taken on
07/24/90 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.10.
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Parametric Estimate of G2 at phi= 0.45

10-1 100

Frequency, normalized to rotor frequency

10-1 100

Figure D.13

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[-8.7480e-02 0.5437 -2.7407e-02 1.0428e-03 -3.2035e-02 ]

- Parametric estimate of the transfer function G2 (a Spectral estimate is
not available at this flow coefficient because system cannot be excited
open-loop). Parametric estimate uses the estimate of 'Theta' shown
above. This estimate comes from the curve fits in Figure 5.10.
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Parametric Estimate of G2 at phi = 0.425

10-1 100

Frequency, normalized to rotor frequency

10-1 100

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ -5.0688e-02 0.5073 -2.3385e-02 1.6070e-03 -2.9351e-02 ]

Figure D.14 - Parametric estimate of the transfer function G2 (a Spectral estimate is
not available at this flow coefficient because system cannot be excited
open-loop). Parametric estimate uses the estimate of 'Theta' shown
above. This estimate comes from the curve fits in Figure 5.10.
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Parametric Estimate of G2 at phi = 0.4

10-1 100 101

Frequency, normalized to rotor frequency

J ..

10-1

I I I

I I -

100 101

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[-2.0834e-02 0.4724 -1.9715e-02 1.7339e-03 -2.7174e-02]

Figure D. 15 - Parametric estimate of the transfer function G2 (a Spectral estimate is
not available at this flow coefficient because system cannot be excited
open-loop). Parametric estimate uses the estimate of 'Theta' shown
above. This estimate comes from the curve fits in Figure 5.10.
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Parametric Estimate of G2 at phi = 0.375

10-1 100

Frequency, normalized to rotor frequency

10-1 100

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ 4.5851e-03 0.4414 -1.6584e-02 1.7036e-03 -2.5630e-02 ]

Figure D.16 - Parametric estimate of the transfer function G2 (a Spectral estimate is
not available at this flow coefficient because system cannot be excited
open-loop). Parametric estimate uses the estimate of 'Theta' shown
above. This estimate comes from the curve fits in Figure 5.10.
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Spectral and Parametric Estimates of G3 at phi = 0.475

10-1 100

Frequency, normalized to rotor frequency

10-1 100

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[-0.1991 0.8949 -3.3955e-02 -8.1687e-03 -3.2542e-02]

Figure D.17 - Comparison of a spectral estimate and a parametric estimate of the transfer
function G3. Spectral estimate (solid line) was computed from data taken on
05/10/91 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.11.
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Spectral and Parametric Estimates of G3 at phi = 0.45

-2 10-1 100
Frequency, normalized to rotor frequency

-2 10-1 100

101

101
Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ -0.1568 0.8619 -3.0972e-02 -5.7113e-03 -3.0724e-02]

Figure D.18 - Comparison of a spectral estimate and a parametric estimate of the transfer
function G3. Spectral estimate (solid line) was computed from data taken on
05/10/91 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.11.
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Spectral and Parametric Estimates of G3 at phi = 0.425
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Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):
[-0.1145 0.8294 -2.8268e-02 -3.7262e-03 -2.8870e-02]

Figure D.19 - Comparison of a spectral estimate and a parametric estimate of the transfer
function G3. Spectral estimate (solid line) was computed from data taken on
05/10/91 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.11.
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Svectral and Parametric Estimates of G3 at phi = 0.4
V
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Figure D.20

Frequency, nornalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[ -7.2252e-02 0.7982 -2.5868e-02 -2.2459e-03 -2.7001e-02]

- Comparison of a spectral estimate and a parametric estimate of the transfer

function G3. Spectral estimate (solid line) was computed from data taken on
05/10/91 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.11.
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Spectral and Parametric Estimates of G3 at phi = 0.375

10-1 100

Frequency, normalized to rotor frequency

10-1 100

Frequency, normalized to rotor frequency

Parameter Set 'Theta' Used to Compute Estimate (dotted curve):

[-2.9955e-02 0.7689 -2.3800e-02 -1.3029e-03 -2.5140e-02]

Figure D.21 - Comparison of a spectral estimate and a parametric estimate of the transfer
function G3. Spectral estimate (solid line) was computed from data taken on
01/31/91 using PRBS input signals. Parametric estimate uses the estimate
of 'Theta' shown. This estimate comes from the curve fits in Figure 5.11.
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Frequency, non-dimensionalized to rotor frequency

Figure D.22 - PSD of a typical PRBS used to drive the IGVs during
a spectral estimation experiment.




