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Abstract Micro-electro-mechanical systems (MEMS)
made of polycrystalline silicon are widely used in several
engineering fields. The fracture properties of polycrystalline
silicon directly affect their reliability. The effect of the ori-
entation of grains on the fracture behaviour of polycrys-
talline silicon is investigated out of the several factors. This
is achieved, firstly, by identifying the statistical variation of
the fracture strength and critical strain energy release rate, at
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the nanoscopic scale, over a thin freestanding polycrystalline
silicon film having mesoscopic scale dimensions. The frac-
ture stress and strain at the mesoscopic level are found to be
closely matching with uniaxial tension experimental results.
Secondly, the polycrystalline silicon film is considered at the
continuum MEMS scale, and its fracture behaviour is studied
by incorporating the nanoscopic scale effect of grain orienta-
tion. The entire modelling and simulation of the thin film is
achieved by combining the discontinuous Galerkin method
and extrinsic cohesive law describing the fracture process.

Keywords Polysilicon fracture - Discontinuous Galerkin
method - Multiscale framework - MEMS fracture

1 Introduction

Polycrystalline silicon (polySi) is the most common mater-
ial in use for the manufacturing of MEMS. However, several
factors, such as the grain size, grain orientation, and nano
scale defects or flaws, affect the mechanical properties of
thin polySi films, such as the Young’s modulus E, fracture
strength o¢, and critical energy release rate G. [1]. Apart
from this, a specific manufacturing process adopted to pro-
duce MEMS also further affects the run-time fracture behav-
iour of MEMS. There is thus a need to develop numerical
models accounting for these probabilistic nano-scale effects
to predict the properties, including the strength, of MEMS
components.

It is pertinent at first to clearly define the relevant length
scales to illustrate the problem addressed in the present work.
The length dimension ranging from 1 to 100 nm is referred
as the nanoscopic scale, from 100 nm (0.1 pm) to 1,000 nm
(0.1 wm) is referred as the mesoscopic or microscopic scale,
and higher than 1.0 pm is referred as the MEMS or macro-
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scopic scale. Thus, an average single grain size of polySi
(= 100 nm) falls under the nanoscopic scale, the size of the
simulation model of a thin polySi film consisting of several
grains falls under the mesoscopic or microscopic scale (size
of representative or microstructural volume element), and
finally the size of the simulation model of a thin polySi film
having a continuum structure, i.e., without the explicit rep-
resentation of the underlying micro-structure, falls under the
macroscopic length scale. The length scales will be corre-
spondingly referred in the subsequent sections of this paper.

Several advanced techniques based on micro-mechanical
tests [2,3] have been developed over the years to correctly
measure the mechanical properties E, o., and G of a bulk
polySi and single crystal silicon presenting a preferred out
of plane orientation, such as < 100 > or < 110 > or
< 111 >, involving the statistical aspects. These researches
report some variations in the mean values of E and o, at both,
the micro and macroscopic levels. This could be explained
by the random orientation of grains at the mesoscopic level
leading to a statistical strength distribution at the macroscopic
level, and thus two samples may have completely different
crack paths (trans-granular or inter-granular) as well as differ-
ent fracture strengths. The literature also reports a decrease
of the fracture strength with respect to an increase in the
thickness of the test sample [4]. This could be explained
by the presence of more surface flaws across the thick-
ness in the thicker specimens. The presence of wanted or
unwanted foreign elements in the polySi can also have a first
order effect on the fracture strength. Thus all these reasons
warrant a robust design procedure of MEMS, made up of
polySi, linking the probabilistic nature of the fracture behav-
iour of polySi at the mesoscopic level with the macroscopic
level.

The fracture of a thin polySi film involves the nanoscopic
scale corresponding to the grain size, as well as the macro-
scopic scale corresponding to the specimen dimensions. The
fracture properties (o., G and crack path) of polySi vary at
the nanoscopic scale due to the several factors mentioned ear-
lier. Therefore, the prediction of the fracture behaviour at the
MEMS scale is a particularly challenging task as it strongly
depends on the lower scale effects. One of the primary moti-
vations behind this study is that the finite element size of
the discretized micro-structure is constrained by the small-
est grain size present in the model. Indeed, a large number
of elements, varying in size, are generated even for a fewer
number of grains in a model of the polySi film. Therefore,
very small load increments are required in order to achieve a
stable quasi-static simulation. In fact, an average grain size of
approximately 100 nm leads to a time step around &~ 1 x e~ 13
sec., resulting in an unaffordable computational time even
within a scalable parallel implementation, and preventing the
direct numerical simulation of polycrystalline MEMS struc-
tures. This problem requires to be addressed using 2-scale
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methods in order to have a much larger finite element size at
the macroscopic length.

Different techniques have been proposed in the literature
to account for a lower scale when simulating the fracture
process. Multi-scale computational homogenization (or FE?)
methods separate the resolution at the two scales, allowing
to keep coarse meshes at the higher scale where a macro-
crack is introduced at the expense of the concurrent resolu-
tion of many micro-scale problems. However computational
multiscale fracture mechanics remains challenging, mainly
because discontinuities have to be propagated through the
different scales. One problem linked to this propagation is
the loss of representative nature of the micro-problem [5—
7]. This can be solved by using appropriate boundary con-
ditions [5], with the concept of failure zone averaging [6],
for periodic structures [7], or by propagating the discontinu-
ities to the macro-level by characterizing the loss of ellip-
ticity at the sub-scale [8]. In [9], the reaction forces of the
micro-scale boundary value problem, which embeds crack
propagation, are used to characterize the fracture proper-
ties of a crack at the macro-scale. Clearly the concurrent
resolution of the multiple non-linear micro-scale problems
with the non-linear macro-scale problem induces prohibitive
costs. A multi-resolution strategy using a combination of a
damage model and of a generalized micro-continuum has
recently been proposed to capture zig-zag fracture of het-
erogeneous ductile materials [10,11]. This multi-resolution
method requires an increase of the number of degrees of free-
dom, but the two scales are solved at once. In [12] a reduced
order modelling technique based on the domain partitioning
method was used to refine locally the discretization in the
zones of damage evolution. Finally the evolution of micro-
scale cracks can be accounted for at the macro-scale by using
the projection method [13].

In this work we intend to take advantage of the brittle
behaviour of the material by replacing the concurrent res-
olution of the two scales by statistical mesoscopic fracture
properties, while solving an unmodified macro-scale prob-
lem. To this end, finite element simulations of the micro-
structure, explicitly modelling the different grains, are con-
ducted from which the statistical mesoscopic fracture prop-
erties can be extracted following the method described in
[9,14] to feed the finite element simulation of the MEMS
structure, on which scale the grains are thus implicitly mod-
elled. The main objective is to link the effect of the grains
orientation at the nanoscopic level to the fracture of MEMS
at the macroscopic level to contribute to more robust design
tools.

At both the mesoscopic and macroscopic levels, the finite
element simulations, accounting for the fracture process of a
thin polySi film, have recourse to the cohesive zone method
(CZM). The CZM considers a cohesive zone (process zone)
ahead of the crack tip, such that the force on the crack lips
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within the cohesive zone progressively vanishes, leading to a
fully open crack [15,16]. The total energy released per unit of
the newly created crack surface area (J/m?) during the crack
opening is equal to the fracture energy or critical strain energy
release rate G.. The CZM has been extensively used in frac-
ture mechanics. The cohesive zone can be integrated using the
extended finite element method (XFEM) [17,18], the embed-
ded localization method (EFEM) [19], or with interface ele-
ments inserted between the usual bulk finite elements. For
the two first approaches, the crack can be represented in an
arbitrary existing FE mesh through global or local enrich-
ments [20]. When having recourse to cohesive elements, the
CZM can be implemented, on the one hand, using intrinsic
cohesive laws (ICLs) modelling the elastic response prior to
the fracture onset [21] or, on the other hand, using extrinsic
cohesive laws (ECLs) inserted in the model at the fracture
onset only [22,23]. Intrinsic laws have been firstly preferred
to extrinsic ones due to their easier implementation. Never-
theless, intrinsic cohesive laws lead to an inconsistent pure
penalty method. On the contrary, ECLs preserve the consis-
tency but they are more complicated to implement in the case
of continuous Galerkin methods as some topological mesh
modifications are required during the simulation.

To avoid these topological mesh modifications, in this
work we consider the combination of the extrinsic cohesive
laws to the discontinuous Galerkin (DG) method to integrate
the CZM. The DG method takes into account the disconti-
nuities (jumps) in the field variable distribution within the
interior of the problem domain, and the ECL approach per-
forms the unloading of the force on the newly created fracture
surfaces. The weak form of the DG method is developed sim-
ilarly to the classical finite element method (FEM), except
that the boundary integral terms do not vanish, e.g. [24]. The
integration by parts is restricted to the sub-domains, thus the
boundary integral terms arising from it across the sub-domain
boundaries are retained and used to capture the discontinu-
ities across the element interfaces. This makes it suitable to
integrate the ECL upon the onset of fracture since the inter-
face elements are present before the insertion of the cohe-
sive element, as in the intrinsic approach [25]. Nonetheless,
contrarily to the pure penalty intrinsic method, the DG/ECL
framework ensures the consistency of the method by ade-
quate flux terms at the interfaces. The detailed discussion and
formulation of the DG/ECL method can be found in the refer-
ences [26] for 3D formulations while [27,28] discussed DG
shell formulations. The DG/ECL method offers important
advantages. Indeed, besides being consistent and ensuring
convergence with respect to the mesh size, the method does
not require complex modifications of the FE code, including
in the 3D parallel case, as recently discussed in the cases
of in-house and commercial software [29,30]. Moreover, the
method remains scalable for a high number of processors (a
few thousands [26]), ensuring its computational efficiency.

Finally the DG/ECL method does not require criteria for
cracks bifurcation, merge and propagation direction, allow-
ing for multiple cracks to propagate and interact in the struc-
tures.

Firstly, the fracture of freestanding polySi thin films is
simulated at the mesoscopic level by meshing explicitly sev-
eral grains present in the RVE. A plane-stress 2-D assump-
tion is made, reducing the computational cost since there is no
explicit discretization across the film thickness. The values of
o. and G at the nanoscale are experimentally available for a
single crystal silicon with preferred out of plane grain orienta-
tions < 100 >, < 110 >, and < 111 >. However, with finite
element simulations the crack direction is constrained by the
element boundaries, which are not aligned with these particu-
lar planes. A new formulation is thus proposed that computes
the effective values of 6. and G for an arbitrary orientation of
the crack from the three reference values. Furthermore, sev-
eral grains are experimentally observed over the thickness of
a thin polySi film [3,31-33]. For these reasons the fracture
path is not perpendicular to the MEMS surface and is not uni-
form across the thickness. Even in the case of a single grain
across the thickness, the fracture surface does not necessarily
remain perpendicular to the film surface as a weaker plane
can exist. Thus the thickness of a thin polySi film is implic-
itly considered in our 2D plane-stress simulations while
identifying the weakest fracture plane for the through-the-
thickness fracture. These simulation results (fracture strength
and strain) are compared with corresponding experiments. In
the experiments, the films have been tested freestanding by
etching the underneath sacrificial layer [34-39] so that they
undergo pure uniaxial tension conditions. A plane-stress con-
dition is thus considered in the 2D-numerical simulations.
Moreover in this considered experimental setup, the fracture
of the polySi film does not interact with the substrate.

Several sets of the micro-structure simulation results can
thus be obtained by assigning each time, arandom orientation
to the grains. A mesoscopic cohesive law is then extracted for
each set of results [9,14], and the mean and standard devia-
tion values of o, and of the maximum crack tip opening dis-
placement are computed. An average mesoscopic cohesive
law is then developed based on these values. The fracture of
a polySi thin film can then be performed at the macroscopic
level using this average cohesive laws, for a much larger
model without the explicit representation of the underlying
micro-structure.

This paper is organised as follows. The formulations
of both DG and ECL methods are given in Sect. 2. The
description of the micro-model, including the formulations
to account for a general orientation of crack direction and
for the effect of the thickness of polySi thin film is reported
in Sect. 3. This Section also reports the extraction of statis-
tical mesoscopic cohesive laws using this micro-model and
the comparison with experimental data. The fracture studies
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Fig. 1 Interface element with local basis vectors in-between the two
2D bulk elements, “minus” and “plus”, in the DG method

of a thin polySi film is thus performed at the macroscale in
Sect. 4. The conclusions are finally drawn in Sect. 5.

2 Discontinuous Galerkin method and extrinsic
cohesive law framework

In this section, the DG/ECL framework of the weak formu-
lation accounting for fracture is summarised as well as the
constitutive bulk and cohesive model behaviours.

2.1 Weak formulation

The thin polySi film is first treated as a continuum at the
mesoscopic level with a discretization of the grains, and
then at the macroscopic level with homogenised proper-
ties, following the DG method and assuming small defor-
mations.

Let © C R? be a body subjected to a force per unit mass
b (N/Kg). Its boundary surface I' includes two parts: the
Dirichlet boundary denoted by I'p, where the displacement
u is prescribed by u, and the Neumann boundary denoted
by I'r, where the traction is prescribed by ¢. One always has
' =I'pUTl'rand I'p NI't = @. The continuum mechanical
equilibrium equations in the material form are stated as

V.ol 40b=0ii inQ (1)
u=u on I'p and (2)
o=t only 3)

where p is the density, o is the Cauchy stress tensor, and
n is the outward normal to the unit surface in the current

configuration.
The 2D finite element discretization of the body € is
expressed as Q@ = |J . 26, where Q¢ is the union of the

open domain ¢ with its boundary I'°. Here the symbol Q2
is used to represent the whole body and its discretization
for simplicity. The mesh of the geometry contains bulk ele-
ments and all the boundaries in-between them are treated as
interface elements, as shown in Fig. 1. The weak form of
Egs. (1-3) arises by seeking a polynomial approximation u
of the displacement field over the discretization 2. Contrar-
ily to a continuous Galerkin approximation, which requires

@ Springer

u € C%(Q), the DG approach requires only an element—wise
continuous polynomial approximation, i.e., u € C°(Q°).
Consequently, for a DG formulation the trial functions w,
are also discontinuous across the element interfaces on the
internal boundary of the body I'1 = [U ¢ ] \T.

The new weak formulation of the problem is obtained in
a similar way as for the continuous Galerkin approximation.
The linear momentum balance is enforced in a weighted aver-
age sense by multiplying the strong form (1) by a suitable
trial function w, and by integrating by parts in the domain.
However, since both test and trial functions are discontinu-
ous, the integration by parts is not performed over the whole
domain but on each element instead. Using established DG
considerations, see [24] for details, this leads to

/(pii-wu+6:un) dv—l—/[[wu]]-(o)-ft_ds
Q It
:/pb~wudv+/ w, -tds
Q 't

“

where 7~ is the outward normal to the unit surface of the
“minus” element on one side of the interface. The Eq. (4) con-
tains all the usual terms from the classical Galerkin method
with an extra term accounting for the discontinuities of the
field at inter element boundaries. In this equation we have
considered the jump and average operators, which are defined
on an interface of two bulk elements of the discretized geome-
try, arbitrarily denoted “plus” and “minus” as shown in Fig. 1,
respectively, as

[oF +97] 5)

N =

[el = [o+ — o_] and (e) =

In the formulation (4) so far, neither the displacement
continuity in-between the elements, nor the stability of the
method are enforced. Moreover one should account for the
interfaces I'y corresponding to uncracked surfaces, and for
the interfaces I'jc corresponding to cracked surfaces, with
INcUl'y =T7.

On cracked surfaces I'ic, the surface traction (o) -i1~ arises
from a cohesive zone model and reads £~ ([u]]), yielding

[w,I- (o) ‘R ds =

I'c Ic

Tw, - £ ([ul) ds (6)

On uncracked surfaces I'yc, the compatibility equation
uT —u~ = Ois enforced through a so—called symmetrization
term in [[u]] and a (sufficiently large) quadratic stabilisation
term in [[#]] and [w, J]. We thus use the classical substitution
inherent to consistent DG interior penalty methods [24]

[w,]- (o) -1~ ds —
I'u
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[w,] - (o) -0~ ds+

I'u

{[u] - (C : Vuw,)

Iy

. [Bs
ull ® T
‘/FIU[[[w fen <hS

where C is the (anisotropic) elasticity tensor. In this substi-
tution, the first term ensures the consistency of the method
and is kept unchanged, the second term is the symmetriza-
tion term, which ensures the displacement compatibility and
leads to an optimal convergence rate with respect to the mesh
size hy, and the third term is the quadratic stabilisation term,
ensuring that the general displacement jumps are stabilised
in the numerical solution. The penalty parameter B, has to
be larger than a constant, which depends on the polynomial
approximation, for the DG interior penalty method to be sta-
ble [26,27].

The small deformation material response is thus properly
considered for the final weak formulation of the problem
obtained by substituting Eqs. (6) and (7) into Eq. (4), and
which consists of finding # such that

AT} ds+ (7

C>:[[u]]®ﬁ] ds

[w,1- (o) -~ ds+

I'u

/(pii~w,,+o:Vw,,) dv +
Q

.| Bs
/FIU [[[“ht]]@n <E

{[lu] - (C: Vuwy) - }dS+/ Tw, - ([ul) ds =
'y

/pb-wudv—i—/ w, -tds,
Q JIr

The weak form (8) is discretized following the finite-
element method. To this end, the domain 2 is discretized into
several bulk finite elements 2¢ and into several interface ele-
ments I'} inserted in-between these bulk elements. The dis-
placement field # and the trial function w,, are approximated
by considering the polynomial approximations

D ON‘Xsut (9

C> udl ®ﬁ_] ds+

vV w,

®)

u(X) = N(X)u" and w, (X) =

where N¢ is the shape function corresponding to the node a.
As both the test and trial functions are discontinuous across
the interface elements I'}, the shape functions N ought to rep-
resent this discontinuity, and the degrees of freedom are thus
duplicated for each bulk element comprising the node a. Con-
sidering the interface separating the two elements “minus”
and “plus” as in Fig. 1, the node a has the degrees of free-
dom u“  associated to the “minus”-element and the degrees
of freedom u®" associated to the “plus”’-element.

The finite-element forces are obtained by introducing the
polynomial approximations (9) into the weak form (8), lead-

ing to the set of governing equations to be integrated in the
time interval T':

MOl 4 fo 4 f =2, VieT (10)

In this equation M is the discretized mass matrix, Sini 18
the internal force vector at node a, which is obtained from

the elementary bulk forces following

4 = Z/Qe" VNV (11)

f¢ . is the external force vector at node a, which is obtained
from the elementary bulk forces following

f;FZ/ PbN®dV + | N°ids (12)
—Jqe I'r

These two force vectors are computed using classical bulk
finite elements Q2°. In this paper we use quadratic triangles
integrated using 3 Gauss points.

Finally, f, the last left hand side term in Eq. (10), is the
interface (including the un-cracked and cracked parts of ')
force vector at node a, which is obtained from the elementary
interface forces following

j:Z/v i~ ([ul) N¢ ds+

Z/ (6) - A~ N ds+
ai N l_‘ISU

f] = _ 4 (13)
—Z/ VN (i) : € s

Z:/v |: BY NMul @~ :|~ﬁN”ids

This interface force vector arises from the DG/ECL formu-
lation. It is integrated by considering an interface element
'] between the two “plus” and “minus” bulk elements, see
Fig. 1. In this work, the interface elements are quadratic
lines integrated using three Gauss points [40]. The result-
ing force vector (13) has a contribution to the degrees of
freedom belonging to both the “plus” and “minus” neighbor-
ing bulk elements, hence the use of the a® superscript and
of the notation “+”, which holds for “+” for the degree of
freedom a™, and for “~” for the degree of freedom a~. In
Eq. (13) the shape functions N @* are volume shape functions
evaluated at the integration points of the interface elements.
Due to the symmetrization terms all the nodes of the two
neighboring bulk elements have force contributions, and not
only the nodes of the common interface.

Details on the parallel implementation of the method can
be found in [14,28]. Moreover, recent works have focused
on the practical implementation of the method in in-house
and commercial software [29,30].

The set of Eq. (10) is completed by the initial conditions
u'(t = 0) = 0 and a“(t = 0) = v, where v are the

-
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initial nodal velocities. The time interval of interest 7 is dis-
cretized into time steps and the integration is accomplished
through an incremental solution procedure in each time inter-
val [t,, t,+1]. To this end, an explicit time integration as the
Hulbert-Chung time integration [41], which exhibits numer-
ical dissipation, is considered. Note that due to the DG terms,
the critical explicit time step is reduced by \/E [40].

What remain now to be defined are the constitutive behav-
iour of the bulk material, as well as the initiation and the
evolution of the crack cohesive law.

2.2 Constitutive material model

In the weak form (8), the discretized Cauchy stress tensor o
results from the strain tensor € = (1/2)(VQ® u +u ® V)
through a constitutive material law. At the nanoscale, as the
grains of polySi are orthotropic in nature, an anisotropic
material tensor expressed in the 2D plane-stress state is used
such that 6 = C : e. At the macroscale the material is con-
sidered as homogeneous and isotropic.

2.3 Initiation of the crack

The evaluation of the stress tensor at the Gauss points of the
uncracked interfaces 'y follows previous works by Cama-
cho and Ortiz [22], and Ortiz and Pandolfi [23]. This models
the fracture in mode I, in mode II, or in a combination of both
using an effective stress,

V(o2 + (B) 2?2 if 05 >0
Oeff = 1 1 . 14
et g < |Te] — e [on] >, if 0p <0 14
where B = (Kj7./Kj.) and p. are shear stress factor and
friction coefficient of the material, respectively, and where

the operator << e > is defined by

o, if >0

0,if e<0 (15

L o>= [

InEq. (14), 0 = it -0 - i and & = /|0 -a]” — (0n)?
are respectively the normal and tangential components of
the surface traction at the interface. The criterion e > 0¢
checks the fracture onset. When it is reached at a Gauss point
part of I'ty, this Gauss point becomes part of the cracked
interfaces I'jc on which the extrinsic cohesive law £ ([u]]) is
integrated.

2.4 Extrinsic cohesive law
A linearly decreasing ECL, as shown in Fig. 2, is considered
in the present work to model the crack opening between the

two fracture surfaces. As long as the ECL is monotonically
decreasing, the shape of the curve does not affect the solu-
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t max

Apx Ae A

Fig. 2 Linearly decreasing extrinsic cohesive law

tion for brittle materials [23]. Herein o, G¢, A* and A} are
the fracture strength, critical strain energy release rate, crack
tip opening displacement, and the critical crack tip open-
ing displacement, respectively. If an unloading of the forces
occurs during the crack opening, the ECL follows a reversible
path connecting the origin with the unloading point on curve
(A} ax> Imax) With a straight line, where 7 = ||f , A*, and
I'max Tepresent the surface traction amplitude between the
crack lips, the opening of the crack, and the surface trac-
tion amplitude at the maximum crack opening A%, . reached
during the fracture process, respectively. The critical opening
displacement A} is computed as A} = [(2G¢) /o] to ensure
that the correct amount of energy is released at the end of the
complete fracture process.

Once the fracture is detected at a specific interface Gauss
point, the ECL is used to compute the traction vector ¢
between the two crack lips in terms of the effective open-
ing displacement A*. The effective opening displacement
A* is computed from the surface opening vector A*, which
is a combination of two effective openings A} and A{ given
by

A = < AT 2 4B2(AT2 (16)

where A} and A} are the separations along the normal 7 and
tangential £ directions, respectively, of the interface element.
The computation of A* is explained in details by Wu et al.
[14]. The amplitude of the effective cohesive traction, shown
in Fig. 2, can then be computed by linear interpolation as

r

A* A * k Ak
o |{l1—— for A* >0, and A™ = A 17
A*

max
C

*

for A* <0, or A* < A* (18)

max

= Imax

|
I

max

whereas the cohesive traction vector £ can be evaluated as a
function of the effective cohesive traction 7, following

_ _[ A AF| .

tzt(A—:ﬁ+B|A—i|t) foro, > 0 (19)
VNI

t=1p x t foro, <O (20)
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The values of o, and G are the two minimum parameters
required for the characterisation of the ECL. In this work, we
will evaluate these values at the macroscopic scale, where
the material is considered as isotropic and homogeneous,
from the micro-scale simulations. At the microscopic scale
(through mesoscopic RVEs) a method is developed account-
ing for the anisotropy and heterogeneity (due to the different
out of plane orientation of the grains) of the polySi.

3 Microscale fracture of RVE model of polySi material

At first, we study a RVE of polySi at the mesoscopic (micro-
scopic) scale. A RVE consists of several grains with a com-
pletely general distribution. At the nanoscale, the constitu-
tive material law follows a 2D plane-stress anisotropic elastic
model. The 2D cohesive laws are developed to account for
the anisotropic and heterogeneous nature of the polySi due to
a general out-of-plane orientation of the grains. In particular,
as the interfaces of the finite element mesh do not follow the
crystallographic planes of the Si, effective values of o and G
are at first computed for a general orientation of the interface.
Secondly the weakest plane is identified over the thickness
of a thin polySi film so that the correct amount of energy is
released at the end of the fracture process. This allows sim-
ulating in 2D a through-the-thickness fracture process along
weak planes not perpendicular to the film.

With a view toward the simulation of macroscale MEMS
structures, the values of the resulting mesoscale effective o,
and G can then be evaluated from the microscale simulations
so that the crystallographic nature of the PolySi is implicitly
accounted for.

As the RVEs are not rigorously representative (the num-
ber of grains considered in a RVE cannot be large enough
for MEMS structures without becoming of comparable size
with the macroscale) a set of realisations is considered to
extract a statistical distribution of these resulting mesoscale
effective values, o, and G.. To be rigorous when the volume
element involves fracture, it looses its representative nature
and should be called micro-structural volume element [5].

The predictions are finally compared with the experimen-
tal results.

3.1 Effective fracture strength at the nano-scale

The polySi is a cubic crystal exhibiting different material
properties, such as Young’s modulus, Poisson ratio, fracture
strength, along the crystal planes with Miller indices (1 0
0), (1 1 0), and (1 1 1), shown in Fig. 3 as iy, no, and 73,
respectively. The 2D interface (cohesive) elements, located
between two bulk elements, in a discretized model are not
exactly aligned with any of the crystal planes. Thus a model
to compute the effective fracture strength at each interface

X

Fig. 3 Symmetry-equivalent surfaces with their normals

based on the available fracture strength experimentally mea-
sured along the three possible cleavage planes (1 00), (1 10),
and (1 11)[2,42,43] is required. The length of a single inter-
face element being several times larger than the single crystal
lattice spacing of polySi, the approach presented here to com-
pute the values of effective o, is valid for a certain “average”
direction. For a cubic crystal, the Miller indices (hkl) are nor-
mal to the surface vector [hkl], i.e., Miller indices directly
give the coefficients of the surface normal vector for a cubic
crystal. This information provides the effective o, for any
random orientation of a polySi grain as explained further.
The same approach applies to compute the effective G as
well.

Let o100, 0110, and o1 be the experimental values of the
fracture strength that are respectively measured along the
three possible cleavage planes (1 0 0), (1 1 0), and (1 1 1)
[2,42,43]. The normal vectors to these planes are given as
iy = é1,i2 = (1//2)(é1 + &), and A3 = (1/+/3)(é; +
é) + e3), respectively, where é; are the unit basis vectors of
the global Cartesian axes as shown in Fig. 3. Let there be an
interface (cohesive) element, having a surface normal vector
n, along which o has to be determined.

The surface normal vector n can be represented in the
contravariant form as n = n' fi1;, where the 7; are treated as
the local basis vectors. As the vectors i, i1, and 73 are not
orthogonal to one another, their dual vectors are computed
at first. The total volume contained within the local basis
vectors is

1
v= (A XA) A3 =>V=—— 21

NG

The dual basis vectors are then computed as

:>n1:él—é2

1_[ﬁ2xﬁ3]
n =|———

(22)
n’? = \/5(22 — é3), and n’ =3 é;

such that n; - n/ = 8{ is satisfied. The projection of n in the
dual basis vectors is given as

n'=n-n,n "=Rn-n°, n =n-RN (23)
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Therefore, the effective fracture strength vector o, along n
can be constructed as

0f 11 5

0. = 0100 n! Oﬁ] + 0110 n!10 ) +oqq1 n! n3; =

— 100 oy 0 Gmnl“) 5
O, = |0 n e

110 111 111
(SR o1 n 5 ol n 5
=+ e + e
( 2 3 )2 ( V3 )3

(24)
The magnitude o, of o is thus given as
— 100 4 o110 n'0 0111n“1)2
Oc = \/(Gloon + N + 7 + 25

(c”?/%uo n 0”\1/,31111)2 n (6”1/,31111)2

This equation is applicable only when n is in between the
solid angle formed by 121, 15, and 723, where these are the sur-
face normal vectors corresponding to the orientation planes
(100), (110),and (1 1 1), respectively, which may not
always be true. The symmetry property of the cubic crystal
is used to enable the applicability of Eq. (25) for any orien-
tation of n. Due to the symmetry of the cubic crystal, there
are 26 symmetry planes distributed in 8 quadrants as

{100} = (100), (010), (001), (100), (010), (001)
{110} = (110), (110), (110), (110), (011), (011),

(011), (101), (101), (101), (101), (011) (26)
{111} = (111), (111), (111), (111), (111), (111),

(11D, (111

The magnitude of the fracture strength is equal along all
the planes within each family of planes {100}, {110}, and
{111}. These symmetry planes (26) give a total of 48 sets of
solid angles (6 solid angles per quadrant). This information
is used while determining the correct solid angle in which the
vector n lies. At first, each set of solid angles is considered,
and the corresponding dual basis vectors are computed. The
vector n is then projected in these dual basis vectors. If all the
projections are > 0O for a specific solid angle it is concluded
that the vector n lies within this solid angle formed by the
set of 3 corresponding surface normal vectors. Finally, the
correctly identified set of the surface normal vectors is used
while computing the effective o, along the plane normal to
the vector n, as given in Eq. (25). In order to test the cor-
rectness of Eq. (25), the Cartesian coordinates of n are con-
structed by the polar coordinates (by progressively increasing
the angles § € [0,2 7] and ¢ € [0, ]), and the correspond-
ing effective o, is computed by Eq. (25). The results are pre-
sented in Fig. 4 for specific values o199 = 1.53, 0119 = 1.21,
and o111 = 0.87 GPa of a single crystal silicon [2,42,43].
It can be seen that the effective o, passes through the three
values used along the symmetry planes with the symmetric
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Fig. 4 Distribution of o, within a unit cube of polySi

distribution in all the 8 quadrants of a unit length cubic crys-
tal, which is an expected result. This model is also applied
to compute the effective G along the interface plane with a
surface normal n as shown in Fig. 5.

3.2 Thickness effect

The fracture process of a thin polySi film is modelled using
2D plane-stress conditions, thus the surface normal vector 72
of the cohesive element always lies in the plane. Nonethe-
less, the fracture surface normal n may be oriented with a
certain angle with respect to the thickness of the film, where
the effective value of 6. could be lower as compared with the
plane-stress situation. This leads to a weakest crystal plane
not necessarily perpendicular to the film. Furthermore, sev-
eral grains can be along the thickness of a thin polySi film.
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¢
(b)

Fig. 5 Distribution of G, within a unit cube of polySi

This 3D nature of the problem is then taken into account
following the approach described in Fig. 6.

Let us assume an interface (cohesive) element, and let
t, ty, and 71 be the in-plane surface tangent, out-of-plane sur-
face normal vectors, and cohesive element normal, respec-
tively, as shown in Fig. 6. These three vectors form a set of
local basis vectors, and the Cauchy stress tensor o is repre-
sented in terms of these local basis vectors. This interface
element is now rotated by an angle § around —¢. Thus, the
local basis vectors transform to f/, f(;, and ﬁ/, respectively.
The transformation equations are given as

W= cos(9) it + sin(9) £y
i=i
f(/) = —sin(0) iz + cos(0) &

27)

81
VA
g
-~ \
1 \
\ \ +—(010)
\ \
\ \
\ \
\ A A~ A
VO to\ 1 t, n
\ \ g
v .
\ ~ Y
\ n

~>

X

Fig. 6 Rotation of an interface element along the thickness of the thin
polySi film, where 7 is shown along Y axis for an illustration purpose

The Cauchy stress tensor o is already available along the
interface element. Also the effective values of o.(9) and
Geff(0) are computed in the direction i, as explained in
Sect. 3.1. Now, the magnitudes of the stresses acting on the
rotated plane are computed from o and ﬁ,, f(;, and £ as

N NG N ~ A ~
ohn=(@n)-n,t=(@0n)-t,p=(0n)-

T =V (1)? + (10)? (28)

The effective stress oef(0) along the rotated plane is com-
puted from o, and t; using Eq. (14). The o.(0), G:(0),
and ogfr(9) are computed with § varying from —90 to
+ 90" with a fixed increment to check whether the fracture
criterion Oef(0) > 0.(0) is satisfied. This oe(0) value is
used to compute the maximum effective crack tip opening
A¥(0) = (2 Gc(0)/0c4(6)). The in-plane crack tip opening
is computed as A* = {A¥(0)/cos(8)}, such that the correct
amount of energy is released by the ECL method. The o¢(6)
value corresponding to § = 0 is used in the cohesive law,
shown in Fig. 2, as a starting point (A* = 0, o) in order to
maintain the continuity of the distribution of the stress field
between the unfractured and fractured stages.

3.3 Results and discussion

The simulation of the fracture of a tensile test performed on
a thin polySi film RVE is performed as follows. At first, a
model of a thin polySi film is developed by Voronoi tessella-
tion with each Voronoi polygon treated as a grain. The size
of each grain is approximately maintained equal to 100 nm,
and a random orientation (random Euler angles) is assigned
as shown in Fig. 7a. However, the preferential orientations
as experimentally observed can also be assigned as demon-
strated in Sect. 3.3.2. The dimensions of the model are cho-
sen as to ensure a stable fracture process, i.e., the total strain
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(b)

Fig. 7 A representative volume element model of a thin polySi film
with a 112 grains and b a mesh containing 874 elements

energy stored in a body should be less than or equal to the
total fracture energy required to be released. The follow-
ing approach has been followed to satisfy this requirement.
At first, the dimensions of the model are fixed with certain
length /, height & and thickness ¢, and one sample simula-
tion is performed by an appropriate value of the load step
that approximately gives a quasi-static loading. Based on the
mesoscopic stress versus strain plot obtained at the end of
the simulation, the correct length of the model is computed
byl < (G¢/(0.5 o €)), where G, 0. and ¢, are the crit-
ical strain energy release rate, obtained fracture stress and
strain, respectively. The model is then regenerated with this
new value of length [ to approximately ensure that the stable
through-the-thickness fracture is obtained. The final dimen-
sions of the modelare/ = 1.15, h = 1 and¢t = 0.05 um. The
typical finite element mesh size is decided with reference to
the smallest edge of the grains present in a model as shown
in Fig. 7b. This ensures that at least one element is present
along the grain boundaries, see Fig. 7b. Experimentally, the
fracture strength of a single crystal silicon is highly affected

@ Springer

by the micro-machining process and the silicon etchant used,
thus a wide variation is observed in its value [2,42]. It is dif-
ficult to exactly incorporate the actual surface roughness of
a polySi film in the present simulation. The standard values
for typical silicon crystals produced by the standard micro-
machining process are used in the present study.

The values of fracture strength along the (1 0 0), (1 1 0)
and (1 1 1) orientation planes for the single crystal silicon
are used as o199 = 1.53, 0110 = 1.21,and 5111 = 0.87 GPa
[2,42,43], respectively. The values of G are similarly used
as GCIOO = 508, GcllO = 4.2, and Gclll = 2.56 J/mz,
[44,45], respectively.! In order to ensure that the fracture
is preferably detected at a single location at the beginning,
the computed value of the effective fracture strength at a
specific Gauss point along the interface element is varied
within &= 10 %. The anisotropic material model in each grain
has a cubic symmetry, with as material parameters in the (1
0 0) direction a Young’s modulus £ = 144 GPa, a Poisson’s
ratio v = 0.28, and a shear modulus . = 80 GPa [2,42,43,
46). The value of the density is p = 2.33 g/cm’.

This model is loaded in uniaxial tension as in the exper-
iments. The force (computed) and displacement (applied)
values along the loading edge are archived. The dynamic
explicit time integration is performed to ensure convergence,
and the value of the load step is decided to ensure that a quasi-
static regime is achieved. As soon as a fracture is detected at
any Gauss point along an interface element, the monotoni-
cally decreasing linear ECL is applied to compute the stress.
The interface elements are present at two locations, videlicet
within a grain and along the grain boundaries. The fracture
strength and effective stress along the interface elements,
that are present within a grain, are computed as explained
in Sects. 3.1 and 3.2, respectively. The value of the fracture
strength along the interface elements, that are present along
the grain boundaries, is assigned corresponding to the (1 0
0) orientation, and the effective stress is computed without
the thickness effect. This adopted approach in the present
work is based on the experimentally observed fact that the
polySi mainly undergoes the transgranular fracture, so the
grain boundaries are stronger than the grains.

In order to capture the spread of fracture strength asso-
ciated to the probabilistic orientation of grains, 10 different
sets of the fracture results are obtained with each time new
Euler angles assigned to the grains. For each of the 10 sets, a
mesoscopic ECL is extracted from the microscopic force vs.
displacement plot [9,14], as u™ = u™ — [(I/E) (f"/(h 1)]
where f™, u™ and u™ are the microscopic force, displace-
ment and macroscopic displacement, respectively, and E is
the slope of microscopic stress versus strain plot till the frac-
ture stress is reached. The mean and standard deviation of

! These units are modified in the simulation setup to avoid bad condi-
tioning numbers.
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the macroscopic effective crack tip opening displacement A* ;n? ]
and fracture stress o are computed based on the 10 sets of )
the extracted mesoscopic ECL from the simulation results. - 1
An average mesoscopic cohesive law is thus developed that e
incorporates the statistical variation of o, and A*. This is first a ]
conducted for a general distribution of the grain orientation g
before considering the case of preferred orientation. o
3.3.1 Fracture of a thin polySi film RVE without preferred 0 ; 5 3 7 s o
grain orientation A* (um) %107

Different sets (10) of the fracture results are now obtained
for this model by each time assigning a random out-of-plane
orientation to the grains. The results from one of the sets are
provided here for reference. The random out-of-plane orien-
tations of 112 different grains are shown by the stereographic
projection of the surface normal of their orientations in Fig. 8.
There is no preferential out-of-plane orientation in this case.

The mesoscopic stress versus strain plot is shown in
Fig. 9a, and the extracted mesoscopic cohesive law is shown
in Fig. 9b. The external load steps could be seen in Fig. 9a for
the pre-fracture state that are caused by the dynamic effects. A
smooth loading can be obtained by further reducing the time
step. The through-the-thickness fracture is shown in Fig. 10.
Itis also seen in Fig. 10 that the crack is initiated at both ends
of the polySi RVE. This could be explained by the fact that
no notches are present along the edges, so there is an equal
probability of the crack occurring at several places, along the
height of the model, at the same time. The more important
aspects are that both cracks finally meet, and that fracture is
transgranular. Few elements could be disturbed during the
crack propagation, as there is no stress concentration at the
onset of crack so the fracture may be detected at more than

Fig. 9 a Stress versus strain evolution of the RVE, b mesoscopic cohe-
sive law when the grains in the polySi film are assigned a random ori-
entation

one Gauss point along the interface elements belonging to
the same bulk element.

The effective Gc = (0.5 A} o.) is computed by the
mesoscopic cohesive law given in Fig. 9b and obtained as
Ge = 2.97 J/m?, where A* = 5.6 x 1072 pm and o, = 1.0
GPa.

The results obtained by all the 10 simulated sets are
analysed, as explained above, and one mesoscopic cohesive
law is extracted for each realisation. Because of the random
nature of the grain orientation, each realisation leads to differ-
ent values of o and G.. The values of mean 6. and standard
deviation o4, of o, are computed as

I
OCZZZ(Gc)iv Og, =

i=1

1 n
- R )
-1 ;:1 [(oc)i —oc]

(29)
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Fig. 10 Crack path when the grains in the polySi film are assigned a
random orientation
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Fig. 11 Average macroscopic extrinsic cohesive law

where n = 10 is our samples number. The values of mean
A¥ and standard deviation o Ax of A7 are also computed sim-
ilarly. These values are obtained as 6, = 0.99 GPa and
06, = 4.04 x 1072 GPa, and A} = 5.98 x 1073 um and
oar = 4.96 x 10~* pwm. The average mesoscopic cohesive
law is thus developed based on these values as shown in
Fig. 11. It is worth mentioning these values are linked with
the size of the polySi RVE, and will change with a change
in the size of the RVE. In this paper, we assume that a size
of the RVE comparable to the size of the finite elements that
will be used at the macroscale is meaningful [47,48]. A more
evolved analysis should account for the correlation distance
[49].

All the simulation results at the microscopic level show
that the first fracture always occurs at the value of effec-
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Fig. 12 Stereographic projection of the surface normal of the out-of-
plane orientation of the grains that are involved in the fracture process
shown in Fig. 10, where an average preferred orientation is in-between
(110)and(111)

tive stress oOeff(0), as explained in Sect. 3.2, in-between the
fracture strengths along the (1 1 0) and (1 1 1) orientation
planes. This means that, irrespective of the orientation of
grains, there will be at least one interface element whose
surface normal will be closely aligned, due to the thickness
effect, to the normal of the (1 1 1) orientation plane. This
implies that the crack will always propagate in the average
direction of the (1 1 1) orientation plane. This is clearly seen
in Fig. 12, where the stereographic projection is given only
for the grains that are involved in the fracture process where
an average preferred out of plane orientation is in-between
the (1 1 0) and (1 1 1) orientations. A similar behaviour has
also been experimentally observed [45]. The average value
of G ~ 2.96 J/m? is also between the values corresponding
to the (1 1 0) and (1 1 1) orientation planes. All the results
at the microscopic level have different crack paths, as each
time a different out of plane orientation is assigned to the
grains. The orientation of grains thus affects the crack path,
while may not drastically affect the fracture stress at which
the crack initiation is detected.

3.3.2 Fracture of a highly textured thin polySi film RVE
with all grain orientations close to (1 1 0)

This section contains the simulation results when all the
grains in Fig. 7a are assigned an out-of-plane orientation
close to the (1 1 0) plane. The objective of this simulation
is to make comparisons with several experimental results
in the open literature, as well as in-house experiments per-
formed as explained later. The average (1 1 0) orientation of
grains is shown by their stereographic projection in Fig. 13.
The microscopic stress versus strain plot and the mesoscopic
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cohesive law are shown in Fig. 14a and b, respectively, and = o7l |
the crack path is shown in Fig. 15. The value of effective G & '
is computed by the cohesive law as well as by the energy bal- ~ 06 1
ance as equal to 2.77 and 3.0 J/m?, respectively. These values © 05} 1
are approximated as they are computed by assuming a com- w 041 ]
plete mode-I fracture, such that the fracture surface area is a 03l |
assumed to be a normal cross-section (4 x t). The crack path 5
. 7 L i
shows that the actual fracture surface is not exactly along the 0-2
normal cross-section. 0.1} 1
The overall fracture strength is equal to 6. ~ 1.0 GPa, 0
6

which is close to the average value obtained by Yi et al. [42]
but slightly lower than the input value o119 = 1.21 GPa for
a single crystal silicon with a preferred (1 1 0) out-of-plane
orientation. The reason behind this was explained at the end
of Sect. 3.3.1. The present results closely match with Suwito
et al. [2] for < 110 > silicon T-structures having sharp 90°
corner at the point of the reduction of cross-sectional area.
This is an important test case as it mimics the actual transi-
tions occurring in the micromechanical structures. The value
of fracture strain is e, =~ 0.56 %, which is very close to the
average value obtained by Sato et al. [43] for a single crystal
silicon film having a < 110 > preferred orientation.

3.4 Experimental observations

The micro-structure and the roughness of a thin polySi film
have been experimentally analysed, in the context of this
research, to have a consistent comparison between the exper-
iment and simulation results. For these experiments, a 240
nm-thick polySi layer has been deposited on top of an oxi-
dised Si substrate. In order to extract the Young’s modulus
as well as the fracture strain of the deposited polySi layer,
on-chip tensile test structures have been manufactured. The
principle and process of the preparation of samples are elab-

A* (“m) x 10

Fig. 14 a Stress versus strain plot, b mesoscopic cohesive law for an
average out-of-plane (1 1 0) grain orientation

orated in [34-39]. During the tensile test there are no longer
interactions between the substrate and the film.

Automated crystallographic orientation mapping in a
transmission electron microscope (ACOM-TEM) is a newly
developed technique attached to TEM, which is used in the
present work to determine the local orientation of polySi
grains. The electron diffraction (ED) patterns, in place of
Kikuchi patterns, are collected with an external charge cou-
pled digital (CCD) camera. The acquired ED pattern is then
stored in a computer and compared (off-line) with the pre-
calculated templates and the best match is selected [50].
The experimental measurements were performed by Philips
CM20 operating at 200 kV and equipped with a LaB6
gun and an external source device, DigiSTAR (R) devel-
oped by NanoMEGAS for ACOM-TEM experiments [50].
Fig. 16 shows ACOM-TEM orientation mapping recorded by
a 20 nm step size and an acquisition frequency of around 100
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Fig. 16 Top view of the out-of-plane orientation map of a 240 nm-
thick and 4 pm-wide polySi sample. Orientation maps of 20 and 8 nm
as step size and 111 pole figure

frames per second for all the sample surface analyses. In order
to increase the quality of the orientation map and to highlight
the micro-structure of the sample, the step size was decreased
to 8 nm and 60 frames per second. The average grain size is
estimated to be &~ 110 nm with a standard deviation of 90 nm.
The large standard deviation is due to the log-normal distrib-
ution of the grain size. The micro-structure is composed of a
large number of small grains with a size smaller than 100 nm
and also few larger grains characterised by a diameter larger
than 500 nm. The sample exhibits a preferential (110) out-
of-plane fiber texture and no specific in-plane orientation is
emerged, as seen in Fig. 16. The manufactured samples are
thus comparable to the RVEs studied in the previous section.

The scanning electron microscope (SEM) observation of
the sidewall shows the presence of one or two grains through
the thickness (Fig. 17a) as used in the simulated geometry
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Grain boundary
grooves

Fig. 17 a SEM image of the sidewall of the 240 nm-thick polySi sam-
ple, b SEM image of the top view of fracture zone for 900 nm-wide
polySi sample

(Sect. 3.2). Concerning the fracture process, the crack path
appears to be clearly transgranular, as shown in Fig. 17b,
which is in good agreement with our numerical studies. The
fracture strain extracted from this test structure is 0.96 % (£
0.07 %). It corresponds to a fracture stress of about 1.41 GPa
(£ 0.1) for Young’s modulus of 147 GPa [34]. These val-
ues are higher than the ones obtained in Sect. 3.2. This can
be explained by the different preparation process compared
to the experiments in references [2,42,43] used to calibrate
0100, 0110, and o111 of our numerical model.

The fracture of a brittle polySi film is initiated from crit-
ical flaws located along the external surfaces, i.e., the side-
walls, top and bottom surfaces [51]. These flaws are gen-
erated by the micromachining processes during the sample
preparation. They might be microstructural defects as grain
boundary grooves that emerge on external surfaces and/or
geometrical imperfections directly generated by the prepara-
tion process, as shown in Fig. 17a. The nature and location
of the critical flaws depend on the preparation process and
on the sample thickness, as their micro-structure is governed
by both. The fracture is initiated at the flaw corresponding to
the highest stress concentration which is governed by sev-
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eral factors, such as the morphology, density, size of the
flaw, local grain orientation, local fracture toughness, and
the local residual stress state. In this specific case, the side-
wall roughness appears larger than that of the top and bottom
surfaces. Thus, the critical flaws are most probably located
on the sidewalls. Nevertheless, although the grain bound-
ary grooves emerge on the sidewalls and are visible, it is not
possible to precisely conclude that they constitute the critical
flaws for the initiation of the fracture. More in-depth studies
of the effect of sidewall roughness on the fracture behaviour
of thin polySi films have to be performed to identify and
characterise the population of the main critical flaws.

These results could be used to prepare an accurate mod-
elling of the MEMS fracture process. As a first step, in the
next section we will study a macro-structure in which the
flaws are modelled by a notch.

4 Fracture of a thin polySi film at the macroscopic level

In this section, a new model of the thin polySi film is cho-
sen to perform the simulation at the macroscopic or MEMS
length scale where the domain of the model is treated as
a continuum, i.e., without the explicit discretization of the
underlying micro-structure. The average mesoscopic cohe-
sive law given in Fig. 11 is imposed, for the Gauss points
where the fracture is detected, by specifying the values of
o. and G, at each node within their lower and upper limits
obtained from the RVE simulations conducted in the previous
Section. This ECL is implemented by randomly assigning the
o. and G bounded by their lower and upper limits (obtained
in Sect. 3.3.1) at each Gauss point, such that the critical crack
tip opening displacement A is automatically bounded by its
lower and upper limits. Thus o, = 0.948, o = 1.03 GPa,
and G.~ = 2.8297, G.T = 2.955 J/m? values are used such
that (A¥)™ = 5.5 x 1073, (AY)* = 6.5 x 1073 pum values
are obtained.

The simulations at the macroscopic scale implicitly
assume that the underlying micro-structure of the MEMS
is closely represented by the RVE at the mesoscopic length
scale, such that the statistical variation of the fracture strength
obtained by the RVE closely represents the actual scenario at
the MEMS length scale. This is achieved firstly without con-
sidering any defect, and secondly with considering an edge
defect at the centre of the length / of a thin polySi film.

4.1 Fracture of a thin polySi film without notch at the
macroscopic level

A new model is considered with [ = 3.45,h = 3 and
t = 0.05pum at the macroscopic length scale. This model
is discretized such that the size of the finite elements is
approximately equal to the size of the RVE considered in

(GPa)

Stress (0)

0 1 2 3 4 5 6 7
Strain (g) x 10

(a)

(b)

Fig. 18 a Stress versus strain plot, b complete fracture of a thin polySi
film at the macroscopic level for the model discretized by 504 finite
elements

Sect. 3.3.1. The results of the simulation are as follows.
The stress versus strain plot and the fracture are shown in
Fig. 18. The total surface or fracture energy for this model
Usurt ~ (3.0 x 0.05 x 3 x 107%) ~ 4.5 x 107! Jis well
achieved at the end of the fracture. The fracture in the present
case is unstable, evident from Fig. 18a, as the total strain
energy Uiy at the beginning of the fracture is much higher
than the required fracture energy.

In order to test the correctness of the mesoscopic cohe-
sive law as well as DG/ECL framework implementation, the
length / is modified, such that the stable fracture is obtained,
as explained in Sect. 3.3. The values of o, and €. are taken
from Fig. 18a and an average G. = 2.9 N/m? is used to
compute the new length / &~ 0.9 pm. The new model is built
again and simulated with all the parameters as before. The
simulation results show that a prefect stable mode-I frac-
ture is obtained and all the vital values are correctly recov-
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Fig. 19 a Stress versus strain plot, b global cohesive law of a thin
polySi film for the stable crack propagation at the macroscopic level

ered. The stress versus strain plot and the cohesive law are
given in Fig. 19, and the complete mode-I fracture is given
in Fig. 20. The total potential energy at the end of fracture is
Upot = 4.2 x 10~! J, which gives G, = 2.8 J/m? for a nor-
mal cross-section (3.0 x 0.05) wm?. The total area under the
cohesive law also equals to G = 2.8 J/m?. The maximum
internal strain energy Uj, = 4.37 x 10~! J, which is close
to the total required fracture energy Ugys = 4.5 x 1071 J,
results in a stable crack propagation.

4.2 Fracture of a thin polySi film with an edge defect at the
macroscopic level

All the simulation results presented so far correspond to the
geometry of a thin polySi film with smooth edges. In reality,
several defects (notches) are generated along the edges of
MEMS due to the micromachining process, thus consider-

@ Springer

Fig. 20 Complete mode-I
fracture for the stable crack
propagation at the macroscopic
level

ably affecting the fracture behaviour of MEMS. Therefore it
is pertinent to study such a model of a polySi film having at
least one edge defect.

The macroscopic model from Sect. 4.1 is modified at first
and a defect in the form of a small notch is created at the
centre of a top edge, such that the height at the centre became
he = 2.52 wm. The simulation is performed keeping all the
parameters as before. Figs. 18a and 21a show that the fracture
stress (computed from the reaction force and from the MEMS
section at the notch part in the second case) is reduced by at
least 20 % due to the presence of the defect. The obtained
crack path can also be physically observed as there will be a
stress concentration at the tip of a notch. As the Up is much
higher than Uy, the fracture is unstable.

Secondly, the length of the model is further increased to
| = 23.0 pwmto have a more realistic size and discretized with
a much larger number of finite elements without changing
any other parameters, such that the size of the elements is
approximately equal to the size of RVE in Sect. 3.3.1. It is
purposefully avoided to have a refined mesh in the central
region to have a more general simulation results without any
influence of the mesh density. The stress versus strain plot
and fracture are shown in Fig. 22. The stress concentration
at the tip of the defect is reduced due to a decrease in the
notch angle (the stress is computed from the reaction force
and from the MEMS section at the notch part), thus resulting
in a slightly higher value of the fracture stress in Fig. 22a as
compared with Fig. 21a.
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Fig. 21 a Stress versus strain plot, and b complete fracture of a polySi
film, having a notch, at the macroscopic level

5 Conclusions

The fracture of a thin polySi film has been simulated by a
2-scale approach.

At the lower scale, the mesoscale RVEs are studied in
which the grains are explicitly meshed. In order to apply the
cohesive zone method, a novel model to compute the effec-
tive fracture strength o of an anisotropic material along arbi-
trary interfaces is proposed, which also satisfies the symme-
try requirement of the unit cube of silicium. In order to use 2D
simulations, the thickness effect is accounted for by allow-
ing a through-the-thickness fracture to occur along arbitrary
orientation planes. The results obtained by the numerical sim-
ulations are broadly in accordance with the experimentally
observed fact that irrespective of the orientation of crystals,

L
OB

04| i
0.3 1 ein ‘ : :
0.1,

(GPa)

Stress (0)

0 1 2 3 4 5 6
Strain (g) x 10

(a)

;
(b)

Fig. 22 a Stress versus strain plot, and b complete fracture of a thin
polySi film having / = 23 pm at the macroscopic level

a crack eventually occurs and propagates along an approxi-
mately (1 1 1) cleavage plane, as the surface energy of this
orientation plane is smaller than for the (1 0 0) and (1 1 0)
planes. The simulation of a uniaxial loading of a thin polySi
film at the mesoscopic level results in the fracture stress and
strain of &~ 1.0 GPa and 0.6 %, respectively, and G. ~ 3.0
J/m?. All these values are between the values corresponding
to the out-of-plane grain orientations (1 1 0) and (1 1 1).
This means that, the fracture is always propagated along the
weakest cohesive element with an out-of-plane orientation
close to the orientation of (1 1 0) or (1 1 1) planes.

From the RVEs studied, a mesososcopic cohesive law can
be extracted to be used as an input for the macroscale sim-
ulations. As the RVEs are not rigorously representative (the
number of grains considered in a RVE cannot be large enough
for MEMS structures without becoming of comparable size
with the macroscale) a set of realisations is considered to
extract a statistical distribution of these resulting mesoscale
effective values, o and G .. At the macroscale, the polySi film
at the MEMS length scale can thus be studied as a homoge-
neous isotropic continuum, which reduces the computational
resources.

The fracture simulations at both scales are achieved using
the combined DG/ECL method. In this framework the inter-
face (cohesive) elements are inserted between the bulk ele-
ments from the beginning of the simulation itself. As the ECL
is activated only at the interface where the effective stress
reaches the fracture strength, the method remains consistent.
Moreover no a priori knowledge of crack path as well as the
remeshing of the geometry are required. This advantage of
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the suggested framework allows the scalable parallelization
of the code.

The fracture of a polySi thin film is experimentally per-
formed in-house by the on-chip fracture test, with (1 1 0)
average local preferential orientation of the sample in the
out-of-plane direction. The in-plane orientations are random,
but based on the symmetry-equivalent cleavage planes, (1 0
0) and (1 1 0) orientations influence the fracture behaviour of
this particular sample of polySi. The values of fracture strain
and stress are found to be 0.96 % (£ 0.07%) and 1.41 GPa
(£ 0.1) with this setup. Thus the fracture stress, as predicted,
is between the fracture strengths along the (1 0 0) and (1
1 0) cleavage planes. The comparison between the simula-
tions and in-house experiments show that the fracture stress
obtained by the simulations is close to, but slightly lower
than, the experimental values. This can be explained by the
different preparation process than for the experiments consid-
ered to calibrate o1¢p, 0110, and o111 of our numerical model.
The crack path of the fracture is found to be transgranular by
both the experiments and simulations. The present work can
be extended in the future by studying and incorporating the
influence of the side wall roughness and other flaws on the
fracture behaviour of a polySi film.
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