
MIT Open Access Articles

A leader election algorithm for
dynamic networks with causal clocks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ingram, Rebecca, Tsvetomira Radeva, Patrick Shields, Saira Viqar, Jennifer E. Walter,
and Jennifer L. Welch. "A leader election algorithm for dynamic networks with causal clocks."
Distributed Computing, vol. 26, issue 2, April 2013, pp. 75-97.

As Published: http://dx.doi.org/10.1007/s00446-013-0184-1

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/104874

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/104874

Distrib. Comput. (2013) 26:75–97
DOI 10.1007/s00446-013-0184-1

A leader election algorithm for dynamic networks
with causal clocks

Rebecca Ingram · Tsvetomira Radeva · Patrick Shields ·
Saira Viqar · Jennifer E. Walter · Jennifer L. Welch

Received: 7 September 2011 / Accepted: 29 December 2012 / Published online: 17 February 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract An algorithm for electing a leader in an asyn-
chronous network with dynamically changing communica-
tion topology is presented. The algorithm ensures that, no
matter what pattern of topology changes occurs, if topol-
ogy changes cease, then eventually every connected com-
ponent contains a unique leader. The algorithm combines
ideas from the Temporally Ordered Routing Algorithm for
mobile ad hoc networks (Park and Corson in Proceedings
of the 16th IEEE Conference on Computer Communica-
tions (INFOCOM), pp. 1405–1413 (1997) with a wave algo-
rithm (Tel in Introduction to distributed algorithms, 2nd

A preliminary version of this paper appears in [15]. The work of
R. Ingram was supported in part by NSF REU grant 0649233. The
work of J. L. Welch was supported in part by NSF grant 0500265 and
Texas Higher Education Coordinating Board grants
ARP-00512-0007-2006 and ARP 000512-0130-2007. The work of J.
E. Walter and P. Shields was supported in part by NSF grant
IIS-0712911 and the URSI program at Vassar College. The work of
Tsvetomira Radeva was supported in part by the CRA-W DREU
Program through NSF grant CNS-0540631.

R. Ingram
Trinity University, San Antonio, TX, USA

T. Radeva
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: radeva@csail.mit.edu

P. Shields · J. E. Walter
Vassar College, Poughkeepsie, NY, USA

J. E. Walter
e-mail: walter@cs.vassar.edu

S. Viqar · J. L. Welch (B)
Texas A&M University, College Station, TX, USA
e-mail: welch@cse.tamu.edu

S. Viqar
e-mail: sairaviqar@gmail.com

edn. Cambridge University Press, Cambridge, MA, 2000),
all within the framework of a height-based mechanism for
reversing the logical direction of communication topology
links (Gafni and Bertsekas in IEEE Trans Commun C–29(1),
11–18 1981). Moreover, a generic representation of time is
used, which can be implemented using totally-ordered values
that preserve the causality of events, such as logical clocks
and perfect clocks. A correctness proof for the algorithm is
provided, and it is ensured that in certain well-behaved situ-
ations, a new leader is not elected unnecessarily, that is, the
algorithm satisfies a stability condition.

Keywords Distributed algorithms · Leader election · Link
reversal · Dynamic networks

1 Introduction

Leader election is an important primitive for distributed com-
puting, useful as a subroutine for any application that requires
the selection of a unique processor among multiple candi-
date processors. Applications that need a leader range from
the primary-backup approach for replication-based fault-
tolerance to group communication systems [26], and from
video conferencing to multi-player games [11].

In a dynamic network, communication channels go up and
down frequently. Causes for such communication volatility
range from the changing position of nodes in mobile net-
works to failure and repair of point-to-point links in wired
networks. Recent research has focused on porting some of the
applications mentioned above to dynamic networks, includ-
ing wireless and sensor networks. For instance, Wang and
Wu propose a replication-based scheme for data delivery in
mobile and fault-prone sensor networks [29]. Thus there is
a need for leader election algorithms that work in dynamic
networks.

123

76 R. Ingram et al.

We consider the problem of ensuring that, if changes to
the communication topology cease, then eventually each con-
nected component of the network has a unique leader (intro-
duced as the “local leader election problem” in [7]). Our
algorithm is an extension of the leader election algorithm
in [18], which in turn is an extension of the MANET rout-
ing algorithm TORA in [22]. TORA itself is based on ideas
from [9].

Gafni and Bertsekas [9] present two routing algorithms
based on the notion of link reversal. The goal of each algo-
rithm is to create directed paths in the communication topol-
ogy graph from each node to a distinguished destination node.
In these algorithms, each node maintains a height variable,
drawn from a totally-ordered set; the (bidirectional) commu-
nication link between two nodes is considered to be directed
from the endpoint with larger height to that with smaller
height. Whenever a node becomes a sink, i.e., has no out-
going links, due to a link going down or due to notification
of a neighbor’s changed height, the node increases its height
so that at least one of its incoming links becomes outgoing.
In one of the algorithms of [9], the height is a pair consist-
ing of a counter and the node’s unique id, while in the other
algorithm the height is a triple consisting of two counters
and the node id. In both algorithms, heights are compared
lexicographically with the least significant component being
the node id. In the first algorithm, a sink increases its counter
to be larger than the counter of all its neighbors, while in the
second algorithm, a more complicated rule is employed for
changing the counters.

The algorithms in [9] cause an infinite number of messages
to be sent if a portion of the communication graph is discon-
nected from the destination. This drawback is overcome in
TORA [22], through the addition of a clever mechanism by
which nodes can identify that they have been partitioned from
the destination. In this case, the nodes go into a quiescent
state.

In TORA, each node maintains a 5-tuple of integers for
its height, consisting of a 3-tuple called the reference level, a
delta component, and the node’s unique id. The height tuple
of each node is lexicographically compared to the tuple of
each neighbor to impose a logical direction on links (higher
tuple toward lower).

The purpose of the reference level is to indicate when
nodes have lost their directed path to the destination. Initially,
the reference level is all zeroes. When a node loses its last
outgoing link due to a link going down the node starts a new
reference level by changing the first component of the triple
to the current time, the second to its own id, and the third to
0, indicating that a search for the destination is started. Ref-
erence levels are propagated throughout a connected com-
ponent, as nodes lose outgoing links due to height changes,
in a search for an alternate directed path to the destination.
Propagation of reference levels is done using a mechanism by

which a node increases its reference level when it becomes
a sink; the delta value of the height is manipulated to ensure
that links are oriented appropriately. If the search in one part
of the graph is determined to have reached a dead end, then
the third component of the reference level triple is set to 1.
When this happens, the reference level is said to have been
reflected, since it is subsequently propagated back toward
the originator. If the originator receives reflected reference
levels back from all its neighbors, then it has identified a
partitioning from the destination.

The key observation in [18] is that TORA can be adapted
for leader election: when a node detects that it has been par-
titioned from the old leader (the destination), then, instead
of becoming quiescent, it elects itself. The information about
the new leader is then propagated through the connected com-
ponent. A sixth component was added to the height tuple of
TORA to record the leader’s id. The algorithm presented and
analyzed in [18] makes several strong assumptions. First, it
is assumed that only one topology change occurs at a time,
and no change occurs until the system has finished reacting
to the previous change. In fact, a scenario involving multiple
topology changes can be constructed in which the algorithm
is incorrect. Second, the system is assumed to be synchro-
nous; in addition to nodes having perfect clocks, all messages
have a fixed delay. Third, it is assumed that the two endpoints
of a link going up or down are notified simultaneously of the
change.

We present a modification to the algorithm that works in
an asynchronous system with arbitrary topology changes that
are not necessarily reported instantaneously to both endpoins
of a link. One new feature of this algorithm is to add a seventh
component to the height tuple of [18]: a timestamp associ-
ated with the leader id that records the time that the leader
was elected. Also, a new rule by which nodes can choose new
leaders is included. A newly elected leader initiates a “wave”
algorithm [27]: when different leader ids collide at a node,
the one with the most recent timestamp is chosen as the win-
ner and the newly adopted height is further propagated. This
strategy for breaking ties between competing leaders makes
the algorithm compact and elegant, as messages sent between
nodes carry only the height information of the sending node,
every message is identical in structure, and only one message
type is used.

In this paper, we relax the requirement in [18] (and in [15])
that nodes have perfect clocks. Instead we use a more generic
notion of time, a causal clock T , to represent any type of
clock whose values are non-negative real numbers and that
preserves the causal relation between events. Both logical
clocks [16] and perfect clocks are possible implementations
of T . We also relax the requirement in [18] (and in [15])
that the underlying neighbor-detection layer synchronize its
notifications to the two endpoints of a (bidirectional) commu-
nication link throughout the execution; in the current paper,

123

A leader election algorithm 77

these notifications are only required to satisfy an eventual
agreement property.

Finally, we provide a relatively brief, yet complete, proof
of algorithm correctness. In addition to showing that each
connected component eventually has a unique leader, it is
shown that in certain well-behaved situations, a new leader
is not elected unnecessarily; we identify a set of conditions
under which the algorithm is “stable” in this sense. We also
compare the difference in the stability guarantees provided
by the perfect-clocks version of the algorithm and the causal-
clocks version of the algorithm. The proofs handle arbitrary
asynchrony in the message delays, while the proof in [18] was
for the special case of synchronous communication rounds
only and did not address the issue of stability.

Leader election has been extensively studied, both for
static and dynamic networks, the latter category includ-
ing mobile networks. Here we mention some representative
papers on leader election in dynamic networks. Hatzis et al.
[12] presented algorithms for leader election in mobile net-
works in which nodes are expected to control their movement
in order to facilitate communication. This type of algorithm
is not suitable for networks in which nodes can move arbi-
trarily. Vasudevan et al. [28] and Masum et al. [20] developed
leader election algorithms for mobile networks with the goal
of electing as leader the node with the highest priority accord-
ing to some criterion. Both these algorithms are designed for
the broadcast model. In contrast, our algorithm can elect any
node as the leader, involves fewer types of messages than
either of these two algorithms, and uses point-to-point com-
munication rather than broadcasting. Brunekreef et al. [2]
devised a leader election algorithm for a 1-hop wireless envi-
ronment in which nodes can crash and recover. Our algorithm
is suited to an arbitrary communication topology.

Several other leader election algorithms have been devel-
oped based on MANET routing algorithms. The algorithm in
[23] is based on the Zone Routing Protocol [10]. A correct-
ness proof is given, but only for the synchronous case assum-
ing only one topology change. In [5], Derhab and Badache
present a leader election algorithm for ad hoc wireless net-
works that, like ours, is based on the algorithms presented by
Malpani et al. [18]. Unlike Derhab and Badache, we prove
our algorithm is correct even when communication is asyn-
chronous and multiple topology changes, including network
partitions, occur during the leader election process.

Dagdeviren et al. [3] and Rahman et al. [24] have recently
proposed leader election algorithms for mobile ad hoc net-
works; these algorithms have been evaluated solely through
simulation, and lack correctness proofs. A different direc-
tion is randomized leader election algorithms for wireless
networks (e.g., [1]); our algorithm is deterministic.

Fault-tolerant leader election algorithms have been pro-
posed for wired networks. Representative examples are Mans
and Santoro’s algorithm for loop graphs subject to permanent

communication failures [19], Singh’s algorithm for complete
graphs subject to intermittent communication failures [25],
and Pan and Singh’s algorithm [21] and Stoller’s algorithm
[26] that tolerate node crashes.

Recently, Datta et al. [4] presented a self-stabilizing leader
election algorithm for the shared memory model with com-
posite atomicity that satisfies stronger stability properties
than our causal-clocks algorithm. In particular, their algo-
rithm ensures that, if multiple topology changes occur simul-
taneously after the algorithm has stabilized, and then no fur-
ther changes occur, (1) each node that ends up in a connected
component with at least one pre-existing leader ultimately
chooses a pre-existing leader, and (2) no node changes its
leader more than once. The self-stabilizing nature of the algo-
rithm suggests that it can be used in a dynamic network: once
the last topology change has occurred, the algorithm starts to
stabilize. Existing techniques (see, for instance, Section 4.2
in [6]) can be used to transform a self-stabilizing algorithm
for the shared-memory composite-atomicity model into an
equivalent algorithm for a (static) message-passing model,
perhaps with some timing information. Such a sequence of
transformations, though, produces a complicated algorithm
and incurs time and space overhead (cf. [6,13]). One issue
to be overcome in transforming an algorithm for the static
message-passing model to the model in our paper is han-
dling the synchrony that is relied upon in some component
transformations to message passing (e.g., [14]).

2 Preliminaries

2.1 System model

We assume a system consisting of a set P of computing
nodes and a set χ of directed communication channels from
one node to another node. χ consists of one channel for each
ordered pair of nodes, i.e., every possible channel is repre-
sented. The nodes are assumed to be completely reliable. The
channels between nodes go up and down, due to the move-
ment of the nodes. While a channel is up, the communication
across it is in first-in-first-out order and is reliable but asyn-
chronous (see below for more details).

We model the whole system as a set of (infinite) state
machines that interact through shared events (a specializa-
tion of the IOA model [17]). Each node and each channel is
modeled as a separate state machine. The events shared by a
node and one of its outgoing channels are notifications that
the channel is going up or going down and the sending of a
message by the node over the channel; the channel up/down
notifications are initiated by the channel and responded to
by the node, while the message sends are initiated by the
node and responded to by the channel. The events shared by
a node and one of its incoming channels are notifications that

123

78 R. Ingram et al.

a message is being delivered to the node from the channel;
these events are initiated by the channel and responded to by
the node.

2.2 Modeling asynchronous dynamic links

We now specify in more detail how communication is
assumed to occur over the dynamic links. The state of
Channel(u, v), which models the communication channel
from node u to node v, consists of a statusuv variable and
a queue mqueueuv of messages.

The possible values of the statusuv variable are Up
and Down. The channel transitions between the two val-
ues of its statusuv variable through ChannelU puv and
Channel Downuv events, called the “topology change”
events. We assume that the ChannelUp and ChannelDown
events for the channel alternate. The ChannelUp and Chan-
nelDown events for the channel from u to v occur simul-
taneously at node u and the channel, but do not occur at
node v.

The variable mqueueuv holds messages in transit from u
to v. An attempt by node u to send a message to node v results
in the message being appended to mqueueuv if the channel’s
status is Up; otherwise there is no effect. When the channel
is Up, the message at the head of mqueueuv can be deliv-
ered to node v; when a message is delivered, it is removed
from mqueueuv . Thus, messages are delivered in FIFO
order.

When a Channel Downuv event occurs, mqueueuv is
emptied. Neither u nor v is alerted to which messages in
transit have been lost. Thus, the messages delivered to node
v from node u during a (maximal-length) interval when the
channel is Up form a prefix of the messages sent by node u
to node v during that interval.

2.3 Configurations and executions

The notion of configuration is used to capture an instanta-
neous snapshot of the state of the entire system. A configu-
ration is a vector of node states, one for each node in P , and
a vector of channel states, one for each channel in χ . In an
initial configuration:

– each node is in an initial state (according to its algorithm),
– for each channel Channel(u, v), mqueueuv is empty,

and
– for all nodes u and v, statusuv = statusvu (i.e., either

both channels between u and v are up, or both are down).

Define an execution as an infinite sequence C0, e1, C1, e2,

C2, . . . of alternating configurations and events, starting with
an initial configuration and, if finite, ending with a configura-
tion such that the sequence satisfies the following conditions:

– C0 is an initial configuration.
– The preconditions for event ei are true in Ci−1 for all

i ≥ 1.
– Ci is the result of executing event ei on configuration

Ci−1, for all i ≥ 1 (only the node and channel involved
in an event change state, and they change according to
their state machine transitions).

– If a channel remains Up for infinitely long, then every
message sent over the channel during this Up interval is
eventually delivered.

– For all nodes u and v, Channel(u, v) experiences infi-
nitely many topology change events if and only if
Channel(v, u) experiences infinitely many topology
change events; if they both experience finitely many, then
after the last one, statusuv = statusvu .

Given a configuration of an execution, define an undi-
rected graph Gchan as follows: the vertices are the nodes,
and there is an (undirected) edge between vertices u and v

if and only if at least one of Channeluv and Channelvu is
Up. Thus Gchan indicates all pairs of nodes u and v such that
either u can send messages to v or v can send messages to
u. If the execution has a finite number of topology change
events, then Gchan never changes after the last such event,
and we denote the final version of Gchan as G f inal

chan . By the last

bullet point above, an edge in G f inal
chan indicates bidirectional

communication ability between the two endpoints.
We also assign a positive real-valued global time gt to

each event ei , i ≥ 1, such that gt (ei) < gt (ei+1) and, if the
execution is infinite, the global times increase without bound.
Each configuration inherits the global time of its preceding
event, so gt (Ci) = gt (ei) for i ≥ 1; we define gt (C0) to be
0. We assume that the nodes do not have access to gt .

Instead, each node u has a causal clock Tu , which pro-
vides it with a non-negative real number at each event in an
execution. Tu is a function from global time (i.e., positive
reals) to causal clock times; given an execution, for con-
venience we sometimes use the notation Tu(ei) or Tu(Ci)

as shorthand for Tu(gt (ei)) or Tu(gt (Ci)). The key idea of
causal clocks is that if one event potentially can cause another
event, then the clock value assigned to the first event is less
than the clock value assigned to the second event. We use the
notion of happens-before to capture the concept of potential
causality. Recall that an event e1 is defined to happen before
[16] another event e2 if one of the following conditions is
true:

1. Both events happen at the same node, and e1 occurs
before e2 in the execution.

2. e1 is the send event of some message from node u to node
v, and e2 is the receive event of that message by node v.

3. There exists an event e such that e1 happens before e and
e happens before e2.

123

A leader election algorithm 79

The causal clocks at all the nodes, collectively denoted T ,
must satisfy the following properties:

– For each node u, the values of Tu are increasing, i.e.,
if ei and e j are events involving u in the execution with
i < j , then Tu(ei) < Tu(e j). In particular, if there is an
infinite number of events involving u, then Tu increases
without bound.

– T preserves the happens-before relation [16] on events;
i.e., if event ei happens before event e j , then T (ei) <

T (e j).

Our description and proof of the algorithm assume that
nodes have access to causal clocks. One way to implement
causal clocks is to use perfect clocks, which ensure that
Tu(t) = t for each node u and global time t . Since an event
that causes another event must occur before it in real time,
perfect clocks capture causality. Perfect clocks could be pro-
vided by, say a GPS service, and were assumed in the prelim-
inary version of this paper [15]. Another way to implement
causal clocks is to use Lamport’s logical clocks [16], which
were specifically designed to capture causality.

2.4 Problem definition

Each node u in the system has a local variable lidu to hold
the identifier of the node currently considered by u to be the
leader of the connected component containing u.

In every execution that includes a finite number of topol-
ogy change events, we require that the following eventually
holds: Every connected component CC of the final topology
graph G f inal

chan contains a node �, the leader, such that lidu = �

for all nodes u ∈ CC , including � itself.

3 Leader election algorithm

In this section, we present our leader election algorithm.
The pseudocode for the algorithm is presented in Figs. 1,

2 and 3. First, we provide an informal description of the
algorithm, then, we present the details of the algorithm and
the pseudocode, and finally, we provide an example execu-
tion. In the rest of this section, variable var of node u will
be indicated as varu . For brevity, in the pseudocode for node
u, variable varu is denoted by just var .

3.1 Informal description

Each node in the system has a 7-tuple of integers called a
height. The directions of the edges in the graph are deter-
mined by comparing the heights of neighboring nodes: an
edge is directed from a node with a larger height to a node
with a smaller height. Due to topology changes nodes may
lose some of their incident links, or get new ones through-
out the execution. Whenever a node loses its last outgoing
link because of a topology change, it has no path to the cur-
rent leader, so it reverses all of its incident edges. Reversing
all incident edges acts as the start of a search mechanism
(called a reference level) for the current leader. Each node
that receives the newly started reference level reverses the
edges to some of its neighbors and in effect propagates the
search throughout the connected component. Once a node
becomes a sink and all of its neighbors are already partic-
ipating in the same search, it means that the search has hit
a dead end and the current leader is not present in this part
of the connected component. Such dead-end information is
then propagated back towards the originator of the search.
When a node which started a search receives such dead-end
messages from all of its neighbors, it concludes that the cur-
rent leader is not present in the connected component, and
so the originator of the search elects itself as the new leader.
Finally, this new leader information propagates throughout
the network via an extra “wave” of propagation of messages.

In our algorithm, two of the components of a node’s height
are timestamps recording the time when a new “search” for
the leader is started, and the time when a leader is elected.

Fig. 1 Code triggered
by topology changes

123

80 R. Ingram et al.

Fig. 2 Code triggered
by Update message

Fig. 3 Subroutines

In the algorithm in [15], these timestamps are obtained from
a global clock accessible to all nodes in the system. In this
paper, we use the notion of causal clocks (defined in Sect. 2.3)
instead.

One difficulty that arises in solving leader election in
dynamic networks is dealing with the partitioning and

merging of connected components. For example, when a con-
nected component is partitioned from the current leader due
to links going down, the above algorithm ensures that a new
leader is elected using the mechanism of waves searching for
the leader and convergecasting back to the originator. On the
other hand, it is also possible that two connected components

123

A leader election algorithm 81

merge together resulting in two leaders in the new connected
component. When the different heights of the two leaders are
being propagated in the new connected component, eventu-
ally, some node needs to compare both and decide which one
to adopt and continue propagating. Recall that when a new
leader is elected, a component of the height of the leader
records the time of the election which can be used to deter-
mine the more recent of two elections. Therefore, when a
node receives a height with a different leader information
from its own, it adopts the one corresponding to the more
recent election.

Similarly, if two reference levels are being propagated in
the same connected component, whenever a node receives a
height with a reference level different from its current one,
it adopts the reference level with the more recent timestamp
and continues propagating it. Therefore, even though con-
flicting information may be propagating in the same con-
nected component, eventually the algorithm ensures that as
long as topology changes stop, each connected component
has a unique leader.

3.2 Nodes, neighbors and heights

First, we describe the mechanism through which nodes get
to know their neighbors. Each node in the algorithm keeps
a directed approximation of its neighborhood in Gchan as
follows. When u gets a ChannelUp event for the channel
from u to v, it puts v in a local set variable called f ormingu .
When u subsequently receives a message from v, it moves v

from its f ormingu set to a local set variable called Nu (N for
neighbor). If u gets a message from a node which is neither
in its forming set, nor in Nu , it ignores that message. And
when u gets a ChannelDown event for the channel from u to
v, it removes v from f ormingu or Nu , as appropriate. For
the purposes of the algorithm, u considers as its neighbors
only those nodes in Nu . It is possible for two nodes u and v

to have inconsistent views concerning whether u and v are
neighbors of each other. We will refer to the ordered pair
(u, v), where v is in Nu , as a link of node u.

Nodes assign virtual directions to their links using vari-
ables called heights. Each node maintains a height for itself,
which can change over time, and sends its height over all out-
going channels at various points in the execution. Each node
keeps track of the heights it has received in messages. For
each link (u, v) of node u, u considers the link as incoming
(directed from v to u) if the height that u has recorded for v is
larger than u’s own height; otherwise u considers the link as
outgoing (directed from u to v). Heights are compared using
lexicographic ordering; the definition of height ensures that
two nodes never have the same height. Note that, even if v

is viewed as a neighbor of u and vice versa, u and v might
assign opposite directions to their corresponding links, due
to asynchrony in message delays.

Next, we examine the structure of a node’s height in more
detail. The height for each node is a 7-tuple of integers
((τ, oid, r), δ, (nlts, lid), id), where the first three compo-
nents are referred to as the reference level (RL) and the fifth
and sixth components are referred to as the leader pair (LP).
In more detail, the components are defined as follows:

– τ , a non-negative timestamp which is either 0 or the value
of the causal clock time when the current search for an
alternate path to the leader was initiated.

– oid, is a non-negative value that is either 0 or the id of
the node that started the current search (we assume node
ids are positive integers).

– r , a bit that is set to 0 when the current search is initiated
and set to 1 when the current search hits a dead end.

– δ, an integer that is set to ensure that links are directed
appropriately to neighbors with the same first three com-
ponents. During the execution of the algorithm δ serves
multiple purposes. When the algorithm is in the stage of
searching for the leader (having either reflected or unre-
flected RL), the δ value ensures that as a node u adopts
the new reference level from a node v, the direction of
the edge between them is from v to u; in other words it
coincides with the direction of the search propagation.
Therefore, u adopts the RL of v and sets its δ to one less
than v’s. When a leader is already elected, the δ value
helps orient the edges of each node towards the leader.
Therefore, when node u receives information about a new
leader from node v, it adopts the entire height of v and
sets the δ value to one more than v’s.

– nlts, a non-positive timestamp whose absolute value is
the causal clock time when the current leader was elected.

– lid, the id of the current leader.
– id, the node’s unique ID.

Each node u keeps track of the heights of its neighbors
in an array heightu , where the height of a neighbor node
v is stored in heightu[v]. The components of heightu[v]
are referred to as (τv, oidv, rv, δv, nltsv, lidv, v) in the
pseudocode.

3.3 Initial states

The definition of an initial configuration for the entire system
from Sect. 2.3 included the condition that each node be in an
initial state according to its algorithm. The collection of initial
states for the nodes must be consistent with the collection of
initial states for the channels. Let Ginit

chan be the undirected
graph corresponding to the initial states of the channels, as
defined in Sect. 2.3. Then in an initial configuration, the state
of each node u must satisfy the following:

– f ormingu is empty,
– Nu equals the set of neighbors of u in Ginit

chan ,

123

82 R. Ingram et al.

– heightu[u] = (0, 0, 0, δu, 0, �, u) where � is the id of
a fixed node in u’s connected component in Ginit

chan (the
current leader), and δu equals the distance from u to � in
Ginit

chan ,
– for each v in Nu, heightu[v] = heightv[v] (i.e., u has

accurate information about v’s height), and
– Tu is initialized properly with respect to the definition of

causal clocks.

The constraints on the initial configuration just given
imply that initially, each connected component of the com-
munication topology graph has a leader; furthermore, by fol-
lowing the virtual directions on the links, nodes can easily
forward information to the leader (as in TORA). One way of
viewing our algorithm is that it maintains leaders in the net-
work in the presence of arbitrary topology changes. In order
to establish this property, the same algorithm can be exe-
cuted, with each node initially being in a singleton connected
component of the topology graph prior to any ChannelUp or
ChannelDown events.

3.4 Goal of the algorithm

The goal of the algorithm is to ensure that, once topol-
ogy changes cease, eventually each connected component
of Gchan

f inal is “leader-oriented”, which we now define. Let

CC be any connected component of Gchan
f inal . First, we define

a directed version of CC , denoted
−→
CC , in which each undi-

rected edge of CC is directed from the endpoint with larger
height to the endpoint with smaller height. We say that CC
is leader-oriented if the following conditions hold:

1. No messages are in transit in CC .
2. For each (undirected) edge {u, v} in CC , if (u, v) is a link

of u, then u has the correct view of v’s height.
3. Each node in CC has the same leader id, say �, where �

is also in CC .
4.

−→
CC is a directed acyclic graph (DAG) with � as the unique
sink.

A consequence of each connected component being
leader-oriented is that the leader election problem is solved.

3.5 Description of the algorithm

The algorithm consists of three different actions, one for each
of the possible events that can occur in the system: a channel
going up, a channel going down, and the receipt of a message
from another node. Next, we describe each of these actions
in detail.

First, we formally define the conditions under which a
node is considered to be a sink:

– SI N K = ((∀v ∈ Nu, L Pv
u = L Pu

u) and (∀v ∈
Nu, heightu[u] < heightu[v]) and (lidu

u �= u)). Recall
that the LP component of node u’s view of v’s height,
as stored in u’s height array, is denoted L Pv

u , and simi-
larly for all the other height components. This predicate
is true when, according to u’s local state, all of u’s neigh-
bors have the same leader pair as u, u has no outgoing
links, and u is not its own leader. If node u has links to
any neighbors with different LPs, u is not considered a
sink, regardless of the directions of those links.

ChannelDown event: When a node u receives a notifica-
tion that one of its incident channels has gone down, it needs
to check whether it still has a path to the current leader. If the
ChannelDown event has caused u to lose its last neighbor,
as indicated by u’s N variable, then u elects itself by calling
the subroutine electSelf. In this subroutine, node u sets its
first four components to 0, and the LP component to (nlts, u)
where nlts is the negative value of u’s current causal clock
time. Then, in case u has any incident channels that are in the
process of forming, u sends its new height over them. If the
ChannelDown event has not robbed u of all its neighbors (as
indicated by u’s N variable) but u has lost its last outgoing
link, i.e., it passes the sink test, then u starts a new reference
level (a search for the leader) by setting its τ value to the cur-
rent clock time, oid to u’s id, the r bit to 0, and the δ value to
0, as shown in subroutine startNewRefLevel. The com-
plete pseudocode for the ChannelDown action is available in
Fig. 1.

ChannelUp event: When a node u receives a notification
of a channel going up to another node, say v, then u sends
its current height to v and includes v in its set formingu . The
pseudocode for the ChannelUp action is available in Fig. 1.

Receipt of an update message: When a node u receives
a message from another node v, containing v’s height, node
u performs the following sequence of rules (shown in Fig. 2).

First, if v is in neither f ormingu nor Nu , then the message
is ignored. If v ∈ f ormingu but v /∈ Nu then v is moved to
Nu . Next, u checks whether v has the same leader pair as u. If
v knows about a more recent leader than u, node u adopts that
new LP (shown in subroutine adoptLPIfPriority in Fig. 3).
If the LP’s of u and v are the same, then u checks whether
it is a sink using the definition above. If it is not a sink, it
does not perform any further action (because it already has
a path to the leader). Otherwise, if u is a sink, it checks the
value of the RL component of all of its neighbors’ heights
(including v’s). If some neighbor of u, say w, knows of a RL
which is more recent than u’s, then u adopts that new RL
by setting the RL part of its height to the new RL value and
changing the δ component to one less than the δ component
of w. Therefore, the change in u’s height does not cause w to
become a sink (again) and so the search for the leader does
not go back to w and it is thus propagated in the rest of the

123

A leader election algorithm 83

connected component. The details are shown in subroutine
propagateLargestRefLevel in Fig. 3.

If u and all of its neighbors have the same RL component
of their heights, say (τ, oid, r), we consider three possible
cases:

1. If τ > 0 (indicating that this is a RL started by some
node, and not the default value 0) and r = 0 (the RL
has not reached a dead end), then this is an indication of
a dead end because u and all of its neighbors have the
same unreflected RL. In this case u changes its height
by setting the r component of its height to 1 (shown in
subroutine reflectRefLevel in Fig. 3).

2. If τ > 0 (indicating that this is a RL started by some
node, and not the default value 0), r = 1 (the RL has
already reached a dead end) and oid = u (u started the
current RL), then this is an indication that the current
leader may not be in the same connected component any-
more. In other words, all the branches of the RL started
by u reached dead ends. Therefore, u elects itself as the
new leader by setting its first 4 components to 0, and
the LP component to (nlts, u) where nlts is the negative
value of u’s current causal clock time (shown in sub-
routine electSelf in Fig. 3). Note that this case does
not guarantee that the old leader is not in the connected
component, because some recent topology change may
have reconnected it back to u’s component. We already
described how the leader information of two different
leaders is handled.

3. If neither of the two conditions above are satisfied, then
it is the case that either τ = 0 or τ > 0, r = 1 and
oid �= u. In other words, all of u’s neighbors have a
different reflected RL or contain an RL indicating that
various topology changes have interfered with the proper
propagation of RL’s, and so node u starts a fresh RL by
setting τ to the current causal clock time, oid to u’s id,
the r bit to 0, and the δ value to 0 (shown in subroutine
startNewRefLevel in Fig. 3).

Finally, whenever a node changes its height, it sends a
message with its new height to all of its neighbors. Addition-
ally, whenever a node u receives a message from a node v

indicating that v has different leader information from u, then
either if u adopts v’s LP or not, u sends an update message
to v with its new (possibly same as old) height. This step is
required due to the weak level of coordination in neighbor
discovery.

3.6 Sample execution

Next, we provide an example which illustrates a particu-
lar algorithm execution. Figure 4, parts (a)–(h), show the
main stages of the execution. In the picture for each stage, a

message in transit over a channel is indicated by a light grey
arrow. The recipient of the message has not yet taken a step
and so, in its view, the link is not yet reversed.

(a) A quiescent network is a leader-oriented DAG in which
node H is the current leader. The height of each node is
displayed in parenthesis. Link direction in this figure is
shown using solid-headed arrows and messages in transit
are indicated by light grey arrows.

(b) The link between nodes G and H goes down triggering
action ChannelDown at node G (and node H). When
non-leader node G loses its last outgoing link due to
the loss of the link to node H , G executes subroutine
startNewRefLevel (because it is a sink and it has
other neighbors besides H), and sets the RL and δ parts
of its height to (1, G, 0) and δ = 0. Then node G sends
messages with its new height to all its neighbors. By
raising its height in this way, G has started a search for
leader H .

(c) Nodes D, E , and F receive the messages sent from node
G, messages that cause each of these nodes to become
sinks because G’s new RL causes its incident edges to be
directed away from G. Next, nodes D, E , and F com-
pare their neighbors’ RL’s and propagate G’s RL (since
nodes B and C have lower heights than node G) by exe-
cuting propagateLargestRefLevel. Thus, they take
on RL (1, G, 0) and set their δ values to −1, ensuring
that their heights are lower than G’s but higher than the
other neighbors’. Then D, E and F send messages to
their neighbors.

(d) Node B has received messages from both E and D with
the new RL (1, G, 0), and C has received a message
from F with RL (1, G, 0); as a result, B and C exe-
cute subroutine propagateLargestRefLevel, which
causes them to take on RL (1, G, 0) with δ set to −2
(they propagate the RL because it is more recent than
all of their neighbors’ RL’s), and send messages to their
neighbors.

(e) Node A has received message from both nodes B and
C . In this situation, node A is connected only to nodes
that are participating in the search started by node G for
leader H . In other words, all neighbors of node A have
the same RL with τ > 0 and r = 0, which indicates that
A has detected a dead end for this search. In this case,
node A executes subroutine reflectRefLevel, i.e., it
“reflects” the search by setting the reflection bit in the
(1, G, ∗) reference level to 1, resetting its δ to 0, and
sending its new height to its neighbors.

(f) Nodes B and C take on the reflected reference level
(1, G, 1) by executing subroutine propagateLargest
RefLevel (because this is the largest RL among their
neighbors) and set their δ to −1, causing their heights to

123

84 R. Ingram et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4 Sample execution when leader H becomes disconnected (a), with time increasing from a–h. With no other topology changes, every node
in the connected component will eventually adopt G as its leader

123

A leader election algorithm 85

be lower than A’s and higher than their other neighbors’.
They also send their new heights to their neighbors.

(g) Nodes D, E , and F act similarly as B and C did in part
(f), but set their δ values to −2.

(h) When node G receives the reflected reference level from
all its neighbors, it knows that its search for H is in vain.
G executes subroutine electSelf and elects itself by
setting the LP part of its height to (−7, G) assuming the
causal clock value at node G at the time of the elec-
tion is 7. The new LP (−7, G) then propagates through
the component, assuming no further link changes occur.
Whenever a node receives the new LP information, it
adopts it because it is more recent than the one associ-
ated with the old LP of H . Eventually, each node has
RL (0, 0, 0) and LP (−7, G), with D, E and F having
δ = 1, B and C having δ = 2, and A having δ = −3.

We now explain two other aspects of the algorithm that
were not exercised in the example execution just given. First,
note that it is possible for multiple searches—each initiated
by a call to startNewRefLevel—for the same leader to
be going on simultaneously. Suppose messages on behalf of
different searches meet at a node i . We assume that messages
are taken out of the input message queue one at a time. Major
action is only taken by node i when it loses its last outgoing
link; when the earlier messages are processed, all that hap-
pens is that the appropriate height variables are updated. If
and when a message is processed that causes node i to lose
its last outgoing link, then i takes appropriate action, either
to propagate the largest reference level among its neighbors
or to reflect the common reference level.

Another potentially troublesome situation is when, for two
nodes u and v, the channel from u to v is up for a long period
of time while the channel from v to u is down. When the
channel from u to v comes up at u, v is placed in u’s forming
set, but is not able to move into u’s neighbor set until u
receives an Update message from v, which does not occur as
long as the channel from v to u remains down. Thus during
this interval, u sends update messages to v but since v is not
considered a neighbor of u, v is ignored in deciding whether
u is a sink. In the other direction, when the channel from u
to v comes up at u, u sends its height to v, but the message
is ignored by v since the link from v to u is down and thus
u is not in v’s forming set or neighbor set. More discussion
of this asymmetry appears in Sect. 4.1; for now, the main
point is that the algorithm simply continues with u and v not
considering each other as neighbors.

4 Correctness proof

In this section, we show that, once topology changes cease,
the algorithm eventually terminates with each connected

component being leader-oriented. As a result, the lidu vari-
ables satisfy the conditions of the leader election problem.

We first show, in Sect. 4.1, an important relationship
between the final communication topology and the forming
and N variables of the nodes. The rest of the proof uses
a number of invariants, denoted as “Properties”, which are
shown to hold in every configuration of every execution; each
one is proved (separately) by induction on the configurations
occurring in an execution. In Sect. 4.2, we introduce some
definitions and basic facts regarding the information about
nodes’ heights that appears in the system, either in nodes’
height arrays or in messages in transit. In Sect. 4.3, we bound,
in Lemma 3, the number of elections that can occur after the
last topology change; this result relies on the fact, shown in
Lemma 2, that once a node u adopts a leader that was elected
after the last topology change, u never becomes a sink again.
Then in Sect. 4.4, we bound, in Lemma 4, the number of
new reference levels that are started after the last topology
change; the proof of this result relies on several additional
properties. Sect. 4.5 is devoted to showing, in Lemmas 5, 6,
and 7, that eventually there are no messages in transit and
every node has an accurate view of its neighbors’ heights.
All the pieces are put together in Theorem 1 of Sect. 4.6 to
show that eventually we have a leader-oriented connected
component; a couple of additional properties are needed for
this result.

Throughout the proof, consider an arbitrary execution of
the algorithm in which the last topology change event occurs
at some global time tLT C , and consider any connected com-
ponent of the final topology.

4.1 Channels and neighbors

Because of the lack of coordination between the topology
change events for the two channels going between nodes u
and v in the two directions, u and v do not necessarily have
consistent views of their local neighborhoods in Gchan , even
after the last topology change. For instance, it is possible that
v is in Nu but u is not in Nv forever after the last topology
change. Suppose the channel from u to v remains Up from
some time t onwards, so that v remains in Nu from time
t onwards. However, suppose that the channel from v to u
fluctuates several times after time t , eventually stabilizing
to being Up (cf. Fig. 5). Every time the channel to u goes
down, u is removed from v’s forming and N sets. Every time
the channel to u comes up, v adds u to formingv and sends its
height in an Update message to u. When u gets the message
from v, it updates the entry for v in its height array, but does
not send its own height back to v. As long as u’s height does
not change, u does not send its height to v. Thus v is never
able to move u from f ormingv into Nv .

However, we are assured by Lemma 1 below that after
time tLT C , Nu ∪ f ormingu does not change for any node u.

123

86 R. Ingram et al.

Fig. 5 The status of the channel from u to v remains Up, but the status of the channel from v to u fluctuates

Furthermore, a node u always sends Update messages to all
nodes in Nu ∪ f ormingu , which constitutes all the outgoing
channels of u.

Lemma 1 After time tLT C , Nu ∪ f ormingu does not change
for any node u.

Proof When Channel Downuv occurs, u removes v from
both its Nu and f ormingu variables. When ChannelU puv

occurs, u adds v to its f ormingu variable and sends an
Update message to v. When u receives an Update mes-
sage from a node v, the only possible change to the Nu and
f ormingu variables is that v is moved from f ormingu to
Nu , which does not change Nu ∪ f ormingu .

tT LC is the latest among all the times at which either a
ChannelDown, or a ChannelUp occurs. After this time, the
only change to the N set or the forming set must be due to
receipt of an Update message, causing lines 2 and 3 of Fig. 2
to be executed. Thus the only change to the N set or the
forming set is that a node which is removed from the forming
set is added to the N set. This does not affect N ∪ f orming.

	

4.2 Height tokens and their properties

Since a node makes algorithm decisions based solely on com-
parisons of its neighboring nodes’ height tuples, we first
present several important properties of the tuple contents.
Define h to be a height token for node u in a configuration
if h is in an Update message in transit from u, or h is the
entry for u in the height array of any node. Let L P(h) be the
leader pair of h, RL(h) the reference level (triple) of h, δ(h)

the δ value of h, lts(h) the absolute value of the (nonposi-
tive) leader timestamp (component nlts) of h, and τ(h) the τ

value of h.
Given a configuration in which Channel(u, v) has status

Up and u ∈ Nv , the (u, v) height sequence is defined as
the sequence of height tokens h0, h1, . . . , hm , where h0 is
u’s height, hm is v’s view of u’s height, and h1, . . . , hm−1

is the sequence of height tokens in the Update messages in
transit from u to v. If the status of Channel(u, v) is Up but
u /∈ Nv , then the (u, v) height sequence is defined similarly
except that h1, . . . , hm is the sequence of height tokens in the
Update messages in transit from u to v; in these cases, v does
not have an entry for u in its height array. If Channel(u, v)

is Down, the (u, v) height sequence is undefined.

Property A If h is a height token for a node u in the (u, v)

height sequence, then:

1. lts(h) ≤ Tu and τ(h) ≤ Tu

2. If h is in v’s height array then lts(h) ≤ Tv and τ(h) ≤
Tv .

Proof By induction on the configurations in the execution.
Basis: In the initial configuration C0, all the leader

timestamps and τ values are 0 and T ≥0 for all nodes v.
Inductive hypothesis: Suppose the property is true in con-

figuration Ci−1 and show it remains true in configuration Ci .
Since the property is true in Ci−1, for every height token h
in the (u, v) height sequence, we have:

(i) lts(h) ≤ Tu(Ci−1) and τ(h) ≤ Tu(Ci−1)

(ii) If h is in v’s height array then lts(h) ≤ Tv(Ci−1) and
τ(h) ≤ Tv(Ci−1)

Inductive step: If h is a pre-existing height token during
event ei (the event immediately preceding Ci), then by the
inductive hypothesis and the increasing property of Tu , it
follows that lts(h) ≤ Tu(Ci) and τ(h) ≤ Tu(Ci). If, on the
other hand, h is created during event ei , then any new values
of lts and τ generated by u are equal to Tu(Ci) and, thus,
the property remains true.

If h is a height token for node u at some other node v, then
h was either present at v during Ci−1 or was received at v

during event ei , immediately preceding Ci . In the first case,
by the inductive hypothesis and the increasing property ofTv ,
it follows that lts(h) ≤ Tv(Ci) and τ(h) ≤ Tv(Ci). In the
second case, there exists a message through which v received
h from u during event ei . Since T preserves causality, by the
definition of the happens before relation, it follows that the
creation of either τ(h) or lts(h) preceded the receipt of the
message by v. Therefore, in configuration Ci it remains true
that lts(h) ≤ Tv(Ci) and τ(h) ≤ Tv(Ci). 	

Property B, given below, states some important facts about
height sequences. If the channel’s status is Up and m = 1,
meaning that no messages are in transit from u to v, then Part
(1) of Property B indicates that v has an accurate view of u’s
height. If there are Update messages in transit, then the most
recent one sent has accurate information. Part (2) of Property
B implies that leader pairs are taken on in decreasing order.

123

A leader election algorithm 87

Part (3) of Property B implies that reference levels are taken
on in increasing order with respect to the same leader pair.
Note that Property B only holds if m > 0.

Property B Let h0,h1,. . . , hm be the (u, v) height sequence
for any Channel(u, v) whose status is Up. Then the follow-
ing are true if m > 0:

1. h0 = h1.
2. For all l, 0 ≤ l < m, L P(hl) ≤ L P(hl+1).
3. For all l, 0 ≤ l < m, if L P(hl) = L P(hl+1), then

RL(hl) ≥ RL(hl+1).

Proof The proof is by induction on the execution.
Initially in C0, Channel(u, v) is either Up or Down. If

Channel(u, v) is Down, then the (u, v) height sequence is
undefined. If Channel(u, v) is Up, then the definition of
initial configurations states that no messages are in transit
and v has an accurate view of u’s height, that is, m = 1 and
h0 = h1.

Suppose the property is true in configuration Ci−1 and
show it is still true in configuration Ci .

Suppose event ei is Channel Downuv . Then the (u, v)

height sequence is not defined in Ci .
Suppose event ei is ChannelU puv . By the assumption that

the channel up/down events for a given channel alternate,
the state of the channel in Ci−1 is Down and there are no
messages in transit. Thus in Ci the (u, v) height sequence is
h, h, where h is the height of u in Ci , which is stored in u’s
height array and is in the Update message that u sends to v.
Clearly this height sequence satisfies the three conditions.

Suppose event ei is the receipt by v of an Update message
from u. In one case, the (u, v) height sequence changes by
dropping the last element, if the oldest message in transit
takes the place of v’s view of u’s height. In the other case, the
(u, v) height sequence does not change if the receipt causes
v to record u’s height and add u to Nv . In both cases, the
three conditions still hold.

Suppose event ei is the receipt by u of an Update message
from node w or is a ChannelDown event for a channel to
some node other than v. If u does not change its height, then
there is no change affecting the property.

Suppose u changes its height from h′
0 to h.

Let the (u, v) height sequence in Ci−1 be h′
0, h′

1, . . . , h′
m .

By the inductive hypothesis, h′
0 = h′

1. By the code, the (u, v)

height sequence in Ci is h, h, h′
1, . . . , h′

m . In each case we
just have to show that h has the proper relationship to h′

1,
which equals h′

0.
Case 1: ei calls reflectRefLevel: All of u’s neighbors

are viewed as having the same LP as u, having reference level
(t, p, 0) for some t and p, and having a larger height than u.

Since u is a sink during the step, RL(h′
0) ≤ (t, p, 0).

Since RL(h) = (t, p, 1), and the old and new LP are the
same, the property holds.

Case 2: ei calls electSelf: By Property A, lts in L P(h′
0)

is less than or equal to T ′
u in configuration Ci−1. The new

leader pair has ltsTu in configuration Ci , which is greater
than T ′

u . So L P(h) ≤ L P(h′
0).

Case 3: ei calls startNewRefLevel: By Property A, the
τ value in RL(h′

0) is less than or equal to T ′
u at configuration

Ci−1. The new reference level has τ value Tu at configuration
Ci , which is greater than T ′

u and the LP is unchanged. So
L P(h) = L P(h′

0) and RL(h) ≥ RL(h′
0).

Case 4: ei calls propagateLargestRefLevel: All
neighbors of u are viewed as having the same LP as u, but
with different RL’s among themselves, and as having larger
heights than u. By the code, u takes on the largest neigh-
boring RL, which is at least as large as u’s old RL, since u
is a sink. The LP is unchanged. So L P(h) = L P(h′

0) and
RL(h) ≥ RL(h′

0).
Case 5: ei calls adoptLPIfPriority: By the code, the

new LP is smaller than the previous, so L P(h) < L P(h′
0).
	

4.3 Bounding the number of elections

In this subsection, we show that every node elects itself at
most a finite number of times after the last topology change.

Define the following with respect to any configuration
in the execution. For LP (−s, �), where T�(t) = s and t ≥
tLT C , let LP tree LT (−s, �) be the subgraph of the connected
component whose vertices consist of all nodes that have taken
on LP (−s, �) in the execution (even if they no longer have
that LP), and whose directed edges are all ordered pairs (u, v)

such that v adopts LP (−s, �) due to the receipt of an Update
message from u. Since a node can take on a particular LP
only once by Property B, LT (−s, �) is a tree rooted at �.

Property C For each height token h with RL (t, p, r), either
t = p = r = 0, or t > 0, p is a node id, and r is 0 or 1.

Proof The proof is by induction on the sequence of config-
urations in the execution. The basis follows since all height
tokens in an initial configuration have RL (0, 0, 0).

For the inductive step, we consider all the ways that a
new RL can be generated (as opposed to copying an exist-
ing one). In electSelf, the new RL is (0,0,0). In start-
NewRefLevel, the new RL is (t, p, 0), where t is the current
causal clock time, which is positive, and p is a node id. In
reflectRefLevel, the new RL is (t, p, 1), where (t, p, 0) is
a pre-existing height token. By the precondition for executing
reflectRefLevel, t is positive. By the inductive hypothe-
sis applied to the pre-existing height token (t, p, 0), p is a
node id. 	

123

88 R. Ingram et al.

Property D Let h be a height token for some node u. If
L P(h) = (−s, �), where for some global time t,T�(t) =
s and t ≥ tLT C , then RL(h) = (0, 0, 0) and δ(h) is the
distance in LT (−s, �) from � to u.

Proof By induction on the configurations in the execution.
By Property A, the basis is configuration C j , just after

the event at global time t when the first height tokens with
LP (−s, �) are created. By the code, these height tokens are
created by node � for itself and have RL (0, 0, 0) and δ = 0.

Assume the property is true in configuration Ci−1, with
i − 1 ≥ j , and show it is true in configuration Ci . Since
no further topology changes occur, the only possibility for
event ei is the receipt of an Update message. Suppose node
u receives Update(h) from node v.

As a result of the receipt of the message, u records h as
v’s height in its view. The inductive hypothesis implies that
the property remains true for this new height token.

Also as a result of the receipt of the message, u might
change its height.

Suppose u changes its height by executing adoptLPIf-
Priority, adopting the LP in h, where L P(h) = (−s, �). By
the inductive hypothesis, RL(h) = (0, 0, 0), and δ(h) is the
distance from � to v in LT (−s, �) in Ci−1. By Property B,
since u adopts (−s, �), it must be that u’s LP is larger than
(−s, �) in Ci−1, and thus v is u’s parent in LT (−s, �). By
the code, u sets its RL to (0, 0, 0) and its δ to δ(h) + 1. But
this is exactly the distance in LT (−s, �) from � to u. So all
height tokens created in this step satisfy the property.

Suppose u changes its height because it becomes a sink
and u’s new height has LP (−s, �). First, we show that u does
not take on LP (−s, �) as a result of electSelf. By assump-
tion, LP (−s, �) is created in configuration C j (the base case).
By the code and the increasing property of causal clocks,
it follows that � cannot create a duplicate of LP (−s, �) at
some later configuration Ci . Therefore, u does not take on
LP (−s, �) as a result of electSelf.

Thus, the old height of u, call it h′, also has LP (−s, �).
Since u becomes a sink, all its neighbors have LP (−s, �)
in u’s view, and by the inductive hypothesis they all have
RL (0, 0, 0) in u’s view. Thus the new height of u is not
the result of executing reflectRefLevel (which requires
the neighbors’ common τ to be positive) or propagate-
LargestRefLevel (which requires the neighbors to have
different RL’s). Instead, it must be the result of executing
startNewRefLevel. Since u is a sink and (0, 0, 0) is the
smallest possible RL by Property C, RL(h′) = (0, 0, 0).
Also, since u is a sink, u �= �. Let v be u’s parent in the
LP-tree LT (−s, l) and let d be the distance in that tree from
� to v. By the inductive hypothesis, in u’s view of v’s height,
v’s δ = d, but in u’s own height, δ = d + 1. Thus the edge
between u and v is directed toward v, and u cannot be a sink,
a contradiction. 	

Lemma 2 Any node u that adopts leader pair (−s, �) for
any � and any s, where for some global time t,T�(t) = s
and t > tLT C , never subsequently becomes a sink.

Proof Suppose in contradiction that u adopts leader pair
(−s, �) at global time t1 > t and that at global time t2 > t1, u
becomes a sink. Suppose u does not change its leader pair
in the time interval (t1, t2). (If u did change its leader pair,
the new leader pairs would all be smaller than (−s, �) by
Property B, and the argument would still hold with respect
to the latest leader pair taken on by u in that time interval).

Let v be the parent of u in the LP-tree LT (−s, �). Imme-
diately after time t1, the link (u, v) is directed from u to v in
u’s view.

In order for u to become a sink at time t2, there must be
some time between t1 and t2 when the link (u, v) reverses
direction in u’s view. Suppose the link reverses because u’s
height lowers. Recall that u does not change its leader pair
in (t1, t2) by assumption. By Property D, u’s reference level
remains (0, 0, 0) in (t1, t2) and u’s δ stays the same in the
interval. That is, u’s height does not change, and in particular
does not lower. Thus the only way that the link (u, v) can
reverse direction in (t1, t2) is due to the receipt by u of an
update message from v with a new height for v that is higher
than u’s height.

How can v’s height change after v takes on leader pair
(−s, �)? One possibility is that v’s leader pair changes. By
Property B, any change in v’s leader pair will be to a smaller
one, which will be adopted by u together with a δ value that
keeps the link directed from u to v in u’s view.

The other possibility is that v’s leader pair does not change
but some other component of its height changes. But by Prop-
erty D, since v’s leader pair has timestamp −s with T�(t) = s
and t > tLT C , v’s RL and δ cannot change.

Thus no change to v’s height reported to u after time t1 can
cause the link (u,v) to be directed from v to u in u’s view, and
u cannot be a sink at time t2, which is a contradiction. 	

Lemma 3 No node elects itself more than a finite number of
times after global time tLT C .

Proof Suppose in contradiction that a node u elects itself an
infinite number of times after the last topology change. Once
it has elected itself the first time, the only way it can become a
sink and elect itself again is by adopting a new LP first. Thus,
node u needs to adopt new LP’s infinitely often after tLT C .
By Property B, the leader timestamp of each subsequent LP
has to be greater than the previous one, which results in an
increasing sequence of leader timestamps that u adopts. Let
Tmax be the maximum of the clocks of all nodes at time tLT C .
In the process of adopting increasing leader timestamps, at
some point u will adopt L P(−s, �) where T�(t) = s and for
which s > Tmax .

This follows from the first property of causal clocks which
states that for each node u, the values of Tu are increasing,

123

A leader election algorithm 89

i.e., if ei and e j are events involving u in the execution with
i < j , then Tu(ei) < Tu(e j), and, furthermore, if there is
an infinite number of events involving u, then Tu increases
without bound.

Because Tmax was the maximum value of all clocks at the
time of the last topology change, it follows that t > tLT C .
By Lemma 2, however, node u does not become a sink after
it has adopted L P(−s, �) and thus it cannot elect itself again
after that time, which is a contradiction. 	

If we use perfect clocks to implement T , we can get a
stronger bound on the number of times a node elects itself
after the last topology change. In fact, with perfect clocks it
is guaranteed that no node elects itself more than once after
the last topology change, as we now explain.

As stated in the proof of Lemma 3, if a node u elects itself
more than once after the last topology change, it must take on
a new LP in between each successive pair of elections. Also,
by Property B, the timestamps in these LP’s must be increas-
ing. As explained in the proof of Lemma 3, there could be
multiple LPs already existing at the time of the last topology
change whose timestamps are greater than the timestamp
of the LP that u takes on the first time it elects itself after
the last topology change. The reason is that the clocks are
causal, yet are drawn from a totally-ordered set, and thus
just because clock value t1 is less than clock value t2, it does
not follow that the event associated with t1 happened before
the event associated with clock value t2. However, the num-
ber of such misleading timestamps is finite, so eventually,
if u keeps electing itself, it will take on a timestamp that is
associated with an event that occurred after the last topology
change. Then we can apply Lemma 2 to deduce that u will
never elect itself again. When clocks are perfect, however,
there can be no such misleading timestamps in LP’s: if the
timestamp in a new LP is greater than the timestamp taken on
by u the first time, then this LP was definitely generated after
the last topology change and Lemma 2 applies immediately.
For more details, refer to Lemma 3 in [15].

4.4 Bounding the number of new reference levels

In this subsection, we show that every node starts a new
reference level at most a finite number of times after the
last topology change. The key is to show that after topology
changes cease, nodes will not continue executing Line 13 of
Fig. 2 infinitely and will therefore stop sending algorithm
messages. First we show that the δ value of a node does not
change unless its RL or LP changes.

Property E If h and h′ are two height tokens for the same
node u with RL(h) = RL(h′) and L P(h) = L P(h′), then
δ(h) = δ(h′).

Proof Initially, in C0, the only height tokens for node u are
the ones in u and the ones in u’s neighbors, and the neighbors
have accurate views of u’s height.

Suppose the property is true through configuration Ci−1.
We will show it is still true in the next configuration Ci . The
only way that new height tokens can be introduced into the
system is if a node u changes its height and sends Update
messages with the new height to its neighbors.

Suppose u changes its height through electSelf (resp.,
startNewRefLevel). Since the new height’s leader
timestamp (resp., τ) is the value of the logical clock of u,
Property A implies that there is no pre-existing height token
for u in the system with the new leader timestamp (resp., τ).
Thus there cannot be two height tokens for u with the same
RL and LP but conflicting δs.

Suppose u changes its height through adoptLPIf
Priority. Then the new height of u has a smaller LP than
the old height. By Property B, there is no pre-existing height
token for u in the system with the new LP. Thus there can-
not be two height tokens for u with the same RL and LP but
conflicting deltas.

Suppose u changes its height through reflectRefLevel.
Since u is a sink and in its view all its neighbors have a
common, unreflected, RL, call it (t, p, 0), u’s RL must be
at most (t, p, 0). Since u’s new RL is (t, p, 1), Property B
implies that there is no pre-existing height token for u in the
system with the new RL. Thus there cannot be two height
tokens for u with the same RL and LP but conflicting δs.

Suppose u changes its height through propagate-
LargestRefLevel. The precondition includes the require-
ment that not all the neighbors have the same RL (in u’s
view). Since u becomes a sink, u’s old RL is less than the
largest RL of its neighbors, which is the RL that u takes on
in Ci . Property B implies that there is no pre-existing height
token for u in the system with the new RL.

Thus there cannot be two height tokens for u with the same
RL and LP but conflicting δs. 	

The next definition and its related properties are key to
understanding how unreflected and reflected reference levels
spread throughout the connected component after the last
topology change.

Define the following with respect to any configuration in
the execution after tLT C . For global time t ′ ≥ tLT C , let the
RL DAG RD(t, p), where Tp(t ′) = t , be the subgraph of
the connected component whose vertices consist of p and all
nodes that have taken on RL prefix (t, p) by executing either
propagateLargestRefLevel or reflectRefLevel in the
execution (even if they no longer have that RL prefix). In
RD(t, p), the directed edges are all ordered pairs of node
ids (u, v) such that u ∈ Nv and v ∈ Nu and u has RL
prefix (t, p) prior to the event in which v first takes on RL
prefix (t, p). We say that node u is a predecessor of node v

in RD(t, p) and v is a successor of u in RD(t, p).

123

90 R. Ingram et al.

Property F If there is a height token for node u with RL
prefix (t, p), where Tp(t ′) = t and t ′ ≥ tLT C , then u is in
RD(t, p).

Proof By induction on the sequence of configurations in the
execution.

The basis is configuration C j , where gt (C j) = t ′, i.e., the
time when node p starts RL (t, p, 0). By Property A, there
is no height token with RL prefix (t, p) in C j−1, so the only
height tokens we have to consider are those created by p, for
p. By definition, p is in RD(t, p).

Suppose the property is true through configuration Ci−1.
We will show it is true in Ci .

Suppose in contradiction, in event ei , some node u takes on
RL prefix (t, p) by calling adoptLPIfPriority after receiv-
ing an update message from neighbor v containing height h
with RL prefix (t, p). By the inductive hypothesis, v is in
RD(t, p).

Let (−s, �) be L P(h). We are going to show that when
v takes on RL prefix (t, p), it already has LP (−s, �). We
know that v must have a path to node p in G f inal

chan that has
been in place since p started the new RL prefix at time t ′, by
the assumption that topology changes have stopped by real
time t ′. Just before time t ′, all the neighbors of p had LP
(−s, �) and RL prefix lower than (t, p), by Property B, or p
would not have started a new reference level for LP (−s, �).
Since the neighbors of p had LP (−s, �), they would have
sent messages containing that LP to their neighbors prior to
time t ′. Likewise, those neighbors would have messages in
transit to their neighbors containing the LP (−s, �) and so
on. In short, if the LP (−s, �) is adopted by any nodes that
have a path to p at t ′, then the LP would have been adopted
when that LP spread through the network with a lower RL
prefix.

Thus, when v puts h in transit to u, there is already ahead
of it in the (v, u) height sequence a height token for v’s old
height, with LP (−s, �). Since the channels are FIFO and no
messages are lost after time t ′, u has already received the old
height from v before ei . So in Ci−1, u has a LP that is (−s, �)
or smaller already, before handling the Update message with
height h. Thus u does not execute adoptLPIfPriority in
ei , contradiction. 	

Property G If there is a height token for node u with RL
(t, p, 1), where for some global time t ′,Tp(t ′) = t and t ′ ≥
tLT C , then all neighbors of u are in RD(t, p).

Proof By induction on the sequence of configurations in the
execution.

The basis is the configuration C j with gt (C j) = t ′, i.e.,
the time when the new RL is started at node p. By Property
A, there is no height token in C j−1 with RL (t, p, 1), and in
C j we only add height tokens for node p with RL (t, p, 0).
So the property is vacuously true.

Suppose the property is true through configuration Ci−1

and show it is true in Ci , i > j .
By Property F and the definition of RD(t, p), the only

way that u can take on RL (t, p, 1) is by reflectRefLevel
or propagateLargestRefLevel.

Suppose u takes on RL (t, p, 1) due to reflectRe-
fLevel. Then all u’s neighbors have RL (t, p, 0) in its view.
By Property F, then, they are all in RD(t, p).

Suppose u takes on RL (t, p, 1) due to propagate-
LargestRefLevel. Thus there is a height token in Ci−1

for some neighbor v of u with RL (t, p, 1). By the inductive
hypothesis applied to v, all of v’s neighbors, including u, are
in RD(t, p). Thus u’s RL prefix at some earlier time is (t, p).
By Property B (since the LP does not change in this interval),
u’s RL prefix in Ci−1 is at least (t, p). Since u is a sink dur-
ing event ei , u’s RL prefix in Ci−1 is at most (t, p), so it is
exactly (t, p) in Ci−1. Since u is a sink, every neighbor of u
(in u’s view) has RL prefix at least (t, p), and since (t, p, 1)

is the maximum of the neighboring RL’s, every neighbor of u
(in u’s view) has RL prefix exactly (t, p). Thus by Property
F, every neighbor of u is in RD(t, p). 	

Property H Suppose that u and v are two nodes such that
u ∈ Nv and v ∈ Nu after tLT C . Consider two height tokens,
hu for node u with RL(hu) = (t, p, ru) and δ(hu) = du,
and hv for node v with RL(hv) = (t, p, rv) and δ(hv) = dv ,
where Tp(t ′) = t and t ′ ≥ tLT C . Then the following are
true:

1. If ru < rv , then u is a predecessor of v in RD(t, p). If u
is a predecessor of v in RD(t, p) then ru ≤ rv .

2. If ru = rv = 0, then du > dv if and only if u is a prede-
cessor of v.

3. If ru = rv = 1, then dv > du if and only if u is a prede-
cessor of v.

Proof By induction on the sequence of configurations in the
execution.

Basis: Consider configuration C j , where gt (C j) = t ′,
that is, when node p starts the new reference level (t, p, 0).
By Property A, in configuration C j−1, there are no height
tokens with RL prefix (t, p). The only new height tokens
introduced by event e j are those for p with RL (t, p, 0), and
the RL DAG RD(t, p) consists solely of node p. Thus all
parts of the property are vacuously true.

Induction: Assume the property holds through configu-
ration Ci−1 and show it is true in Ci , i > j .

By Property E, it is sufficient to consider the height tokens
in u’s view, since there cannot be other height tokens with
the same RL and LP but different δs.

Suppose new height tokens with RL prefix (t, p) are
created by node u during event ei . The only ways this

123

A leader election algorithm 91

can happen are via reflectRefLevel and propagate-
LargestRefLevel, by Property F.

Case 1: reflectRefLevel. During the execution of ei ,
all of u’s neighbors are viewed by u as having RL (t, p, 0)

and the new height tokens created for u have RL (t, p, 1).
We now show that u’s RL prefix is less than (t, p) in Ci−1.

Suppose in contradiction u has RL (t, p, 0) in Ci−1. By the
inductive hypothesis, part (2), u’s δ value cannot be the same
as that of any of its neighbors. This is true since u and all its
neighbors are in RD(t, p) by Property F, and, for any pair
of neighboring nodes in RD(t, p), one is the predecessor of
the other, since two events cannot happen simultaneously.
Since u is a sink, its δ value must be smaller than those of
all its neighbors. By the inductive hypothesis, part (2), u is a
successor of all its neighbors, of which there is at least one.

Then at some previous time t ′′ < gt (Ci−1), u executed
propagateLargestRefLevel and took on RL (t, p, 0).
This must be how u took on (t, p, 0) since, by Property F,
u cannot take on RL (t, p, 0) by running adoptLPIfPri-
ority, and, if u = p, u has no predecessors in RD(t, p),
contradicting the deduction that u is a successor of at least
one neighbor. At t ′′, u has (in its view) at least one neigh-
bor with RL (t, p, 0), (t, p, 0) is the maximum RL of all u’s
neighbors, and at least one neighbor, say v, has a smaller RL
than (t, p, 0), albeit larger than u’s (since u is a sink).

Suppose u has height hu at time t ′′, and its view of v’s
height is hv at time t ′′. Since u is a sink, hu and hv have the
same leader pair, say lp1, we have

RL(hu) < RL(hv) < (t, p, 0) (1)

This means that there was a previous time t ′′′ < t ′′ when
v actually took on height hv (with leader pair lp1). We also
know that v has taken on (t, p, 0) before time t ′′, since u is a
successor of all its neighbors and it takes on RL (t, p, 0) at
time t ′′. Note that v could not have taken on RL (t, p, 0), with
leader pair lp1 before t ′′′. This is because at t ′′′ its leader pair
is also lp1 and its height RL(hv) < (t, p, 0). By Property
B two height tokens with the same leader pair must have
increasing reference levels. Hence, v took on (t, p, 0) after
t ′′′ and before t ′′. Suppose v took on (t, p, 0) at time s such
that t ′′′ < s < t ′′. We know that v has to be a sink at time s in
order to do so. Thus at time s allv’s neighbors inv’s view have
the same leader pair as itself, and v takes on (t, p, 0) with
leader pair lp1 either by propagateLargestRefLevel or
startNewRefLevel. Suppose v’s own height is h′

v at time
s and its view of u’s height is h′

u . Both h′
v and h′

u have leader
pair lp1 and, since v is a sink we have

h′
v < h′

u (2)

Note that hv, hu, h′
v , and h′

u all have leader pair lp1. We also
know that hu < hv from (1). Now from Property B

h′
u ≤ hu (3)

Also from Property B

hv ≤ h′
v (4)

Hence, from (1), (3) and (4), we have

h′
u ≤ hu < hv ≤ h′

v (5)

This is in contradiction to (2).
Part (1): All neighbors of u are its predecessors in

RD(t, p) and in Ci , the predecessors of u have r = 0 and u
has r = 1 so this part continues to hold.

Part (2): The creation of the new height tokens does not
affect this part, since the new tokens do not have r = 0.

Part (3): Since u is not in RD(t, p) in Ci−1, Property G
implies that there cannot be a height token for any of u’s
neighbors with RL (t, p, 1), and this part is vacuously true.

Case 2: propagateLargestRefLevel. In this case,
u’s neighbors have at least two different RLs so we need to
consider which RL u propagates, (t, p, 0) or (t, p, 1).

Case 2.1: Suppose u’s new height has RL (t, p, 0). We
first show that u has RL less than (t, p, 0) in Ci−1. By
the precondition for propagateLargestRefLevel, in
u’s view, (t, p, 0) is the largest neighboring RL, at least
one neighbor has RL less than (t, p, 0), and u is a sink.
Thus u’s RL must be less than (t, p, 0).
Part (1): Since the new height tokens of both u and its pre-
decessors have reflection bit 0, this part is not invalidated
in Ci .
Part (2): Each of u’s neighbors for which u has a height
token h′ with RL (t, p, 0) is a predecessor of u in
RD(t, p), since u is not yet in RD(t, p). By the code,
u’s new height h has a δ calculated so that h′ > h.
Part (3): The new height tokens do not have reflection bit
1 so this part is unaffected.
Case 2.2: Suppose u’s new height has RL (t, p, 1). Then
the largest RL among u’s neighbors has, in u’s view, RL
(t, p, 1). Property G implies that u is in RD(t, p). So
the RL prefix of u is at least (t, p). Since u is a sink,
its RL prefix is (t, p) in Ci−1. So all neighbors (in u’s
view) have RL (t, p, 0) or (t, p, 1) and there is at least
one neighbor with each RL.
Consider any neighbor v of u with RL (t, p, 1) in u’s
view. By the inductive hypothesis, part (1), v must be
a successor of u in Ci−1. Consider any neighbor w of u
with RL (t, p, 0) in u’s view. By the inductive hypothesis,
part (2), w must be a predecessor of u in Ci−1.
Part (1): Since u’s new height causes it to have the same
reflection bit as its successors, and a larger reflection bit
than its predecessors, this part continues to hold in Ci .
Part (2): Since the new height tokens do not have reflec-
tion bit 0, this part is not affected.
Part (3): As argued above, each of u’s neighbors v for
which u has a height token h′ with RL (t, p, 1) is a

123

92 R. Ingram et al.

successor of u in RD(t, p). By the code, u’s new height
h has a δ calculated so that h′ > h.

	

Lemma 4 Every node starts a finite number of new RLs after
tLT C .

Proof Suppose in contradiction that some node u starts an
infinite number of new RLs after tLT C .

Now we show that u takes on a new LP infinitely often.
Suppose in contradiction that u does not do so. Let tL L P be
the latest time at which u takes on a new LP. Consider the
first and second times that u starts a new RL (for the same
LP) after max{tLT C , tL L P }; call these times t1 and t2.

At global time t1, u sets its τ to τ1. Since u does not take
on any more LPs, Property B implies that at the beginning of
the step at time t2, u’s τ is at least τ1, which is positive.

At the beginning of the event at time t2, let (t, p, r) be u’s
RL and let (tc, pc, rc) be the common RL of all u’s neighbors
(in u’s view). Thus the precondition for starting a new RL
cannot be that tc = 0, otherwise u would not be a sink. So it
must be that tc > 0, rc = 1, and pc �= u.

There are two cases, depending on the relationship
between (t, p) and (tc, pc) (note that (t, p) cannot be larger
than (tc, pc) since u is a sink).

Case 1: (t, p) < (tc, pc). Since u has a height token with
RL (tc, pc, 1) for each neighbor v, we can apply Property G to
deduce that all neighbors of v, including u, are in RD(tc, pc).
Thus, at some previous time, u has RL prefix (tc, pc). But
Property B implies that it is not possible for u to have RL
prefix (tc, pc) and then later to have RL prefix (t, p), since
(t, p) < (tc, pc).

Case 2: (t, p) = (tc, pc). By Property F, node u is in
RD(t, p). Thus u has a neighbor v that is a predecessor of u
in RD(t, p).

Here we know that v is in Nu . Also, since v is a prede-
cessor of u in RD(t, p) u is in Nv . Hence, we can apply
Property H.

Since in u’s view, v has RL (t, p, 1), Property H, Part (1),
implies that u’s reflection bit must also be 1, and Property H,
Part (3), implies that u’s height must be greater than v’s. But
this contradicts u being a sink.

Since u takes on a new LP infinitely often, by Property B,
the lts values of the LP’s that u adopts are increasing without
bound. Let Tmax be the maximum of the clocks of all nodes
at time tLT C . Since u is adopting LPs with bigger leader
timestamps, at some point in time it will adopt L P(−s, �)
where for some global time t , T�(t) = s and for which
s > Tmax . Because Tmax is the maximum of all clocks at
the time of the last topology change, we can conclude that
t > tLT C . But then by Lemma 2, u is never again a sink after
that time, contradicting the assumption that u starts a new
RL infinitely often. 	

4.5 Bounding the number of messages

In this subsection we show that eventually no algorithm mes-
sages are in transit.

Lemma 5 Eventually all nodes in the same connected com-
ponent of graph G f inal

chan have the same leader pair.

Proof Choose a connected component of G f inal
chan . Lemma 3

implies that there are a finite number of elections. Thus there
is some smallest LP that ever appears in the connected com-
ponent at or after tLT C , say (−s, �). Suppose in contradiction,
it is not true that eventually all nodes in the same connected
component of G f inal

chan have the same leader pair. We know that
causal clocks have the property that for each node u, the val-
ues of Tu are increasing (i.e., if ei and e j are events involving
u in the execution with i < j , then Tu(ei) < Tu(e j)), and,
furthermore, if there is an infinite number of events involv-
ing u, then Tu increases without bound. We also know from
Lemma 3 that no node elects itself more than a finite number
of times after global time tLT C . From this and from Prop-
erty B we know that eventually every node in the connected
component will stop changing its leader pair. We can then
partition the connected component into two sets of nodes,
those that have adopted (−s, �) and those that have not. Thus
there exist two nodes u and v such that there is an edge in
G f inal

chan between u and v, and u’s final leader pair is (−s, �),
whereas v’s final leader pair is not (−s, �).

Case 1: If (−s, �) originated at or after tLT C then both
communication channels (from u to v and v to u) exist in
G f inal

chan . Suppose the last ChannelU puv event occurs at time
t ≤ tLT C . After time t, v is in f ormingu and, by the code,
v is not removed from f ormingu , since no ChannelDownuv

event occurs after this time. By Lemma 1 there is no change
in Nu ∪ f ormingu after tLT C , hence v is either in Nu or
f ormingu after tLT C . In either case, when u adopts (−s, �),
v gets an Update from u and adopts (−s, �). This leads to a
contradiction.

Case 2: Suppose (−s, �) originated before tLT C . We know
that there is a last ChannelUp event at u for v (since the chan-
nel is eventually Up after tLT C). Suppose this ChannelUp
event occurs at time t . If at time t node u has already taken
on leader pair (−s, �), then u will send an Update message to
v with (−s, �). If node u takes on leader pair (−s, �) at time
t ′ > t , then u will send an Update message to v with (−s, �)
at time t ′. In either case node v will receive this Update mes-
sage. Since node v does not take on leader pair (−s, �), it
must be that v ignores this message, because the Channelvu

is down and u is neither in f ormingv nor in Nv . However, in
this case there will be at time t ′′ > t ′, a last ChannelUp event
at v for u (since the channel is eventually U p after tLT C). At
time t ′′v will send its height h (with a leader pair older than
(−s, �)) to u. At this time node u detects that v has an older
leader pair (since v has not taken on (−s, �)) and node u

123

A leader election algorithm 93

sends an Update message with (−s, �) to v. When v receives
this message with a more recent leader pair (−s, �), v adopts
this leader pair. This is a contradiction to the assumption that
u and v have different leader pairs. 	

Lemma 6 Eventually there are no messages in transit.

Proof By Lemma 5, eventually every node in the connected
component has the same LP, say (−s, �). Lemma 4 states
that there are a finite number of new RLs started. Thus there
is a maximum RL that appears in the connected component
associated with the common LP (−s, �). Let t be some global
time after the last RL has been started and the last leader has
been elected.

Assume in contradiction that messages are always in tran-
sit. Since every message sent is eventually received, there
must be an infinite number of Update messages sent. Thus,
infinitely often after time t , an Update message is received
that causes the recipient to (temporarily) become a sink,
change its height, and send new Update messages. Since
there are no more elections or new RLs started after time
t , the actions taken by the recipients are reflectRefLevel
and propagateLargestRefLevel . Thus eventually every
node has the same, maximum, RL. Once all nodes have the
same RL, the only possible action when a node becomes
a sink is to run electSelf or startNewRefLevel . But
this contradicts the fact that after time t these events do not
happen. 	

The previous lemma, together with Property B, gives us
this corollary:

Lemma 7 Eventually every node has an accurate view of its
neighbors’ heights.

4.6 Leader-oriented DAG

This subsection culminates in showing that eventually the
algorithm terminates (i.e., no messages are in transit), with
each connected component being leader-oriented.

Property I A node is never a sink in its own view.

Proof By induction on the sequence of configurations in the
execution.

In the initial configuration, every node in every connected
component is assumed to have RL (0,0,0), LP (�, 0) where �

is a node in the same component, and a δ value such that it
has a directed path to �.

Assume the property is true in configuration Ci−1

and show it is true in Ci , i > 0. Let u be the node taking
the step ei .

First consider the case when ei is the receipt of an Update
message from a neighbor. If the neighbor’s new height causes
u to become a sink, then either u elects itself (in which case,
by definition it is no longer a sink) or u reflects a reference

level, starts a new reference level, or propagates a reference
level. In each of the latter three cases, the code ensures that u
is no longer a sink, as reflection manipulates the reflection bit,
starting a new reference level manipulates the τ component,
and propagation manipulates the δ value appropriately. If
the neighbor’s new height causes u to adopt a new leader
pair, then the code ensures that u is no longer a sink by
manipulating the δ value appropriately (the new δ value is
greater than that of the node which sent the Update message).

If ei is a ChannelDown event, then any change to u’s height
through electing itself or starting a new reference level does
not cause u to become a sink, as explained above. If ei is
a ChannelUp event, then no change is made to any of the
heights stored at u. 	

Property J Consider any height token h for node u. If
RL(h) = (0, 0, 0), then δ(h) ≥ 0. Furthermore, δ(h) = 0 if
and only if u is a leader.

Proof By induction on the sequence of configurations in the
execution. The basis follows by the definition of the initial
configuration.

Assume the property is true in configuration Ci−1 and
show it is true in Ci , i > 0. Let u be the node taking the
step ei .

Suppose u elects itself. Then by the code, it sets its RL
and δ to all zeroes, so the property holds.

Now consider all the ways that u can change its RL and/or
δ, other than by electing itself. Reflection causes u to have
a non-zero reflection bit, so the property holds vacuously.
Starting a new reference level causes u to have a positive τ ,
so the property holds vacuously.

Consider the situation when u propagates the largest ref-
erence level, say RL. The precondition for propagation is
that u’s neighbors have different reference levels, and thus
RL must be larger than the reference level of another of u’s
neighbors. By Property C, then u’s RL cannot be (0,0,0).
Thus u’s new height does not have reference level (0,0,0)
and thus the property holds vacuously.

Consider the situation when u adopts a new LP, because
of the receipt of height h. If RL(h) = (0, 0, 0), then the
inductive hypothesis shows that δ(h) ≥ 0, and thus u’s new
height has positive δ and the property holds. If RL(h) �=
(0, 0, 0), then the property holds vacuously. 	

Theorem 1 Eventually the connected component is leader-
oriented.

Proof By Lemma 5, eventually all nodes in the component
have the same LP, say (−s, �). By Lemma 7, every node
eventually has an accurate view of its neighbors’ heights.

First, we show that node � must be in the component.
Suppose in contradiction that node � is not in the compo-
nent. Since cycles are not possible, there is some node in the
component that has no outgoing links. But this node is not

123

94 R. Ingram et al.

�, since we are assuming � is not in the component, and thus
the node is a sink, violating Property I.

Now that we know that node � is in the component, we can
proceed to show that the component is �-oriented. Property
J states that node �, and only node �, has RL (0,0,0) and zero
δ. Property C implies no node has a negative number in its
RL. Thus Property J implies that � has the smallest height in
the entire component and therefore � has no outgoing links.
Property I tells us that there are no sinks, so every node other
than � has an outgoing link. Since there are no cycles, the
component is leader-oriented, where � is the leader. 	

5 Leader stability

In this section, we consider under what circumstances a new
leader will be elected. For some applications of a leader elec-
tion primitive, changing the leader might be costly or incon-
venient, so it would be desirable to avoid doing so unless it
is necessary. In fact, with perfect clocks, without some kind
of “stability” condition limiting when new leaders can be
elected, we could solve the problem with a much simpler
algorithm: whenever a node becomes a sink because of a
channel going down, it elects itself; a node adopts any leader
it hears about with a later timestamp.

The algorithm of Derhab and Badache [5] achieves sta-
bility by using inferences on the overlap of time intervals,
included in messages, to ensure that an older, possibly viable,
leader is maintained rather than electing a new one. Their
inferences require a more complicated set of rules and mes-
sages than our algorithm, which elects a new leader when-
ever local conditions indicate that all paths to an older leader
have been lost. While topology changes are taking place, our
algorithm may elect new leaders while paths still exist, in a
global view, to old leaders. However, we show that new lead-
ers will not be elected by our algorithm if execution starts
from a leader-oriented state in which the channels between
one pair of nodes fail, while the old leader is still a part of
the connected component.

While the correctness proof of our algorithm uses a general
notion of time, T , for the stability proof we need a stricter
requirement on the temporal order of events. Because it is
of critical importance to determine which leaders are older
and which ones are newer, we need the clock times of non-
causality-related events to be ordered consistently with the
global times at which the events occur in order to achieve
stability. If perfect clocks are used to implement T , then
Theorem 2 provides the stability proof of the algorithm. Note
that with perfect clocks nodes have an accurate notion of the
current time, which is equivalent to having access to global
time.

Theorem 2 Suppose at global time t ′ a connected com-
ponent CC ′ of Gchan is leader-oriented with leader �.

Furthermore, suppose the two channels between a single pair
of nodes in CC ′ go down, the latter of these two Channel-
Down events occurs at time t > t ′, and no other topology
changes occur between t ′ and t. Let the resulting connected
component containing � be CC. Then, as long as there are
no further topology changes in CC, no node in CC elects
itself.

Proof Only one of the two ChannelDown events can create
a sink in CC . This is the ChannelDown event that occurs at
the node with the greater height (say v). Suppose that this is
the latter of the two ChannelDown events, and it occurs at
time t , (since, even if it is the first of the two ChannelDown
events, by the code, Update messages received by v on the
incoming channel will be ignored after its outgoing channel
goes down).

If the loss of the channel at time t does not create a sink
in CC , then no Update messages are sent in CC and no node
in CC elects itself.

Otherwise, suppose the loss of the channel causes some
node u in CC to become a sink. Then u starts a new RL
(t, u, 0).

Suppose in contradiction some node in CC elects itself
after time t . Suppose the first time this happens is time te. 	

Claim 1 Every message in transit after t has either τ ≥ t or
lts ≤ −te.

Claim 1 follows from Property B and the assumption that
no messages are in transit just before the ChannelDown event
at time t .

Claim 2 After time t and before te no new RL prefix is started.

Proof Suppose in contradiction a new RL prefix is started
after t and before te. Let tr be the first time this happens. Since
there are no topology changes or elections in this interval, the
new RL prefix must be started because some node, call it i ,
executes Line 13 of Fig. 2 in response to the receipt of an
Update message at tr .

There are two cases in which a node executes Line 13 of
Fig. 2:

Case 1: After updating the height of one its neighbors,
in response to the message received, node i views all its
neighbors as having RL (0, 0, 0). By Claim 1 and Property
A, the Update message received must have τ ≥ t , and, since
t > 0, this is a contradiction.

Case 2: After updating the height of one its neighbors in
response to the message received, node i views all neighbors
as having the same reflected RL (s, j, 1), but j �= i . Since
at tr (the time when node i receives the Update message that
causes it to start a new RL), the newest RL prefix is (t, u),
this common reflected RL has s ≤ t . By Claim 1, s ≥ t , so
s = t . Since only one node loses its last outgoing link at time
t , no node besides u takes a step at time t and thus j = u.

123

A leader election algorithm 95

Thus, in i’s view, all the neighbors of i have RL (t, u, 1)

but i �= u. By Property F, all neighbors of i are in RD(t, u).
By Property G with respect to a neighbor of i , i is also in
RD(t, u). Since i is a (temporary) sink during the execution
of this step, i must still have RL (t, u).

Since i �= u, i must have a neighbor j that is its pre-
decessor in RD(t, u). Property H, part (1), implies that i’s
reflection bit must also be 1. But then Property H, part (3),
implies that the height token for j in i’s view must be smaller
than i’s height, contradicting i being a sink. (End of Proof of
Claim 2).

By Claim 2, the node that elects itself at time te must be
u.

Note that during (t, te), the only way a node in CC can
change its height is by becoming a sink, since there is only
one leader pair present in CC . Thus in the following, we
will use “becoming a sink” interchangeably with “changing
height”.

From the hypothesis of the theorem, at time t ′ the con-
nected component CC ′ is �-oriented. By definition of �-

oriented,
−−→
CC ′ is a DAG with the unique sink being �. Thus

every node in CC ′ has a (directed) path in
−−→
CC ′ to �. Let

−→
CC

be the result of removing the directed edge corresponding to

{u, v} from
−−→
CC ′. Let A be the set of nodes in CC that have

a (directed) path to � in
−→
CC (i.e., after the ChannelDown at

time t), and let B be the set of nodes in CC that no longer
have a (directed) path to � in

−→
CC . Clearly � is in A and u is

in B. 	

Claim 3 No node in A becomes a sink during (t, te).

Proof By induction on the distance d from the node to � in
CC .

Basis: d = 0. By definition, the leader � is never a sink.
Induction: d > 0. Consider a node a ∈ A at distance d

from � in CC . At time t , a has a neighbor a′ whose distance
to � in CC is d − 1 such that the edge in CC between a and
a′ (in the views of both a and a′) is directed from a to a′.
By the inductive hypothesis, a′ is never a sink during [t, te]
and thus keeps the same height. Since the height of a cannot
decrease (by Property B, since there is no new leader pair),
the edge in CC between a and a′ (in the views of both a and
a′) remains directed from a to a′. (End of Proof of Claim 3.)

Next, we are going to show, by induction on the distance
from u in RD (t, u), that at time te all nodes in RD (t, u)

(except for node u) have RL (t, u, 1). The base case is true
because by the precondition for node u to elect itself at time
te, all its neighbors must have RL (t, u, 1). Therefore, all
nodes at distance 1 from u in RD (t, u) have RL (t, u, 1).
Suppose all nodes at distance k from u in RD (t, u) have RL
(t, u, 1). We need to show that all nodes at distance k + 1
from u in RD (t, u) have RL (t, u, 1) too. Let x be an arbitrary
node at distance k + 1 from u in RD (t, u). By the definition

of RD, x is a descendant of some node at distance k from
u in RD (t, u). By the inductive hypothesis and Property H,
Part (1), it follows that x has RL (t, u, 1).

Therefore, we know that at time te there can be no height
tokens in the system with RL (t, u, 0). Then by Property G,
every node that has RL (t, u, 1) must view all its neighbors
as having RL (t, u, 1). But since some node with RL (t, u, 1)

is a neighbor of some node in A, this contradicts Claim 3 and
Property G. 	

The stability condition above is no longer true if we use
logical clocks to implement T , instead of perfect clocks.
Because logical clocks ensure only a happens-before rela-
tion between events, it is not possible to distinguish old lead-
ers from new ones if there is no causal chain between their
elections. Figure 6 shows an example situation in which the
use of logical clocks leads to a node electing itself despite
the hypotheses of Theorem 2 holding. However, if we add
an extra requirement to Theorem 2 that the RL prefixes at
all nodes are (0, 0, 0) before the last topology change, then
no pre-existing RL’s are present and we can guarantee that
no node will elect itself, using a proof similar to the one of
Theorem 2. This, however, is a weaker stability condition.

6 Conclusion

We have described and proved correct a leader election algo-
rithm for dynamic networks. To provide for the temporal
ordering of events that the algorithm requires, we use a
generic notion of time–causal clocks–which can be imple-
mented using, for instance, perfect clocks or logical clocks.
Note that the algorithm is correct in the case of complete
synchrony between clocks (perfect clocks) and also in the
case of clocks with no bound on skew (logical clocks), but it
is not correct for approximately synchronized clocks (which
assume an upper bound on skew) unless they preserve causal-
ity. Notably, our definition of causal clocks does not include
vector clocks (e.g., [8]), since vector clock values do not form
a totally-ordered set in order to capture non-causality as well
as causality1 An open question is how to extend our algo-
rithm and its analysis to handle a wider range of clocks, such
as approximately synchronized clocks and vector clocks.

We identified different sets of circumstances under which
the algorithm does not elect a leader unnecessarily. Depend-
ing on the types of clocks used to implement causal time
and the amount of synchrony they provide, however, these
circumstances tend to be different. It would be interesting to
introduce different types of clocks, which not only preserve
causality but also have some upper bound on skew, and see

1 If two reference levels with incomparable timestamps started in dif-
ferent parts of the network and then met at a node, our current algorithm
would not be able to choose the one that is later in real time.

123

96 R. Ingram et al.

Fig. 6 Example of a node electing itself after the last topology change

how they affect the stability condition of the algorithm. More-
over, an analysis of the time and message complexity needs
to be performed, taking into account that using some clocks
to implement causal time will be more efficient compared to
others.

Acknowledgments We thank Bernadette Charron-Bost, Antoine
Gaillard, Nick Neumann, Lyn Pierce, Srikanth Sastry and Josef Widder
for helpful conversations, and the anonymous reviewers for comments
that improved the presentation.

References

1. Awerbuch, B., Richa, A.W., Scheideler, C.: A jamming-resistant
MAC protocol for single-hop wireless networks. In: Proceedings
of the Twenty-Seventh Annual ACM Symposium on Principles of,
Distributed Computing, pp. 45–54 (2008).

2. Brunekreef, J., Katoen, J.P., Koymans, R., Mauw, S.: Design and
analysis of dynamic leader election protocols in broadcast net-
works. Distrib. Comput. 9(4), 157–171 (1996)

3. Dagdeviren, O., Erciyes, K.: A hierarchical leader election protocol
for mobile ad hoc networks. In: Proceedings of 8th International

123

A leader election algorithm 97

Conference on Computational Science, LNCS 5101, pp. 509–518
(2008).

4. Datta, A.K., Larmore, L.L., Piniganti, H.: Self-stabilizing leader
election in dynamic networks. In: Proceedings of the 12th Inter-
national Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems, pp. 35–49 (2010).

5. Derhab, A., Badache, N.: A self-stabilizing leader election algo-
rithm in highly dynamic ad hoc mobile networks. IEEE Trans.
Parallel Distrib. Syst. 19(7), 926–939 (2008)

6. Dolev, S.: Self-Stabilization. MIT Press, Cambridge, MA (2000)
7. Fetzer, C., Cristian, F.: A highly available local leader election

service. IEEE Trans, Softw. Eng. 25(5), 603–618 (1999)
8. Fidge, C.: Timestamps in message-passing systems that preserve

the partial ordering. Aust. Comput. Sci. Commun. 10(1), 56–66
(1988)

9. Gafni, E., Bertsekas, D.: Distributed algorithms for generating
loop-free routes in networks with frequently changing topology.
IEEE Trans. Commun. C–29(1), 11–18 (1981)

10. Haas, Z.: A new routing protocol for the reconfigurable wireless
networks. In: Proceedings of the 6th IEEE International Conference
on Universal Personal, Communications, pp. 562–566 (1997).

11. Han, S., Xia, Y.: Optimal leader election scheme for peer-to-peer
applications. In: Proceedings of the 6th International Conference
on Networking, p. 29 (2007).

12. Hatzis, K.P., Pentaris, G.P., Spirakis, P.G., Tampakas, V.T., Tan,
R.B.: Fundamental control algorithms in mobile networks. In: Pro-
ceedings of the 11th ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pp. 251–260 (1999).

13. Higham, L., Liang, Z.: Self-stabilizing minimum spanning tree
construction on message-passing networks. In: DISC01, pp. 194–
208 (2001).

14. Howell, R.R., Nesterenko, M., Mizuno, M.: Finite-state self-
stabilizing protocols in message-passing systems. J. Parallel Dis-
trib. Comput. 62(5), 792–817 (2002)

15. Ingram, R., Shields, P., Walter, J.E., Welch, J.L.: An asynchronous
leader election algorithm for dynamic networks. In: Proceedings
of the 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1–12 (2009).

16. Lamport, L.: Time, clocks and the ordering of events in a distributed
system. Commun. ACM 21(7), 558–565 (1978)

17. Lynch N.A., Tuttle M.R:. An introduction to input/output automata.
CWI Q. 2(3), 219–246 (1989). Centrum voor Wiskunde en
Informatica, Amsterdam, The Netherlands. Technical Memo
MIT/LCS/TM-373, Laboratory for Computer Science, Massa-

chusetts Institute of Technology, Cambridge, MA 02139. Novem-
ber 1988. Also, “Hierarchical Correctness Proofs for Distributed
Algorithms”, in Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing, pages 137–151, Vancou-
ver, British Columbia, Canada, August 1987.

18. Malpani, N., Welch, J.L., Vaidya, N.: Leader election algorithms
for mobile ad hoc networks. In: Proceedings of the 4th Interna-
tional Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIAL M), pp. 96–103 (2000).

19. Mans, B., Santoro, N.: Optimal elections in faulty loop networks
and applications. IEEE Trans. Comput. 47(3), 286–297 (1998)

20. Masum, S.M., Ali, A.A., Bhuiyan, M.T.I.: Asynchronous leader
election in mobile ad hoc networks. In: Proceedings of International
Conference on Advanced Information Networking and Applica-
tions, pp. 29–34 (2006).

21. Pan, Y., Singh, G.: A fault-tolerant protocol for election in chordal-
ring networks with fail-stop processor failures. IEEE Trans. Reliab.
46(1), 11–17 (1997)

22. Park, V.D., Corson, M.S.: A highly adaptive distributed routing
algorithm for mobile wireless networks. In: Proceedings of the 16th
IEEE Conference on Computer Communications (INFOCOM), pp.
1405–1413 (1997).

23. Parvathipuram, P., Kumar, V., Yang, G.C.: An efficient leader elec-
tion algorithm for mobile ad hoc networks. In: Proceedings of the
1st International Conference on Distributed Computing and Inter-
net Technology, LNCS 3347, pp. 32–41 (2004).

24. Rahman, M., Abdullah-Al-Wadud, M., Chae, O.: Performance
analysis of leader election algorithms in mobile ad hoc networks.
Int. J. Comput. Sci. Netw. Secur. 8(2), 257–263 (2008)

25. Singh, G.: Leader election in the presence of link failures. IEEE
Trans. Parallel Distrib. Syst. 7(3), 231–236 (1996)

26. Stoller, S.: Leader election in distributed systems with crash fail-
ures. Department of Computer Science, Indiana University, Tech.
rep. (1997).

27. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cam-
bridge University Press, Cambridge, MA (2000)

28. Vasudevan, S., Kurose, J., Towsley, D.: Design and analysis of
a leader election algorithm for mobile ad hoc networks. In: Pro-
ceedings of the 12th IEEE International Conference on Network
Protocols (ICNP), pp. 350–360 (2004).

29. Wang, Y., Wu, H.: Replication-based efficient data delivery scheme
for delay/fault-tolerant mobile sensor network (dft-msn). In: Pro-
ceedings of Pervasive Computing and Communications Work-
shops, p. 5 (2006).

123

	A leader election algorithm for dynamic networks with causal clocks
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System model
	2.2 Modeling asynchronous dynamic links
	2.3 Configurations and executions
	2.4 Problem definition

	3 Leader election algorithm
	3.1 Informal description
	3.2 Nodes, neighbors and heights
	3.3 Initial states
	3.4 Goal of the algorithm
	3.5 Description of the algorithm
	3.6 Sample execution

	4 Correctness proof
	4.1 Channels and neighbors
	4.2 Height tokens and their properties
	4.3 Bounding the number of elections
	4.4 Bounding the number of new reference levels
	4.5 Bounding the number of messages
	4.6 Leader-oriented DAG

	5 Leader stability
	6 Conclusion
	Acknowledgments
	References

