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Abstract We introduce multilevel versions of Dyson Brownian motions of arbitrary
parameter 8 > 0, generalizing the interlacing reflected Brownian motions of Warren
for B = 2. Such processes unify B corners processes and Dyson Brownian motions
in a single object. Our approach is based on the approximation by certain multilevel
discrete Markov chains of independent interest, which are defined by means of Jack
symmetric polynomials. In particular, this approach allows to show that the levels in
a multilevel Dyson Brownian motion are intertwined (at least for § > 1) and to give
the corresponding link explicitly.
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1 Introduction
1.1 Preface

The Hermite general 8 > 0 ensemble of rank N is a probability distribution on the
set of N tuples of reals z1 < z2 < - -- < zy with density proportional to

N 2
[T -2 [Tew(-3 ). (L1)

I<i<j<N i=1

When g = 2, that density describes the joint distribution of the eigenvalues of a ran-
dom Hermitian N x N matrix M, whose diagonal entries are i.i.d. real standard normal
random variables, while real and imaginary parts of its entries above the diagonal are
i.i.d. normal random variables of variance 1/2. The law of such a random matrix is
referred to as the Gaussian Unitary Ensemble (GUE) (see e.g. [3,20,32]) and it has
attracted much attention in the mathematical physics literature following the seminal
work of Wigner in the 50s. Similarly, the case of 8 = 1 describes the joint distribution
of eigenvalues of a real symmetric matrix sampled from the Gaussian Orthogonal
Ensemble (GOE) and the case B = 4 corresponds to the Gaussian Symplectic Ensem-
ble (GSE) (see e.g. [3,20,32] for the detailed definitions).

It is convenient to view the realizations of (1.1) as point processes on the real line
and there are two well-known ways of adding a second dimension to that picture. The
first one is to consider an N-dimensional diffusion known as Dyson Brownian motion
(see [32, Chapter 9], [3, Section 4.3] and the references therein) which is the unique
strong solution of the system of stochastic differential equations

PR N S i
dX;(1) = 3 %;Xi(t)_xj(t) dt +dWi(t), i=1,2,....,N  (1.2)

with Wi, Wa, ..., Wy being independent standard Brownian motions. If one solves
(1.2) with zero initial condition, then the distribution of the solution at time 1 is given
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Fi'g.' 1 Imer]aeing particles . . t 3

arising from eigenvalues of
corners of a 3 x 3 matrix. Row
number k in the picture

corresponds to eigenvalues of . ' 2

the k x k corner

by (1.1). When 8 = 2 and one starts with zero initial condition, the diffusion (1.2) has
two probabilistic interpretations: it can be either viewed as a system of N independent
standard Brownian motions conditioned never to collide via a suitable Doob’s &-
transform; or it can be regarded as the evolution of the eigenvalues of a Hermitian
random matrix whose elements evolve as (independent) Brownian motions.

An alternative way of adding a second dimension to the ensemble in (1.1) involves
the so-called corner processes For B = 2 take a N x N GUE matrix M and let
x{v < xév <...<x N N be its ordered eigenvalues. More generally forevery 1 < k < N

letx{‘ < x’z‘ <o =S Xy ¥ be the eigenvalues of the top-left k x k submatrix (“corner”) of

M. Ttis well- known that the eigenvalues interlace in the sense that x < xk ! xlk 4

fori =1,...,k — 1 (see Fig. 1 for a schematic illustration of the eigenvalues).

The joint distribution of xf‘, 1 <i < k < N is known as the GUE-corners
process (some authors also use the name “GUE-minors process”) and its study was
initiated in [4] and [26]. The GUE-corners process is uniquely characterized by two
properties: its projection to the set of particles x{v , xév ey xg is given by (1.1) with
B = 2 (normalized to a probability density), and the conditional distribution of xlk ,
1 <i<k<N—1given x{v, xév, e, x}\\,’ is uniform on the polytope defined by the
interlacing conditions above, see [4,21]. Due to the combination of the gaussianity
and uniformity embedded into its definition, the GUE—corners process appears as a
universal scaling limit for a number of 2d models of statistical mechanics, see [22—
24,26,38].

Similarly, one can construct corners processes for § = 1 and 8 = 4, see e.g. [33].
Extrapolating the resulting formulas for the joint density of eigenvalues to general
values of 8 > 0 one arrives at the following definition.

Definition 1.1 The Hermite 8 corners process of variance ¢ > 0 is the unique prob-

ability distribution on the set of reals x , 1 <i <k < N subject to the interlacing

k—1

k k
conditions x; < x; < x;,; whose dens1ty is proportional to

G =) esn(=55) T T =) Tt

k=1 1<i<j<k

(1.3)

The fact that the projection of the Hermite 8 corners process of variance 1 onto level
k (that is, on the coordinates x{‘, x'z‘, RN xlk‘) is given by the corresponding Hermite
B ensemble of (1.1) can be deduced from the Dixon-Anderson integration formula
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416 V. Gorin, M. Shkolnikov

(see [2,17]), which was studied before in the context of Selberg integrals (see [44],
[20, Chapter 4]). One particular case of the Selberg integral is the evaluation of the
normalizing constant for the probability density of the Hermite 8 ensemble of (1.1).
We provide more details in this direction in Sect. 2.2.

The ultimate goal of the present article is to combine Dyson Brownian motions and
corner processes in a single picture. In other words, we aim to introduce a relatively
simple diffusion on interlacing particle configurations whose projection on a fixed
level is given by Dyson Brownian motion of (1.2), while its fixed time distributions
are given by the Hermite B corners processes of Definition 1.1.

One would think that a natural way to do this (at least for 8 = 1, 2, 4) is to consider
an N x N matrix of suitable Brownian motions and to project it onto the (interlacing) set
of eigenvalues of the matrix and its top-left k x k corners, thus generalizing the original
construction of Dyson. However, the resulting stochastic process ends up being quite
nasty even in the case 8 = 2.Itis shownin [1] that already for N = 3 (and at least some
initial conditions) the projection is not a Markov process. When one considers only two

adjacent levels (that is, the projection onto x{v, xév, R x%; vafl, xévfl, el x%:ll),
then it can be proven (see [1]) that the projection is Markovian, but the corresponding
SDE is very complicated.

An alternative elegant solution for the case § = 2 was given by Warren [46].
Consider the process (Yik : 1 <i <k < N) defined through the following inductive
procedure: Y 11 is a standard Brownian motion with zero initial condition; given Y 11 , the
processes Y 12 and Y22 are constructed as independent standard Brownian motions started
at zero and reflected on the trajectory of Yl1 in such a way that Y’ 12 <Y 11 (1 < Y22 (1)
holds for all # > 0. More generally, having constructed the processes on the first k
levels (that is, Y/", 1 < i < m < k) one defines Yl.k+1 as an independent standard
Brownian motion started at 0 and reflected on the trajectories of Yik_ | and Yik in sucha
way that Y/‘__l1 (1) < Y[k (1) < Yl.k_l(t) remains true for all # > 0 (see [46] and also [24]
for more details). Warren shows that the projection of the dynamics on a level k (that
is, on YK, Yf, e, Y,i‘) is given by a k-dimensional Dyson Brownian Motion of (1.2)
with 8 = 2, and that the fixed time distributions of the process (Yik 1 <i<k<N)
are given by the Hermite § corners processes of Definition 1.1 with g = 2.

Our aim is to construct a generalization of the Warren process for general values
of B. In other words, we want to answer the question “What is the general 8 analogue
of the reflected interlacing Brownian Motions of [46]?”.

1.2 Our results

Our approach to the construction of the desired general g multilevel stochastic process
is based on discrete space approximation. In [24] we proved that the reflected interlac-
ing Brownian motions of [46] can be obtained as a diffusive scaling limit for a class of
stochastic dynamics on discrete interlacing particle configurations. The latter dynam-
ics are constructed from independent random walks by imposing the local block/push
interactions between particles to preserve the interlacing conditions. The special cases
of such processes arise naturally in the study of two-dimensional statistical mechanics
systems such as random stepped surfaces and various types of tilings (cf. [6,9,10,34]).
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In Sect. 2 we introduce a deformation X ;”i’;lc” () of these processes depending on a
positive parameter € (which is omitted from the notation, and with6 = 1 corresponding
to the previously known case). The resulting discrete space dynamics is an intriguing
interacting particle system with global interactions whose state space is given by
interlacing particle configurations with integer coordinates. Computer simulations of
this dynamics for & = 1/2 and 6 = 2 can be found at [25].

We further study the diffusive limit of X Z’i‘;lf I(s) underthe rescalingoftimes = ¢~ 't
and ¢~1/2 scaling of space as ¢ | 0. Our first result is that for any fixed § > 0, the
rescaled processes are tight as € |, 0, see Theorem 5.1 for the exact statement. The
continuous time, continuous space processes Y (t), defined as subsequential limits
e | 0 of the family XZ’I.’;ZC” (s), are our main heros and we prove a variety of results
about them for different values of 6.

1

(1) For any 6 > 2 we show in Theorem 5.2 that Y""*(t) satisfies the system of SDEs
(1.4) below.

(2) Forany # > 1/2 and any | < k < N we show in Theorem 5.3 that if Y""*(¢)
is started from a 6—Gibbs initial condition (zero initial condition is a particu-
lar case), then the k—dimensional restriction of the N(N — 1)/2—dimensional
process Y™ (t) to the level k is a 20—Dyson Brownian motion, that is, the vector
(Ymek, ymeh, .o Yme6)5) solves (1.2) with B = 26 and suitable indepen-
dent standard Brownian motions Wi (t), W)(¢t), ..., Wi (¢).

(3) For any 6 > 0 we show that if Y™ () is started from zero initial condition, then
its distribution at time ¢ is the Hermite 26 corners process of variance #, that is, the
corresponding probability density is proportional to (1.3) with § = 26. In fact,
we prove a more general statement, see Theorem 5.3 and Corollary 5.4.

(4) For & = 1 the results of [24] yield that Y"*(¢) is the collection of reflected
interlacing Brownian motions of [46].

The above results are complemented by the following uniqueness theorem for the
system of SDEs (1.4). In particular, it implies that for & > 2 all the subsequential

limits Y™ (¢t) of Xg’i’;lc” (s) as ¢ | O are the same.

Theorem 1.2 (Theorem 4.1) For any N € N and 6 > 1 the system of SDEs

k—1
1-0 1-0
dY.k(z)z(z _—> —)dt+dW.k(t), 1<i<k<N,
i vko —vh@  =vko -vi o '

m#i
(1.4)

where Wl-k, 1 <i <k < N are independent standard Brownian motions, possesses a
unique weak solution taking values in the cone

gh = {y = () 1zizkey € RVVHDZ .yl < yk < y,((_l} -5

for any initial condition Y (0) in the interior GV ofg_N.

It would be interesting to extend all the above results to general 6 > 0. We believe
(but we do not have a proof) that the identification of Y"**(¢) with a solution of (1.4)
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418 V. Gorin, M. Shkolnikov

is valid for all & > 1 and that the identification of the projection of Y™(¢) onto
the N—th level with a 8 = 26—-Dyson Brownian motion is valid for any 6 > 0. On
the other hand, Y"*(¢t) cannot be a solution to (1.4) for & < 1. Indeed, we know
that when 6 = 1 the process Y (t) is a collection of reflected interlacing Brownian
motions which hints that one should introduce additional local time terms in (1.4).
In addition, the interpretation of the solution to (1.4) as a generalization of the one-
dimensional Bessel process to a process in the Gelfand—Tseitlin cone suggests that the
corresponding process for 6 < 1 is no longer a semimartingale and should be defined
and studied along the lines of [42, Chapter XI, Exercise (1.26)].

1.3 Our methods

Our approach to the construction and study of the discrete approximating process
X ZZ’;IC’ i(s) is related to Jack symmetric polynomials. Recall that Jack polynomials
Ji(x1, x2, ..., xy; 0), indexed by Young diagrams A and a positive parameter 6, are
eigenfunctions of the Sekiguchi differential operators ([43], [31, Chapter VI, Section

101, [20, Chapter 12])

1 s 3
Du;0) = ———det | xV 7 (xi — + (N = )0 +u .
Hi<j(xi —x;) ' dx; i,j=12,...N

One can also define J,(x1, x2,...,xn;0) as limits of Macdonald polynomials
P.(;q.t) as g,t — 1 in such a way that r+ = ¢” (see [31]). For the special
values 6 = 1/2, 1, 2 these polynomials are spherical functions of Gelfand pairs

O(N) CU(N),UN) Cc U(N) x U(N), U2N) C Sp(N), respectively, and are
also known as Zonal polynomials (see e.g. [31, Chapter 7] and the references therein). It
is known that spherical functions of compact type (corresponding to the above Gelfand
pairs) degenerate to the spherical functions of Euclidian type, which in our case are
related to real symmetric, complex Hermitian and quaternionic Hermitian matrices,
respectively (see e.g. [35, Section 4] and the references therein). In particular, in the
case 8 = 1 this is a manifestation of the fact that the tangent space to the unitary group
U (N) at identity can be identified with the set of Hermitian matrices. Due to all these
facts it comes at no surprise that Hermite 8 ensembles can be obtained as limits of
discrete probabilistic structures related to Jack polynomials with parameter 0 = /2.

On the discrete level our construction of the multilevel stochastic dynamics is
based on a procedure introduced by Diaconis and Fill [16], which has recently been
used extensively in the study of Markov chains on interlacing particle configurations
(seee.g. [6,7,9-11]). The idea is to use commuting Markov operators and conditional
independence to construct a multilevel Markov chain with given single level marginals.
In our case these operators can be written in terms of Jack polynomials. In the limit
the commutation relation we use turns into the following statement, which might be
of independent interest.

Let Py(t; B) denote the Markov transition operators of the N-dimensional Dyson
Brownian Motion of (1.2) and let L%_ 1 (B) denote the Markov transition operator

corresponding to conditioning the (N — 1)-st level (that is, x{v_l, xév_l, e, le\\,lzll)
on the N-th level (that is, xlN , xév e, x% ) in the Hermite 8 corners process.
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Multilevel Dyson Brownian motions via Jack polynomials 419

Proposition 1.3 (Corollary of Theorem 5.3) For any > 1 the links L%_l (B) given
by the stochastic transition kernels

N-1 N
C(NB/2) I No1_  N-1 T}y = 2=l I v _ NP
X, =X x5 = x; X, —X;
r@/2N 1§i<m5N71( ) i=1 j:l) ! ‘ 15j<n§N( ! )
(1.6)
intertwine the semigroups Py (t; B) and Pn—_1(t; B) in the sense that
Ly_(B)PN(t; B) = Pn—1(t; BILY_1(B), =0, (1.7

The latter phenomenon can be subsumed into a general theory of intertwinings for
diffusions, which for example also includes the findings in [45] and [39].

Due to the presence of singular drift terms neither existence, nor uniqueness of the
solution of (1.4) is straightforward. When dealing with systems of SDEs with singular
drift terms one typically shows the existence and uniqueness of strong solutions by
truncating the singularity first (thus, obtaining a well-behaved system of SDEs) and
by proving afterwards that the solution cannot reach the singularity in finite time using
suitable Lyapunov functions, see e.g. [3, proof of Proposition 4.3.5]. However, for 1 <
6 < 2 the solutions of (1.4) do reach some of the singularities. A similar phenomenon
occurs in the case of the B—Dyson Brownian motion (1.2) with 0 < 8 < 1, for which
the existence and uniqueness theorem was established in [14] using the theory of
multivalued SDEs; however, in the multilevel setting we lack a certain monotonicity
property which plays a crucial role in [14]. In addition, due to the intrinsic asymmetry
built into the drift terms the solution of (1.4) seems to be beyond the scope of the
processes that can be constructed using Dirichlet forms (see e.g. [40] for Dirichlet form
constructions of symmetric diffusions with a singular drift at the boundary of their
domain and for the limitations of that method). Instead, by localizing in time, using
appropriate Lyapunov functions, and applying the Girsanov Theorem, we are able to
reduce (1.4) to a number of non-interacting Bessel processes, whose existence and
uniqueness is well-known. This approach has an additional advantage over Dirichlet
form type constructions, since it allows to establish convergence to the solution of (1.4)
via martingale problem techniques, which is how our proof of Theorem 5.2 goes.

Note also that for 8 = 1 (8 = 2) the interactions in the definition of X t’fi’;’c” (s)
become local. We have studied the convergence of such dynamics to the process of
Warren in [24], with the proof being based on the continuity of a suitable Skorokhod
reflection map. For general values of & > 0 neither the discrete dynamics, nor the
continuous dynamics can be obtained as the image of an explicitly known process
under the Skorokhod reflection map of [24].

1.4 Further developments and open problems
It would be interesting to study the asymptotic behavior of both the discrete and the

continuous dynamics as the number of levels NV goes to infinity. There are at least two
groups of questions here.
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420 V. Gorin, M. Shkolnikov

The global fluctuations of Dyson Brownian motions as N — oo are known to
be Gaussian (see [3, Section 4.3]); moreover, the limiting covariance structure can
be described by the Gaussian Free Field (see [5,12]). In addition, the asymptotic
fluctuations of the Hermite B corners processes of Definition 1.1 are also Gaussian
and can be described via the Gaussian Free Field (cf. [12]). This raises the question
of whether the 3-dimensional global fluctuations of the solution to (1.4) are also
asymptotically (as N — oo) Gaussian and how the limiting covariance structure
might look like. A partial result in this direction was obtained for 8 = 2 in [9].

The edge fluctuations (that is, the fluctuations of the rightmost particle as N — 00)
in the Hermite § ensemble given by (1.1) can be described via the B-Tracy—Widom
distribution (see [41]). Moreover, in the present article we link the Hermite 8 ensemble
to a certain discrete interacting particle system. This suggests that one might find the
B-Tracy—Widom distribution in the limit of the edge fluctuations of that interacting
particle system or its simplified versions.

2 Discrete space dynamics via Jack polynomials
2.1 Preliminaries on Jack polynomials

In this section we collect certain facts about Jack symmetric polynomials. A reader
familiar with these polynomials can proceed to Sect. 2.2. Our notations generally
follow the ones in [31].

In what follows A ¥ is the algebra of symmetric polynomials in N variables. In addi-
tion, we let A be the algebra of symmetric polynomials in countably many variables,
that is, of symmetric functions. An element of A is a formal symmetric power series

of bounded degree in the variables x1, x2, .. .. One way to view A is as an algebra of
polynomials in the Newton power sums py = »; (x;)¥. There exists a unique canon-
ical projection my : A — Ay, which sets all variables except for xq, x2, ..., xy to

zero (see [31, Chapter 1, Section 2] for more details).

A partition of size n, or a Young diagram with n boxes, is a sequence of non-negative
integers A > Ay > --- > 0 such that Zi Ai = n. |A| stands for the number of boxes
in A and £(A) is the number of non-empty rows in A (that is, the number of non-zero
sequence elements A; in 1). Let Y denote the set of all Young diagrams, and Y” the set
of all Young diagrams A with at most N rows (that is, such that Ay 1 = 0). Typically,
we will use the symbols A, u for Young diagrams. We adopt the convention that the
empty Young diagram ¢ with || = 0 also belongs to Y and YV . Forabox [ = (i, j)
of a Young diagram A (that is, a pair (i, j) such that A; > j), a(i, j; X)) and I(Z, j; 1)
are its arm and leg lengths:

a(i, js2) = xi — j, 1G, j32) =2 — i,
where )Jj is the row length in the transposed diagram A’ defined by
Xy =i s h = ).
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Further, a’(i, j), I'(i, j) stand for the co-arm and the co-leg lengths, which do not
depend on A

ai, jpH=j—-1, ', j)=i-1.

When it is clear from the context which Young diagram is used, we omit it from the
notation and write simply a(i, j) (or a(lJ)) and (i, j) (or [(1J)).

We write J, (-; 0) for Jack polynomials, which are indexed by Young diagrams A
and positive reals 8. Many facts about these polynomials can be found in [31, Chapter
VI, Section 10]. Note however that in that book Macdonald uses the parameter «
given by our 6~ We use 0, following [27]. J, can be viewed either as an element
of the algebra A of symmetric functions in countably many variables x1, x3, ..., or
(specializing all but finitely many variables to zeros) as a symmetric polynomial in

X1, X2, ..., xy from the algebra A In both interpretations the leading term of J,, is

. A . . .
given by xflxé‘z .- -xe(z)(f)). When N is finite, the polynomials J, (xq, ..., xy; 0) are

known to be the eigenfunctions of the Sekiguchi differential operator:

1 O]
— det|x! (N - e+ J(X1s e XN26)
[TicjGi —xj) [x' o e ij=1.2..N H w
N
- (H(M +(N—i)9+u))1,\(x1,...,xN;e). 2.1)

i=1

The eigenrelation (2.1) can be taken as a definition for the Jack polynomials. We also
need dual polynomials J; which differ from J; by an explicit multiplicative constant:

2.2)

5o a@+01O)+1°

Next, we recall the definition of skew Jack polynomials J, ;. Take two infinite
sets of variables x and y, and consider a Jack polynomial J; (x, y; 8). The latter is, in
particular, a symmetric polynomial in the x variables. The coefficients J; /, (y; 0) iniits
decomposition in the linear basis of Jack polynomials in the x variables are symmetric
polynomials in the y variables and are referred to as skew Jack polynomials:

T, y30) = D" Ju(x5.0) Ty (33 0). 23)
yza

Similarly, one writes

D, y:0) = D" Ju(x:0) Ty (y: 0).
m
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422 V. Gorin, M. Shkolnikov

It is known (see e.g. [31, Chapter VI, Section 10]) that J; /. (y; 6) = ﬁ/u(y; 0)=0
unless u C A, whichmeans that 4; > p; fori =1,2,....Also J; /5(y; 6) = Jp(y; 0)
and Jy/g(y; 0) = Ji(y; 0).

Throughout the article the parameter 6 remains fixed and, thus, we usually omit it,
writing simply J; (x), J,\(x) Do (), Jryp(x).

A specialization p is an algebra homomorphism from A to the set of complex num-
bers. A specialization is called Jack-positive if its values on all (skew) Jack polynomials
with a fixed parameter & > 0 are real and non-negative. The following statement gives
a classification of all Jack-positive specializations.

Proposition 2.1 ([27]) For any fixed 6 > 0, Jack-positive specializations can be
parameterized by triplets («, B, y), where «, B are sequences of real numbers with

o0
ap>ap>--->0, B1=p>---20, Z(ai+,3i)<00
i=1

and y is a non-negative real number. The specialization corresponding to a triplet
(o, B, y) is given by its values on the Newton power sums py, k > 1:

pie pi@ Boy) =y + D (@i + B,
i=1

e.¢] o
P pe(es Boy) =D af + (=) DB k=2,

The specialization with all parameters taken to be zero is called the empty special-
ization. This specialization maps a polynomial to its constant term (that is, the degree
zero summand).

We prepare the following explicit formulas for Jack-positive specializations for
future use.

Proposition 2.2 ([31, Chapter VI, (10.20)]) Consider the Jack-positive specialization
oV witha) = oy = --- = ay = a and all other parameters set to zero. We have

S NO+d' @) -0l
J(@V) = Her " a@ +o1(0) +6
0, otherwise.

. AFEA) = N,

Taking the limit N — oo of specializations (%) of Proposition 2.2 we obtain the
following.

Proposition 2.3 Consider the Jack-positive specialization s with y = s and all other
parameters set to zero. We have

Sy (ts) = s o™ H !

a(D) +01[O)+6°
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Certain specializations of skew Jack polynomials also admit explicit formulas. We
say that two Young diagrams A and u interlace and write v < A if

AMZUL =A==

Proposition 2.4 For any complex number a # 0, the specialization value Jy (ah
vanishes unless 1 < A. In the latter case,

Lu(ahy = a =i T Euz - M, +6 (J: - ’:) + 0
t<izjmpot Wi = FOG =D+ Dy

i =i +0G =)+ Dyjonyy

(i — wj+0G =D+

, (2.4)

where k is any integer satisfying (1) < k and we have used the Pochhammer symbol
notation

Bw=bb+1)---(b+n—1).

When . differs from A by one box A = U (i, j) the formula can be simplified to read
in terms of Jy

all, jiwW +60G —1+1) al, j;w)+1+60G—-1-1)
all, j;w)+0G —=1) al, jwy+14+603G -1

i—1
Tup@hy =a0 ] . (2.5)
=1

Note that the arm lengths in the latter formula are computed with respect to the
(smaller) diagram 1.

Proof The evaluation of (2.4) is known as the branching rule for Jack polynomials and
is also a limit of a similar rule for Macdonald polynomials, see e.g. [31, (7.14”), Section
VII, Chapter VI] or [36, (2.3)]. The formula (2.5) is obtained from (2.4) using (2.2).
However, this computation is quite involved and we also provide an alternative way:
formulas [31, (7.13), (7.14), Chapter VI] relate the skew Macdonald polynomials to
certain functions ¢, /. Further, formulas [31, (6.20),(6.24), Chapter VI] give explicit
expressions for ¢y, and [31, Section 10, Chapter VI] explains that (skew) Jack
polynomials are obtained from (skew) Macdonald polynomials parametrized by pairs
(g, 1) by the limit transition g — 1, ¢ = ¢%. This limit in the expression for @; /u of
[31, (6.24), Chapter VI] gives (2.5). O

We also need the following two summation formulas for Jack polynomials.

igs ialimati ; oo pr(p1) pr(p2)
Proposition 2.5 Take two specializations pi, pa such that the series 3 _— | PEPGPEL2
is absolutely convergent, and define

o 0
Hg(p1; p2) = exp (Z 7 Pr(on) Pk(PZ))-
k=1
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Then

> Jilp1) Ja(p2) = Hy(p1; p2), (2.6)
reY

and more generally for any v,k € Y

D Do) g (02) = Ho(p1; p2) D, g (1) Juju(p2). 2.7)
reY neY

Proof (2.6) is the specialized version of a Cauchy-type identity for Jack polynomials,
seee.g. [31,(10.4), Section 10, Chapter VI]. The latteris alsoa (¢, t) — (1, 1) limit of
a similar identity for Macdonald polynomials [31, (4.13), Section 4, Chapter V1], as is
explained in [31, Section 10, Chapter VI]. Similarly, (2.7) is the specialized version of
the limit of a skew-Cauchy identity for Macdonald polynomials, see e.g. [31, Exercise
6, Section 7, Chapter VI]. O

2.2 Probability measures related to Jack polynomials

We start with the definition of Jack probability measures which is based on (2.6).

Definition 2.6 Given two Jack-positive specializations p; and p; such that the series
>, M is absolutely convergent, the Jack probability measure J),;,, on Y
is defined through _

Sn(p1) Jn(p2)

R AT S I ey

with the normalization constant being given by

oo

0
Hy(pi: p2) = exp (3 2 pron) pu(p) ).
k=1

Remark 2.7 The construction of probability measures via specializations of symmetric
polynomials was originally suggested by Okounkov in the context of Schur measures
[37]. Recently, similar constructions for more general polynomials have led to many
interesting results starting from the paper [7] by Borodin and Corwin. We refer to
[8, Introduction] for the chart of probabilistic objects which are linked to various
degenerations of Macdonald polynomials.

The following statement is a corollary of Propositions 2.2, 2.3 and formula (2.2).

Proposition 2.8 Tuke specializations 1V and t, of Propositions 2.2 and 2.3, respec-
tively. Then Jw, v, (A) vanishes unless ). € YN, and in the latter case we have

N6 +a' (@) —67'(@0)
(o Al gl
Jivie, () = exp (= 0sN) s 716 yek @) +610) +0) @) +610O)+ 1)

(2.9)
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Next, we consider limits of the measures J;~., under a diffusive rescaling of s and
. Define the open Weyl chamber WY = {y e RN : y; < y, < --- < yy} and let
WN be its closure.

Proposition 2.9 Fix some N € N. Then under the rescaling

1t

s=¢ 5 A,-:sflt—i—s*l/zyNH_i, i=1,2,...,N,

the measures Jin . converge weakly in the limit ¢ — 0 to the probability measure

with density

1 Y 32

~ [T =») Hexp(—z—;) (2.10)
on the closed Weyl chamber WN where

LS Y Qm)N 2 H T;((Je@)). @.11)

Note that we have chosen the notation is such a way that the row lengths X; are
non-increasing, while the continuous coordinates y; are non-decreasing in i.

Proof of Proposition 2.9 We start by observing that (2.10), (2.11) define a probability
density, namely that the total mass of the corresponding measure is equal to one.
Indeed, the computation of the normalization constant is a particular case of the Selberg
integral (see [20,32,44]). Since J;~ - is also a probability measure, it suffices to prove
thatase — 0

T ) = £/ H(y — ¥ Hexp(——) 1+o(D)

l<]

with the error term o(1) being uniformly small on compact subsets of W . The product
over boxes in the first row of A in (2.9) is (with the convention Ay = 0)

N 1

H(N9+l—1)H H M—j4+0G—D+0OM—j+0G—D+1)

i=1 j=Aiy1+1

B F(N9+A1)1N—[ TOq—Ai +i0) TOq—ri+i0+1—0)

I'(NO) Pl A —Ajg1 +i60) Ty — A1 +i60+1-106)
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B ') NPy — A +i6)

TT(NOT((N = DO+ + 1) g C(hi— A+ G —1)0)
XF(M—M—i—(i—l)G—i—l)
i —A+G—-20+1)

- INC)] lﬁl( gy gy
T(NOT((N = D6+ +1) 1 & N =i

where we have written A(g) ~ B(e) for lim,_,¢ ‘g% = 1. Further,

et g N e RV
G
C(N—-DO+r+1)

I (N =10+ te=! 4 yye=1/2 4 1\ VDot et
2 ( )

1\ 1/2—=(N=1)8—1
N (re™") o(N=D)0+1+yye /2

V2
(1 RV yN (N —1)0 + 1) (N=D)f—te™!—yye=!/2=1
X &

X
e

+
t
1 /2—(N—=1)0+0

e o (N=Db+1+yye!/2

N—16+1 5
X exp ((sl/zyTN—Fe—( t) —sg—tN)(—ta_l —yN8_1/2))

—1/2—(N-1)0 2
_ - 270 exp( -2 ).
2 2t

Therefore, the factors coming from the first row of X in (2.9) are asymptotically given
by

NG —1/2=(N=1)p 2\ N-1
©) e'/? exp _ H(yN — ).
'(NO) 27 2t Pl

Performing similar computations for the other rows we get

r®) t—1/2 (G—1e

N 2
Yi
T, () = N/2H TN H(Yj_)’i)zeECXP(_Z)U-FO(]))

j=1 i<j

which finishes the proof. O

We now proceed to the definition of probability measures on multilevel structures
associated with Jack polynomials. Let GTY) denote the set of sequences of Young
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Multilevel Dyson Brownian motions via Jack polynomials 427

diagrams A' < 2% < --- < A" such that £(A") < i forevery i and the Young diagrams
interlace, that is,

i+1 i i+1 i i+l . B
At = = > =l =t i=12, N - L

The following definition is motivated by the property (2.3) of skew Jack polyno-
mials.

Definition 2.10 A probability distribution P on arrays (A! < --- < A¥) € GT™ is
called a Jack—Gibbs distribution, if for any . € YV such that P(AN = u) > 0 the
conditional distribution of A! ..., AN—1 given AN = W is

B T -1 (AN Jve w2 (W) - T2 (1) T (14

1 N—-1 N _
P o AN A =) 7.0

(2.12)

Remark 2.11 When 6 = 1, (2.12) implies that the conditional distribution of
AL, ., AN~ Lis uniform on the polytope defined by the interlacing conditions.

One important example of a Jack—Gibbs measure is given by the following defini-
tion, see [7,8,11,13] for a review of related constructions in the context of Schur and,
more generally, Macdonald polynomials.

Definition 2.12 Given a Jack-positive specialization p such that > oo, ka('O) < 00

asc (N)

we define the ascending Jack process DN

by

as the probability measure on GT*"’ given

Tow (0) Ty jyv—1 (1Y) -+ T2 5 (1Y) T, (1)
Hy(p; 1Y) .

o) a2 N = (2.13)
Remark 2.13 If p is the empty specialization, then JXFAC, assigns mass 1 to the single
element of GT™) such that )\; =0,1<i<j<N.

Lemma 2.14 The formula (2.13) defines a Jack—Gibbs probability distribution. Fur-
thermore, for any 1 < k < N the projection of T\’ to A ARy s ok » and the
projection of ;n}f, 1o 3K is o 1k
Proof The formula (2.4) yields that J /(1 1) vanishes unless j < A, thus, the support
of J%¢ is indeed a subset of GT™). Now we can sum (2.13) sequentially over A!,

piN
LAl using (2.3). This proves that the projection of j;;slf, to AN is jp;lN. Thus,
since jp; |~ is a probability measure, so is J;f;,‘. Further, dividing J;f;,‘ oL AN

by J, o IN ANy we get the conditional distribution (2.12), which proves that (2.13) is
Jack—Gibbs.

To compute the projectiononto (A!, .. ., 1%) we sum (2.13) sequentially over AV ...,
A+ using (2.7) and arrive at J;’jf . In order to further compute the projection to A

we also sum over A', ..., A¥~! using (2.3) and get T p:1k- O
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Define the (open) Gelfand—Tsetlin cone via
GV = {y Esz(z\/+1)/2:yij+1 - yij - yijrll’ l<i<j<N- 1} ’

and let Q_N be its closure. A natural continuous analogue of Definition 2.10 is:

Definition 2.15 An absolutely continuous (with respect to the Lebesgue measure)
probability distribution P on arrays y € GV is called 6—Gibbs, if the conditional
distribution of the first N — 1 levels yf, 1 <i <k < N — 1 given the N-th level

y]N, ey yﬁ has density

P(yf,liiskSN—lnyv,...,yﬁ)

N k=1 k
F(k@) k—1 k—1 k
~H(Fer T o' =TT
k=2 I<i<m<k—1 i=1 j=1
= T ok —y?;)l‘ze). (2.14)

1<j<n<k

To see that (2.14) indeed defines a probability measure, one can use a version of
the Dixon-Anderson identity (see [2,17], [20, Chapter 4]), which reads

m m+1
/// H |ul-—uj|HH|ui—vj|9_ldu1du2...dum
I<i<j<m i=1 j=1
)" 261
— _ v , 2.15
T((m + 1)) [T o=l @15)

I<i<j=<m+1
where the integration is performed over the domain
VI <UL <D< U<V3 << Uy <Uptl-
Applying (2.15) sequentially to integrate the density in (2.14) with respect to the

variable yll, then the variables ylz, y% and so on, we eventually arrive at 1.

Proposition 2.16 Let P(q), g = 1,2, ... be a sequence of Jack—Gibbs measures on
GT™), and for each q let {Af.‘ (q)} be a P(q)—distributed random element of GT™),
Suppose that there exist two sequences m(q) and b(q) such that limy_, o b(g) = 00
and as ¢ — oo the N—dimensional vector

AN —m(q) A —m(g) A —m(q)
bg) bg) 7 b

converges weakly to a random vector whose distribution is absolutely continuous with
respect to the Lebesgue measure. Then the whole N (N + 1) /2—dimensional vector
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k
b(q)

also converges weakly and its limiting distribution is 0—Gibbs.

Proof Since we deal with probability distributions converging to another probability
distribution, it suffices to check that the quantity in (2.12) (written in the rescaled and

. / 2 i (@) .
reordered coordinates yl.j = %) converges to (2.14), uniformly on compact

subsets of GV
Sy (1 1) can be evaluated according to the identity (2.4). Thus, with the notation

o+l
fla) = % we have

o= ] FOIT =W 0 (=) FOE =2k 0 —1)
T Lcizim SO =M w0 G =) fOF =2 G =)

¥ as a — oo shows

The asymptotics f () ~ o'~
b(q)(l—k)(l—O)

1
J)\k/)hk—l(l ) ~ W

k=1 k

< JT o5 =D TT o =yO" TITTvE =y

I<i<j<k—1 I<i<j<k i=1j=1

It remains to analyze the asymptotics of JM(IN ) in the denominator of (2.12). To
this end, we use the expression for J,L(lN ) in Proposition 2.2 and recall that p can
be identified with A" to find that the product over the boxes in the first row of p
asymptotically (in the limit ¢ — 00) behaves as

1431 N i 1
[Tve+i-D T ] . :
i=1 iml jep MO 40

N
_ T(NO+ 1) m T — A +i6)

PNO) oy T = A +10)
al H N—-1
L (A =i +1i6) o
E(F(M —Ai+ (= 1)9)) E (b@ Oy =)

Performing the same computations for the other rows we find that, as ¢ — oo,

~b(g) VN2 T oY -

I<i<j<N

Ju(1N)

@ Springer



430 V. Gorin, M. Shkolnikov

One obtains the desired convergence to (2.14) by putting together the asymptotics of
the factors in (2.12) and multiplying the result by the term b(g)" ¥ ~1/2 coming from
the space rescaling. O

As a combination of Propositions 2.9 and 2.16 we obtain the following statement.

Corollary 2.17 Fix some N € N. Then, under the rescaling

s =& 5, )\,'l.j=871l+871/2ylj:+1_i, ISZS‘ISN1

asc
;N

the Gelfand-Tsetlin cone G with density

N N2\ N-1 _
% I1 (y;v - y,-N) Hlexp(—(y;t) ) | (x’,’ - y,”)z Y
i

the measures converge weakly in the limit ¢ — 0 to the probability measure on

i<j n=1 1<i<j<n
nontl o1
XH H|y§_yz+l| - (2.16)
a=1 b=1
where

N . 2

_ (I'(jO))
7 — fININ=D+N/2 5 \N/2 M7 2.17
( 77) j]:[l F(@)]—H ( )

Note that the probability measure of (2.16) is precisely the Hermite 8 = 26 corners
process with variance ¢ of Definition 1.1.

Remark 2.18 When 6 = 1, the factors (v} — yH> 2 and |y — yp P in (2.16)
disappear, and the conditional distribution of y!, y2, ..., y¥~! given y¥ becomes
uniform on the polytope defined by the interlacing conditions. This distribution is
known to be that of eigenvalues of corners of a random Gaussian N x N Hermitian
matrix sampled from the Gaussian Unitary Ensemble (see e.g. [4]). Similarly, for
0 = 1/2 and 0 = 2 one gets the joint distribution of the eigenvalues of corners of the
Gaussian Orthogonal Ensemble and the Gaussian Symplectic Ensemble, respectively
(see e.g. [33], [35, Section 4]).

2.3 Dynamics related to Jack polynomials

We are now ready to construct the stochastic dynamics related to Jack polynomials.
Similar constructions for Schur, g-Whittacker and Macdonald polynomials can be
found in [6,7,9,11].

Definition 2.19 Given two specializations p, o’ define their union (p, p’) through the
formulas
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pi(p. p") = pr(p) + pr(p), k=1
where pi, kK > 1 are the Newton power sums as before.

Let p and p’ be two Jack-positive specializations such that Hy (p; p’) < 0o. Define

matrices pI S and p}% o with rows and columns indexed by Young diagrams as
follows:
1 Ju(p) ~
I L 1% 1
Doy (03p) =———7——Jupn(p), ApueY, Ji(p)#0, (2.18)
Au Hy(p: p') (o) "
Jyu(p)

i (pip)) = L), ApeY. Jip.p) #0. (2.19)

J.(p, p")

The next three propositions follow from (2.3), (2.6), (2.7) (see also [6,7,11] for
analogous results in the cases of Schur, g-Whittacker and Macdonald polynomials).

Proposition 2.20 The matrices p; o and pi oy are stochastic, that is, all matrix

elements are non-negative, and for every A € Y we have

Sl ) =10 if $p) £0,

neyY

ST pio e ) =1, if Jip.p) #0.
neY

Proposition 2.21 For any u € Y and any Jack-positive specializations py, p2, p3 we
have

D T @ i (023 03) = Tpysin (1),
WeY: Ty py (W)#0

Z jpl;pz,m()‘) P;%%M(m; 03) = jpl;pz(ﬂ)-
AEY: Ty (IO

T

Proposition 2.22 The following commutation relation on matrices p; _, u

and pi% u
holds:

P (o1, p23 03) P (P15 p2) = pYo1; p2) P (o1 03).

Let X %SC (), s > 0denote the continuous time Markov chain on YV with transition
probabilities given by p'(1V; t5), s > 0 (and arbitrary initial condition X, (0) €

disc
YN). We record the jump rates of X ZSC for later use.
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Proposition 2.23 The jump rates of the Markov chain X, on YN are given by

disc
J (1 ) ~
Jl‘-(lN) J;L/A(tl) w =AUl
r—pn = — z Gr—vs w=A, (2.20)
v=Aul]
0, otherwise.

Explicitly, for p = AU (i, j) we have

No+d @) —0r@)

A )+ 010 ) +6  ratk jin+0G—k+1)
B = No +a'(O) —01'(D) o 11 a(k, j;A) +6 (i —k)
Mo, a(@; ) +01(0;0) +0
atk, i)+ 140G —1—1)
Ak i 41406 —1)

2.21)

Remark 2.24 While the jump rates g ., are explicit, we are not aware of any fairly

simple formulas for the transition probabilities pT(1V; v;), s > 0 of XY, .

Proof of Proposition 2.23 The formula (2.20) is readily obtained from the definition
of the transition probabilities in (2.18). In order to get (2.21) we note that J;\(lN )
and J, (1V) have been computed in Proposition 2.2. Further, observe that JM /s a
symmetric polynomial of degree 1, thus, it is proportional to the sum of indeterminates
p1. Therefore, J,, /(1 hy = Jyu5.(r1) and we can use the formula (2.5) to evaluate it.

The following proposition will prove useful below.

Proposition 2.25 The process |de| = Zl 1(de), is a Poisson process with
intensity NO.

Proof According to Proposition 2.23 the process | X Jisc| increases by 1 with rate

T,y
> SATLY Tujn(er).

p=iul]

In order to evaluate the latter sum we use Pieri’s rule for Jack polynomials, which is
a formula for the product of a Jack polynomial with the sum of indeterminates and in
our case reads

> (N T =6 pra™) LYy = N6 (1Y),
n=iul]

The proof of Pieri’s fule (for Macdonald polynomials, with the case of Jack polyno-
mials being given by the limit transition ¢ — 1, = ¢%) can be found in [31, (6.24)
and Sectlon 10 in Chapter VI] Note that in the formulas of [31] the notation ¢,/ is
used for J#/A (t1) = J,L/;L(l ) and the g; there is proportional to our pj. |
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Proposition 2.21 implies the following statement.

Proposition 2.26 Suppose that the initial condition X [/lvl 5c(0) is the empty Young dia-
gram, thatis, A1 = Ay = --- = Ay = 0. Then, for any fixed s > 0, the law ofXZlViSC(s)

is given by J\n .. which was computed explicitly in Proposition 2.8.

Our next goal is to define a stochastic dynamics on GT™). The construction we
use is parallel to those of [6,7,9—11]; it is based on an idea going back to [16], which
allows to couple the dynamics of Young diagrams of different sizes. We start from the
degenerate discrete time dynamics 19(n) = ¥, n € Ny and construct the discrete time
dynamics of ALz AN inductively. Given Ak_l(n), n € Ny and a Jack-positive
specialization p we define the process A%(n), n € Ny with a given initial condition
2%(0) satisfying A¥~1(0) < 1%(0) as follows. We let the distribution of AK(n + 1)
depend only on A (n) and A*~1(n + 1) and be given by

Jos3(0) Juyp (1)

> ey Jesn () Jepu (1D
(2.22)

PO+ =v M) =r, A M+ D) =p) =

Carrying out this procedure fork = 1, 2, ..., N we end up with a discrete time Markov
chain X[’J"IL:IC” (n; p),n € Ng on GT™),
Definition 2.27 Define the continuous time dynamics XL’Z.’;IC”'(S), s > 0 on GTW
with an initial condition X"/ (0) € GT") as the distributional limit

lim )A(%’;lc’i(Ls_l s|ite)

e—0
where all dynamics X [’i"l.';lct i(; v,) are started from the initial condition X (’}’l‘;i’ (0) and
the specialization t, is defined as in Proposition 2.3.

Remark 2.28 Alternatively, we could have started from the specialization p with a
single o parameter o; = ¢ and we would have arrived at the same continuous time
dynamics. Analogous constructions of the continuous time dynamics in the context of
Schur and Macdonald polynomials can be found in [9] and [7].

Note that when A < « the term Z( /5 (te) is of order gl1=1* a5 ¢ — (. Therefore, the
leading order term in the sum on the right-hand side of (2.22) comes from the choice
k = X unless that « violates u < «, in which case the leading term corresponds to
taking k = . Moreover, the first-order terms come from the choices « = AU and the
resulting terms turn into the jump rates of the continuous time dynamics. Summing up,
the continuous time dynamics X Z’f;lc’i (s), s > 0 looks as follows: given the trajectory

of A¥~1, a box [ is added to the Young diagram AX at time ¢ at the rate

Gk ouDak 1o (1)
J)Lk(xf)/)\k_l (s)(l 1)

~ J
Q(Dv )‘-k (S—), }"k_l (S)) = J()»k(s—)uD)/)Lk(s—) (t]) (223)

In particular, the latter jump rates incorporate the following push interaction: if the
coordinates of A¥~1 evolve in a way which violates the interlacing condition AK~! <
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Ak, then the appropriate coordinate of A¥ is pushed in the sense that a box is added
immediately to the Young diagram A* to restore the interlacing. The factors on the
right-hand side of (2.23) are explicit and given by (2.4) and (2.5). Simulations of the
continuous time dynamics for & = 0.5 and 6 = 2 can be found at [25].

The following statement is based on the results of Propositions 2.20, 2.21, 2.22 and
can be proved by the argument of [9, Sections 2.2, 2.3], see also [6,7,11].

Proposition 2.29 Suppose that X;"I-’;lc,’i (s), s > 0 is started from a random initial

condition with a Jack—Gibbs distribution. Then:

e the restriction of X Z’i‘;if i(s) to level N coincides with X (% sc(8), s = 0 started from

the restriction to level N of the initial condition Xg’i’;lc” 0),
e the law of Xﬁ’?i';lc” (s) at a fixed time s > 0 is a Jack—Gibbs distribution. Moreover,

if X1 0) has law ‘75_“, then X™" (s) has law j/fsti_N.

disc disc
Remark 2.30 In fact, there is a way to generalize Proposition 2.29 to a statement
describing the restriction of our multilevel dynamics started from Jack—Gibbs initial
conditions to any monotone space-time path (meaning that we look at level N for some
time, then at level N — 1 and so on). We refer the reader to [9, Proposition 2.5] for a
precise statement in the setting of multilevel dynamics based on Schur polynomials.

3 Convergence to Dyson Brownian motion

The goal of this section is to prove that the Markov chain X ZIVI sc () converges in the
diffusive scaling limit to a Dyson Brownian Motion.

To start with, we recall the existence and uniqueness result for Dyson Brownian
motions with 8 > 0 (see e.g. [3, Proposition 4.3.5] for the case § > 1 and [14,
Theorem 3.1] for the case 0 < 8 < 1).

Proposition 3.1 Forany N € Nand B > 0, the system of SDEs
dX; (1) = B Z;dwdw(z) (3.1)
' 2 £ Xi() = X(0) e '

i = 1,2,...,N, with Wi, Wo, ..., Wy being independent standard Brownian
motions, has a unique strong solution taking values in the Weyl chamber WN for

any initial condition X (0) € WN. Moreover, for all initial conditions, the stopping
time

T:=inf{t > 0: X;(t) = Xi+1(t) for somei} 3.2)

is infinite with probability one if B > 1 and finite with positive probability if 0 <
B <1

We write DY = D([0, 0o), RY) for the space of right-continuous paths with left
limits taking values in RY and endow it with the usual Skorokhod topology (see e.g.

[19D).
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Theorem 3.2 Fix6 > 1/2andlete > O be a small parameter. Let the N—dimensional
stochastic process YgN (1) = (YgN M1y, YSN (t)N) be defined through

N =X ons—i(e o7 ) —e7l), i=1,...,N

where (X L]x 0)i 1S i-th coordinate of the process X ZZ o+ Suppose that, as ¢ — 0, the

initial conditions Y, SN (0) converge to a point Y (0) in the interior of WN. Then the
process YSN (t) converges in the limit ¢ | 0 in law on DV to the B = 20-Dyson
Brownian motion, that is, to the unique strong solution of (3.1) with = 26.

Remark 3.3 We believe that Theorem 3.2 should hold for any 6 > 0. However, the
case 0 < 6 < 1/2 presents additional technical challenges, since there the stopping
time t of (3.2) may be finite.

Let us first present the plan of the proof of Theorem 3.2. In Step 1 we study the
asymptotics of the jump rates of X %SC in the scaling limit of Theorem 3.2. In Step
2 we prove the tightness of the processes YV as ¢ — 0. In Step 3 we show that
subsequential limits of that family solve the SDE (3.1). This fact and the uniqueness

of the solution to (3.1) yield together Theorem 3.2.

3.1 Step 1: Rates

YSN (¢) is a continuous time Markov process with state space WV, a (constant) drift of
—&~ /2 in each coordinate and jump rates

N / -1 .—1
Pe b, y,H)=0""¢ q§g—1+98—1/2ﬁ58—1+)§/€—|/2

where 7, §’ are the vectors (viewed as Young diagrams) obtained from y, y’ by reorder-
ing the components in decreasing order, and the intensities g; ., are given in Propo-
sition 2.23. If we write y’ &, y for vectors y’, y which differ in exactly one coordinate
with the difference being ¢'/2, then pév (y,y',t) = Ounless y' ~, y. As we will see,
in fact, pév(y, y’, 1) does not depend on .

Now, take two sequences y" &% y with yy .| ; — ynvt1-i = /2 for some fixed
i €{l,2,..., N}. Define Young diagrams A and p via A; = ge’l + YN4+1-1 e~ 12,
w = 58_1 + y;\,Hfj e 12 Then u; = A; + 1 and pu; = A; for j # i. Also, set
j=Ai+1,sothat u = AU (i, j).

Lemma 3.4 For sequences y' ~, y differing in the (N + 1 — i)-th coordinate as
above, we have in the limit ¢ — 0:

R 0
Yoy =+ 2> +0(1)
i YN+1—i — YN+1—j

where the error O (1) is uniform on compact subsets of the open Weyl chamber WV .

@ Springer



436 V. Gorin, M. Shkolnikov

Proof Using Proposition 2.23 we have

NO +a'(@) - 61'(0)
el g, (M) - et e a@; ) + 010 p) +6
pe (1) = T Jamy T =g No+d(0) -6l (0)
a; M) +610O; 1) 46

, ‘1:[1 am, i)+ 60 G —m+1) am, j;2) +1+6G —m—1)
X
a(m, j; &) +60 G —m) aim, j;A)+1+6G—m)

1:[ 1+0<x/—i+1)"1:[‘ o — j 40 —m)
0 Jok+0OGg —it D) S Am—jHOG—m+])

k=1
171)\
x(N=i+Do+j-1) ] =

m=1

Jmk=14+0(, —i+1)

— 4G —m+1) Ap— 140G —m—1)
m—J+0G—m) A —j+1+6G—m)

o1 Jj—1 .

:1

(N—i4+DO+j—1)

7 i JmkH0GL =i+ D)
{ ON41om — IN41—) e 240G —m—1) (33)
el ON+1—m = yN+1-) €720 (i —m)

Now, for any y the corresponding Young diagram A has Ay columns of length N,
(An—1 — Apn) columns of length (N — 1), (AN 2 — An—1) columns of length (N — 2)
etc. Therefore, the latter expression for p; N(y,y', t) can be simplified to
N v O WN—i—r )
e 11 = — 11
J—1—AN_+O0(N—i—7)

r=0 m=1
 ONt1m = YN €™ 240G -—m—-1)

(YN+1=m — YN+1=i) ETV2+0 (i —m)

N _ . i—1
1 ONt1—i —IN41- ) E V2 +0(k—i+1) ’l—I

k=it ON+1-i = yN41-0) e 20 (k—i) -2

o ONt1-m = YN41-i) €7 240G -m—1)
(YN+1=m — YN+1-i) €12+ 60 (i —m)

=&

0
RETREE DY +0(1), (3.4)
i YN+1—i — YN+1—j
. . . . D
with the remainder O (1) being uniform over y such that |yy11-; — yn4+1—j| > & for

j #iandafixed § > 0.
3.2 Step 2: Tightness

Let us show that the family ng, e € (0,1) is tight on DV . To this end, we aim to
apply the necessary and sufficient condition for tightness of [19, Corollary 3.7.4] and
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need to show that, for any fixed ¢ > 0, the random variables YEN (t) are tight on RN as
¢ | 0 and that for every A > 0 and T > O there exists a § > 0 such that

lim sup P sup M) — M| >a)<a, i=1,2,...,N.
el0 0<s<t<T,t—s<$§
(3.5)

We first explain how to obtain the desired controls on (Y, gN (1)) + (the vector of positive
parts of the components of YgN (1)) and

sup ((YgN)i(t) _ (YEN)i(s)), i=1.2 .. ..N. (3.6)

0<s<t<T,t—s<4

To control (Y, ;V (t))+ and the expressions in (3.6) we proceed by induction over the
index of the coordinates in Y. For the first coordinate (YY) the explicit formula
(3.4) in Step 1 shows that the jump rates of the process (Y,V); are bounded above by
¢~ !. Hence, a comparison with a Poisson process with jump rate ¢!, jump size '/2
and drift —e~1/2 shows that ((YSN )1(?))+ and the expression in (3.6) for i = 1 behave
in accordance with the conditions of Corollary 3.7.4 in [19] as stated above. Next, we
consider (YgN)i for some i € {2,3,..., N}. In this case, the formula (3.4) in Step 1
shows that, whenever the spacing (YN); — (YV);_1 exceeds A /3, the jump rate of
(YN); is bounded above by

i—1

—1 9e=1/2 » 3G — 10 I
’ +Z(Y£N)i(t)—(YsN)j(t)+C(A)S€ + =5 ).

j=1
(3.7)

Let us show that (Y,V); can be coupled with a Poisson jump process R, with jump
size ¢!/2, jump rate given by the right-hand side of the last inequality and drift —e—1/2,
so that, whenever (YV); — (YN);_1 exceeds A /3 and (Y); has a jump to the right,
the process R has a jump to the right as well.

To do this, recall that (by definition) the law of the jump times of YEN can be described
as follows. We take N independent exponential random variables ay, ..., ay with
means rj(YgN), Jj = 1,..., N defined by (3.3) with y and y’ differing in the j-th
coordinate. If we let k£ be the index for which a;y = min(ay, ..., ay), then at time ay
the k-th particle (that is, (YSN )x) jumps. After this jump we repeat the procedure again
to determine the next jump.

Let M denote the right-hand side of (3.7) and consider in each time interval between
the jumps of ¥V an additional independent exponential random variable b with mean
M —r;(YNyif (¥N); — (YN);_1 exceeds A/3 and with mean M otherwise. Now,
instead of considering min(ay, ..., ay), we consider min(ay, ..., ay, b). If the min-
imum is given by b, then no jump happens and the whole procedure is repeated. Now,
we define the jump times of process R to be all times when the clock of the i-th
particle rings provided that (YSN )i — (YEN )i—1 exceeds A /3, and also all times when
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the auxilliary random variable b constitutes the minimum. One readily checks that R,
is given by a Poisson jump process of constant intensity M and drift —e~1/2.

We further use the convergence of R, to Brownian motion with drift 3(i — 1)6/A,
which implies the tightness and conditions (3.5) are satisfied for R,. Now we get the
desired control for ((YgN )i ())+ and the quantities in (3.6) by invoking the induction
hypothesis when spacing (YN); — (YV);_1 is less than A /3 and by comparison with
R, when the spacing is larger.

It remains to observe that (YEN (t))— (the vector of negative parts of the components
of YV) and

sup —(¥Mi0) - ¥Mis), i=1,2,....N

0<s<t<T,t—s<4

can be dealt with in a similar manner (but considering the rightmost particle first
and moving from right to left). Together these controls yield the conditions of [19,
Corollary 3.7.4].

We also note that, since the maximal size of the jumps tends to zero as ¢ | 0, any
limit point of the family YEN ,e € (0, 1) as e | 0 must have continuous paths (see e.g.
[19, Theorem 3.10.2]).

Remark 3.5 Note that in the proof of the tightness result the condition & > 1/2 is not
used.

3.3 Step 3: SDE for subsequential limits

Throughout this section we let YV be an arbitrary limit point of the family YsN as
g | 0. Our goal is to identify Y with the solution of (3.1). We pick a sequence of YEN
which converges to Y in law, and by virtue of the Skorokhod Embedding Theorem
(see e.g. Theorem 3.5.1 in [18]) may assume that all processes involved are defined
on the same probability space and that the convergence holds in the almost sure sense.
In the rest of this section all limits ¢ — 0 are taken along this sequence.

Let F denote the set of all infinitely differentiable functions on WWN whose support
is a compact subset of W . Define

Fs = {f € F: f(x) =0 whenever dist(x, HW) < 8}

where 9WWN denotes the boundary of W and dist stands for the L* distance:

dist(x, 9WN) =

yenes

Clearly, F = [Js- o Fs-
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For functions f € F we consider the processes

0

v N
YiN(S) — Y]N(r) Sy (Y7 () dr

t
M7 @)= frN @) — farV o) — /0 >

I<i#j<N
1 1Y
—5/0 > oy YN dr. (3.8)
i=1

Here, fy, (fy;y; resp.) stands for the first (second resp.) partial derivative of f with
respect to y;.

In Step 3a we show that the processes in (3.8) are martingales and identify their
quadratic covariations. In step 3b we use the latter results to derive the SDEs for the
processes YlN,..., Y/{,V.

Step 3a. We now fix an f € F; for some § > 0 and consider the family of martingales

M @)= frY o) - FN©0) — /0 (Z —e~ 12 £, (7N (1))
i=1

+ > in(YsN(r),y’,s)(f(y’)—f(YN(s)))) dr, £>0. (39

y,%syN(r)

Lemma 3.4 implies that the integrand in (3.9) behaves asymptotically as

N N
1
5 2 Lo V0D + 2 0 (YN ) £, (VY ) + 0'V?),
i=1 i=I
where b; (y) = > i y,z;v, Note also that, for any fixed function f € F, the error

terms can be bounded uniformly for all sequences y’ /2, y as above, since f and all its
partial derivatives are bounded and vanish in a neighborhood of the boundary VWV
of WH.,

By taking the limit of the corresponding martingales Mgf for a fixed f € F and
noting that their limit M/ can be bounded uniformly on every compact time interval,
we conclude that M/ must be a martingale as well.

In order to proceed further we recall the following definitions. For a real-valued
function f defined on an interval [0, T] (T can be +o0 here), its quadratic variation
(f)(t) is defined for 0 < < T via

k

. 2
(Ho = lim D (f@) = ftn)
P=(to <t <--<p) 1=
where ‘3 ranges over all ordered collections of points 0 =1y < t] < -+ <ty =t

with k being arbitrary, and ||| = minj<;<x(#; — t;—1). Similarly, for two function f
and g their quadratic covariation ( f, g)(¢) is defined as
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k

(f.8)(0) = \\’llf;llrln Z(f(ti) — fi-) (g() — g(ti-1)).

P=(tp<t; <-- <tk)l 1

Lemma 3.6 For any two functions g, h € F, the quadratic covariation of M$ and
M" is given by

N t
(M8, M")(1) = Z/O gy, YN )y, (YN () dr. (3.10)
=1

Proof Due to the polarization identity
2 (M8, M") (1) = (M® + M")(t) — (M&, M®)(t) — (M", M")(1)

it is enough to consider the case g = h, that is, to determine the quadratic variation
(M8)(2).

We proceed by finding the limit of the quadratic variation processes (M5) of M$
ase — 0.Foreache > 0and j = 1,..., N define Sj as the (random) set of all times
when the j-th coordinate of Y jumps. Note that the sets &7 J are pairwise disjoint and

their union U —1 Sg is a Poisson point process of intensity e "' N (see Proposition
2.25).

Recall that the quadratic variation process (M§)(t) of M§ is given by the sum of
squares of the jumps of the process M§ (see e.g. [15, Proposition 8.9]) and conclude

N
MED =D > (%, Y ) + 0()’, 3.11)

J=1reSingo,

with a uniform error term O (¢g). Suppose that g € F»s and consider new N pair-
wise disjoint sets Ss, j = 1,..., N satisfying U/ 18] U/ 1S] and defined

through the following procedure. Take any r € U j=1 Sg and suppose that r € Sf.

If dist(YSN (r), 9WN) > §, then put r € 32‘ Otherwise, take an independent random
varia/tzle k sampled from the uniform distribution on the set {1,2,..., N} and put
r € 8¢ The definition implies that, for small €,

N
(ME)(0) _Z S (Y%, M) + 0)), (3.12)

=1,e8/n0,1]

with a uniform error term O (¢). Now, take any two reals a < b. We claim that the

sets :S'Z‘ satisfy the following property almost surely:

lirr%)8|37g‘ﬂ[a,b]|=b—a. (3.13)
E—>
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Indeed, the Law of Large Numbers for Poisson Point Processes implies

N
(U 37;) N [a, b]
k=1

On the other hand, Lemma 3.4 implies the following uniform asymptotics as & — O:

lim &
=0

=N —a). (3.14)

N
o~ 1
Sk
P t€S£|®<t,tej_lSEf =—N+0(1),

where ® _; is the o -algebra generated by the point process 32‘, j=1,..., Nuptotime
t. Therefore, the conditional distribution of |S’Z‘ N [a, b]| given |(U,1<V: 1 S’Z‘) N [a, b]|
can be sandwiched between two binomial distributions with parameters % + C(e),
where lim,_,g C(¢) = 0 (see e.g. [30, Lemma 1.1]). Now, (3.14) and the Law of Large
Numbers for the Binomial Distribution imply (3.13).

It follows that the sums in (3.12) approximate the corresponding integrals and we
obtain

N '
151%(1\45)(;) - ;/0 gy, YN () dr. (3.15)

Note that for each g € F, both MZ(t)? and (M£)(¢) are uniformly integrable on
compact time intervals (this can be shown for example by another comparison with a
Poisson jump process). Further, one of the properties of the quadratic variation (see
e.g. [19, Chapter 2, Proposition 6.1]) is that M (12— (ME)(r)isa martingale. Sending
e — O(seee.g.[19, Chapter 7, Problem 7] for a justification) it follows that the process

N o
M8 (1) — Z/ gy, YN (r)?dr = lim (1\45(;)2 — [M§](t)) (3.16)
j=1 0 E—>

is a martingale. On the other hand, since M4 () is continuous in ¢ (see the end of Step
2), its quadratic variation (M &) (¢) is a unique increasing predictable process such that
M3 (t) — (M8)(t) is a martingale (see [19, Chapter 2, Section 6]). We conclude that

N o
(M8)(@) = Z/O gy, YN (r)?dr.
j=1
O

Step 3b. We are now ready to derive the SDEs for the processes YV, ..., Y /\,V . Define
the stopping times 75, § > 0 by
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s = inf{t >0: YN (1) - YN, ()
< § for some i} A inf{t > 0 : |YiN(t)| > 1/8 for some i}. (3.17)

Our next aim is to derive the stochastic integral equations for the processes
(Y A)

Let f;, j = 1,..., N, be an arbitrary function from F such that f;(y) = y; for
y inside the box |yj| < 1/8 and such that dist(y, 9WN) > §. The results of Step
3a imply that the processes M /i are martingales. Note that the definition of stopping
times t5 imply that on the time interval [0, 5] the processes M fi and M7/ almost
surely coincide. At this point we can use Lemma 3.6 to conclude that

INTS 9
YN@ AT —YNO—/ —————dr, j=1,...,N
penm =IO, ,%Y}W)—Yﬂ(r) ’

are martingales with quadratic variations given by # A 75 and with the quadratic covari-
ation between any two of them being zero. We may now apply the Martingale Rep-
resentation Theorem in the form of [29, Theorem 3.4.2] to deduce the existence of
independent standard Brownian motions Wi, ..., Wy (possibly on an extension of
the underlying probability space) such that

N N IATS z 6 IATS
Y (tATs)—Y; (O)—/ —dr :/ dWi(s), j=1,...,N.
’ ! (e S OES A (ORI !
(3.18)
To finish the proof of Theorem 3.2 it remains to observe that Proposition 3.1 implies

lim 75 = o0
§—0
with probability one.

Remark 3.7 An alternative way to derive the system of SDEs for the components of
YV is to use [29, Chapter 5, Proposition 4.6]. We will employ this strategy in Sect. 5.3
due to the lack of a straightforward generalization of Lemma 3.6 to the multilevel
setting.

3.4 Zero initial condition

A refinement of the proof of Theorem 3.2 involving Proposition 2.9 allows us to deal
with the limiting process which is started from 0 € WY

Corollary 3.8 Fix 6 > 1. In the notations of Theorem 3.2 and assuming the conver-

gence of the initial conditions to 0 € WN, the process X",

Jisc converges in the limit
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e | 0inlaw on DV to the B = 20—Dyson Brownian motion started from 0 € WV,
that is, to the unique strong solution of (3.1) with B = 260 and Y (0) =0 € WV,

Proof Using Proposition 2.9 and arguing as in the proof of Theorem 3.2 one obtains
the convergence of the rescaled versions of the process X %SC on every time interval
[t, 00) with > 0 to the solution of (3.1) starting according to the initial distribution
of (2.10). Since (2.10) converges to the delta—function at the origin as t — 0, we

identify the limit points of the rescaled versions of X % sc With the solution of (3.1)

started from 0 € YWN. O

4 Existence and uniqueness for multilevel DBM

The aim of this section is to prove an analogue of Proposition 3.1 for the multilevel
Dyson Brownian motion.

Theorem 4.1 For any N € N and 6 > 1 (that is, B = 20 > 2), and for any initial

condition X (0) in the interior of GN, the system of SDEs

k—1

1—-6 1—-6
dX’.‘(z)z( I —— —)dt—}—dW-k, l<i<k<N
: E XF() = X5 (1) 2 Xf) - X5 ') ’

m=1

“.1)

with Wl.k, 1 <i <k < N being independent standard Brownian motions, possesses a

unique weak solution taking values in the Gelfand-Tsetlin cone Q_N

Proof Given a stochastic process X (¢) taking values in Q_N for any fixed § > 0, let
75(X) denote

BIX]=inf(t > 0 : [XF() = XK (@0 <8, k= K| < 1),

that is, the first time when two particles on adjacent levels are at the distance of at most
3. Further, we define the stopping time 75[ X] as the first time when three particles on
adjacent levels are at the distance of at most 4:

BIX]=inf{r >0 : [X{() = X[ (0] <8, X} (1) = X}, (0] <6,
for (k',i") # (k”,i"”) such that |k — k'| = |k — k"| = 1].

Figure 2 shows schematically the six possible triplets of nearby particles at time t;.

The following proposition will be proved in Sect. 4.1.
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Fig. 2 Six possible triplets of nearby particles: one of these situations occurs at time 7

Proposition 4.2 Forany N € N, § > 0and 6 > 1 (that is, p = 20 > 2), and for any
initial condition X (0) in the interior of GN the system of stochastic integral equations

(AT [X] 1-0 = 1-0
le(t)—xk(()):/ -
: : 0 Z#: XE(s) = XK (5) mZ:l X5 — X' (0
+Whe Ats[XD, 1 <i<k<N, 4.2)

with Wl-k, 1 <i <k < N being independent standard Brownian motions, possesses a
unique weak solution.

In view of Proposition 4.2 we can consider a product probability space which
supports independent weak solutions of (4.2) for all § > 0 and all initial conditions
in the interior of GV. Choosing a sequence §;, [ € N decreasing to zero, we can define
on this space a process X such that the law of X (t A 75,[X]), t > 0 coincides with
the law of the solution of (4.2) with § = §; and initial condition X (0), the law of
X ((rs,[X] + 1) A 15,[X]), t > 0 is given by the law of the solution of (4.2) with
8 = &> and initial condition X (ts,[x]) etc. The uniqueness part of Proposition 4.2 now
shows that, for each / € N, the law of X (t A 75,1x]), t > 0 s that of the weak solution
of (4.2) with § = §;. Since the paths of X are continuous by construction and hence
lim;_, o 75,[ X] = 79[ X], we have constructed a weak solution of the system

tATLX] 1-6 = 1-0
X’-‘(t)—X’-‘(O):/ LA ) —
: : 0 % XE(s) — XK (5) ,,,Zzll X5 — X' (@)
+Wh@ ATo[X]), 1 <i<k<N 4.3)

with Wik , 1 <i <k < N being independent standard Brownian motions as before. In
addition, we note that the law of the solution to (4.3) is uniquely determined. Indeed, for
any § > 0, the process X stopped at time t5 would give a solution to (4.2). Uniqueness
of the latter for any § > 0 now readily implies the uniqueness of the weak solution to
(4.3). At this point, Theorem 4.1 is a consequence of the following statement which
will be proved in Sect. 4.2.

Proposition 4.3 Suppose that X (0) lies in the interior of the cone GN and let X be a
solution to (4.3).
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Fig. 3 A pair-partition with RN R e
N = 3, two pairs and two 4‘—.33 v .g: e .,'—
singel ~ 3 - ~ 3y ' 3
singletons Xl o~ XQ ; )'('3
“.2 O |.,2’
S -
@
x|

(a) If0 > 1, then almost surely 1o[X] = o0.
(b) If 0 > 2, then almost surely Tp[X] = co.

4.1 Proof of Proposition 4.2

Our proof of Proposition 4.2 is based on a Girsanov change of measure that will
dramatically simplify the SDE in consideration. We refer the reader to [29, Section
3.5] and [29, Section 5.3] for general information about Girsanov’s theorem and weak
solutions of SDEs.

We start with the uniqueness part. Fix N € {1,2,...},6 > 1,8 > 0, and let X be
a solution of (4.2). Let Z denote the set of N(N + 1)/2 pairs (k,i), k = 1,..., N,
i = 1,..., k which represent different coordinates (particles) in the process X. We
will subdivide 7 into disjoint singletons and pairs of neighboring particles, that is, pairs
of the form ((k, i), (k —1,17)) or ((k,7), (k —1,i — 1)). We call any such subdivision
a pair-partition of Z. An example is shown in Fig. 3.

Lemma 4.4 There exists a sequence of stopping times 0 = og < 01 <03 < --- <
15[ X1 and (random) pair-partitions Ay, Az, ... such that
o foranyn =1,2,...,any 0,1 <t < oy, any two pairs (k,i), (K',i’), 1 <i <

k<N, 1<i'<k <N, |k—k| <1, wehave | X*(t) — X' (1)| = 6/2 unless
the pair ((k, i), (k',i")) is one of the pairs of the pair-partition A,, and
e foranyn = 1,2,..., either 0,, = T5 or |Xl]?(an+1) — Xl].‘(an)| > §/2 for some
(k, 7).
Proof Define the (random) sets B, Df by setting

1

B ={o=r=uix1ixto - x "ol <5},

Dk ={0 =1 =wlX1 1 1X50 - X1 0l < o).

Note that these sets are closed due to the continuity of the trajectories of X, which
in turn is a consequence of (4.2). Define A(f; §) as a pair-partition such that pair
((k,i), (k—1,1i)) belongsto A(t; §) iff t € Bff and pair ((k, i), (k—1,i —1)) belongs
to A(t; 6) iff t € Df. Define A(¢, §/2) similarly. The definition of t5[ X] implies that
such pair-partitions A(t; 6/2) C A(t; §) are well-defined for any 0 < ¢ < t5[X].
Now, we define o, and A, inductively. First, set o9 = 0. Further, forn = 1,2, ...
let A, = A(o,—1; §) and set o, to be the minimal ¢ satisfying 7s[X] > ¢ > 0,1 and
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such that A(z; §/2) has a pair which A(o,—1; §) does not have. Since the sets Bk Dk
are closed, either such ¢ exists or no new pairs are added after time 0,1 and up to
time t5[ X]. In the latter case we set o;,, = 5. |

Next, we fixa T > 0, set I, = [0,—1,0,),n = 1,2,... and apply a Girsanov
change of measure (see e.g. [29, Theorem 5.1, Chapter 3] and note that Novikov’s
condition as in [29, Corollary 5.13, Chapter 3] is satisfied due to the boundedness of
the integrand in the stochastic exponential) with a density of the form

exp Z Z (/ b, 01y, (t)de(t)——/ (bln(t))zlln(t)dt) , (4.4)

n=01<i<k<N
so that under the new measure P for every fixed k,i,nand 0 <t < T:

Xk A o) = XKt Aopi)
[N

AWk — &) it ((k,i), (k—1,i — 1)) € A,
I s = o) LK (CUNCE NIRRT

tAGy,

= yk _ __(=6)ds ; ; 1

=1 (W - ) kD G- @)
n—1

VN

[ dWF, otherwise

A0y —1

where Wik, 1 <i <k < N are independent standard Brownian motions under the
measure P. We claim that the solution of the resulting system of SDEs (4.5) is pathwise
unique on [0, lim,,_, », 03,) (that is, for any two strong solutions of (4.5) adapted to the
same Brownian filtration, the quantities lim,_, o, 0, for the two solutions will be the
same with probability one and the trajectories of the two solutions on [0, lim,,_, o, 7;,)
will be identical with probability one). Indeed, on each time interval o, < ¢ < o), the
system (4.5) splits into | A, | non-interacting systems of SDEs each of which consists
of one equation
Aoy

Xkt Aoy = XKt Aop_y) = / dwk, (4.6)
INOp—1

if (k, i) is a singleton in A, or of a system of two equations

(Xt A o) = X571 Aaw)) — (XE(t A ou1) — X5t A o))

tAoy,
=k S k—1
= / (dW) —dw; )
tAO;—1
tAG, . d
—0
_ / —k( )k L “.7)
Xi(s) =X, (s)
INOp—1
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tAGy,

XNt Aow) — XKt Aowoy) = / dwk

i

4.8)
IAOp—1
if ((k,i), (k —1,i’)) is a pair in A,. Therefore, one can argue by induction over n
and, once pathwise uniqueness of the triplet (X (t A op—1) : t > 0), 041, Ap—1) is
established, appeal to the pathwise uniqueness for (4.6), (4.8) and (4.7) (the latter being
the equation for the Bessel process of dimension 6 > 1, see [42, Section 1, Chapter
XI]) to deduce the pathwise uniqueness of the triplet (X (t A 0,) : t > 0), 0, Ap).
The SDEs in (4.5) also allow us to prove the following statement.

Lemma 4.5 The identity lim,_, » 0, = t5[ X ] holds with probability one.

Proof 1t suffices to show that lim, .0, AT = 15[X] A T for any given T > O.
Indeed, then
lim 0, > lim lim o, AT = lim t5[X]A T = t5[X]
n—oo T—o00n—>00 T—00

and lim,,_, o, 0;; < 15[ X] holds by the definitions of the stopping times involved. If for
some n we have 15[ X]AT = 0, AT, then we are done. Otherwise, o,, < T forall n and
the definition in Lemma 4.4 shows that | X f‘ (op+1) — X f‘ (o) = 8/2 for some (k, i).
In addition, (4.5) yields that, under the measure P, |X lk (on+1) — X f‘ (op)| is bounded
above by the sum of absolute values of the increments of at most two Brownian motions
and one Bessel process in time (0,+1 — 0,,). Since the trajectories of such processes
are uniformly continuous on the compact interval [0, T'] with probability one, there
exist two constants ¢ > 0 and p > 0 such that P (0,41 — 0, > ¢) > p. Consequently,
oy, /¢ stochastically dominates a binomial random variable Bin(n, p). In view of the
law of large numbers for the latter, this is a contradiction to o;,, < T for all n. O

Now, we make a Girsanov change of measure back to the original probability
measure and conclude that the joint law of X(t Ats AT),t > 0,0, AT andts AT
under the original probability measure is determined by such law under the measure
P (the justification for this conclusion can be found for example in the proof of [29,
Proposition 5.3.10]). Since the latter is uniquely defined (by the law of the solution to
(4.5)), so is the former. Finally, since 7 > 0 was arbitrary, we conclude that the joint
law of X (# A 75[X]), t > 0 and 75[ X] is uniquely determined.

To construct a weak solution to (4.2) we start with a probability space (€2, F, P) that
supports a family of independent standard Brownian motions Wlk, 1<i<k<N.
In addition, we note (see [42, Section XI] for a proof) that to each pair of Brownian
motions of the form (Wik, Wik__ll) or (Wik, Wik_l) and all initial conditions we can
associate the unique strong solutions of the SDEs

k,— 6—1 Tk Trk—1
AR (1) = ——— dr + dWf (1) — dWr T (@), (4.9)
RET(0)
k. + o1 ik irk—1
dRN (1) = = dr +dWr @) —dWF 1), (4.10)
i

defined on the same probability space.
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We will now construct an N (N + 1)/2-dimensional process X (¢), ¢ > 0, stopping
times 15, 0, n = 0, 1, 2, ... and pair-partitions A,,n = 0, 1, 2, ... which satisfy the
conditions of Lemma 4.4 and the system of equations (4.5).

The construction proceeds for each w € 2 independently, and is inductive. If the
initial condition X (0) is such that 5[ X] = 0, then there is nothing to prove. Otherwise,
we set op = 0 and A1 = A(0; §) (see the proof of Lemma 4.4 for the definition of
A(t; 8)). Next, we define X as the unique strong solution of

t
yk _ __(-0)ds i i 1
0f(dW,- b ), (i) (= 1= 1) € A

Xk — X50) = Of(dvifik—%), it ((k, i), (k= 1,1)) € Ay,
d

J AW, otherwise,
0

4.11)
with initial condition X (0) = X (0).

Now, we can define o7 as in Lemma 4.4, but with X (t) instead of X (). After
this, we set X (¢) to be equal to X (t) on the time interval [0, o1]. We further define
Ay = A(or; d) and repeat the above procedure to define X (¢) on the time interval
[o1, 02]. Tterating this process we can define X (¢) up to time 75[ X ] thanks to Lemma
4.5. We extend it to all ¢+ > 0 by setting Xl’.‘(t) = Xf(t,;[X]) forr > 15[ X].

Next, we apply the Girsanov Theorem as in the uniqueness part to conclude that,
foreach T > 0, there exists a probability measure Q7 which is absolutely continuous
with respect to [P and such that the representation

k—1

. ‘ tAT Ats[X] z 1—-0 Z 1—9
XKt A T)-XF(0) =/ - -
0 X)X () XE$) =X ' (9)

+WEEAT Ags[XD), 1<i<k<N

m=1

holds with Wl.k, 1 <i <k < N being independent standard Brownian motions under
Qr.

Finally, replacing 7' by a sequence 7, 1 oo and using the Kolmogorov Exten-
sion Theorem (see e.g. [28, Theorem 6.16] and note that the consistency condition is
satisfied due to the uniqueness of the solution to (4.2)), we deduce the existence of
processes X lk 1 <i <k < N defined on a suitable probability space which solve
4.2).

4.2 Proof of Proposition 4.3

We start with a version of Feller’s test for explosions that will be used below (see e.g.
[29, Section 5.5.C] and the references therein for related results).
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Lemma 4.6 Let Z be a one-dimensional continuous semimartingale satisfying
Z(0) > 0and

VO<ti<th: Z()—Z(1) =blta — 1) + M) — M(t)) 4.12)

with a constant b > 0 and a local martingale M. If the quadratic variation of M
satisfies

I
Vo<t <trp: M)(r)— (M) () <2b /2 Z(t)dt, (4.13)

n
then the process Z does not reach zero in finite time with probability one.

Proof We fix two constants 0 < r; < Z(0) < Ry < oc and let 7, g, be the first time
that Z reaches r; or R;. Next, we apply It6’s formula (see e.g. [29, Section 3.3.A]) to
obtain

TR Chds d(M)(s)
1nZ(tArr1,R1AC)—1nZ(O)—/O (m_ ZZ(S)z)

IATr Ry NC dM(S)
+ 4.14
/o Z(s) @19

for any stopping time ¢ . By (4.13), the first integral in (4.14) takes non-negative values.
Hence, picking a localizing sequence of stopping times { = ¢, for the local martingale
given by the second integral in (4.14), taking the expectation in (4.14) and passing to
the limit m — oo, we obtain

E[]n Z(t A Trlle)] > In Z(0).

Now, Fatou’s Lemma and Z(f A 7,, g,) < Rj yield the chain of estimates

InZ(0) < E[limsupan(t A Trl’Rl)} <pnInri+0—-p,)InR

—00
where p,, = P(limsup,_, ., In Z(t A 7, g,) = r1). Consequently,

In Ry —1In Z(0)

<
pr = InRy —Inr

The lemma now follows by taking the limit ; | 0. O

We will now show that 79[ X] = oo for the solution of (4.2) with initial condition
X (0) such that 7p[X] > O (in particular, this includes the case that X (0) belongs to
the interior of GV). Recall that 7y was defined as the first time at which one of the
events in Fig.2 with § = 0 occurs. We will show that neither of the cases A — F in
Fig.2 can occur in finite time. We will argue by induction over k to prove that none
of these events can happen on the first k levels fork = 1,2, ..., N.
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Fig. 4 Decoupling of the | femmmmmn >
gt' les X¥ )I()k y xk-1 PR et PRONEL
particles X;', Xj |, X; : 1 ‘ : :
I 1

| |

First, we focus on the cases A and B.

Lemma 4.7 An event of the form Xlk (1) = sz+1 (t) cannot occur in finite time without
one of the events

Xl - xElon =0, X2 -xo=0 (4.15)
occurring at the same time.

Proof 1f the statement of the lemma was not true, then the continuity of the paths of the
particles would allow us to find stopping times o, o’ similar to the ones introduced in
Sect. 4.1 and a real number ¥ > 0 such that o < ¢’ with probability one, the spacings
in (4.15) are at least « during the time interval [0, '] and the event Xf(t) = X{‘H (1)
occurs for the first time at time o’. Moreover, the interlacing condition and the induction
hypothesis imply together that [0, 0'] and « can be chosen such that the spacings

k k—1 k—1 k
Xi - Xi—l ’ Xi+1 - Xi+1

do not fall below « on [0, o] (otherwise at least one of the events X l{‘:ll =X f_l (1)

or X f_l H=X 11:11 (t) would have occurred at time o’ in contradiction to the induction
hypothesis). The described inequalities are shown in Fig. 4.

Now, making a Girsanov change of measure similar to the one in Sect. 4.1, we
can decouple the particles X lk , X f‘ L X l]f_l from the rest of the particle system, thus
reducing their dynamics on the time interval [o, '] to the two-level dynamics:

tAG! _ _
Xt Ao’y — Xkt A o) =/ (dvifik+ k<1 0);1s - (1 9):151 )
o XEs) = XF ) XEs) — xFs)
tho! ¢ 1—6)ds (I1-0)ds
xk ny— xk :/ (de ( - )
in@no’) =X (tno) - i1t XE_ () — XF(s) Xk, ()~ X 1(s)

rtAG’

Xl no) =Xt no) = / w1,

INO
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with Wik , Wikﬂ, Wikfl being standard Brownian motions under the new probability

measure. Next, we note that the process X f‘ - X lk hits zero if and only if the process
1 _ _

zZ= 5((;{{.‘ P xR 4 (xk, - xE 1)2) (4.16)

hits zero and in this case both events occur at the same time. Moreover, applying It6’s
formula (see e.g. [29, Section 3.3.A]) and simplifying the result we obtain

tAe’
Z(tno') = Z(t No) =/ ((1 +0)ds + (X = xH Wi - wh
Ao
ko wk—1y ok wk—13) _. o'
+ (X — X D)AWL, - W) = ((1+9)ds+dM)
INO

where M is a local martingale whose quadratic variation process satisfies

tno!

i+1

(M)(t/\U/)—(M)(t/\U)z/

tNO

(2 (X xb2 g xk, - xkTy?

—xf - xbxk, - xfD)ds 120

We can now define the (random) time change

!

SAO o’
s(t) = inf SEO:/ A+0)du=rty, 0515/ (14 6)du
SAO o

and rewrite the stochastic integral equation for Z as

!

Z(s(n) — Z(s(n)) = (g —t1) + M(s(12)) = M(s(11)), 0=<1t1=n S/ (1+6)du.

A standard application of the Optional Sampling Theorem (see e.g. the proof of [29,
Theorem 4.6, Chapter 3] for a similar argument) shows that the process M (s(¢)),t > 0
is a local martingale in its natural filtration. In addition,

22 (X5 s () — XK + 2 (XK (5(1) — XK (s(1)))2
<M>(s(r2>>—<M><s<n>>s/ ’ e SOy,
n

153 o’
< 2/ Z(s(t))dt, 0<t1 <n 5/ (1406)du.
o

sl

It follows that the process

2 = 280 ifr e [0, 7 (1+6)du]
267 A+ 0 du)) + (r— [T A +0)du) ifre (71 +6)du, oo)

@ Springer



452 V. Gorin, M. Shkolnikov

falls into the framework of Lemma 4.6. Consequently, the original process Z(¢),t > 0
does not reach zero on the time interval [o, o’] with probability one. Using Girsanov’s
Theorem again (now to go back to the original probability measure) we conclude that
X lk X lk does not hit zero on [o, o’] under the original probability measure, which
is the desired contradiction. O

Next, we study the events C — F in Fig.2. All of them can be dealt in exactly the
same manner (in particular, using a Lyapunov function of the same form) and we will
only show the following:

Lemma 4.8 The event
Xk = x5 = X520 (4.17)
cannot occur in finite time.

Proof To show the non-occurrence of the event in (4.17), we again argue by induc-
tion over k and by contradiction. Assuming that the event in (4.17) occurs in finite
time, we may invoke the induction hypothesis and Lemma 4.7 to find a random time
interval [0, 0'] with o, ¢’ being stopping times and a real number « > 0 such that

the event in (4.17) occurs for the first time at o', and either Xlk (o) = X{FH(U’) =
Xl/.‘fl(a’) = Xfffz(cr/) and the spacings Xll.‘ - X[I.‘:ll, Xffl - Xll.‘:lz, X’f.{*2 — Xl/.‘:f,
Xlk_3 — Xl].‘_z, Xf.:ll — Xl].‘_z, Xf;ll — X§‘+1 are bounded below by « on [0, 0'];
or Xl]?(o’) = Xl].‘_l(o’) = Xf.‘_z(a’) and the spacings X{‘ - Xf:ll, Xl].‘_1 — Xl].‘:lz,
Xf.‘*2 — Xl].‘_f, Xf.‘*3 - Xl’.‘*z, Xf;ll — Xl].‘*z, X,’.‘+1 — X{f*] are bounded below by « on
[0, 0’]. Figure 5 shows schematic illustrations of these two cases. In the first case, we
can make a Girsanov change of measure such that under the new measure the evolution

of the particles X lk , Xk Xl]f_l, Xlk -2 decouples from the rest of the particle system

i+1°
I I \‘ .\ ] I \‘ .\ I
1 s pmmmms=a | 1 At | | |
e e e e
| |' k k 1 | | lI k ‘\‘\ k |
I o 1) 1 I " | e I
! X X7:+1: ; ! X S Xin ;
1
! ) >R ! “ Lo | >k !
1 . |ﬁ'—>‘ 1 \ [ |
[y | ‘ . s ‘
‘kl K ’kl 1 ‘kl K ‘1»1““ k—1
_ . 1 _ - 18 -
X Xy X XiTy XN X
. | [ “ I I \‘
. ! ! . . I 1 N
\‘ : 1 \‘ ‘\ : I Y
® O ® @
k—2 S WE—2 k—2 ¢ He—2,
X sk X X sk XY
| | :~~~.-: | | “:~_—'
o | o : L 2
X k=3 | k-3 X3 : xk-3
N TSP sk 0 >
1 I I

Fig.5 Decoupling of the particles X l]f, Xk

il Xllf_l, Xl]f_z (left panel) and the particles Xf?, Xllf_l, X;‘_Z
(right panel)
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on the time interval [0, o']. Similarly, in the second case, we can apply a Girsanov
change of measure such that under the new measure the dynamics of the particles X f‘,
X Ik 1 x l].‘fz decouples from the dynamics of the rest of the particle configuration.

We only treat the first of the two cases in detail (the second case can be dealt
with by proceeding as below with the same definitions for R, S, and Z redefined to
%(R2 + 82 + 2R S)). In the first case, the decoupled particles satisfy under the new
measure:

Ao’
. (1—-06)ds (1—-6)ds
Xk no'y = X5t A o) =/ (dWi"+ . — - — — )
tAC Xi(s) — X,-_H(S) Xi(s) = X;7 ()
Ao’
. (1—0)ds (1—0)ds
Xit Aoy = X (o) = / (dWi]iH T 37 ko | wk =1 )
tAG Xiy () — X (s) Xip () — X;7 ()
ina’ 1—6)ds
Xlano)y =Xt no) = / R/ Gkl L N, |
i ’ Jiro ( : X s) - x{ﬂ@)

SN
X2 no') = X2t no) = / dWwk=2

JINO

where Wik, Wik+1’ Wik_l, Wl-k_z are independent standard Brownian motions under
the new measure. Next, we set R := Xf.‘fl — X{‘, S = Xfffz — Xffl, U= sz+1 —
Xll.{_l, B = Wik_l — Wik, By = Wik_z — Wik_l, B3 = Wil;l — Wl.k_l and define
Z .= %(R2 + 824+ U?+2 RU). Applying Ito’s formula (see e.g. [29, Section 3.3.A])
and simplifying, we obtain

tAG’

| i (L RO
Z(t/\a)—Z(t/\o)—/Mo (4+0+(9 1)(R(S)+U(s)))ds

tAG’

(R + U)d(B; + B3) + SdB> =: / (D(s) ds + dM)

tNO

where M is a local martingale whose quadratic variation process satisfies

’

tNO
(M)(tAa’)—(M)(t/\a)z/ 2(R*+ 8>+ U*+2RU)ds
INO
[N
=/ 47ds, t>0.
tNO

Next, we introduce the time change

NO

tAo’! o’
s(t):inf[szO:/ D(u)du:t], 0§t§/ D(u)du
t o

and rewrite the latter stochastic integral equation for Z as
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o_/

Z(s(1) — Z(s(11)) = (g —t1) + M(s(12)) — M(s(11)), 0=t =1 < / D(u) du.

o

At this point, a routine application of the Optional Sampling Theorem (see e.g. the
proof of [29, Theorem 4.6, Chapter 3] for an argument of this type) shows that M (s(¢)),
t > 0 is a local martingale in its natural filtration. In addition,

247 (s(1)) & o
(M>(S(t2))—(M)(S(t1))=/ e drs2/ Z(s(t)) dr, OstlstzS/ D) du.
Hence, the process

P k200D if +ef0, [ D) du]
Z(s( 7 Dwdu)) + (r — [7 Dw)du) if 1€ ([ D(u)du,oco)

falls into the setting of Lemma 4.6. The result of that lemma implies that the original
process Z(t), t > 0 does not hit zero on the time interval [o, o’] with probability one.
Changing the measure back to the original probability measure by a suitable application
of Girsanov’s Theorem we conclude that the same is true under the original probability
measure. This is the desired contradiction. O

Putting together Lemmas 4.7 and 4.8 we deduce that o[ X] = oo for all 6 > 1.

Finally, for & > 2 and any T > 0, we have shown that the law of our process
up to time 75[X] A T is absolutely continuous with respect to the law of a process
comprised of a number of Brownian motions and Bessel processes of dimension 6.
The definition of the latter implies that two of its components can collide only if the
corresponding Bessel process hits zero. However, it is well-known that the Bessel
process of dimension & > 2 does not reach zero with probability one (see e.g. [42,
Chapter X1, Section 1]). It follows that Ts[ X ] > lim7 o0 Ts[X]A T = t5[X]. Passing
to the limit § | 0, we conclude that o[ X] = oo.

5 Convergence to multilevel Dyson Brownian Motion

In this section we study the diffusive scaling limit of the multilevel process X L’i"l.’;lct i of
Definition 2.27. We start by formulating our main results.

We fix 0 > 0, let ¢ > 0 be a small parameter and define the %ﬂ)—dimensional
stochastic process Y"* = ((Ys’””)f? :1<i<k<N)by

. t t
@fm = e (XN (57) —2) 1200 1=izk=N

where (X:;’f;lji)f ,1 <i <k < N are the coordinate processes of X:Z’jlc” Here, in
contrast to Definition 2.27, we allow X Zli’j,lfi (or, equivalently, ¥**) to start from an

arbitrary initial condition, in particular, one that depends on ¢. In addition, we use the
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notation DYWV+D/2 — D ([0, 0o), RNN+D/2) for the space of right-continuous paths
with left limits taking values in RYW+1/2 'endowed with the Skorokhod topology.

Theorem 5.1 Let 6 > 0 and suppose that the family of initial conditions Y""(0),
e € (0, 1) istight on RNWNHD/2 Then the family Y™, & € (0, 1) is tight on DNWV+D/2,

We defer the proof of Theorem 5.1 to Sect. 5.2.

Next, we let Y be an arbitrary limit point as ¢ | O of the tight family Y/,
e € (0,1). For & > 2, we can uniquely identify the limit point with the solution of
(4.1), thus, obtaining the diffusive scaling limit. For § e [%, 2), we give a partial result
towards such an identification.

Theorem 5.2 Let 0 > 2 (that is, B = 20 > 4) and suppose that the initial conditions
Y (0), e € (0, 1) converge as ¢ | 0 in distribution to a limit Y™ (0) which takes

values in the interior of the Gelfand-Tsetlin cone GV with probability one. Then the
SJamily Y™, ¢ € (0, 1) converges as ¢ |, 0 in distribution in DNWAD/2 16 the unique
solution of the system of SDEs

k—1

1-6 1-6
dymf = - dr
’ E (o — (rm, ; (ymof — ymey!

+dWF, 1<i<k<N

started from Y™ (0) and where Wl.k, 1 <i <k < N are independent standard
Brownian motions.

We give the proof of Theorem 5.2 in Sect. 5.3. We expect Theorem 5.2 to be valid
for all @ > 1, but we are not able to prove this generalization.

Theorem 5.3 Suppose that the initial conditions Y (0), ¢ € (0, 1) convergease |, 0
in distribution to a limit Y™ (0) which takes values in the interior of the Gelfand—

Tsetlin cone GN with probability one. In addition, suppose that the distribution of
Y™ (0) is 0-Gibbs in the sense of Definition 2.15.

(a) If0 > % (that is, B = 20 > 1), then the restriction of Y™ to level N, that is the
process (Y™)N .., (Ym”)%), is a (260)-Dyson Brownian motion:

0

d(y™HN () =
( =2 YN @) — (ymoN (1)

m#i

dt +dW;, 1<i <N

with Wik, 1 <i <k < N being independent standard Brownian motions.
(b) Forany 6 > 0 and any fixed t > 0, the distribution of Y"™"(t) is 6-Gibbs.

We expect the first part of Theorem 5.3 to be valid for all & > 0, but we are currently
not able to prove this.

Proof of Theorem 5.3 The theorem follows from a combination of Propositions 2.29,
2.16 and Theorem 3.2. O
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Corollary 5.4 Take any & > 0 and suppose that Y™ (0) = 0 € RNWNVHD/2 e
(0, 1). Then, for any t > 0, the distribution of Y™ (t) is given by the Hermite § = 20
corners process of variance t (see Definition 1.1).

Remark 5.5 Since for any ¢ > 0, the Hermite 8 = 26 corners process of variance ¢
is supported by the interior of the Gelfand—Tsetlin cone GV, it follows that Theorem
5.2 (for & > 2) can be applied in this case as well. Consequently, for 6 > 2, the
process Y started from the zero initial condition is a diffusion that combines Dyson
Brownian motions and corners processes into a single picture as desired.

Proof of Corollary 5.4 The corollary is a consequence of Proposition 2.29 and Corol-
lary 2.17. O

The rest of this section is devoted to the proofs of Theorems 5.1 and 5.2. Our proof
strategy is similar to that in the proof of Theorem 3.2: In Sect. 5.1 we analyze the
asymptotic behavior of the jump rates of the processes Y**, & € (0, 1), in Sect. 5.2 we
use this asymptotics to prove that the family Y/**, ¢ € (0, 1) is tight, and in Sect. 5.3
we deduce the SDE (4.1) for subsequential limits as & |, 0 of this family when 6 > 2.
We omit the details in the parts that are parallel to the arguments of Sect. 3.

5.1 Step 1: Rates

We start by noting that, for each ¢ € (0, 1), Y/ is a continuous time Markov process

1/2

with state space GV, a (constant) drift of —e™'/“ in each coordinate and jump rates

1
g (v, ¥, t)_ Cltg L B

where 7, ); are the vectors obtained from y, y’ by reordering the coordinates on each
level in decreasmg order, and intensities g are given by (2.23). Write y' ~, y for
vectors y,y € G GN such that y’ can be obtained from y by increasing one coordinate
(say, yl{‘) by £!/2, and, if necessary, by increasing other coordinates as well to preserve
the interlacing condition (in the sense of the push interaction as explained after (2.23)).
Clearly, ¢ (y, ', t) = O unless y' ~, y. As we will see, in fact, """ (y, y’, r) does
not depend onft.

Lemma 5.6 For any sequence of vectors y' =, y and any fixed k € {1,..., N},
i €{l,2,...,k} as above one has the following ¢ | 0 asymptotics:
1-8 <
.y = et e -3 ) 6

m;étyl_ym m=1

with a uniform O (1) remainder on compact subsets of the open Gelfand—Tsetlin cone

g".
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Proof We write 5)11‘ for y,’f+1_i and ()A)’)i.C for (y’)iH_l.. Using (2.23), Proposition 2.4
and arguing as in Lemma 3.4 we rewrite ¢/ (y, y', t) as

S =3he 140G -1+D Gf—FHe P +0G-1-1

i—1
i ¢
8 A A . A A .
E GF—=9He 12 —140G -1 GF=9He 12406 -1

57yk—1 5/Vk—=1y o—1/2
(@ = OD e 240 =m) +6) o gy e

X
snk—1 ank—1y .—1/2
l<m<n<k—1 (((y/)m - (y/)n )8 / + 9 (}’l - m) + 1)(()")/)£*1_(y/)ﬁ+|)871/2

51k snyk—1y o—1/2
(G = GO e 240 (—m) +1) (g e i

51k 5yk=1y =172
(((y/)m - (y/)n )8 / + 0 (l’l - m) + 9) ((9/)ﬁ—]_(ﬁ/)ﬁ+l)8—1/2

X

k—1 k—1y o—1/2
(O = he™ 0 —m + 1)

H (()’fn_l e 240 (n—m)+ 9)(y,’,"1—>,f§+1)sfl/2

1<m<n<k-—1

(Of =y e 2 46 (n — m) +0)

On =k pe1i

X .
k—1\ .—
((y;11(1 — Yn )8 172 0 (l’l - m) 1)(y5717yﬁ+1)8‘]/2

Using the fact that y and y’ differ only in one coordinate, we can simplify the latter
expression to

i—1 A A _ . N N _ X
L GE—he 20 —m 1) Gk =59 e 240G —m— 1)
Gh=3He 1 2—14+0G—m) Ok =3 12+0G—m)

m=1
5 ﬁ Gl 58 240G —1—m) ’ﬁ GF =5 e P rom—i)+1
Gu ' =35 V2 —140G—m) = GF =5 e 2+0m—i)+1

m=1

n=i

"1:[‘ Gp =9 e 246G —m) 1 "1:[‘ Gf =Sk e Pvom—i+D
Gk =30 2+0G—1—m) & Gf = Fpe 2 +0m—i+1)

m=1

n=i

o ﬁ Gk =312 —1460G-m+1)
Gk — 35612+ 6 (i —m)

m=1

G =3He P+ 0G0 —1-m)
X
GET— 5512 =146 (i —m)

y ’ﬁ Gk =9 e P rom—i)+1 GF =355 NHe 2P rom—i+1)
GE—3E e 1240m—i+1) GE =5k e 2 40m—i)+1

n=i
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Expanding the last expression into a Taylor series in terms of &!/2

i—1
6—1 1—6
~1 ~12
& + ¢ — — +A7 -
(,nzzll(yl‘n -3 —y{‘))
+(§( 1-6 , 0-1 ))+0(1)
&k ok Tk okl :
el NS /AR AR A

The lemma now readily follows. O

we get

5.2 Step 2: Tightness

We show next that the family ¥, ¢ € (0, 1) is tight on DNW+D/2 Ty this end,
we aim to apply the necessary and sufficient conditions for tightness of [19, Corollary
3.7.4] which amount to showing that, for any fixed ¢ > 0, the random variables Y (¢),
e € (0, 1) are tight on RNWV+D/2 34 that, for every A > Q0 and T > 0, there exists a
& > 0 such that

lim sup PP sup |(rmok@y — ks > A )<A, 1<i<k<N.
el0 0<s<t<T,t—s<$§

We start by explaining how to deal with (Y/**(¢))4 (the vector of positive parts of
components of Y/ (¢)) and

sup  ((VE@) — (Y")E(s), 1<i<k<N. (5.2)

0<s<t<T,t—s<$§

We argue by induction over k. For k = 1, it is sufficient to observe that (ng”){ is
a Poisson process with jump size ¢!/, jump rate ¢! and drift —s~!/? and, hence,
converges to a standard Brownian motion in the limit € | 0. Therefore, the necessary
and sufficient conditions of [19, Corollary 3.7.4] hold for (Y, 5”“‘)%.

We now fix some k > 2 and distinguish the cases 0 < 6 < 1 and 6 > 1. In the first
case, we consider first i = k. It is easy to see from the formulas for the jump rates in
the proof of Lemma 5.6 that for 0 < 6 < 1, whenever the spacing (YE’”“)’; — (Ye’””)ij
exceeds A /3, the jump rate to the right of (YS’”“)’; is bounded above by ¢ 1. For 6 = 1
the jump rate is equal to ¢ ~'. Hence, arguing as in Sect. 3.2, we conclude that for
0<06 <1, (Y;”“)ﬁ can be coupled with a Poisson process with jump size £!/2, jump
~1/2in such a way that, whenever (Ys’"“)é - (YS’"”)',E:} exceeds
A /3 and (Yg’””)f has a jump to the right, the Poisson process jumps to the right as
well. Therefore, the convergence of such Poisson processes to a standard Brownian
motion and the necessary and sufficient conditions of [19, Corollary 3.7.4] for them
imply the corresponding conditions for ((Y g””)],z(t))Jr and the quantity in (5.2) with
i =k.

rate ¢! and drift —e
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Fori € {1,2,..., k — 1}, the quantity ((Yg"“){.‘(z))+ can be bounded above by the

quantity ((Y™ )f.‘ -1 (1)) + and the latter satisfies the required condition by the induction
hypothesis. Moreover, the formula for the jump rates (5.1) reveals that, whenever
(Yé{"“)f? — (Yg”“‘)i.‘:l1 and (Y;?”‘)f,‘_1 — (Ys’"”)f‘ both exceed A /4, the jump rate to the
right of (ng“)f.‘ is bounded above by

» e 121 -6)

T T — i T oW el 44120 —0)/A+ 0.

(5.3)

Hence, (Y, bf"”)i.‘ can be coupled with a Poisson process with jump size £'/2, jump rate
given by the right-hand side of the latter inequality and drift —e~!/? in such a way
that, whenever (Ybf"“)i.‘ — (Y;””)f.‘:ll and (Yg’"”)f—l — (YE’””);‘ both exceed A /4 and
(Yg”“)f? has a jump to the right, the Poisson process jumps to the right as well. Thus,
the convergence of such Poisson processes to Brownian motion with drift4 (1 —6)/A
and the necessary and sufficient conditions of [19, Corollary 3.7.4] for them imply the
corresponding control on the quantities in (5.2).

In the case 8 > 1, we first consider i = 1. From the formulas for the jump rates in
the proof of Lemma 5.6 it is not hard to see that the jump rate to the right of the process
(Y, 8’””)11‘ is bounded above by £ ~!. Therefore, it can be coupled with a Poisson process
with jump size ¢!/2, jump rate ¢! and drift —~'/? in such a way that, whenever
(Y;"”)’; has a jump to the right, the Poisson process jumps to the right as well. Thus, as
in Sect. 3.2, the convergence of such Poisson processes to a Brownian motion and the
necessary and sufficient conditions of [19, Corollary 3.7.4] for them give the desired
control on ((Ya’”“)]f (t))+ and the quantity in (5.2) withi = 1.

Fori € {2,3, ..., k}, the formulas for the jump rates in the proof of Lemma 5.6
reveal that, whenever (Yg’””)f — (Y;’”’)f.‘__ll exceeds A /3, the jump rate to the right of

(Yg"”)f.‘ is bounded above by

—1/201_
e - . a Q)k_l +o()<e ' =372 (1-0)/A+0(). (54
(Y () = (Ym0 2y (1)

Hence, (7, 8’"“);‘ can be coupled with a Poisson process with jump size £!/2, jump rate
given by the right-hand side of the last inequality and drift —e~!/2, so that, whenever
(Y&f’”‘)f.C — (Yg’"“)i.‘:ll exceeds A /3 and (Y&f’”‘)f.C has a jump to the right, the Poisson
process jumps to the right as well. Therefore, as in Sect. 3.2, the convergence of such
Poisson processes to Brownian motion with drift —3 (1 — 8)/A and the necessary
and sufficient conditions of [19, Corollary 3.7.4] for them yield the corresponding
conditions for ((Y, g’"”)f.‘ (t))+ and the quantities in (5.2).

Finally, we note that the quantities (Y (¢))— (the vector of negative parts of com-
ponents of Y/*(t)) and

sup  —((X"k@) — (rmks), 1<i<k<N

0<s<t<T,t—s<§

@ Springer



460 V. Gorin, M. Shkolnikov

can be analyzed in a similar manner (however, now by moving from the leftmost to
the rightmost particle on every level for 0 < 8 < 1 and vice versa for 6 > 1). By
combining everything together and using [19, Corollary 3.7.4] we conclude that the
family Y™, e € (0, 1) is tight.

We also note that, since the maximal size of the jumps tends to zero as ¢ | 0, any
limit point of the family Y"*, ¢ € (0, 1) as ¢ | 0 must have continuous paths (see e.g.
[19, Theorem 3.10.2]).

5.3 Step 3: SDE for subsequential limits

Writing Y™ for an arbitrary limit point as ¢ |, 0 of the tight family Y"*, ¢ € (0, 1) as
before, our goal now is to prove that Y™* solves the SDE (4.1). We pick a sequence
of Y™ which converges to Y""* in law, and by virtue of the Skorokhod Embedding
Theorem (see e.g. [18, Theorem 3.5.1]) may assume that all processes involved are
defined on the same probability space and that the convergence holds in the almost sure
sense. In the rest of this section all the limits ¢ | O are taken along such a sequence.

Define F™* as the set of all infinitely differentiable functions on GV with support
in a compact subset of G N Further, set

F = {f € F™|f(x) =0 whenever dist(x, dGV) < 5},

where ag_N stands for the boundary of Q_N and dist(x, BQ_N) is the L®° distance to the
boundary, i.e.
dist(r, 3GV) = inf |/ —x/|.
l<i<j<N,

1<i’<j'<N,

@ N#G "

Clearly 7™ = [Js-o F5™.
In addition, for every test function f € F™*, define the process

. "1
M @) = fOm@) = fmo) - Y /Ozfy[kywm“(s»ds

l<i<k<N
- > [ (Zame
1<i<k<N 70 N (Ymu)i'((s)_(ymu)]y{n(s)
= 1—-0

S ke - (Ym“>’,‘n‘(s>)fyf(y () ds.

Our first aim is to show that each M/ is a martingale. To this end, we fix an f e F"
and consider the family of martingales
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ML @) = fOY" 1) — fFO0) + / > e s)) ds

1<i<k<N

/ > M), 3 (FO) - FOMs))ds, >0

/’\» Ymu(S)

where the notations are the same as in Sect. 5.1. Now, one can argue as in Sect. 3.3,

Step 3a to conclude that M/ is a martingale, as the & | 0 limit of the martingales M, Ef
which can be bounded uniformly on every compact time interval.
Next, for each § > 0 and K > 0, we define the stopping time

T,k = inf {1 > 01 dist(Y"™ (1), 3GN) <8 or |(Y"™)¥ ()| = K for some (k, i)}.

Now, note that for every function G GN — R of the form x > xk or X > xk xk, , there

is a function f € F™* which coincides with that function on
{x € GN : dist(x,9GN) > 8, |xk| < K for all (k, i)}.

Combining this observation, the Optional Sampling Theorem and the conclusion of
the preceeding paragraph we deduce that all processes of the two forms

MED (@) == ™5 AT k) — (Y™)E(0)
k—1

_/m” > 1-6 5> 1-6 ds
0 (Ymuyk(s) — (ymk (s) (ymk(s) — (ymklsy )

m#i m=1
MEDED gy = (YR e AT ) YR @ AT k)
—(Y’"“)f(O)(Y'"”)f//(O) — L=k’ =ity -t ATk
- /W (-0 e ki (1= 0)(Y™)¥ (s)
0 S mn(s) — (Y (s) (¥mk(s) — (rmeyt(s)

m=1

k=1

_/mm 3 (1 —0)(Y™)k(s) > (1 —0)(Y™)k(s)
0 m#i' (Ymu)ff/ (S) Y””‘)k/(s) el (Ymu){f//(s) _ (Ymu)l],(rifl (S)

are martingales. Now, the argument of [29, Chapter 5, Proposition 4.6] (only replacing
every occurrence of 7 by t ATs g there) yields that Y satisfies the system of stochastic
integral equations

Y™ AT k) — (Y™)(0)
k—1

_/I/\tak 1—6 _Z 1—6
0 (YmOEs) = (YL Gs) S i fs) — (g (s)

m#i m=1

+WEE AT k), 1 <i<k<N
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where Wl.k, 1 <i < k < N are independent standard Brownian motions, possibly
defined on an extension of the underlying probability space. At this stage, one can
repeat the argument at the end of Sect. 4.2 to show that limg 4 Ts.xk > Ts[Y"™] and
then combine Propositions 4.2 and 4.3 to end up with the SDE of Theorem 5.2 as
desired.

Remark 5.7 In Sect. 3.3 we have used Lemma 3.6 instead of [29, Chapter 5, Propo-
sition 4.6], but we could have used the latter as well. On the other hand, it is not
straightforward to generalize Lemma 3.6 to the setting of the current section, because
there is no obvious multilevel analogue for Proposition 2.25.
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