
MIT Open Access Articles

Failure detectors encapsulate fairness

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Pike, Scott M., Srikanth Sastry, and Jennifer L. Welch. "Failure detectors encapsulate
fairness." Distributed Computing, vol. 25, issue 4, February 2012, pp. 313-333.

As Published: http://dx.doi.org/10.1007/s00446-012-0164-x

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/104892

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/104892

Distrib. Comput. (2012) 25:313–333
DOI 10.1007/s00446-012-0164-x

Failure detectors encapsulate fairness

Scott M. Pike · Srikanth Sastry · Jennifer L. Welch

Received: 1 April 2011 / Accepted: 14 January 2012 / Published online: 22 February 2012
© Springer-Verlag 2012

Abstract Failure detectors have long been viewed as
abstractions for the synchronism present in distributed sys-
tem models. However, investigations into the exact amount
of synchronism encapsulated by a given failure detector have
met with limited success. The reason for this is that tradition-
ally, models of partial synchrony are specified with respect to
real time, but failure detectors do not encapsulate real time.
Instead, we argue that failure detectors encapsulate the fair-
ness in computation and communication. Fairness is a mea-
sure of the number of steps executed by one process relative
either to the number of steps taken by another process or
relative to the duration for which a message is in transit. We
argue that failure detectors are substitutable for the fairness
properties (rather than real-time properties) of partially syn-
chronous systems. We propose four fairness-based models of
partial synchrony and demonstrate that they are, in fact, the
‘weakest system models’ to implement the canonical failure

A preliminary version of this paper was presented at the 14th
International Conference On Principles Of Distributed Systems
(OPODIS) in 2010. This work is supported in part by NSF grants
CCF-0964696 and CCF-0937274, and Texas Higher Education
Coordinating Board grant NHARP 000512-0130-2007. This works is
also partially supported by Center for Science of Information (CSoI),
an NSF Science and Technology Center, under grant agreement
CCF-0939370.

S. M. Pike · J. L. Welch
Department of Computer Science and Engineering,
Texas A&M University, College Station, TX 77843, USA
e-mail: pike@cse.tamu.edu

J. L. Welch
e-mail: welch@cse.tamu.edu

S. Sastry (B)
Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: sastry@csail.mit.edu

detectors from the Chandra-Toueg hierarchy. We also pro-
pose a set of fairness-based models which encapsulate the
Gc parametric failure detectors which eventually and perma-
nently suspect crashed processes, and eventually and perma-
nently trust some fixed set of c correct processes.

Keywords Failure detectors · Partial synchrony · Fairness ·
Crash faults · Fault tolerance · Schedulers

1 Introduction

The inability to distinguish a crashed process from a slow
process makes it impossible to solve several classic problems
in distributed computing in crash-prone asynchronous sys-
tems [21,22]. Efforts to circumvent this impossibility have
spawned two complementary approaches. The first approach,
called partial synchrony [17,18], focuses on assuming
explicit temporal guarantees on computation and commu-
nication to enable crash detection. The second approach
focuses on augmenting asynchronous systems with oracles,
called failure detectors [10], that provide potentially incor-
rect information about process crashes in the system.

It has long been held that failure detectors encapsulate
partial synchrony. More precisely, a failure detector D encap-
sulates a partially synchronous system model M if and only
if the following two conditions hold: (1) every problem solv-
able in an asynchronous system augmented with D is also
solvable in system model M , and (2) every problem solv-
able in system model M is also solvable in an asynchronous
system augmented with D. As such, if D encapsulates M ,
then D is substitutable for M because any problem solv-
able in M is also solvable in asynchrony augmented with D.
Alternatively (and informally), the notion of encapsulation
by a failure detector may be viewed synonymously with the

123

314 S. M. Pike et al.

notion of mutual reducibility; that is, a failure detector D
encapsulates a system model M if and only if (1) there exists
an algorithm that implements D in system model M , and (2)
there exists an asynchronous algorithm that queries D and
implements a ‘virtual’ system that satisfies the properties of
M .

Partial synchrony A system model is partially synchro-
nous [18] if it provides potentially incomplete, or unknown,
temporal bounds on computational and/or communicational
quantities such as message delays and process speeds.
Despite such uncertainty, partial synchrony is useful for solv-
ing problems in crash-prone distributed systems, and sev-
eral such models have been proposed in the literature (e.g.,
[18,17,26,27,39–41]). These models vary in the information
they provide about these bounds, and consequently they have
different crash detection capabilities. One way to formalize
this notion of crash detection capability is with failure detec-
tors.

Failure detectors Informally, a failure detector [10] can be
viewed as a system service (or oracle) that can be queried for
(potentially unreliable) information about process crashes.
The unreliable outputs of such oracles can be false posi-
tives (suspecting live processes) or false negatives (not sus-
pecting crashed processes). From an empirical standpoint,
most fault-tolerant problems in distributed computing that
are otherwise unsolvable in crash-prone asynchronous sys-
tems can be solved by augmenting the asynchronous system
with either (1) adequate degrees of partial synchrony [18] or
(2) sufficiently powerful oracles [31]. This observation sug-
gests that the axiomatic properties of oracles might encap-
sulate the temporal properties of (suitably defined) models
of partial synchrony. Accordingly, this conjecture has led to
the pursuit of ‘weakest system models’ to implement various
classes of oracles.

Current work on the weakest system models for oracles
(see Sect. 2) has met with limited success partly because the
proposed system models assume real-time bounds on com-
munication (and possibly computation too). Unfortunately,
failure detectors do not preserve such real-time bounds. To
find such weakest system models, we need to address a
more fundamental question: what precisely about partial syn-
chrony do failure detectors preserve?

Results We answer the foregoing question by demonstrat-
ing that failure detectors (at least when restricted to the Chan-
dra-Toueg hierarchy [10]) encapsulate fairness: a measure of
the number of steps executed by a process relative to other
events in the system. We argue that oracles are substitutable
for the fairness properties (rather than real-time properties)
of partially synchronous systems. We propose four fairness-
based models of partial synchrony and demonstrate that they

are, in fact, the ‘weakest system models’ to implement the
canonical failure detectors from the Chandra-Toueg hierar-
chy in the presence of arbitrary number of crash faults. We
extend our results to the failure detectors introduced in [6]
and propose a family of fairness-based partially synchronous
models that are encapsulated by these failure detectors.

Significance Our results further the shift in the direction
of oracular research away from real-time notions of partial
synchrony (which have traditionally been understood with
respect to events that are essentially external to the system)
and towards fairness-based partial synchrony (which can be
understood solely with respect to other events that are internal
to the system). In fact, our results suggest that fairness is the
currency for crash tolerance and that research on weaker real-
time bounds for crash tolerance should focus on enforcing
appropriate fairness constraints on empirical systems relative
to which known oracles can be implemented.

The constructions presented in the paper may be of
independent interest. The scheduler presented in Sect. 5 is
‘universal’ (relative to the canonical failure detectors from
[6,10]) in the sense that a single algorithm for the scheduler
uses the available failure detector as a ‘plugin’ and automat-
ically enforces the maximal fairness encapsulated by that
failure detector. Similarly, the failure-detector algorithm in
Sect. 6 is agnostic to the guarantees on fairness provided by
the underlying system model; for fairer system models, the
algorithm automatically implements stronger failure detec-
tors.

Organization We present related work in Sect. 2. Section 3
provides specifications for the asynchronous system model,
the four failure detectors from [10], and the four fairness-
based partially synchronous systems that we consider. Sec-
tions 4–6 present the four equivalences between the failure
detectors and the fairness-based partially synchronous sys-
tems. We use the constructions from Sects. 4–6 in Sect. 7
and present a new family of fairness-based system models
that are equivalent to the failure detectors introduced in [6].
Finally, we conclude with a discussion in Sect. 8.

2 Related work

The Chandra-Toueg hierarchy In [10], Chandra and Toueg
introduced eight failure detector oracles, which form the
Chandra-Toueg hierarchy. It was also shown in [10] that
the Chandra-Toueg hierarchy can be collapsed to the follow-
ing four oracles: (1) the perfect failure detector (P), which
never suspects any process before the process crashes, after
some (unknown) time permanently suspects all the crashed
processes, and never trusts a previously suspected process;
(2) the eventually perfect failure detector (♦P), which even-

123

Failure detectors encapsulate fairness 315

tually and permanently stops suspecting correct processes
and permanently suspects all crashed processes; (3) the
strong failure detector (S), which never suspects some cor-
rect process, and eventually and permanently suspects all the
crashed processes; (4) the eventually strong failure detec-
tor (♦S), which eventually and permanently stops suspect-
ing some correct process and permanently suspects all the
crashed processes.

Chasing the weakest message-passing model Among the
aforementioned four oracles, a significant amount of research
focuses on ♦S and ♦P . The popularity of ♦S and ♦P is not
just incidental. Despite apparently weak guarantees on crash
fault detection, ♦S has been shown to solve consensus and
other related problems [10,11], and ♦P has been shown to
solve problems including dining philosophers [35,36], sta-
ble leader election [2], quiescent reliable communication [1],
and contention management [25].

Among the many results on ♦S and ♦P , a line of
work has focused on identifying the weakest system model
assumptions that suffice for implementing these oracles in
message-passing systems. One approach is to weaken real-
time constraints on synchrony, while another approach is to
dispense with real-time altogether and instead constrain the
relative ordering of certain events.

Under the first approach, consider system models to imple-
ment ♦S. It is shown in [10] that a system with unknown
and eventual bounds on relative process speeds and message
delay is sufficient to implement ♦P , and thus to implement
♦S. Subsequently, it is shown in [4] that ♦S can be imple-
mented in a system model where all processes execute in
lock-step synchrony and there exists some correct process
whose links are eventually timely; that is, eventually there is
an upper bound on the message delay on these links. In later
work, focus shifts to the weakest system model to implement
♦S and an equivalent failure detector Ω [11] (which, even-
tually and permanently, outputs the id of the same correct
process at all correct processes) in environments where up
to f processes may crash. Furthermore, [30] shows that Ω

(and hence, ♦S) can be implemented in system models where
eventually some correct process has f bidirectional timely
links at all times. Note that the set of f timely links need
not be fixed and may vary throughout the execution. Inde-
pendently, it is shown in [3] that Ω can be implemented in
systems where some f outgoing links at some correct process
are eventually timely. The latter two results are superseded
by [27] which shows that Ω can be implemented in systems
where eventually some correct process has f timely outgo-
ing links and the set of f timely links can vary throughout
the execution.

Similarly, consider ♦P implementations. It is shown in
[10] that a system with unknown and/or eventual bounds on
relative process speeds and message delay is sufficient to

implement ♦P . Subsequently, it is shown in [20] that some
upper bound on the average delay of messages was suffi-
cient to implement ♦P in a system with an unknown upper
bound on absolute process speed, as long as the system uses
stubborn links [24]. The model is weakened to accommodate
infinite message loss in [40] but still assumes a lower bound
on absolute process speed. The bound on absolute process
speeds is relaxed in [41] to permit arbitrary process speeds
while maintaining a bound on relative process speeds.

Under the second approach, which constrains the relative
ordering of certain events, consider♦S implementations. The
first fairness-based system model to implement ♦S is pro-
posed in [19]. The models proposed in [19], called Mes-
sage Classification Models or MCM, classify messages as
either ‘fast’ or ‘slow’ based on their delays measured by some
global clock that need not measure passage of real time. For
instance, a message could be classified as ‘slow’ if the mes-
sage experiences a delay of at most (say) two times the delay
experienced by a ‘fast’ message. In these models, a message
may be deliberately delayed to make it ‘slow’. Let S denote
the set of system models where there exists a correct process
p and a (potentially unknown) time t such that every message
sent to p after time t , but not deliberately delayed, is a ‘fast’
message. The results in [19] demonstrate the system models
in S are sufficiently powerful to implement ♦S.

The next significant fairness-based model sufficient to
implement ♦S is proposed in [32] (extended in [33]) for
systems consisting of n processes with at most f crash faults
in which executions progress in “rounds” (the notion of a
round is local to each process, not global), and processes send
messages to all other processes in each round. A round ter-
minates at a process when the process has received messages
from n − f processes for that round. The model guarantees
that there exists some correct process i such that eventually
some fixed subset consisting of f processes receive a mes-
sage from i in each of their rounds. Subsequently, a weaker
system model (and weakest-to-date) is proposed in [5] which
permits this subset consisting of f processes to vary over
time, as long as (eventually) at all times such a subset exists.

Similarly, among ♦P implementations, the weakest
to-date fairness-based message-passing models that are suf-
ficient for implementing ♦P are the Θ-model [26] and the
ABC model [39]. The Θ-model bounds the ratio of the end-
to-end communication delay of messages that are simulta-
neously in transit, while the ABC model imposes a restriction
on the ratio of the number of messages that can be exchanged
between pairs of processes in certain “relevant” segments of
an asynchronous execution. However, all ♦P implementa-
tions in these models require at least two processes to be
correct. Incidentally, the Θ-model and the ABC model may
be viewed as special cases of the MCM models from [19].

Note that all the above proposed system models, while
claiming to be weakest to-date to implement their respective

123

316 S. M. Pike et al.

failure detectors, do not claim to be the weakest to do so.
The closest result to the ‘weakest’ message-passing sys-
tem model to implement ♦S,♦P , and other eventually
accurate failure detectors is [6] which follows an approach
intermediate between the real-time-based and fairness-based
approaches. The results in [6] demonstrate that with respect
to solvability ♦S,♦P , and other failure detectors are “equiv-
alent” to various partially synchronous models. The authors
of [6] are aware that their transformations do not preserve
bounds on real-time message delay. They claim that the
bounds on message delay are preserved in a ‘relativistic’
sense (in the extended technical report [7]), but they do not
expound on the interpretation of the term ‘relativistic’. Our
work formalizes the ‘relativistic’ message delay as a form of
communicational fairness.

Weakest models for failure detectors in shared memory
The notion of ‘capturing the power’ of a failure detector is
explored in [37,38] for shared-memory systems. The focus
of [37,38] is on failure detectors with limited scope accuracy
[42]; limited scope accuracy is a version of weak accuracy
wherein a correct process need not be trusted by all other
processes but only by a subset of the processes that are osten-
sibly ‘near’ the correct process. The results in [37,38] show
that the ‘power’ of these failure detectors in systems with
single-writer/multi-reader atomic registers can be expressed
as restrictions on the number of read/write operations by
each process in every round (in other words, fairness in the
number of read/write operations per process per round). Our
work, which focuses on message-passing systems, deviates
from [38] in three significant ways.

First, the weakest failure detectors for solving prob-
lems in message-passing systems may be different from
shared-memory systems. For example, consider wait-free
consensus. The weakest failure detector for this problem in
asynchronous shared-memory systems is Ω [29] whereas the
weakest failure detector to solve the same problem in mes-
sage-passing systems is (Ω,Σ);1 that is, process have access
to two failure detectors Ω and Σ [15]. Similarly, for solv-
ing wait-free k-set agreement, the weakest failure detector
in shared-memory systems is anti-Ωk

2[23], but the weak-
est failure detector in message-passing systems remains an
open problem [8,9]. Therefore, ‘capturing the power’ of a
failure detector in message-passing system merits a separate
investigation.

Second, asynchronous systems under message passing are
‘less synchronous’ than asynchronous systems under shared-

1 Failure detector Σ outputs a set of processes at each process. Any two
sets (output at any times and by any processes) intersect, and eventually
every set output at correct processes consists only of correct processes.
2 The failure detector anti-Ωk continually outputs n − k processes and
guarantees that, eventually and permanently, some correct process is
never output.

memory. In fact, an asynchronous shared-memory system is
equivalent to an asynchronous system under message pass-
ing that is augmented with the quorum failure detector Σ

[15]. Consequently, the results from [38] need not (and do
not) carry over to message-passing systems.

Third, the results in [38] demonstrate fairness constraints
only for classes of eventually accurate oracles; in contrast,
our results address the synchronism captured by fairness con-
straints for both eventually accurate oracles and perpetually
accurate oracles. To our knowledge, our work is the first to
establish such equivalence between partial synchrony and
failure detectors with perpetual accuracy. As a consequence
of our results, we answer a question implicitly posed in [13]:
Given that synchronous systems are ‘more synchronous’ than
the perfect failure detector P , what is the ‘gap in synchro-
nism’ between P and synchronous systems? We answer this
question in Sect. 8.

3 Definitions

This section provides the formal framework and definitions
used in the rest of the paper.

We first specify our system model. It is based on the asyn-
chronous system model in [22], but differs from it in two
respects: (1) each process has access to a failure detector,
and (2) messages sent are only guaranteed to be delivered if
both the sender and the receiver are correct. The same formal-
ism can also be used to model a system in which processes
do not have access to failure detectors by having the fail-
ure detectors return no information. In Sect. 3.2, we define
four popular failure detectors, first introduced in [10]. Sub-
sequently, our fairness constraints are presented in Sect. 3.3
and used in Sect. 3.4 to specify fairness-based partially syn-
chronous system models. Subsequently, these fairness-based
partially synchronous system models are shown to be equiv-
alent to the failure detectors from Sect. 3.2. Finally, in Sect.
7, we use the definitions from Sect. 3.2 to specify the failure
detectors from [6], and we use the definitions from Sect. 3.3,
to specify their ‘equivalent’ fairness-based system models.

3.1 Asynchronous system model

The asynchronous system model consists of a finite set of
processes Π and a set of communication links that allow
each process to send and receive messages from each other
process in the system.

Global time We posit the existence of a discrete global time
base whose range of values is the natural numbers N. Infor-
mally, global time simply counts the events that occur in
the system; global time is not a measure of the real-time

123

Failure detectors encapsulate fairness 317

duration between two events. That is, the real-time duration
that elapses between consecutive ticks of the global time
may be arbitrary, but finite. In the remainder of this paper,
‘time’ will refer to global time unless explicitly stated other-
wise.

Faults and fault patterns A process can fail only by crash-
ing, which happens when the process ceases execution with-
out warning and never recovers. The processes that crash are
said to be faulty and the processes that do not crash are said
to be correct (or non-faulty). A fault pattern is a function F
that returns the set of crashed processes at any given time.
That is, F : N→ 2Π ; F(t) denotes the set of processes that
are crashed at time t . Since crashed processes never recover,
∀t, t ′ ∈ N, t < t ′ : F(t) ⊆ F(t ′). We define f aulty(F) =
∪∀t∈NF(t) and correct (F) = Π − f aulty(F); that is,
f aulty(F) denotes all the processes that crash in F and
correct (F) denotes all the processes that are correct in F .
A process that has not crashed at time t is said to be live. We
consider only fault patterns F in which at least one process is
correct; that is, correct (F) �= ∅; let the set of all such fault
patterns be denoted F .

Failure detectors A failure detector [10] is a distributed ora-
cle that can be queried for (potentially incorrect) information
about crash faults in Π . Each process in Π is assumed to
have access to a local failure detector module which outputs
a subset of Π currently suspected as having crashed.

Informally, a failure-detector history describes the output
of a failure detector during an execution. Formally, a fail-
ure-detector history H is a function that maps Π ×N to 2Π ;
H(p, t) is the set of processes output by a failure detector
to process p at time t . Let H denote the set of all possible
failure-detector histories.

A failure detector D is defined as a function D : F →
2H−∅; that is, D maps every fault pattern F to a non-empty
set of failure detector histories. In other words, D(F) denotes
the set of all possible histories that may be output by D when
the fault pattern is F .

Note that it is not necessary for algorithms to have access
to failure detectors. In such cases, we assume that the algo-
rithms have access to a NULL failure detector which always
outputs ∅.

Steps Each process is modeled as a (possibly infinite) state
machine. Certain states are identified as initial states. Each
transition of the state machine—or step of the process—
takes as input the current state of the process, a set consist-
ing of zero or more messages from each other process (the
“received” messages), and the output from the failure detec-
tor; it produces as output a new state for the process and a
set of messages consisting of zero or more messages to each
other process (the “sent” messages).

It is important to note that the set of messages received
by a process is not under the control of the process. In other
words, a process cannot ‘choose’ whether or not to receive
messages. Messages that are delivered to a process are stored
in a receive buffer at the process. When the process takes the
next atomic step, all the messages in the receive buffer are
said to have been received.

Configuration A configuration of the system consists of a
state for each process and the set of all messages that have
been sent but not yet received, called the in-transit messages
(we assume each message can be uniquely identified).

Runs A run is defined with respect to a set of processes
Π , a fault pattern F , and a history H of a failure detector
D (that is, H ∈ D(F)). A run of the system is an infinite
sequence of alternating configurations and steps of the form
α = C0s1C1s2 The sequence must satisfy the following
properties:

– C0 is an initial configuration (every process is in an initial
state and no messages are in transit).

– For each i ≥ 1, the global time i is associated with si .
For convenience in notation, we denote the global time i
associated with si by ti .

– For each i ≥ 1, si must be applicable to Ci−1, meaning:

– All the messages to be received during si are in transit
in Ci−1.

– The failure detector output that is used as input to the
transition indicated by si is H(pi , ti), where pi is the
process taking a step at si and ti is the time associated
with si .

– The process executing si (say, pi) is live at time ti ;
that is, pi /∈ F(ti).

– For each i ≥ 1, Ci is the result of applying step si to Ci−1:
the state of the process executing si changes according to
the transition function of the process, no other processes
change state, the messages received during si are removed
from the set of in-transit messages, and the messages sent
during si are added to the set of in-transit messages.

– Every correct process takes an infinite number of steps.
To model algorithms that terminate, a correct process can
enter a final state S f in a run so that subsequently the pro-
cess takes only dummy steps (executes a no-op action)
that do not send any messages and keep the process in
the state S f . A no-op action is enabled only when no
other action is enabled at the process. Recall that other
actions may become enabled when the process receives
messages. Therefore, if a process takes a dummy step,
then it implies that no other action was enabled at the pro-
cess despite receiving a (possibly empty) set of messages.

– Every message that is sent from (say) process i to (say)
process j is guaranteed to be received by i iff both i and
j are non-faulty. This assumption implies the following:

123

318 S. M. Pike et al.

(a) process crashes can never partition the system, and
(b) all the messages sent by i that are in transit when i
crashes may be dropped. If process i crashes at time t
while a set of messages M , sent by i , are in transit at time
t , then messages in M may or may not be delivered.

3.2 Failure detectors

As mentioned previously, failure detectors can be char-
acterized by the restrictions on their histories for various
fault patterns. Failure detectors are classified into vari-
ous classes based on certain restrictions on their histories.
These restrictions are specified by two abstract proper-
ties: completeness and accuracy. The original definition of
failure detectors [10] considers two completeness proper-
ties Weak Completeness and Strong Completeness. How-
ever, [10] shows that under all-to-all communication, weak
completeness can be transformed to strong completeness
while preserving accuracy. Therefore, we consider only
strong completeness, which states that eventually every
faulty process is permanently suspected by every cor-
rect process; that is, a failure detector D satisfies strong
completeness iff ∀F ∈ F ,∀H ∈ D(F), ∃t ∈ N :
∀t ′ > t,∀i ∈ f aulty(F),∀ j ∈correct (F) : i ∈ H(j, t ′).

There are four accuracy properties specified for the canon-
ical failure detector classes in [10]: Strong Accuracy, Weak
Accuracy, Eventually Strong Accuracy, and Eventually Weak
Accuracy.

– Strong Accuracy states that no process is suspected
before it crashes; that is, ∀F ∈ F ,∀H ∈ D(F),∀t ∈
N,∀i, j ∈ Π − F(t) :: i /∈ H(j, t).

– Weak Accuracy states that some correct process is
never suspected; that is, ∀F ∈ F ,∀H ∈ D(F), ∃i ∈
correct (F),∀t ∈ N,∀ j ∈ Π − F(t) :: i /∈ H(j, t).

– Eventual Strong Accuracy states that correct processes
are eventually never suspected by any correct process;
that is, ∀F ∈ F ,∀H ∈ D(F),∀i, j ∈ correct (F), ∃t ∈
N : ∀t ′ > t : i /∈ H(j, t ′).

– Eventual Weak Accuracy states that some correct pro-
cess eventually is never suspected by any correct process;
that is, ∀F ∈ F ,∀H ∈ D(F), ∃i ∈ correct (F),∀ j ∈
correct (F), ∃t ∈ N : ∀t ′ > t : i /∈ H(j, t ′).

The completeness and accuracy properties stated above
define four failure detector classes [10]:

– The Perfect failure detector (P) satisfies strong complete-
ness and strong accuracy.

– The Strong failure detector (S) satisfies strong complete-
ness and weak accuracy.

– The Eventually Perfect failure detector (♦P) satisfies
strong completeness and eventual strong accuracy.

– The Eventually Strong failure detector (♦S) satisfies
strong completeness and eventual weak accuracy.

Alternate definitions In order to facilitate an understand-
ing of how these failure detectors encapsulate fairness, we
propose alternate (but equivalent) definitions of these failure
detector classes. These alternate definitions are based on the
definition of a distinguished process. Informally, a process
i is said to be distinguished if i is never suspected until it
crashes, and after crashing, i is eventually suspected by all
live processes and remains suspected forever thereafter. Sim-
ilarly, a process i is said to be eventually distinguished if there
is a time t (which may or may not be known) after which i
is distinguished. In other words, an eventually distinguished
process may be falsely suspected before (some potentially
unknown) time t . Note that every distinguished process is
also an eventually distinguished process where the time t is 0.

Formally, a process i is said to be distinguished with
respect to a failure detector D if, ∀F ∈ F ,∀H ∈ D(F),
the following properties are satisfied:

– ∀t ∈ N,∀ j ∈ Π − F(t) :: i /∈ F(t)⇒ i /∈ H(j, t).
– ∃t ∈ N :: (i ∈ F(t)) ⇒ (∀t ′ ≥ t,∀q ∈ Π − F(t ′), i ∈

H(q, t ′))

Similarly, a process i is said to be eventually distinguished
with respect to a failure detector D if, ∀F ∈ F ,∀H ∈ D(F),
the following properties are satisfied:

– ∀ j ∈ correct (F), ∃t ∈ N : ∀t ′ > t : i /∈ F(t ′) ⇒ i /∈
H(j, t ′).

– ∃t ∈ N :: (i ∈ F(t)) ⇒ (∀t ′ ≥ t,∀q ∈ Π − F(t ′), i ∈
H(q, t ′))

Based on this definition of a distinguished process (and the
auxiliary definition of an eventually distinguished process),
we redefine the four failure detectors classes as follows:

– P is a failure detector for which every process is distin-
guished.

– S is a failure detector for which some correct process
is distinguished, and all faulty processes are eventually
distinguished.

– ♦P is a failure detector for which every process is even-
tually distinguished.

– ♦S is a failure detector for which some correct process
is eventually distinguished, and all faulty processes are
eventually distinguished.

Note that in all the four failure detector classes, faulty
processes are eventually distinguished. This corresponds to
strong completeness [10] which states that there exists a time

123

Failure detectors encapsulate fairness 319

after which every crashed process is permanently suspected
by all correct processes.

3.3 Fairness constraints

We claim that Chandra-Toueg failure detectors encapsulate
fairness guarantees of the underlying system. Fairness is
of two kinds: computational and communicational. Com-
putational fairness restricts the number of steps executed by
processes relative to each other. Communicational fairness
restricts the number of steps executed by the recipient of a
message while that message is in transit.

Computational fairness A common specification for com-
putational fairness is bounded relative process speeds [17].
A system is said to have a bound Φ on relative process speeds
if the following holds. In each run α of the system, and the
associated fault pattern F , for each process i , in each time
interval of the form [t1, t2] in which process i takes Φ + 1
steps, all the processes not in F(t2) are guaranteed to take
at least 1 step. Note that this fairness property is symmetric
in the following sense. In a system where relative process
speeds are bounded by Φ, let i and j be two processes. In
any duration where process i takes Φ + 1 steps, if process
j is live during the entire duration, then j is guaranteed to
take at least one step. This behavior holds even when the
roles of i and j are reversed. That is, in any duration where
j takes Φ + 1 steps, if i is live during the entire duration,
then i is guaranteed to take at least one step. However, it is
possible to define computational fairness properties that are
asymmetric.

We next give our definition of computational fairness.
A process i is said to be k-proc-fair (where k is a non-nega-
tive integer) in a run α, if, for all processes j ∈ Π , in every
segment of α in which j takes exactly k + 1 steps, either (1)
i takes at least one step, or (2) i has crashed before the end
of the segment. Similarly, a process i is said to be eventually
k-proc-fair in α, if, for all processes j ∈ Π , there exists a
(potentially unknown) time tgst such that, in all execution
segments of α that begin after tgst in which j takes exactly
k + 1 steps, either (1) i takes at least one step, or (2) i has
crashed before the end of the segment. That is, i is k-proc-fair
in α from time tgst onwards.

Note that i being k-proc-fair with respect to j does not
imply j being k-proc-fair with respect to i . As such, proc-
fairness is an asymmetric fairness property. This is an impor-
tant distinction between computational fairness and bounded
relative process speeds defined in [17,18]. Bounded relative
process speeds may be viewed as a special case where every
process is (eventually) k-proc-fair.

Communicational fairness Constraining communication
delay in terms of fairness is not straightforward. For a process

i to satisfy communicational fairness, it is necessary that i
not take ‘too many steps’ while a message m is en route to i .
However, there is one exception: if the sender of m crashes
while m is in transit to i , then i can take an arbitrary num-
ber of steps before m is delivered. In fact, m may even be
dropped.

We capture the above intuition through the following
definition for a com-fair process. A process i is said to be
d-com-fair (where d is a non-negative integer) in a run α, if,
for all processes j ∈ Π , for each message m sent from i to
j in α, during the segment of α that starts from the step in
which m is sent, contains exactly d steps by j , and ends with
a step by j , either (1) m is received by j , or (2) i has crashed
before the end of the segment.

Similarly, a process i is said to be eventually d-com-fair
(where d is a non-negative integer) in α if, there exists a
(potentially unknown) time tgst such that, for all processes
j ∈ Π , for each message m sent from i to j in α after time
tgst , during the segment of α that starts from the step in which
m is sent, contains exactly d steps by j , and ends with a step
by j , either (1) m is received by j , or (2) i has crashed before
the end of the segment. That is, i is d-com-fair from time tgst

onwards.
In traditional partially synchronous models [17,18] the

bounds on message delay are measured in real-time units and
the de facto upper bound of one step per unit time on pro-
cess speeds imposes an upper bound on the number of steps
taken by both the sender and the recipient of the message. In
contrast, we measure the bounds on communicational fair-
ness as the number of steps taken by the recipient, and not
the sender. The reason for such discrepancy is the following.
Since these traditional models assume that relative process
speeds are bounded, if some live process takes a bounded
number of steps while a message is in transit, then all pro-
cesses take a bounded number of steps while that message is
in transit. Hence, asserting the existence of a bound on the
number of steps by the sender is equivalent to asserting the
existence of a bound on the number of steps by the recipient
in the same time interval. In our case, since computational
fairness is not a symmetric property, a bound on the number
of steps by the sender need not translate to a bound on the
number of steps by the receiver in the same time interval.
Consequently, we denominate communicational fairness as
the number of steps taken by the recipient.

Furthermore, we bound the number of steps taken by the
recipient only while the sender is live for the following rea-
son. While the sender is not crashed, it can successfully main-
tain an operational communication link with the recipient,
and the link can ensure that messages are delivered before
the recipient takes ‘too many steps’. However, if the sender
crashes, the link is no longer guaranteed to stay operational,
and no guarantees can be provided on message delay and
delivery.

123

320 S. M. Pike et al.

3.4 Fairness-based partially synchronous system models

We present four partially synchronous system models that
represent the fairness encapsulated by the four Chandra-Toueg
failure detectors specified in Sect. 3.2.

1. All Fair (AF) is an asynchronous system model where,
in every run, all processes are both k-proc-fair and
d-com-fair, for known k and d.

2. Some Fair (SF) is an asynchronous system model where,
in every run, some correct process is both k-proc-fair and
d-com-fair, for known k and d.

3. Eventually All Fair (♦AF) is an asynchronous sys-
tem model where, in every run, all the processes are
both eventually k-proc-fair and eventually d-com-fair,
for known k and d.

4. Eventually Some Fair (♦SF) is an asynchronous sys-
tem model where, in every run, some correct process is
both eventually k-proc-fair and eventually d-com-fair,
for known k and d.

Next we describe the methodology used to prove our
results.

4 Methodology

We claim that the Chandra-Toueg oracles encapsulate fair-
ness (and not real-time) properties of the underlying sys-
tem. We will show that the amount of fairness encapsulated
by these oracles is specified by the aforedescribed fairness-
based system models. In a precise sense, AF,SF ,♦AF ,
and ♦SF specify the exact amount of fairness encapsu-
lated by P,S,♦P , and ♦S, respectively. Alternatively, it
can be said that AF ,SF,♦AF , and ♦SF are the ‘weak-
est’ system models to implement P,S,♦P , and ♦S, respec-
tively.

The methodology used to establish the above equiva-
lence is as follows. First, we present a construction called
a scheduler (described in Sect. 5) that queries a Chan-
dra-Toueg oracle in an otherwise asynchronous system
to schedule distributed applications such that each pro-
cess executes its application steps ‘fairly’ with respect
to other processes (and messages). The fairness proper-
ties guaranteed by the scheduler depend on the avail-
able failure detector. By employing P,S,♦P , or ♦S,
the scheduler provides fairness guarantees specified by
AF ,SF ,♦AF , or ♦SF , respectively. This shows that
the failure detectors encapsulate at least as much fair-
ness as is specified in the corresponding fairness-based
system models. Next, we present an algorithm (described
in Sect. 6) which implements a Chandra-Toueg oracle on
top of these fairness-based systems. When this algorithm

is deployed in AF ,SF,♦AF , or ♦SF , it implements
P,S,♦P , or ♦S, respectively. Thus, we show that these
failure detectors encapsulate no more guarantees on fairness
than what is provided by the corresponding fairness-based
systems.

5 Extracting fairness from Chandra-Toueg failure
detectors

In this section, we present a distributed scheduler that
‘extracts’ the fairness encapsulated by the Chandra-Toueg
failure detectors. The scheduler is assumed to serve a dis-
tributed application; it determines the times at which the
application modules at each process execute their respective
steps such that appropriate fairness constraints on the relative
ordering of steps and message receipts are maintained.

5.1 Interface between scheduler and application

The scheduler interacts with the application through execute
AP P(), receiveAP P(), and send AP P() interfaces (spec-
ified in Algorithm 2). The scheduler enables the application
to take a step by invoking executeAPP() and in response, the
application takes a single atomic step. If multiple actions of
the application are enabled to be executed, then the sched-
uler is assumed to make a non-deterministic choice among
the enabled actions subject to the constraint of weak fairness
(which states that a continuously enabled action is eventually
executed).

The application receives messages sent by other processes
through the receiveAPP() interface. The scheduler at each
process i takes all the messages destined for the applica-
tion module at i and stores them locally in a receive buffer.
When the application takes a step, the scheduler delivers
the messages in the receive buffer to the application through
receiveAP P(). Note that the application does not have con-
trol over the invocation of receiveAPP(); this is performed by
the scheduler to ensure that the application receives messages
‘on time’.

The application sends messages via the send AP P() inter-
face. While taking a step, if the application at process i
invokes send AP P(), the scheduler at i stores all the mes-
sages that the application wants to send to all the processes
in a local send buffer. The scheduler at i then sends the
messages to destination processes where they are stored in
the receive buffers of the destination processes. These mes-
sages are then received by the respective recipient processes
when the scheduler modules at the latter processes invoke
receiveAP P().

123

Failure detectors encapsulate fairness 321

5.2 Fairness guarantees provided by the scheduler

The algorithm presented is a universal construction for the
Chandra-Toueg hierarchy in the sense that depending on the
failure detector used by the algorithm, the appropriate fair-
ness guarantees are provided by the distributed scheduler to
the application being scheduled. For example, if the appli-
cation module at (a live) process (say) i is guaranteed to be
scheduled to take at least one step in all durations where
other processes (that are live in that duration) have taken
at least k + 1 steps, then the scheduler is said to provide
k-proc-fairness for process i . Similarly, while a message m
is is in transit to process i , if the application module at i is
guaranteed to be scheduled to take fewer than d steps and
guaranteed to receive m within d steps, then the scheduler is
said to provide d-com-fairness for process i .

The local scheduler module is always in one of two states:
waiting and active. When the scheduler module is waiting,
the associated application module is not permitted to take
steps. Upon becoming active, the scheduler module permits
the associated application module to execute a single enabled
step; we assume that the application at each process always
has some enabled step that it can take. After the application
takes exactly one step, the scheduler goes back to waiting.
Additionally, the distributed scheduler ‘intercepts’ and for-
wards all the communication among the application modules.

The properties to be satisfied by the distributed scheduler
are local progress and fairness. Local progress states that
every correct process must be scheduled to execute its appli-
cation steps infinitely often, regardless of process crashes in
the system. Fairness properties are as follows.

– If the distributed scheduler uses P , then the scheduler
provides the AF system model guarantees to the sched-
uled application.

– If the distributed scheduler uses S, then the scheduler pro-
vides the SF system model guarantees to the scheduled
application.

– If the distributed scheduler uses ♦P , then the scheduler
provides the ♦AF system model guarantees to the sched-
uled application.

– If the distributed scheduler uses ♦S, then the scheduler
provides the ♦SF system model guarantees to the sched-
uled application.

5.3 Algorithm description

The algorithm in Algorithms 1 and 2 implements a distributed
scheduler with dynamic heights and permits. Algorithm 1
shows the actions of the scheduler and Algorithm 2 shows
the interface between the scheduler and the scheduled appli-
cation. The idea of dynamic heights (also called priorities)

and permits (also called forks) is borrowed from the algo-
rithms to solve the dining philosophers problem in [12,36].
Each process is assigned a static unique id and all the ids are
known to all the processes in the system.

In Algorithm 1 each process i has the following variables:
si .state which determines if the process is waiting or active.
The height of a process is stored in the variable si .ht which
is initially 0. Each process i also uses sequence numbers to
tag its message requests and the sequence number is stored
in the variable si .seq. For each other process j in the system,
i maintains the variables: (a) si .permit j to determine if the
permit shared with j is currently held by i , (b) si .req j to
determine if the request token (or simply token) to request
a permit from j is currently at i , (c) si .ht j which stores the
last received value of j’s height (in permits and request mes-
sages), and (d) si .maxAck j which stores the application-
message request with latest sequence number for which i
has received application messages from j .

Every pair of processes i and j share a permit and a token.
Between every pair of processes, initially, permits are held by
the higher-id process and the tokens are held by the lower-id
process. All processes start in the waiting state. For a waiting
process to become active, it must collect all its shared per-
mits. A waiting process requests missing permits in Action 1.
Upon receiving such a request in Action 2, the process deter-
mines if the request should be honored based on the following
condition: if the process is waiting, holds the shared permit,
and the requesting process has greater height (or equal height
and higher process-id), then the process relinquishes the per-
mit. Otherwise the process simply holds the token and defers
sending the permit if the permit is present.

Upon receiving a permit in Action 3, the process again
determines if the permit should be kept/deferred or sent based
on the same condition mentioned previously.

Once a waiting process receives all shared permits from
processes not suspected by the failure detector D, the pro-
cess becomes active in Action 4. When a process i becomes
active, it solicits any messages for which the active process
is the recipient by sending an application-message request to
all the processes in the system. Each such message contains a
unique sequence number si .seq. Process i tracks the receipt
of responses to its application-message requests by storing
the largest sequence number for which application messages
have been received in the variable si .maxAck j .

Application-message requests are received in Action 5.
When a process j receives such a request from a process i
with a sequence number num, process j sends the contents of
its local send buffer for process i in response with the same
sequence number num. Process i receives this response to
its request in Action 6, process i takes all the received mes-
sages and adds them its local receive buffer; it also updates
si .maxAck j if num is the largest sequence number for which
i has received application messages from j .

123

322 S. M. Pike et al.

enum {waiting, active} : si .state← waiting State variable is initially set to waiting
integer si .ht← 0 The height of process i
integer si .seq← 0 Generates a new sequence number to solicit messages from other processes
∀ j ∈ �− {i} :

boolean si .permit j ← (i.id > j.id) Process with higher id holds the shared permit
boolean si .req j ← (i.id < j.id) Process with lower id holds the shared request token
integer si .ht j ← 0 Process i’s view of the height of process j
integer si .maxAck j ← 0 The highest sequence number among the messages received from j
set si .send_buffer j ← ∅ The send buffer through which application at i sends messages to j
set si .receive_buffer j ← ∅ The receive buffer from which application at i receives messages from j

1 : {si .state = waiting} −→ Action 1
2 : ∀ j ∈ �− {i} where si .req j ∧ ¬si .permit j do Request permit
3 : send 〈request, si .ht〉 to s j ; si .req j ← f alse

4 : {upon receive 〈request, ht〉 from s j } −→ Action 2
5 : si .req j ← true Send permit if si is waiting
6 : si .ht j ← ht and s j has higher priority
7 : if (si .permit j ∧ (si .state = waiting) ∧ ((ht > si .ht) ∨ ((ht = si .ht) ∧ (i < j)))
8 : send 〈permit, si .ht〉 to s j ; si .permit j ← f alse

9 : {upon receive 〈permit, ht〉 from s j } −→ Action 3
10 : si .permit← true
11 : si .ht j ← ht
12 : if (si .req j ∧ (si .state = waiting) ∧ ((ht > si .ht) ∨ ((ht = si .ht) ∧ (i < j))) Send permit if si is waiting
13 : send 〈permit, si .ht〉 to s j ; si .permit j ← f alse and s j has higher priority

14 : {(si .state = waiting) ∧ (∀ j /∈ D \ {i} :: si .permit j)} −→ Action 4 (Note: D is queried)
15 : si .state← active Active upon holding permits from trusted processes
16 : increment si .seq by 1 Generate a new seq. no. to tag a request message
17 : foreach j in �− {i}
18 : send 〈get Msg, si .seq〉 to s j Send a request for messages to all processes

19 : {upon receive 〈get Msg, num〉 from s j } −→ Action 5
20 : S← si .send_buffer j Received a request for msgs
21 : si .send_buffer j ← ∅
22 : send 〈S, num〉 to s j Send the contents of the local send buffer

23 : {(upon receive 〈S′, num〉 from s j)} −→ Action 6
24 : si .receive_buffer j ← si .receive_buffer j ∪ S′ Add to local receive buffer
25 : si .maxAck j ← max(num, si .maxAck j) Update max. ack receive so far.

26 : {(si .state = active) ∧ (∀ j ∈ �− {i} :: ((si .maxAck j = si .seq) ∨ (j ∈ D)))} −→ Action 7 (Note: D is queried)
27 : executeAP P() Execute an application step; executeAP P() is specified in Alg. 2
28 : si .ht← min(∀ j ∈ �− {i} :: si .ht j , si .ht)− 1
29 : ∀ j ∈ �− {i} where (si .permit j) Reduce height below all the neighbors whose heights are known.
30 : send 〈permit, si .ht〉 to s j ; si .permit j ← f alse Send all held permits
31 : si .state← waiting Exit the active state after executing an application step

Algorithm 1 Actions for scheduler at process i .

procedure executeAP P()

execute an enabled application step where
receiveAP P() delivers messages to the application
application step invokes send AP P(m, j) to send message m to process j

procedure receiveAP P()

returnV alue←∪∀ j∈�−{i}{(si .receive_buffer j , j)}
∀ j ∈ �− {i} do si .receive_buffer j ← ∅
return returnV alue

procedure send AP P(m, j)
si .send_buffer j ← si .send_buffer j ∪ {m}

Algorithm 2 Interaction between the scheduler and the application at process i .

123

Failure detectors encapsulate fairness 323

If the active process i has received application messages
for its latest application-message request from all the pro-
cesses it doesn’t suspect, then Action 7 is enabled at i . In
Action 7, i invokes executeAP P() to execute an appli-
cation step before transiting to the waiting state. When
the process executes an application step, the application is
given all the messages in the local receive buffer via the
receiveAP P() interface described in Algorithm 2, and the
application step sends messages by invoking send AP P()

described in Algorithm 2 which simply adds the message to
the local send buffer. These messages are not sent until an
application-message request is received from the scheduler
module at the recipient of these messages.

Eventually, the process exits its active state by reducing its
height below all processes (whose shared permits it holds),
sends all the permits away and transits to waiting in Action 7.

5.4 Proof of correctness

In this section we prove that the distributed scheduler in Algo-
rithm 1 satisfies the local progress and fairness properties
specified in Sect. 5. For the purpose of the proof, consider an
arbitrary run α of Algorithm 1.

Lost request tokens or permits can prevent progress, while
duplicated request tokens or permits can compromise fair-
ness. First we prove that every pair of processes share a
unique permit and a unique request token. We use the follow-
ing notation to denote that a message of type y is in transit
from process i to j : M y

i→ j .

Lemma 1 For all configurations in α, there exists exactly
one request token between each pair of live processes; that
is, for all pairs of processes (i, j), exactly one of the following
four expressions is true: (1) si .req j = true, (2) s j .reqi =
true, (3) Mrequest

i→ j = true, and (4) Mrequest
j→i = true.

Proof For each pair of processes, the initialization code cre-
ates a unique request token at the lower-priority process.
Since communication channels are reliable, this token is nei-
ther lost nor duplicated while in transit. Only Actions 1 and
2 can modify the token variables. No token is lost, because
every token received is locally stored (Action 2), and no token
is locally removed unless it is sent (Action 1). No token is
duplicated, because every token sent is locally removed, and
no absent token is ever sent (Action 1). Thus, token unique-
ness is preserved. ��
Lemma 2 For all configurations in α, there exists exactly
one permit between each pair of live processes; that is, for
all pairs of processes (i, j), exactly one of the following four
expressions is true: (1) si .permit j = true, (2) s j .permiti =
true, (3) M permit

i→ j = true, and (4) M permit
j→i = true.

Proof For each pair of processes, the initialization code cre-
ates a unique permit at the higher-priority process. Since

communication channels are reliable, this permit is neither
lost nor duplicated while in transit. Only Actions 2, 3, and 7
modify the permit variables. No permit is lost, because every
permit received is locally stored (Action 3), and no permit
is locally removed unless it is sent (Actions 2, 3, and 7).
No permit is duplicated, because every permit sent is locally
removed, and no absent permit is ever sent (Actions 2, 3, and
7). Thus, permit uniqueness is preserved. ��

In order to prove local progress, we are required to show
that every correct process is guaranteed to take application
steps infinitely many times. This proof is established in two
steps. Note that a process can execute its application action
only when it is active. So, in the first step (Lemmas 3 and 4),
we show that a correct process is active only for a finite dura-
tion. In the second step (Lemma 5 and Theorem 1), given that
a correct process is active only for a finite time, we estab-
lish that every correct waiting process eventually becomes
active. Since a correct process starts waiting when it stops
being active, it follows that a correct process becomes active
infinitely many times, and therefore takes application steps
infinitely many times.

Lemma 3 For all configurations in α, for all pairs of pro-
cesses (i, j) where i �= j, si .maxAck j never exceeds si .seq;
that is, ∀i, j ∈ Π : i �= j : si .maxAck j ≤ si .seq.

Proof Initially, si .seq = si .maxAck j = 0, therefore the
lemma is true initially. Note that the only action that changes
the value of si .seq is Action 4, and Action 4 increments the
value by 1. Therefore, if the lemma was true before i exe-
cuted Action 4, then the lemma is true upon executing Action
4 as well.

Note that the only action that changes the value of
si .maxAck j is Action 6. If Action 6 increases the value of
si .maxAck j , then the increased value num is received by i
in a message 〈msgSet ′, num〉 from j . But note that j sends
〈msgSet ′, num〉 to i only upon receiving 〈get Msg, num〉
from i (Action 5). But in the message 〈get Msg, num〉 sent
by i to j (at time t ′), the value of num (in line 25, Action
6, Algorithm 1) is si .seq at time t ′. Inspection of the algo-
rithm reveals that si .seq is non-decreasing. Therefore, the
new si .maxAck j is either the current or a previous value of
si .seq. Therefore, if the lemma was true before i executed
Action 4, then the lemma is true upon executing Action 4 as
well.

Thus, the lemma is true initially, and the lemma is true
after executing any action that changes the values of si .seq
and si .MaxAck j ; thus proved. ��

Now we are ready to show that all correct processes are
active only for finite durations.

Lemma 4 Let C be a configuration in α at time t in which
a process i is active. Then in some configuration C ′ at time
t ′ > t , either i is crashed or i is waiting.

123

324 S. M. Pike et al.

Proof Given that process i is active in configuration C at
time t , let the system be in configuration C ′′ at time t ′′ ≤ t
such that i is active in all the configurations in the interval
[t ′′, t] and i is not active at time t ′′ − 1. In other words, pro-
cess i becomes active in the step that results in configuration
C ′′ at time t ′′ (in Action 4), and i remains active through
time t ≥ t ′′ in configuration C . If i is faulty, then i crashes
at some time t ′ > t , thus satisfying the lemma.

However, if i is correct, then to prove the lemma we have to
show that there exists a time after t at which i is waiting. Let
the value of si .seq in C ′′ be num. From the code in Algorithm
1, we see that the value of si .seq changes from num only in
Action 4, which is enabled only when i is waiting. Therefore,
the value of si .seq does not change from num until i transits
from active to waiting. Also, from Action 4, we see that i
sends the message 〈get Msg, num〉 to all other processes in
the step that i takes immediately preceding C ′′. For each cor-
rect process j, j receives the message 〈get Msg, num〉 from
i , executes Action 5, and sends 〈msgSet, num〉 to i . The
message 〈msgSet, num〉 is eventually received by i (since i
is still live) in Action 6 at time (say) tr j > t ′′, and i sets the
value of si .maxAck j to num.

We know from Lemma 3 that si .maxAck j is always
at most si .seq, and we know that num = si .seq =
si .maxAck j at time tr j . From the code in Algorithm 1, we see
that the value of si .maxAck j is non-decreasing, and we have
already established that the value of si .seq does not change
until i transits from active to waiting. Therefore, from time
tr j until i transits to waiting, si .maxAck j = si .seq.

For each faulty process j , one the following is true: (1)
eventually si .maxAck j = si .seq and remains so until i tran-
sits to waiting, or (2) j crashes and by strong completeness, j
is eventually and permanently suspected by the failure detec-
tor D.

Therefore, eventually for all processes j ∈ Π−{i}, either
si .maxAck j = si .seq or j is suspected by D. That is, even-
tually, Action 7 is continuously enabled at i until Action 7
is executed, and after Action 7 is executed, i starts waiting.
Thus, we showed that if a process i is active in configura-
tion C at time t , then at some future configuration C ′ at time
t ′ > t either i is crashed or i is waiting. ��

In order to prove progress, we need to show that every
waiting process eventually becomes active. For this purpose,
we introduce some definitions to construct a metric function
on configurations of α. First, we measure the priority dis-
tance between any two processes i and j in a configuration
as:

dist (i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if (si .ht < s j .ht)
si .ht− s j .ht. if ((si .ht ≥ s j .ht)

∧ (i < j))
si .ht− s j .ht+ 1, if ((si .ht ≥ s j .ht)

∧ (i > j))

For any pair of processes i and j , in some configuration
where j is waiting, suppose that dist (i, j) = d. While j
remains waiting, s j .ht remains unchanged. Also, recall from
Action 7 that each process reduces its height (below all the
processes whose shared permits it holds) when exiting the
active state. Consequently, d is an upper bound on the max-
imum number of times that process i can overtake process j
and become active before either j becomes active or si .ht <

s j .ht.
Now we define a metric function M : Π → N for each

process j ∈ Π as follows:

M(j) =
∑

∀i∈Π :i �= j

dist (i, j)

Note that M is bounded below by 0, and that M(j)= 0 iff
j currently has the highest priority value among all processes
inΠ . In general, the value of M(j)depends only on processes
that currently have a higher priority than j . This is because
dist (i, j) = 0 for any process i with lower height than j or
equal height as j but lower process id. If M(j) = b, then
b is an upper bound on how many times any higher-priority
process can become active before either j becomes active or
j is the process with highest priority.

Also note that the metric value of each process in a given
configuration is unique: (i �= j) ⇒ M(i) �= M(j). More-
over, M(i) < M(j)⇔ ((si .ht < s j .ht)∨ ((si .ht = s j .ht)∧
(i < j)). These properties follow from the fact that priorities
are totally ordered.

Finally, the metric value M(j) never increases while pro-
cess j is waiting. M(j) can only increase by reducing the
height s j .ht in Action 7 while exiting the active state. Impor-
tantly, if j is the process with the largest height in the system,
this change in relative priority actually causes the metric val-
ues of all other processes to decrease.

We now state and prove the following helper lemma for
progress:

Lemma 5 Let C be any configuration in α with at least one
live waiting process. Let j be the live waiting process in
C with minimal metric. Then there is a later configuration
C ′ in α such that: (1) j is active in C ′, or (2) j is crashed
in C ′, or (3) some other process i is live and waiting and
M(i) < M(j) in C ′.

Proof Assume in contradiction that in every configuration
after C, j is live and waiting and has the minimal metric. We
will show that eventually j is active, a contradiction.

Let C ′′ be a configuration after C in α in which all faulty
processes have crashed and by strong completeness of D,
all such crashed processes are permanently suspected. After
C ′′, j only needs to collect permits from correct processes.
We show that j succeeds in collecting and keeping all these
permits, and thus, j will become active.

123

Failure detectors encapsulate fairness 325

Let i be any correct process other than j . First we show
that j will not lose the permit it holds with i . By hypothesis,
j is waiting and has higher priority than any correct pro-
cess from configuration C onwards (recall that M(j) never
increases while j is waiting; hence, j will continue to be
the highest priority process until it becomes active), so any
request token received by j in Action 2 will be deferred. Note
that it is possible for j to receive an ‘old’ request token from i
which has higher priority value, thereby causing j to give up
its shared permit. However, j will send the request token to i
in Action 1 right after sending the permit, and this time i will
have to return the permit to j because j has higher priority.
Thereafter, eventually, j defers the request token from i until
j becomes active.

Now we show that j will eventually acquire the permit
shared with i . By Lemma 2, j shares a unique request token
with i . All permits that were in transit to j when j started
waiting are delivered in finite time. For any missing permits,
if j holds the request token, then j will eventually send the
corresponding token.

However, if j has neither the request token nor the shared
permit upon transiting to waiting, then eventually the shared
permit and the request token are either at i or at j . We now
show that eventually j receives either the request token or
the shared permit. For the purposes of contradiction, sup-
pose eventually i holds both the permit and the request token
permanently. If i is active, then i eventually starts waiting (by
Lemma 4) and sends the permit to j in Action 5. If i is wait-
ing, then depending on the order in which the request token
and the permit arrived at i , process i executes either Action 2
or Action 3. Since priorities are non-increasing, the priority
encoded in the token and the permit received by i must be at
least as high as j’s current priority. We have already estab-
lished that j has the highest priority in the system. Therefore,
in both Action 2 and Action 3, i sends the shared permit
to j .

If j (eventually) receives the request token, then j sends
this request token to i in Action 1. Recall that by the hypoth-
esis, j has higher priority than i ; consequently, this permit
request must be honored unless i is currently active. In the
latter case, we know from Lemma 4 that i eventually exits to
be waiting; therefore, the requested permit will be sent when
i starts waiting in Action 5.

Thus, we conclude that if j remains waiting indefinitely,
then j eventually suspects each faulty process and eventually
holds the shared permit with each correct process. By Line
14, the guard on Action 4 is enabled. So j becomes active.

��

Thus, we see that a waiting correct process with the mini-
mal metric eventually either becomes active or no longer has
the minimal metric in the system. Since the set of processes
in the system is finite and fixed, we conclude that eventually

some waiting correct process (say) i with minimal metric
becomes active and takes an application step. As a result, i
reduces its priority, and consequently, the metric values of all
other correct processes in the system decrease. Furthermore,
when i transitions to waiting (again), it no longer has the min-
imal metric in the system (assuming there are other correct
processes in the system); that is, some other correct process
in the system has the minimal metric. Thus, by inductively
applying this argument to all correct processes, we see that
every correct process takes infinitely many steps. We prove
this result in Theorem 1.

Theorem 1 Algorithm 1 satisfies local progress: every cor-
rect process takes infinitely many application steps.

Proof Note that to prove the theorem, it is sufficient to prove
the following claim: For every k, every configuration C of α,
and every correct process j , if M(j) = k in C , then there is
a later configuration in which j is active. We prove this by a
complete (strong) induction on metric values.

Base Case: k = 0. Suppose M(j) = 0 in configuration C .
Since 0 is the smallest possible value that the metric can have
and j is correct, Lemma 5 implies that in some subsequent
configuration C ′, either j is active or there is another live
waiting process i whose metric is smaller than j’s metric in
C ′.

However, since j’s metric can never increase while j is
waiting, and it is not possible for a process to have a met-
ric less than 0, no such live waiting process i exists. So, j
eventually becomes active.

Inductive Case: k > 0. Suppose for every k′ < k, every
configuration C of α, and every correct process j , if M(j) =
k′ in C , then there is a later configuration in which j is active.
We must show that for every configuration C and every cor-
rect process j , if M(j) = k in C , then there is a later config-
uration in which j is active.

Let C be a configuration, and let j be a correct waiting
process in C with M(j) = k. Suppose that k is the mini-
mal metric value among all correct waiting processes in C .
Then Lemma 5 applies to j , so we conclude that j eventually
becomes active, or some correct process i with M(i) < M(j)
starts waiting. Alternatively, suppose that k is not the mini-
mal metric value among all correct waiting processes in C .
Then some (other) correct waiting process i with M(i) < k
already exists. Either way, we conclude that j eventually
becomes active or the inductive hypothesis applies to some
correct waiting process i with M(i) < k. In the latter case,
process i becomes active. By Lemma 4, i eventually exits the
active state by executing Action 5, which thereby lowers the
height si .ht and decreases dist (i, j) by at least 1. Recall that
while j remains waiting, M(j) does not increase. Thus, any
decrease in dist (i, j) will cause the metric value of M(j) to
become less than k. Since j is now a correct waiting process

123

326 S. M. Pike et al.

with M(j) < k, the inductive hypothesis applies directly to
j . Thus, we conclude that j eventually becomes active.

By Lemma 4 and Action 7, we know that every time j
becomes active, it executes an application step, and j even-
tually exits. Upon exiting j starts waiting again. Thus, we
show that Algorithm 1 satisfies local progress by complete
induction. ��

To establish the proof for computational fairness, we make
use of the notion of distinguished processes. Recall that a dis-
tinguished process is never suspected until it crashes and is
suspected forever thereafter. An informal argument for com-
putational fairness of distinguished processes is as follows.
Given a distinguished process i , no process in the system
suspects i until i crashes. Therefore, when any other process
j becomes active while i is live, j is guaranteed to hold the
permit it shares with i . Therefore, when j transits back to
waiting, j is guaranteed to reduce its height below i’s height.
Since i is not suspected until i crashes, as long as i does not
crash, i is guaranteed to become active before j . We formal-
ize this argument in Theorem 2 and its proof.

Theorem 2 In Algorithm 1, each distinguished (respec-
tively, eventually distinguished) process is 2-proc-fair (resp-
ectively, eventually 2-proc-fair).

Proof Consider an arbitrary run α and let i be any process
that is eventually distinguished in α. Let the earliest time after
which i is distinguished be ti . That is, from time ti onwards,
if i is live at time t̂ ≥ ti , then i is trusted by the failure detec-
tor (at all live processes) at time t̂ , and on the other hand, if i
is crashed at time t̂ ≥ ti , then for some t̃ ≥ t̂, i is suspected
by the failure detector (at all live processes) in the interval
[t̃,∞). We must show that for all j , in every interval starting
after ti in which j takes three application steps, either i takes
at least one application step or i is crashed.

Consider a process j �= i that takes three application steps
after ti , say at times t, t ′, and t ′′ and suppose that i is live
through t ′′. We must show that i takes an application step at
least once between t and t ′′. Since i is a distinguished pro-
cess from time ti onwards, the failure detector D at j never
suspects i between ti and t ′′. Therefore, j holds the shared
permit between i and j at times t, t ′, and t ′′.

At time t , let the height of i be hti and the height of j be
ht j . There are two cases to consider here:

Case 1. Let ht j < hti . Note that j holds the permit it
shares with i . Eventually, j sends the permit to i in Action 7,
and j includes its height ht j in the permit. When i receives
this permit ht j < hti ; therefore, i does not relinquish the per-
mit until i becomes active. Since j becomes active at time
t ′ (and takes an application step) and j does not suspect i, j
holds the shared permit at time t ′. Since i sends the permit
only after i becomes active, i is guaranteed to become active
before time t ′ (and take its application step); thus the theorem
is satisfied.

Case 2. Let ht j > hti . Note that j holds the shared permit.
Eventually, j sends the permit to i in Action 7. We know that
j takes an application step at time t ′ and therefore is active at
time t ′. Therefore, j must hold the permit it shares with i at
time t ′. That is, i sends the permit to j in the interval (t, t ′).

Note that i sends the permit to j only in Actions 2 and
7. If i executes Action 7 in (t, t ′), then i was active in the
interval (t, t ′) and the theorem is satisfied. On the other hand,
if i sends the permit to j in Action 2, then i is not active in
the interval (t, t ′). Also, i includes its height hti in the per-
mit. Therefore, when j is active at time t ′, the value of s j .hti
is hti . When j transits to waiting, it reduces its height to
ht ′j < hti and includes this height in the permit sent to i . We
know that j takes an application step again at time t ′′, and so
j is active again at time t ′′. Therefore, j must hold the per-
mit it shares with i at time t ′′. That is, i sends the permit to j
in the interval (t ′, t ′′). However, since ht ′j < hti , i does not
send the permit to j in Action 2 in the interval (t ′, t ′′). The
only other action in which i sends the permit to j is Action
7; that is, i must have been active at some time in the interval
(t ′, t ′′), and hence, i must have taken an application step in
the interval (t ′, t ′′).

In other words, i is eventually 2-proc-fair. However, if
ti = 0, then i is 2-proc-fair in the run α; that is, if i is a
distinguished process, then i is 2-proc-fair. Thus, we have
shown that every distinguished (respectively, eventually dis-
tinguished) process is 2-proc-fair (respectively, eventually
2-proc-fair). ��

In the special case where all the processes are (eventually)
distinguished, a careful analysis shows that all correct distin-
guished processes are, in fact, (eventually) 1-proc-fair. We
omit this here because, for the purposes of our results, it is
sufficient to show that (eventually) distinguished processes
are (eventually) 2-proc-fair.

We use the notion of distinguished processes to establish
communicational fairness as well. The intuitive argument
for communicational fairness is as follows. Given a distin-
guished process i , no process in the system suspects i until i
crashes. Therefore, while (1) an application message m sent
by i to another process j is in transit and (2) i is live, j waits
for s j .maxAcki to be equal to s j .seq before executing an
application step. However, s j .maxAcki equals s j .seq only
when j receives the set of application messages from i that
were in transit before j became active. Note that m is one
such message. Therefore, j takes no more than one applica-
tion step while m is in transit. We formalize the this argument
in Theorem 3 and its proof.

Theorem 3 In Algorithm 1, each distinguished (respec-
tively, eventually distinguished) process is 1-com-fair (respec-
tively, eventually 1-com-fair).

Proof Consider an arbitrary run α and let i be any process
that is eventually distinguished in α starting at some time ti .

123

Failure detectors encapsulate fairness 327

We show that for all j and all application messages m sent
from i and received by j after ti , during the time m is in
transit, either j takes at most one step or i is crashed.

Consider a process j �= i to which i sends an application
message m at some time t after ti . This message is sent by the
application when i is active and invokes send AP P(m, j),
which causes m to be added to si .send_buffer j (the message
is actually sent by the scheduler later during the execution).
By the assumption that m is received by j , we know that j
takes at least one application step after t . Again, note that j
executes its application step only when j is active. Let t ′ > t
be the earliest time after t that j becomes active (by execut-
ing Action 4). In the active session that starts at time t ′, j
sends 〈get Msg, s j .seq〉 to i in Action 4.

From Lemma 3 we know that s j .maxAcki ≤ s j .seq
before j executes Action 4. But Action 4 increments s j .seq,
therefore, after j executes Action 4, s j .maxAcki < s j .seq

From Lemma 4, we know that j eventually stops being
active. Since i is a correct eventually distinguished process,
we also know that j does not suspect i . Therefore, if j even-
tually exits the active state by executing Action 7, then even-
tually s j .maxAcki = s j .seq.

The above two arguments imply that while j is active,
the value of s j .maxAcki is updated to s j .seq. However, the
only action that updates s j .maxAcki is Action 6, and Action
6 is executes only upon receiving 〈msgSet ′, num〉.

The message 〈get Msg, s j .seq〉 sent by j in Action 4
is eventually received by i in Action 5 (or i is crashed,
in which case the lemma is satisfied). Action 5 empties
si .send_buffer j and sends the messages in the buffer to j .
But note that the message m was in si .send_buffer j before
Action 5 is executed. Therefore, message m is sent to j
in the message 〈msgSet ′, s j .seq〉. This message is even-
tually received by j in Action 6, and Action 6 puts message
m into the receive buffer s j .receive_bufferi and updates
s j .maxAcki to si .seq.

Therefore, when j executes Action 7, m is already in
s j .receive_bufferi . Note that in Action 7, j executes an
application step which will receive all the messages in
s j .receive_bufferi (from receiveAP P() in Algorithm 2).
That is, j takes no more than one step after m is sent and
before m is received. Therefore, j is 1-com-fair with respect
to i for all processes j from time ti .

In other words, i is eventually 1-com-fair. In addition, if
ti = 0, then i is 1-com-fair in the run α; that is, if i is a
distinguished process, then i is 1-com-fair.

Thus, we have shown that every (eventually) distinguished
process is (eventually) 1-com-fair. ��

By substituting the failure detector D in Algorithm 1 with
P,♦P,S, and ♦S, and applying Theorems 2 and 3, we get
the following corollaries.

Corollary 1 If the failure detector D in Algorithm 1 is the
perfect failure detector P , then the action system described
in Algorithm 1 provides the All Fair (AF) system model
guarantees to the scheduled application.

Corollary 2 If the failure detector D in Algorithm 1 is the
eventually perfect failure detector ♦P , then the action sys-
tem described in Algorithm 1 provides the Eventually All Fair
(♦AF) system model guarantees to the scheduled applica-
tion.

Corollary 3 If the failure detector D in Algorithm 1 is the
strong failure detector S, then the action system described
in Algorithm 1 provides the Some Fair (SF) system model
guarantees to the scheduled application.

Corollary 4 If the failure detector D in Algorithm 1 is the
eventually strong failure detector ♦S, then the action system
described in Algorithm 1 provides the Eventually Some Fair
(♦SF) system model guarantees to the scheduled applica-
tion.

6 Extracting Chandra-Toueg failure detectors
from fairness-based systems

In this section we show that the system models AF,SF ,

♦AF , and ♦SF are sufficient to implement the failure detec-
tors P,S,♦P , and ♦S, respectively. This result combined
with the result in Sect. 5 shows that AF,SF ,♦AF , and
♦SF have the minimal synchronism necessary to implement
P,S,♦P , and ♦S, respectively.

The algorithm in Algorithm 3 implements a failure detec-
tor under the fairness-based system models described in Sect.
3.4. The failure detector implemented by Algorithm 3 is
determined by the fairness guarantees of the underlying sys-
tem. Specifically, the algorithm implements P,S,♦P , or
♦S, if the underlying system model is AF ,SF ,♦AF , or
♦SF , respectively.

6.1 Algorithm description

In Algorithm 3, the failure detector module at process i main-
tains a variable timerValue j for each process j in the system
which counts down from k + d to 0, where, in the various
system models described in Sect. 3.4, the bounds on fairness
are specified by the existence of k-proc-fair and d-com-fair
processes. The value of timerValue j is decremented by 1 in
each step (line 10). In each step process i receives zero or
more messages from all other processes (line 2) and sends
a heartbeat to each process j in the system (line 4). If i
receives a heartbeat from j , then i deletes j from the set
suspectList (line 6) and resets the timer for j to k + d (line
7). If timerValue j is decremented to 0, then i adds j to

123

328 S. M. Pike et al.

suspectList (line 9). Here we assume that the failure detec-
tor module output is suspectList. Hence, when i adds j to
suspectList, i is said to suspect j as having crashed; when
i deletes j from suspectList, i is said to trust j .

6.2 Proof of correctness

We now show that the action system in Algorithm 3 satis-
fies strong completeness and different accuracy properties
depending on the underlying system model. For the purpose
of the proofs, we consider an arbitrary run α of Algorithm 3.

Theorem 4 Algorithm 3 satisfies strong completeness; that
is, there exists a time after which every crashed process is
permanently suspected.

Proof In α, processes send heartbeats in every step. If a pro-
cess i crashes at time t in α, i stops taking steps after t , and
so stops sending heartbeats. Eventually, all the (finite num-
ber of) heartbeats sent by i are delivered. Let the last such
delivery be at time t ′ ≥ t . Inspection of the code reveals
that the maximum value of timerValuei at a process j at
time t ′ is k + d. Thereafter, in every step executed by j after
time t ′, timerValuei is decremented (if timerValuei is not
already 0) until j receives another heartbeat from i . Process
j resets timerValuei to k+d only upon receiving a heartbeat
from i . Since we have established that no such heartbeat are
received by j after t ′, it follows that in at most k+d+1 steps,
timerValuei is decremented to 0 at all processes j , and so j
starts suspecting i (in line 9). Since j does not receive any
more heartbeats from i, j suspects i permanently. ��

We prove accuracy properties in two steps. In the first
step (Lemma 6), we show that a correct process is trusted
infinitely often; that is, if a correct process j trusts a correct
process i at time t , then there exists a time t ′ > t such that j
trusts i at time t ′. Note that this permits j to (falsely) suspect
i in the open interval (t, t ′). In the second step (Lemma 7),
we show that if a process i is trusted after it is k-proc-fair
and d-com-fair, then i will be continuously trusted until i
crashes. Lemmas 6 and 7 are used to prove the various accu-
racy properties satisfied by Algorithm 3, depending on the
underlying system model.

Lemma 6 In a run α of Algorithm 3, if process i is correct,
then every correct process j trusts i infinitely often; that is,
∀t ∈ N, there exists a time t ′ > t such that j trusts i at time t ′.

Proof Consider a run α of Algorithm 3 where a process i is
correct. From lines 5–6 of Algorithm 3 we know that a cor-
rect process j �= i trusts process i upon receiving a message
from i . We also know that i sends heartbeats to all processes
in every step (Algorithm 3). Hence, if i is correct, then i
takes steps infinitely often, and sends heartbeats infinitely
often. Reliable communication guarantees that no heartbeat

is lost. Therefore, all correct processes receive heartbeats
from i infinitely often, and hence, execute lines 5–6 of Algo-
rithm 3 infinitely often. Therefore, all correct processes trust
i infinitely often. ��
Lemma 7 In a run α of Algorithm 3, if process i becomes
k-proc-fair and d-com-fair from time t, and the value of
timerValuei is k + d at a process j �= i at time t ′ ≥ t ,
then from time t ′ onwards, i is never suspected by j until i
crashes.

Proof Consider a run α of Algorithm 3. Let i become
k-proc-fair and d-com-fair in α from time t . Let the value
of timerValuei be k + d at a process j �= i at time t ′ ≥ t .
We know that the value of timerValuei is decremented by
1 in each step until j receives a message from i . We now
show that j is guaranteed to receive a message from i before
timerValuei is decremented to 0.

Note that i sends a heartbeat to j in each action that i exe-
cutes. Given that i is k-proc-fair and d-com-fair, we know
that i will send at least one heartbeat to j before j has taken
k+ 1 steps after t ′, and this heartbeat is received by j before
j has taken k+ d + 1 steps after t ′. Recall that at time t ′, the
value of timerValuei is k+d and is decremented by 1 at every
step taken by j . However, j receives at least one heartbeat
from i within k + d steps, and so the value of timerValuei

is reset to k + d (in line 7) before it reaches 0.
Note that for j to start suspecting i, timerValuei must

be 0, and we have shown that if j starts trusting i , then the
value of timerValuei is reset to k + d (in line 7) before it
reaches 0. Therefore, from time t onwards, i is never sus-
pected by j until i crashes. ��
Theorem 5 If Algorithm 3 is executed on the AF system
model, Algorithm 3 implements the perfect failure detector
P .

Proof The AF system model guarantees that all processes
are k-proc-fair and d-com-fair from time t = 0. Also at time
t = 0, at each process j , the value of timerValuei = k + d
for every other processes i in the system. Applying Lemma 7
with t = t ′ = 0, we know that i is never suspected by j until
i crashes. Since i and j are arbitrary processes in the system,
it follows that no process is suspected before it crashes. This,
in conjunction with Theorem 4 shows that every process is
distinguished; that is, Algorithm 3 implements the perfect
failure detector P . ��
Theorem 6 If the action system in Algorithm 3 is executed
on the ♦AF system model, Algorithm 3 implements the even-
tually perfect failure detector ♦P .

Proof Consider a pair of correct processes i and j . Recall
that the ♦AF system model guarantees that i is k-proc-fair
and d-com-fair from some (unknown) time t . From Lemma 6

123

Failure detectors encapsulate fairness 329

constant timeOut← k + d
set suspectList← ∅
∀ j ∈ �− {i} :

integer timerValue j ← timeOut

1 : {true} −→ Action 1
2 : receive 〈msgSet〉 Receives zero or more messages from each process
3 : ∀ j ∈ �− {i} do
4 : send 〈H B〉 to j Send a heartbeat to each process
5 : if (〈H B, j〉 ∈ msgSet)
6 : suspectList← suspectList− { j} Trust upon receiving a heartbeat
7 : timerValue j ← timeOut Reset timer
8 : if (timerValue j = 0)

9 : suspectList← suspectList ∪ { j} Suspect upon timer expiry
10 : timerValue j ← max(timerValue j − 1, 0) Decrement timer for each process

Algorithm 3 Implementing Chandra-Toueg Oracles In System Models Where (Some) Processes are k-proc-fair and d-com-fair

we know that j trusts i infinitely often, which implies that the
value of timerValuei at j is k + d infinitely often. Apply-
ing Lemma 7 we know that eventually j never suspects i .
On the other hand, if i is faulty and crashes in finite time,
then from Theorem 4 we know that eventually j always sus-
pects i . In other words, i is eventually distinguished. Since
i is an arbitrary process in the system, it follows that all the
processes are eventually distinguished. That is, Algorithm 3
implements the eventually perfect failure detector ♦P . ��
Theorem 7 If the action system in Algorithm 3 is executed
on the SF system model, Algorithm 3 implements the strong
failure detector S.

Proof Recall that the SF system model guarantees that some
correct process i is k-proc-fair and d-com-fair from time
t = 0. Also at time t = 0, at each process j , the value of
timerValuei = k + d. Applying Lemma 7 with t = t ′ = 0,
we know that i is never suspected by j . This, in conjunction
with Theorem 4 shows that some correct process is distin-
guished and all faulty processes are eventually distinguished;
that is, Algorithm 3 implements the strong failure detector
S. ��
Theorem 8 If the action system in Algorithm 3 is executed
on the ♦SF system model, Algorithm 3 implements the even-
tually strong failure detector ♦S.

Proof Recall that the ♦SF system model guarantees that
eventually some correct process i is k-proc-fair and d-com-
fair. Let j be a correct process. From Lemma 6 we know
that j trusts i infinitely often, which implies that the value of
timerValue j at i is k+d infinitely often. Applying Lemma 7
we know that eventually j never suspects i . This, in con-
junction with Theorem 4 shows that some correct process is
distinguished and all faulty processes are eventually distin-
guished; that is, Algorithm 3 implements the strong failure
detector S. ��

7 Failure detectors from the extended
Chandra-Toueg hierarchy

We have shown how failure detectors in the Chandra-Toueg
hierarchy encapsulate fairness constraints. Now we consider
failure detector oracles from the extended Chandra-Toueg
hierarchy which consists of all the failure detectors whose
output is a subset of the processes in the system. Specifi-
cally, we consider the G∗ family of failure detectors from
[6].

The G∗ family of failure detectors in [6] output a set of
trusted processes (instead of suspected processes), and each
member of this family is specified by a parameter c and
denoted Gc. The Gc failure detector satisfies strong complete-
ness (specified in Sect. 3.2) and c-Eventual Trust, defined as
follows [6].

c-Eventual Trust In every run, there exists a set Π ′ consist-
ing of at least c correct processes, such that there exists a
time τ after which the failure detector output of all correct
processes is a set of correct processes and a superset of Π ′.
Note that the output of the failure detector may continually
change as long as, eventually and permanently, each output
is a superset of Π ′.

Clearly, the Gc failure-detector definition is valid only in
fault environments containing at least c correct processes.
Therefore, for the rest of this section, we only consider fault
patterns that contain at least c correct processes.

Using the definition of a distinguished process from Sect.
3.2, we see that for a given (fixed) c, the Gc failure detector
can be redefined as follows:

– For a given c,Gc is a failure detector for which at least
c correct processes are eventually distinguished, and all
faulty processes are eventually distinguished.

123

330 S. M. Pike et al.

Consider the following fairness-based partially synchro-
nous model: Eventually c-Fair (♦c-F) is an asynchronous
system model where, for each run, there exists a (potentially
unknown) time after which at least c correct processes and
all faulty processes are both k-proc-fair and d-com-fair, for
known k and d.

We use the constructions from Algorithm 1 and 3 to show
that the Gc failure detector encapsulates the Eventually c-Fair
system model.

7.1 Extracting fairness from the Gc failure detector

Consider an arbitrary run α of Algorithm 1 in an asynchro-
nous system augmented with a Gc failure detector for an arbi-
trary, but fixed, c. From Theorem 2, we know that every
eventually distinguished process is eventually 2-proc-fair,
and from Theorem 3, we know that every eventually distin-
guished process is eventually 1-com-fair. Since Gc guarantees
that at least c correct processes are eventually distinguished,
and all faulty processes are eventually distinguished, we have
the following corollary.

Corollary 5 If the failure detector D in Algorithm 1 is the
Gc failure detector (for a given c), then the action system
described in Algorithm 1 provides the Eventually c-Fair
(♦c-F) system model guarantees to the scheduled applica-
tion.

7.2 Extracting Gc from the eventually c-fair system model

Consider an arbitrary run α of Algorithm 3 in an Eventually
c-Fair (♦c-F) system model for an arbitrary, but fixed, c.
From Theorem 4, we know that Algorithm 3 eventually and
permanently suspects crashed processes.

Let Π ′ denote a set of c correct processes that are guaran-
teed to be eventually k-proc-fair and d-com-fair by the ♦c-F
system model. From Lemma 6, we know that each process
j ∈ Π ′ is trusted by each correct process i infinitely often,
which implies that the value of timerValue j at i is k+d infi-
nitely often. Applying Lemma 7, we know that eventually i
never suspects j . That is, every correct process eventually
never suspects processes in Π ′. Therefore, eventually and
permanently, the outputs of Algorithm 3 at each correct pro-
cess trusts only correct processes and is a superset of Π ′.
Thus, we have the following corollary.

Corollary 6 If the action system in Algorithm 3 is executed
on the ♦c-F system model, Algorithm 3 implements the Gc

failure detector.

8 Discussion

Complete Synchrony and P . It was first noted in [13] that
there exist time-free problems that are solvable in synchro-
nous systems, but are unsolvable with P . This indicates a
‘gap in the synchronism’ between P and the synchronous
system. The following corollary of our results explains this
gap.

AF—the weakest system model to implement P—is
extremely similar to the synchronous system model with
message delay being denominated in recipient’s steps in the
former and in real time in the latter. However, there is one sig-
nificant difference. AF ensures full synchrony for all mes-
sages as long as the senders are live. When a sender crashes,
AF ‘loses synchronism’ for all the sender’s messages that are
still in transit. On the other hand, synchronous systems ensure
the synchronism for these messages as well. This difference
in the behavior between AF and synchronous systems is the
‘gap in synchronism’ between the perfect failure detector P
and synchronous systems. To our knowledge, we are the first
to characterize this gap.

On solving consensus Given that ♦S is the weakest failure
detector to solve consensus in asynchronous systems with a
majority of correct processes [11], and we have shown that
♦SF is the weakest fairness-based system model to imple-
ment ♦S. Does that mean ♦SF is the weakest system model
to solve consensus? The answer is no. While ♦S is the weak-
est to solve consensus only in majority-correct environments,
♦SF is the weakest to implement ♦S in all environments.
This observation suggests that there is a weaker system model
which can implement ♦S in majority-correct environments,
but not in all environments.

Real-time bounds and failure detectors Although our
results argue that failure detectors are better understood as
bounds on fairness and not real time, they do not discount the
real-time bounds that empirical systems incidentally satisfy.
The real-time bounds become useful when considering the
performance or the Quality of Service (QoS) [14] provided by
these oracles. In other words, our results provide a separation
of concerns between the correctness and performance of ora-
cles with respect to the temporal properties of the distributed
systems. Specifically, our work shows that correctness of ora-
cles can be determined and understood exclusively through
the fairness constraints of the system, and once correctness
has been established, the performance of the oracles can be
analyzed exclusively through the real-time constraints that
the system satisfies.

On the definition of an atomic step We defined an atomic
step in Sect. 3.1 to consist of receiving a finite number of
messages, changing the state, and sending a finite number

123

Failure detectors encapsulate fairness 331

of messages. Other results on asynchronous systems, partial
synchrony, and failure detectors have adopted different def-
initions of an atomic step. For instance, in [22], a process
may receive up to one message, make a state transition, and
send an arbitrary but finite set of messages to other processes
in a single step. On the other hand, in [18], a process may
either receive a finite set of messages or send at most one
unicast message in a single step, but it cannot do both. In
[10], a process may receive at most one message, perform
a state transition, and send at most one (unicast) message
in a single step. In [11], a process may receive at most one
message, perform a state transition, and send at most one
message to all processes in a single step. The results in [17]
explore solvability of consensus under various definitions of
an atomic step including the variants defined above.

Interestingly, the choice of the definition has a significant
impact on the validity of our results. The most sensitive aspect
of the definition of an atomic step is the number of messages
that a process may receive in a single step. Our results require
that a process be able to receive multiple messages in a sin-
gle step. Such sensitivity is a consequence of requiring the
establishment of communicational fairness despite the send-
ing process taking steps faster than a receiving process. For
instance, if a process i sends one message per step to pro-
cess j , and the system is 10-proc-fair and 1-com-fair, then i
could send up to 10 messages to j between two consecutive
steps by j , and to satisfy communicational fairness, j would
be required to receive all 10 messages when it takes its next
step.

However, our results are not sensitive to the number of
messages that a process may send in a single step. The reason
for such robustness is that processes can always ‘bundle’
multiple messages to a destination into a single message and
effectively send multiple messages to a single process in just
one message. Similarly, in systems where processes may send
at most one message per step, messages to different processes
may be sent with a slow-down of at most n steps (where n
is the number of processes in the system) when compared to
systems which follow our definition of atomic steps. Note
that such a slow down affects when a message is sent, but it
does not affect the number of steps that the recipient takes
while the message is in transit. Thus, fairness guarantees may
be preserved despite processes sending at most one message
(instead of an arbitrary but finite number of messages) per
step.

Open questions We have argued that several failure detec-
tors encapsulate fairness in executions and provided evidence
by demonstrating that all the failure detectors in the Chandra-
Toueg hierarchy encapsulate such fairness constraints. This
opens a larger question: do all failure detectors encapsu-
late fairness? The answer is arguably no. Notable candidates
for counterexamples include the failure detectors proposed

in [28] whose output can be arbitrary and need not pro-
vide semantic information about process crashes alone. This
presents another question: what set of oracles do encapsulate
fairness? This question is open even when we restrict our
question to the extended Chandra-Toueg hierarchy (which
include oracles like T [16], and other parametric oracles like
the ones in [34,38,42]). If it turns out that all oracles that
output process ids do encapsulate fairness, then such a result
provides us with a clean hierarchy of fairness-based system
models that mirrors the extended Chandra-Toueg hierarchy.
On the other hand, if we discover that there exist oracles
within the extended Chandra-Toueg hierarchy that do not
encapsulate fairness, then the implication is that these oracles
encapsulate something other than fairness. Knowledge of this
other encapsulated information could help in designing better
crash tolerant systems.

Another consequence of oracles encapsulating fairness is
that fault environments might encapsulate fairness as well.
Recall that the weakest oracles sufficient to solve problems
in distributed systems vary depending on the number of pro-
cesses that may crash. For instance, consider fault-tolerant
consensus. Recall that ♦S is the weakest to solve the prob-
lem only in majority-correct environments [29]. In environ-
ments where an arbitrary number of processes may crash,
the weakest failure detector for the problem is a stronger
oracle (♦S,Σ) [15]. Given that ♦S encapsulates some fair-
ness constraints, and Σ can be implemented in an asynchro-
nous system with majority correct, we conjecture that Σ and
majority-correct encapsulate equivalent fairness constraints
in the system. Furthermore, this implies that fairness is also
encapsulated by constraints on the number of processes that
may crash in the system. Based on the above observations
and arguments, consider the following question: Is fairness
a more general primitive to understand crash fault tolerance
in distributed systems? That is, can fairness unify the differ-
ent weakest failure detector results for the same problem in
different fault environments?

Much effort is spent pursuing the ‘weakest’ real-time-
based models to implement certain oracles (like Ω,♦P , and
such) for two reasons: (1) bounds in many empirical dis-
tributed systems are specified with respect to real time, and
(2) these oracles are known to be the weakest to solve
many problems in distributed computing. However, given the
dependence of the weakest-oracle results on the fault envi-
ronment, and the conjecture that fault environments them-
selves could encapsulate fairness, it is perhaps beneficial to
investigate the ‘weakest’ real-time-based models to guaran-
tee appropriate fairness constraints (rather than oracles) so
that these constraints can then be encapsulated by various
combinations of oracles and fault environments.

Acknowledgments We thank Michel Raynal for his comments which
improved this paper. We also thank the anonymous reviewers for their

123

332 S. M. Pike et al.

comments which improved the formal framework and extended the
results to the G∗ family of failure detectors.

References

1. Aguilera, M.K., Chen, W., Toueg, S.: On quiescent reliable com-
munication. SIAM J. Comput. 29(6), 2040–2073 (2000)

2. Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.:
Stable leader election. In: Proceedings of the 15th International
Conference on Distributed Computing, pp. 108–122. Springer,
London, UK (2001)

3. Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., Toueg,
S.: Communication-efficient leader election and consensus with
limited link synchrony. In: Proceedings of the 23rd ACM Sympo-
sium on Principles of Distributed Computing, pp. 328–337 (2004)

4. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On
implementing omega in systems with weak reliability and syn-
chrony assumptions. Distrib. Comput. 21(4), 285–314 (2008)

5. Anta, A.F., Raynal, M.: From an asynchronous intermittent rotat-
ing star to an eventual leader. IEEE Trans. Parallel Distrib.
Syst. 21(9), 1290–1303 (2010)

6. Biely, M., Hutle, M., Penso, L. D., Widder, J.: Relating stabiliz-
ing timing assumptions to stabilizing failure detectors regarding
solvability and efficiency. In: Proceedings of the 9th International
Symposium on Stabilization, Safety, and Security of Distributed
Systems, pp. 4–20 (2007)

7. Biely, M., Hutle, M., Penso, L.D., Widder, J.: Relating stabiliz-
ing timing assumptions to stabilizing failure detectors regarding
solvability and efficiency. Technical Report 54/2007, Technische
Universität Wien, Institut für Technische Informatik (2007)

8. Biely, M., Robinson, P., Schmid, U.: Weak synchrony models and
failure detectors for message passing k-set agreement. In: Proceed-
ings of the 13th International Conference on Principles of Distrib-
uted Systems, pp. 285–299 (2009)

9. Bonnet, F., Raynal, M.: Looking for the weakest failure detector for
k-set agreement in message-passing systems: is πk the end of the
road? In: Procceding of 11th International Symposium on Stabil-
ization, Safety, and Security of Distributed Systems, pp. 149–164
(2009)

10. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

11. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure
detector for solving consensus. J. ACM 43(4), 685–722 (1996)

12. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM
Trans. Program. Lang. Syst. 6(4), 632–646 (1984)

13. Charron-Bost, B., Guerraoui, R., Schiper, A.: Synchronous system
and perfect failure detector: solvability and efficiency issues. In:
International Conference on Dependable Systems and Networks,
pp. 523–532 (2000)

14. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of
failure detectors. IEEE Trans. Comput. 51(5), 561–580 (2002)

15. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V.,
Kouznetsov, P., Toueg, S.: The weakest failure detectors to solve
certain fundamental problems in distributed computing. In: Pro-
ceedings of the 23rd ACM Symposium on Principles of Distributed
Computing, pp. 338–346 (2004)

16. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov,
P.: Mutual exclusion in asynchronous systems with failure detec-
tors. J. Parallel Distrib. Comput. 65(4), 492–505 (2005)

17. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchro-
nism needed for distributed consensus. J. ACM 34(1), 77–97 (1987)

18. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the pres-
ence of partial synchrony. J. ACM 35(2), 288–323 (1988)

19. Fetzer, C.: The message classification model. In: Proceedings of
the 17th ACM Symposium on Principles of Distributed Comput-
ing, pp. 153–162 (1998)

20. Fetzer, C., Schmid, U., Susskraut, M.: On the possibility of con-
sensus in asynchronous systems with finite average response times.
In: Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems, pp. 271–280 (2005)

21. Fich, F., Ruppert, E.: Hundreds of impossibility results for distrib-
uted computing. Distrib. Comput. 16(2–3), 121–163 (2003)

22. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–
382 (1985)

23. Gafni, E., Kouznetsov, P.: The weakest failure detector for solving
k-set agreement. In: Proceedings of the 28th ACM Symposium on
Principles of Distributed Computing, pp. 83–91 (2009)

24. Guerraoui, R., Oliveira, R., Schiper, A.: Stubborn communication
channels. Technical Report LSR-REPORT-1998-009, Ecole Poly-
technique Federale de Lausanne (1998)

25. Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest
failure detectors to boost obstruction-freedom. Distrib. Com-
put. 20(6), 415–433 (2008)

26. Hermant, J. F., Widder, J.: Implementing reliable distributed real-
time systems with the Θ-model. In: Proceedings of the 9th Inter-
national Conference on the Principles of Distributed Systems,
pp. 334–350 (2005)

27. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weak-
est system model for implementing Ω and consensus. IEEE Trans.
Dependable Secur. Comput. 6(4), 269–281 (2009)

28. Jayanti, P., Toueg, S.: Every problem has a weakest failure detec-
tor. In: Proceedings of the 27th ACM Symposium on Principles of
Distributed Computing, pp. 75–84 (2008)

29. Lo, W. K., Hadzilacos, V.: Using failure detectors to solve consen-
sus in asynchronous shared-memory systems (extended abstract).
In: Proceedings of the 8th International Workshop on Distributed
Algorithms, pp. 280–295 (1994)

30. Malkhi, D., Oprea, F., Zhou, L.:Ω meets Paxos: Leader election and
stability without eventual timely links. In: Proceedings of the 19th
International Symposium on Distributed Computing, pp. 199–213
(2005)

31. Mostefaoui, A., Mourgaya, E., Raynal, M.: An introduction to ora-
cles for asynchronous distributed systems. Futur. Gener. Comput.
Syst. 18(6), 757–767 (2002)

32. Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous imple-
mentation of failure detectors. In: Proceedings of the 33rd Inter-
national Conference on Dependable Systems and Networks,
pp. 351–360 (2003)

33. Mostéfaoui, A., Mourgaya, E., Raynal, M., Travers, C.: A time-
free assmption to implement eventual leadership. Parallel Process.
Lett. 16(2), 189–207 (2006)

34. Mostefaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: On the
computability power and the robustness of set agreement-oriented
failure detector classes. Distrib. Comput. 21(3), 201–222 (2008)

35. Pike, S. M., Sivilotti, P. A.: Dining philosophers with crash locality
1. In: Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems, pp. 22–29 (2004)

36. Pike, S. M., Song, Y., Sastry, S.: Wait-free dining under even-
tual weak exclusion. In: Proceedings of the 9th International Con-
ference on Distributed Computing and Networking, pp. 135–146
(2008)

37. Rajsbaum, S., Raynal, M., Travers, C.: Failure detectors as sched-
ulers (an algorithmically-reasoned characterization). Technical
Report 1838, IRISA, Université de Rennes, France (2007)

38. Rajsbaum, S., Raynal, M., Travers, C.:The iterated restricted imme-
diate snapshot model. In: Proceedings of 14th International Con-
ference on Computing and Combinatorics, pp. 487–497 (2008)

123

Failure detectors encapsulate fairness 333

39. Robinson, P., Schmid, U.: The Asynchronous Bounded-Cycle
Model. In: Proceedings of the 10th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, pp. 246–
262 (2008)

40. Sastry, S., Pike, S. M.: Eventually perfect failure detection using
ADD channels. In: Proceedings of the 5th international Sympo-
sium on Parallel and Distributed Processing and Applications,
pp. 483–496 (2007)

41. Sastry, S., Pike, S. M., Welch, J. L.: Crash fault detection in celer-
ating environments. In: Proceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium, pp. 1–12 (2009)

42. Yang, J., Neiger, G., Gafni, E.:Structured derivations of consensus
algorithms for failure detectors. In: Proceedings of the 17th ACM
Symposium on Principles of Distributed Computing, pp. 297–306
(1998)

123

	Failure detectors encapsulate fairness
	Abstract
	1 Introduction
	2 Related work
	3 Definitions
	3.1 Asynchronous system model
	3.2 Failure detectors
	3.3 Fairness constraints
	3.4 Fairness-based partially synchronous system models

	4 Methodology
	5 Extracting fairness from Chandra-Toueg failure detectors
	5.1 Interface between scheduler and application
	5.2 Fairness guarantees provided by the scheduler
	5.3 Algorithm description
	5.4 Proof of correctness

	6 Extracting Chandra-Toueg failure detectors from fairness-based systems
	6.1 Algorithm description
	6.2 Proof of correctness

	7 Failure detectors from the extended Chandra-Toueg hierarchy
	7.1 Extracting fairness from the mathcalGc failure detector
	7.2 Extracting mathcalGc from the eventually c-fair system model

	8 Discussion
	Acknowledgments
	References

