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Abstract We introduce multilevel versions of Dyson Brownian motions of arbitrary
parameter β > 0, generalizing the interlacing reflected Brownian motions of Warren
for β = 2. Such processes unify β corners processes and Dyson Brownian motions
in a single object. Our approach is based on the approximation by certain multilevel
discrete Markov chains of independent interest, which are defined by means of Jack
symmetric polynomials. In particular, this approach allows to show that the levels in
a multilevel Dyson Brownian motion are intertwined (at least for β ≥ 1) and to give
the corresponding link explicitly.
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1 Introduction

1.1 Preface

The Hermite general β > 0 ensemble of rank N is a probability distribution on the
set of N tuples of reals z1 < z2 < · · · < zN with density proportional to

∏

1≤i< j≤N

(z j − zi )
β

N∏

i=1

exp

(
− z2i

2

)
. (1.1)

When β = 2, that density describes the joint distribution of the eigenvalues of a ran-
domHermitian N×N matrixM , whose diagonal entries are i.i.d. real standard normal
random variables, while real and imaginary parts of its entries above the diagonal are
i.i.d. normal random variables of variance 1/2. The law of such a random matrix is
referred to as the Gaussian Unitary Ensemble (GUE) (see e.g. [3,20,32]) and it has
attracted much attention in the mathematical physics literature following the seminal
work of Wigner in the 50s. Similarly, the case of β = 1 describes the joint distribution
of eigenvalues of a real symmetric matrix sampled from the Gaussian Orthogonal
Ensemble (GOE) and the case β = 4 corresponds to the Gaussian Symplectic Ensem-
ble (GSE) (see e.g. [3,20,32] for the detailed definitions).

It is convenient to view the realizations of (1.1) as point processes on the real line
and there are two well-known ways of adding a second dimension to that picture. The
first one is to consider an N -dimensional diffusion known as Dyson Brownian motion
(see [32, Chapter 9], [3, Section 4.3] and the references therein) which is the unique
strong solution of the system of stochastic differential equations

dXi (t) = β

2

∑

j �=i

1

Xi (t) − X j (t)
dt + dWi (t), i = 1, 2, . . . , N (1.2)

with W1,W2, . . . ,WN being independent standard Brownian motions. If one solves
(1.2) with zero initial condition, then the distribution of the solution at time 1 is given
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Fig. 1 Interlacing particles
arising from eigenvalues of
corners of a 3 × 3 matrix. Row
number k in the picture
corresponds to eigenvalues of
the k × k corner

1

2

3

by (1.1). When β = 2 and one starts with zero initial condition, the diffusion (1.2) has
two probabilistic interpretations: it can be either viewed as a system of N independent
standard Brownian motions conditioned never to collide via a suitable Doob’s h-
transform; or it can be regarded as the evolution of the eigenvalues of a Hermitian
random matrix whose elements evolve as (independent) Brownian motions.

An alternative way of adding a second dimension to the ensemble in (1.1) involves
the so-called corner processes. For β = 2 take a N × N GUE matrix M and let
xN1 ≤ xN2 ≤ · · · ≤ xNN be its ordered eigenvalues.More generally for every 1 ≤ k ≤ N
let xk1 ≤ xk2 ≤ · · · ≤ xkk be the eigenvalues of the top-left k×k submatrix (“corner”) of
M . It is well-known that the eigenvalues interlace in the sense that xki ≤ xk−1

i ≤ xki+1
for i = 1, . . . , k − 1 (see Fig. 1 for a schematic illustration of the eigenvalues).

The joint distribution of xki , 1 ≤ i ≤ k ≤ N is known as the GUE-corners
process (some authors also use the name “GUE-minors process”) and its study was
initiated in [4] and [26]. The GUE-corners process is uniquely characterized by two
properties: its projection to the set of particles xN1 , xN2 , . . . , xNN is given by (1.1) with
β = 2 (normalized to a probability density), and the conditional distribution of xki ,
1 ≤ i ≤ k ≤ N − 1 given xN1 , xN2 , . . . , xNN is uniform on the polytope defined by the
interlacing conditions above, see [4,21]. Due to the combination of the gaussianity
and uniformity embedded into its definition, the GUE–corners process appears as a
universal scaling limit for a number of 2d models of statistical mechanics, see [22–
24,26,38].

Similarly, one can construct corners processes for β = 1 and β = 4, see e.g. [33].
Extrapolating the resulting formulas for the joint density of eigenvalues to general
values of β > 0 one arrives at the following definition.

Definition 1.1 The Hermite β corners process of variance t > 0 is the unique prob-
ability distribution on the set of reals xki , 1 ≤ i ≤ k ≤ N subject to the interlacing
conditions xki ≤ xk−1

i ≤ xki+1 whose density is proportional to

∏

i< j

(
xNj − xNi

) N∏

i=1

exp

(
− (xNi )2

2t

)
N−1∏

k=1

∏

1≤i< j≤k

(
xkj − xki

)2−β
k∏

a=1

k+1∏

b=1

∣∣∣xka − xk+1
b

∣∣∣
β/2−1

.

(1.3)

The fact that the projection of the Hermite β corners process of variance 1 onto level
k (that is, on the coordinates xk1 , x

k
2 , . . . , x

k
k ) is given by the corresponding Hermite

β ensemble of (1.1) can be deduced from the Dixon-Anderson integration formula
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416 V. Gorin, M. Shkolnikov

(see [2,17]), which was studied before in the context of Selberg integrals (see [44],
[20, Chapter 4]). One particular case of the Selberg integral is the evaluation of the
normalizing constant for the probability density of the Hermite β ensemble of (1.1).
We provide more details in this direction in Sect. 2.2.

The ultimate goal of the present article is to combineDyson Brownian motions and
corner processes in a single picture. In other words, we aim to introduce a relatively
simple diffusion on interlacing particle configurations whose projection on a fixed
level is given by Dyson Brownian motion of (1.2), while its fixed time distributions
are given by the Hermite β corners processes of Definition 1.1.

One would think that a natural way to do this (at least for β = 1, 2, 4) is to consider
an N×N matrix of suitableBrownianmotions and to project it onto the (interlacing) set
of eigenvalues of thematrix and its top-left k×k corners, thus generalizing the original
construction of Dyson. However, the resulting stochastic process ends up being quite
nasty even in the caseβ = 2. It is shown in [1] that already for N = 3 (and at least some
initial conditions) the projection is not aMarkov process.When one considers only two
adjacent levels (that is, the projection onto xN1 , xN2 , . . . , xNN ; xN−1

1 , xN−1
2 , . . . , xN−1

N−1 ),
then it can be proven (see [1]) that the projection isMarkovian, but the corresponding
SDE is very complicated.

An alternative elegant solution for the case β = 2 was given by Warren [46].
Consider the process (Y k

i : 1 ≤ i ≤ k ≤ N ) defined through the following inductive
procedure: Y 1

1 is a standard Brownian motion with zero initial condition; given Y 1
1 , the

processesY 2
1 andY

2
2 are constructed as independent standardBrownianmotions started

at zero and reflected on the trajectory of Y 1
1 in such a way that Y 2

1 (t) ≤ Y 1
1 (t) ≤ Y 2

2 (t)
holds for all t ≥ 0. More generally, having constructed the processes on the first k
levels (that is, Ym

i , 1 ≤ i ≤ m ≤ k) one defines Y k+1
i as an independent standard

Brownian motion started at 0 and reflected on the trajectories of Y k
i−1 and Y

k
i in such a

way that Y k−1
i−1 (t) ≤ Y k

i (t) ≤ Y k−1
i (t) remains true for all t ≥ 0 (see [46] and also [24]

for more details). Warren shows that the projection of the dynamics on a level k (that
is, on Y k

1 ,Y k
2 , . . . ,Y k

k ) is given by a k-dimensional Dyson Brownian Motion of (1.2)
with β = 2, and that the fixed time distributions of the process (Y k

i : 1 ≤ i ≤ k ≤ N )

are given by the Hermite β corners processes of Definition 1.1 with β = 2.
Our aim is to construct a generalization of the Warren process for general values

of β. In other words, we want to answer the question “What is the general β analogue
of the reflected interlacing Brownian Motions of [46]?”.

1.2 Our results

Our approach to the construction of the desired general β multilevel stochastic process
is based on discrete space approximation. In [24] we proved that the reflected interlac-
ing Brownian motions of [46] can be obtained as a diffusive scaling limit for a class of
stochastic dynamics on discrete interlacing particle configurations. The latter dynam-
ics are constructed from independent random walks by imposing the local block/push
interactions between particles to preserve the interlacing conditions. The special cases
of such processes arise naturally in the study of two-dimensional statistical mechanics
systems such as random stepped surfaces and various types of tilings (cf. [6,9,10,34]).
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Multilevel Dyson Brownian motions via Jack polynomials 417

In Sect. 2 we introduce a deformation Xmulti
disc (t) of these processes depending on a

positive parameter θ (which is omitted from thenotation, andwith θ = 1corresponding
to the previously known case). The resulting discrete space dynamics is an intriguing
interacting particle system with global interactions whose state space is given by
interlacing particle configurations with integer coordinates. Computer simulations of
this dynamics for θ = 1/2 and θ = 2 can be found at [25].

We further study the diffusive limit of Xmulti
disc (s)under the rescalingof time s = ε−1t

and ε−1/2 scaling of space as ε ↓ 0. Our first result is that for any fixed θ > 0, the
rescaled processes are tight as ε ↓ 0, see Theorem 5.1 for the exact statement. The
continuous time, continuous space processes Ymu(t), defined as subsequential limits
ε ↓ 0 of the family Xmulti

disc (s), are our main heros and we prove a variety of results
about them for different values of θ .

(1) For any θ ≥ 2 we show in Theorem 5.2 that Ymu(t) satisfies the system of SDEs
(1.4) below.

(2) For any θ ≥ 1/2 and any 1 ≤ k ≤ N we show in Theorem 5.3 that if Ymu(t)
is started from a θ–Gibbs initial condition (zero initial condition is a particu-
lar case), then the k–dimensional restriction of the N (N − 1)/2–dimensional
process Ymu(t) to the level k is a 2θ–Dyson Brownian motion, that is, the vector
(Ymu(t)k1,Y

mu(t)k2, . . . ,Y
mu(t)kk) solves (1.2) with β = 2θ and suitable indepen-

dent standard Brownian motions W1(t),W2(t), . . . ,Wk(t).
(3) For any θ > 0 we show that if Ymu(t) is started from zero initial condition, then

its distribution at time t is the Hermite 2θ corners process of variance t , that is, the
corresponding probability density is proportional to (1.3) with β = 2θ . In fact,
we prove a more general statement, see Theorem 5.3 and Corollary 5.4.

(4) For θ = 1 the results of [24] yield that Ymu(t) is the collection of reflected
interlacing Brownian motions of [46].

The above results are complemented by the following uniqueness theorem for the
system of SDEs (1.4). In particular, it implies that for θ ≥ 2 all the subsequential
limits Ymu(t) of Xmulti

disc (s) as ε ↓ 0 are the same.

Theorem 1.2 (Theorem 4.1) For any N ∈ N and θ > 1 the system of SDEs

dY k
i (t) =

(∑

m �=i

1 − θ

Yk
i (t) − Yk

m(t)
−

k−1∑

m=1

1 − θ

Yk
i (t) − Yk−1

m (t)

)
dt + dWk

i (t), 1 ≤ i ≤ k ≤ N ,

(1.4)
where Wk

i , 1 ≤ i ≤ k ≤ N are independent standard Brownian motions, possesses a
unique weak solution taking values in the cone

GN =
{
y = (yki )1≤i≤k≤N ∈ R

N (N+1)/2 : yk−1
i−1 ≤ yki ≤ yk−1

i

}
(1.5)

for any initial condition Y (0) in the interior GN of GN .

It would be interesting to extend all the above results to general θ > 0. We believe
(but we do not have a proof) that the identification of Ymu(t) with a solution of (1.4)
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418 V. Gorin, M. Shkolnikov

is valid for all θ > 1 and that the identification of the projection of Ymu(t) onto
the N–th level with a β = 2θ–Dyson Brownian motion is valid for any θ > 0. On
the other hand, Ymu(t) cannot be a solution to (1.4) for θ ≤ 1. Indeed, we know
that when θ = 1 the process Ymu(t) is a collection of reflected interlacing Brownian
motions which hints that one should introduce additional local time terms in (1.4).
In addition, the interpretation of the solution to (1.4) as a generalization of the one-
dimensional Bessel process to a process in the Gelfand–Tseitlin cone suggests that the
corresponding process for θ < 1 is no longer a semimartingale and should be defined
and studied along the lines of [42, Chapter XI, Exercise (1.26)].

1.3 Our methods

Our approach to the construction and study of the discrete approximating process
Xmulti
disc (s) is related to Jack symmetric polynomials. Recall that Jack polynomials

Jλ(x1, x2, . . . , xN ; θ), indexed by Young diagrams λ and a positive parameter θ , are
eigenfunctions of the Sekiguchi differential operators ([43], [31, Chapter VI, Section
10], [20, Chapter 12])

D(u; θ) = 1∏
i< j (xi − x j )

det

[
xN− j
i

(
xi

∂

∂xi
+ (N − j)θ + u

)]

i, j=1,2,...,N
.

One can also define Jλ(x1, x2, . . . , xN ; θ) as limits of Macdonald polynomials
Pλ(·; q, t) as q, t → 1 in such a way that t = qθ (see [31]). For the special
values θ = 1/2, 1, 2 these polynomials are spherical functions of Gelfand pairs
O(N ) ⊂ U (N ), U (N ) ⊂ U (N ) × U (N ), U (2N ) ⊂ Sp(N ), respectively, and are
also known asZonal polynomials (see e.g. [31,Chapter 7] and the references therein). It
is known that spherical functions of compact type (corresponding to the aboveGelfand
pairs) degenerate to the spherical functions of Euclidian type, which in our case are
related to real symmetric, complex Hermitian and quaternionic Hermitian matrices,
respectively (see e.g. [35, Section 4] and the references therein). In particular, in the
case θ = 1 this is a manifestation of the fact that the tangent space to the unitary group
U (N ) at identity can be identified with the set of Hermitian matrices. Due to all these
facts it comes at no surprise that Hermite β ensembles can be obtained as limits of
discrete probabilistic structures related to Jack polynomials with parameter θ = β/2.

On the discrete level our construction of the multilevel stochastic dynamics is
based on a procedure introduced by Diaconis and Fill [16], which has recently been
used extensively in the study of Markov chains on interlacing particle configurations
(see e.g. [6,7,9–11]). The idea is to use commuting Markov operators and conditional
independence to construct amultilevelMarkov chainwith given single levelmarginals.
In our case these operators can be written in terms of Jack polynomials. In the limit
the commutation relation we use turns into the following statement, which might be
of independent interest.

Let PN (t;β) denote the Markov transition operators of the N -dimensional Dyson
Brownian Motion of (1.2) and let LN

N−1(β) denote the Markov transition operator

corresponding to conditioning the (N − 1)-st level (that is, xN−1
1 , xN−1

2 , . . . , xN−1
N−1 )

on the N -th level (that is, xN1 , xN2 , . . . , xNN ) in the Hermite β corners process.
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Multilevel Dyson Brownian motions via Jack polynomials 419

Proposition 1.3 (Corollary of Theorem 5.3) For any β ≥ 1 the links LN
N−1(β) given

by the stochastic transition kernels

�(Nβ/2)

�(β/2)N
∏

1≤i<m≤N−1

(
xN−1
m − xN−1

i

) N−1∏

i=1

N∏

j=1

∣∣∣xNj − xN−1
i

∣∣∣
β/2−1 ∏

1≤ j<n≤N

(
xNn − xNj

)1−β

(1.6)

intertwine the semigroups PN (t;β) and PN−1(t;β) in the sense that

LN
N−1(β)PN (t;β) = PN−1(t;β)LN

N−1(β), t ≥ 0. (1.7)

The latter phenomenon can be subsumed into a general theory of intertwinings for
diffusions, which for example also includes the findings in [45] and [39].

Due to the presence of singular drift terms neither existence, nor uniqueness of the
solution of (1.4) is straightforward. When dealing with systems of SDEs with singular
drift terms one typically shows the existence and uniqueness of strong solutions by
truncating the singularity first (thus, obtaining a well-behaved system of SDEs) and
by proving afterwards that the solution cannot reach the singularity in finite time using
suitable Lyapunov functions, see e.g. [3, proof of Proposition 4.3.5]. However, for 1 <

θ < 2 the solutions of (1.4) do reach some of the singularities. A similar phenomenon
occurs in the case of the β–Dyson Brownian motion (1.2) with 0 < β < 1, for which
the existence and uniqueness theorem was established in [14] using the theory of
multivalued SDEs; however, in the multilevel setting we lack a certain monotonicity
property which plays a crucial role in [14]. In addition, due to the intrinsic asymmetry
built into the drift terms the solution of (1.4) seems to be beyond the scope of the
processes that can be constructed usingDirichlet forms (see e.g. [40] for Dirichlet form
constructions of symmetric diffusions with a singular drift at the boundary of their
domain and for the limitations of that method). Instead, by localizing in time, using
appropriate Lyapunov functions, and applying the Girsanov Theorem, we are able to
reduce (1.4) to a number of non-interacting Bessel processes, whose existence and
uniqueness is well-known. This approach has an additional advantage over Dirichlet
form type constructions, since it allows to establish convergence to the solution of (1.4)
via martingale problem techniques, which is how our proof of Theorem 5.2 goes.

Note also that for θ = 1 (β = 2) the interactions in the definition of Xmulti
disc (s)

become local. We have studied the convergence of such dynamics to the process of
Warren in [24], with the proof being based on the continuity of a suitable Skorokhod
reflection map. For general values of θ > 0 neither the discrete dynamics, nor the
continuous dynamics can be obtained as the image of an explicitly known process
under the Skorokhod reflection map of [24].

1.4 Further developments and open problems

It would be interesting to study the asymptotic behavior of both the discrete and the
continuous dynamics as the number of levels N goes to infinity. There are at least two
groups of questions here.
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The global fluctuations of Dyson Brownian motions as N → ∞ are known to
be Gaussian (see [3, Section 4.3]); moreover, the limiting covariance structure can
be described by the Gaussian Free Field (see [5,12]). In addition, the asymptotic
fluctuations of the Hermite β corners processes of Definition 1.1 are also Gaussian
and can be described via the Gaussian Free Field (cf. [12]). This raises the question
of whether the 3-dimensional global fluctuations of the solution to (1.4) are also
asymptotically (as N → ∞) Gaussian and how the limiting covariance structure
might look like. A partial result in this direction was obtained for β = 2 in [9].

The edge fluctuations (that is, the fluctuations of the rightmost particle as N → ∞)
in the Hermite β ensemble given by (1.1) can be described via the β-Tracy–Widom
distribution (see [41]).Moreover, in the present article we link the Hermite β ensemble
to a certain discrete interacting particle system. This suggests that one might find the
β-Tracy–Widom distribution in the limit of the edge fluctuations of that interacting
particle system or its simplified versions.

2 Discrete space dynamics via Jack polynomials

2.1 Preliminaries on Jack polynomials

In this section we collect certain facts about Jack symmetric polynomials. A reader
familiar with these polynomials can proceed to Sect. 2.2. Our notations generally
follow the ones in [31].

Inwhat follows�N is the algebra of symmetric polynomials in N variables. In addi-
tion, we let � be the algebra of symmetric polynomials in countably many variables,
that is, of symmetric functions. An element of � is a formal symmetric power series
of bounded degree in the variables x1, x2, . . . . One way to view � is as an algebra of
polynomials in the Newton power sums pk = ∑

i (xi )
k . There exists a unique canon-

ical projection πN : � → �N , which sets all variables except for x1, x2, . . . , xN to
zero (see [31, Chapter 1, Section 2] for more details).

A partition of size n, or aYoung diagramwith n boxes, is a sequence of non-negative
integers λ1 ≥ λ2 ≥ · · · ≥ 0 such that

∑
i λi = n. |λ| stands for the number of boxes

in λ and 
(λ) is the number of non-empty rows in λ (that is, the number of non-zero
sequence elements λi in λ). LetY denote the set of all Young diagrams, andYN the set
of all Young diagrams λ with at most N rows (that is, such that λN+1 = 0). Typically,
we will use the symbols λ, μ for Young diagrams. We adopt the convention that the
empty Young diagram ∅ with |∅| = 0 also belongs toY andYN . For a box � = (i, j)
of a Young diagram λ (that is, a pair (i, j) such that λi ≥ j), a(i, j; λ) and l(i, j; λ)

are its arm and leg lengths:

a(i, j; λ) = λi − j, l(i, j; λ) = λ′
j − i,

where λ′
j is the row length in the transposed diagram λ′ defined by

λ′
j = |{i : λi ≥ j}|.
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Multilevel Dyson Brownian motions via Jack polynomials 421

Further, a′(i, j), l ′(i, j) stand for the co-arm and the co-leg lengths, which do not
depend on λ

a′(i, j) = j − 1, l ′(i, j) = i − 1.

When it is clear from the context which Young diagram is used, we omit it from the
notation and write simply a(i, j) (or a(�)) and l(i, j) (or l(�)).

We write Jλ( ·; θ) for Jack polynomials, which are indexed by Young diagrams λ

and positive reals θ . Many facts about these polynomials can be found in [31, Chapter
VI, Section 10]. Note however that in that book Macdonald uses the parameter α

given by our θ−1. We use θ , following [27]. Jλ can be viewed either as an element
of the algebra � of symmetric functions in countably many variables x1, x2, . . ., or
(specializing all but finitely many variables to zeros) as a symmetric polynomial in
x1, x2, . . . , xN from the algebra �N . In both interpretations the leading term of Jλ is

given by xλ1
1 xλ2

2 · · · xλ
(λ)


(λ) . When N is finite, the polynomials Jλ(x1, . . . , xN ; θ) are
known to be the eigenfunctions of the Sekiguchi differential operator:

1∏
i< j (xi − x j )

det

[
xN− j
i

(
xi

∂

∂xi
+ (N − j)θ + u

)]

i, j=1,2,...,N
Jλ(x1, . . . , xN ; θ)

=
( N∏

i=1

(
λi + (N − i)θ + u

))
Jλ(x1, . . . , xN ; θ). (2.1)

The eigenrelation (2.1) can be taken as a definition for the Jack polynomials.We also
need dual polynomials J̃λ which differ from Jλ by an explicit multiplicative constant:

J̃λ = Jλ ·
∏

�∈λ

a(�) + θ l(�) + θ

a(�) + θ l(�) + 1
. (2.2)

Next, we recall the definition of skew Jack polynomials Jλ/μ. Take two infinite
sets of variables x and y, and consider a Jack polynomial Jλ(x, y; θ). The latter is, in
particular, a symmetric polynomial in the x variables. The coefficients Jλ/μ(y; θ) in its
decomposition in the linear basis of Jack polynomials in the x variables are symmetric
polynomials in the y variables and are referred to as skew Jack polynomials:

Jλ(x, y; θ) =
∑

μ

Jμ(x; θ) Jλ/μ(y; θ). (2.3)

Similarly, one writes

J̃λ(x, y; θ) =
∑

μ

J̃μ(x; θ) J̃λ/μ(y; θ).
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It is known (see e.g. [31, Chapter VI, Section 10]) that Jλ/μ(y; θ) = J̃λ/μ(y; θ) = 0
unlessμ ⊂ λ, which means that λi ≥ μi for i = 1, 2, . . . . Also Jλ/∅(y; θ) = Jλ(y; θ)

and J̃λ/∅(y; θ) = J̃λ(y; θ).
Throughout the article the parameter θ remains fixed and, thus, we usually omit it,

writing simply Jλ(x), J̃λ(x), Jλ/μ(x), J̃λ/μ(x).
A specialization ρ is an algebra homomorphism from� to the set of complex num-

bers.A specialization is called Jack-positive if its values on all (skew) Jack polynomials
with a fixed parameter θ > 0 are real and non-negative. The following statement gives
a classification of all Jack-positive specializations.

Proposition 2.1 ([27]) For any fixed θ > 0, Jack-positive specializations can be
parameterized by triplets (α, β, γ ), where α, β are sequences of real numbers with

α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0,
∞∑

i=1

(αi + βi ) < ∞

and γ is a non-negative real number. The specialization corresponding to a triplet
(α, β, γ ) is given by its values on the Newton power sums pk, k ≥ 1:

p1 �→ p1(α, β, γ ) = γ +
∞∑

i=1

(αi + βi ),

pk �→ pk(α, β, γ ) =
∞∑

i=1

αk
i + (−θ)k−1

∞∑

i=1

βk
i , k ≥ 2.

The specialization with all parameters taken to be zero is called the empty special-
ization. This specialization maps a polynomial to its constant term (that is, the degree
zero summand).

We prepare the following explicit formulas for Jack-positive specializations for
future use.

Proposition 2.2 ([31, ChapterVI, (10.20)]) Consider the Jack-positive specialization
aN with α1 = α2 = · · · = αN = a and all other parameters set to zero. We have

Jλ(a
N ) =

⎧
⎨

⎩
a|λ| ∏

�∈λ

N θ + a′(�) − θ l ′(�)

a(�) + θ l(�) + θ
, if 
(λ) ≤ N ,

0, otherwise.

Taking the limit N → ∞ of specializations
( s
N

)N of Proposition 2.2 we obtain the
following.

Proposition 2.3 Consider the Jack-positive specialization rs with γ = s and all other
parameters set to zero. We have

Jλ(rs) = s|λ| θ |λ| ∏

�∈λ

1

a(�) + θ l(�) + θ
.
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Certain specializations of skew Jack polynomials also admit explicit formulas. We
say that two Young diagrams λ and μ interlace and write μ ≺ λ if

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · .

Proposition 2.4 For any complex number a �= 0, the specialization value Jλ/μ(a1)
vanishes unless μ ≺ λ. In the latter case,

Jλ/μ(a1) = a|λ|−|μ| ∏

1≤i≤ j≤k−1

(μi − μ j + θ ( j − i) + θ)μ j−λ j+1

(μi − μ j + θ ( j − i) + 1)μ j−λ j+1

· (λi − μ j + θ ( j − i) + 1)μ j−λ j+1

(λi − μ j + θ ( j − i) + θ)μ j−λ j+1

, (2.4)

where k is any integer satisfying 
(λ) ≤ k and we have used the Pochhammer symbol
notation

(b)n = b (b + 1) · · · (b + n − 1).

When μ differs from λ by one box λ = μ� (i, j) the formula can be simplified to read
in terms of J̃λ/μ

J̃μ/λ(a
1) = a θ

i−1∏

l=1

a(l, j;μ) + θ (i − l + 1)

a(l, j;μ) + θ (i − l)
· a(l, j;μ) + 1 + θ (i − l − 1)

a(l, j;μ) + 1 + θ (i − l)
. (2.5)

Note that the arm lengths in the latter formula are computed with respect to the
(smaller) diagram μ.

Proof The evaluation of (2.4) is known as the branching rule for Jack polynomials and
is also a limit of a similar rule forMacdonald polynomials, see e.g. [31, (7.14’), Section
VII, Chapter VI] or [36, (2.3)]. The formula (2.5) is obtained from (2.4) using (2.2).
However, this computation is quite involved and we also provide an alternative way:
formulas [31, (7.13), (7.14), Chapter VI] relate the skew Macdonald polynomials to
certain functions ϕλ/μ. Further, formulas [31, (6.20),(6.24), Chapter VI] give explicit
expressions for ϕλ/μ, and [31, Section 10, Chapter VI] explains that (skew) Jack
polynomials are obtained from (skew) Macdonald polynomials parametrized by pairs
(q, t) by the limit transition q → 1, t = qθ . This limit in the expression for ϕλ/μ of
[31, (6.24), Chapter VI] gives (2.5). ��

We also need the following two summation formulas for Jack polynomials.

Proposition 2.5 Take two specializationsρ1,ρ2 such that the series
∑∞

k=1
pk (ρ1) pk (ρ2)

k
is absolutely convergent, and define

Hθ (ρ1; ρ2) = exp

( ∞∑

k=1

θ

k
pk(ρ1) pk(ρ2)

)
.
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Then ∑

λ∈Y
Jλ(ρ1) J̃λ(ρ2) = Hθ (ρ1; ρ2), (2.6)

and more generally for any ν, κ ∈ Y

∑

λ∈Y
Jλ/ν(ρ1) J̃λ/κ(ρ2) = Hθ (ρ1; ρ2)

∑

μ∈Y
Jκ/μ(ρ1) J̃ν/μ(ρ2). (2.7)

Proof (2.6) is the specialized version of a Cauchy-type identity for Jack polynomials,
see e.g. [31, (10.4), Section 10, Chapter VI]. The latter is also a (q, t) → (1, 1) limit of
a similar identity for Macdonald polynomials [31, (4.13), Section 4, Chapter VI], as is
explained in [31, Section 10, Chapter VI]. Similarly, (2.7) is the specialized version of
the limit of a skew-Cauchy identity for Macdonald polynomials, see e.g. [31, Exercise
6, Section 7, Chapter VI]. ��

2.2 Probability measures related to Jack polynomials

We start with the definition of Jack probability measures which is based on (2.6).

Definition 2.6 Given two Jack-positive specializations ρ1 and ρ2 such that the series∑∞
k=1

pk (ρ1) pk (ρ2)
k is absolutely convergent, the Jack probability measure Jρ1;ρ2 on Y

is defined through

Jρ1;ρ2(λ) = Jλ(ρ1) J̃λ(ρ2)

Hθ (ρ1; ρ2)
, (2.8)

with the normalization constant being given by

Hθ (ρ1; ρ2) = exp
( ∞∑

k=1

θ

k
pk(ρ1) pk(ρ2)

)
.

Remark 2.7 The constructionof probabilitymeasures via specializations of symmetric
polynomials was originally suggested by Okounkov in the context of Schur measures
[37]. Recently, similar constructions for more general polynomials have led to many
interesting results starting from the paper [7] by Borodin and Corwin. We refer to
[8, Introduction] for the chart of probabilistic objects which are linked to various
degenerations of Macdonald polynomials.

The following statement is a corollary of Propositions 2.2, 2.3 and formula (2.2).

Proposition 2.8 Take specializations 1N and rs of Propositions 2.2 and 2.3, respec-
tively. Then J1N ;rs (λ) vanishes unless λ ∈ Y

N , and in the latter case we have

J1N ;rs (λ) = exp
( − θsN

)
s|λ| θ |λ| ∏

�∈λ

Nθ + a′(�) − θ l ′(�)

(a(�) + θ l(�) + θ)(a(�) + θ l(�) + 1)
.

(2.9)
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Next, we consider limits of the measuresJ1N ;rs under a diffusive rescaling of s and
λ. Define the open Weyl chamber WN = {y ∈ R

N : y1 < y2 < · · · < yN } and let
WN be its closure.

Proposition 2.9 Fix some N ∈ N. Then under the rescaling

s = ε−1 t

θ
, λi = ε−1 t + ε−1/2 yN+1−i , i = 1, 2, . . . , N ,

the measures J1N ;rs converge weakly in the limit ε → 0 to the probability measure
with density

1

Z

∏

i< j

(
y j − yi

)2θ
N∏

i=1

exp

(
− y2i
2t

)
(2.10)

on the closed Weyl chamber WN where

Z = tθ
N (N−1)

2 + N
2 (2π)N/2

N∏

j=1

�( jθ)

�(θ)
. (2.11)

Note that we have chosen the notation is such a way that the row lengths λi are
non-increasing, while the continuous coordinates yi are non-decreasing in i .

Proof of Proposition 2.9 We start by observing that (2.10), (2.11) define a probability
density, namely that the total mass of the corresponding measure is equal to one.
Indeed, the computation of the normalization constant is a particular case of the Selberg
integral (see [20,32,44]). SinceJ1N ;rs is also a probabilitymeasure, it suffices to prove
that as ε → 0

J1N ;rs (λ) = εN/2 1

Z

∏

i< j

(y j − yi )
2θ

N∏

i=1

exp

(
− y2i
2t

)
(
1 + o(1)

)

with the error term o(1) being uniformly small on compact subsets ofWN . The product
over boxes in the first row of λ in (2.9) is (with the convention λN+1 = 0)

λ1∏

i=1

(Nθ + i − 1)
N∏

i=1

λi∏

j=λi+1+1

1

(λ1 − j + θ (i − 1) + θ)(λ1 − j + θ (i − 1) + 1)

= �(Nθ + λ1)

�(Nθ)

N∏

i=1

�(λ1 − λi + iθ)

�(λ1 − λi+1 + iθ)

�(λ1 − λi + iθ + 1 − θ)

�(λ1 − λi+1 + iθ + 1 − θ)
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= �(θ)

�(Nθ) �((N − 1)θ + λ1 + 1)

N∏

i=2

�(λ1 − λi + iθ)

�(λ1 − λi + (i − 1) θ)

×�(λ1 − λi + (i − 1) θ + 1)

�(λ1 − λi + (i − 2) θ + 1)

∼ �(θ)

�(Nθ)�((N − 1) θ + λ1 + 1)

N−1∏

i=1

(ε−1/2(yN − yi ))
2θ

where we have written A(ε) ∼ B(ε) for limε→0
A(ε)
B(ε)

= 1. Further,

e−tε−1
tλ1ε−λ1

�((N − 1)θ + λ1 + 1)
∼ e−tε−1

(
tε−1

)tε−1+yN ε−1/2+1/2

× 1√
2π

(
(N − 1)θ + tε−1 + yN ε−1/2 + 1

e

)−(N−1)θ−tε−1−yN ε−1/2−1

∼
(
tε−1

)1/2−(N−1)θ−1

√
2π

e(N−1)θ+1+yN ε−1/2

×
(
1 + ε1/2

yN
t

+ ε
(N − 1)θ + 1

t

)−(N−1)θ−tε−1−yN ε−1/2−1

∼
(
tε−1

)1/2−(N−1)θ+θ

√
2π

e(N−1)θ+1+yN ε−1/2

× exp
((

ε1/2
yN
t

+ ε
(N − 1)θ + 1

t
− ε

y2N
2 t2

)(
− tε−1 − yN ε−1/2

))

= ε1/2+(N−1)θ t−1/2−(N−1)θ

√
2π

exp

(
− y2N
2 t

)
.

Therefore, the factors coming from the first row of λ in (2.9) are asymptotically given
by

�(θ)

�(Nθ)
ε1/2

t−1/2−(N−1)θ

√
2π

exp

(
− y2N
2 t

)
N−1∏

i=1

(yN − yi )
2θ .

Performing similar computations for the other rows we get

J1N ;rs (λ) = εN/2
N∏

j=1

�(θ) t−1/2−( j−1)θ

�( jθ)
√
2π

∏

i< j

(y j − yi )
2θ

N∏

i=1

exp

(
− y2i
2 t

)
(
1 + o(1)

)

which finishes the proof. ��
We now proceed to the definition of probability measures on multilevel structures

associated with Jack polynomials. Let GT
(N ) denote the set of sequences of Young
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diagrams λ1 ≺ λ2 ≺ · · · ≺ λN such that 
(λi ) ≤ i for every i and the Young diagrams
interlace, that is,

λi+1
1 ≥ λi1 ≥ λi+1

2 ≥ · · · ≥ λii ≥ λi+1
i+1, i = 1, 2, . . . , N − 1.

The following definition is motivated by the property (2.3) of skew Jack polyno-
mials.

Definition 2.10 A probability distribution P on arrays (λ1 ≺ · · · ≺ λN ) ∈ GT
(N ) is

called a Jack–Gibbs distribution, if for any μ ∈ Y
N such that P(λN = μ) > 0 the

conditional distribution of λ1 . . . , λN−1 given λN = μ is

P
(
λ1, . . . , λN−1 | λN = μ

) = Jμ/λN−1(11) JλN−1/λN−2(11) · · · Jλ2/λ1(11) Jλ1(11)
Jμ(1N )

.

(2.12)

Remark 2.11 When θ = 1, (2.12) implies that the conditional distribution of
λ1, . . . , λN−1 is uniform on the polytope defined by the interlacing conditions.

One important example of a Jack–Gibbs measure is given by the following defini-
tion, see [7,8,11,13] for a review of related constructions in the context of Schur and,
more generally, Macdonald polynomials.

Definition 2.12 Given a Jack-positive specialization ρ such that
∑∞

k=1
pk (ρ)
k < ∞

we define the ascending Jack processJ asc
ρ;N as the probability measure onGT

(N ) given
by

J asc
ρ;N (λ1, λ2, . . . , λN ) = J̃λN (ρ) JλN /λN−1(11) · · · Jλ2/λ1(11) Jλ1(11)

Hθ (ρ; 1N )
. (2.13)

Remark 2.13 If ρ is the empty specialization, then J asc
ρ;N assigns mass 1 to the single

element of GT
(N ) such that λij = 0, 1 ≤ i ≤ j ≤ N .

Lemma 2.14 The formula (2.13) defines a Jack–Gibbs probability distribution. Fur-
thermore, for any 1 ≤ k ≤ N the projection of J asc

ρ;N to (λ1, . . . , λk) is J asc
ρ;k , and the

projection of J asc
ρ;N to λk is Jρ;1k .

Proof The formula (2.4) yields that Jλ/μ(11) vanishes unlessμ ≺ λ, thus, the support
of J asc

ρ;N is indeed a subset of GT
(N ). Now we can sum (2.13) sequentially over λ1,

…, λN−1 using (2.3). This proves that the projection of J asc
ρ;N to λN is Jρ;1N . Thus,

since Jρ;1N is a probability measure, so is J asc
ρ;N . Further, dividing J asc

ρ;N (λ1, . . . , λN )

by Jρ;1N (λN ) we get the conditional distribution (2.12), which proves that (2.13) is
Jack–Gibbs.

To compute the projectiononto (λ1, . . . , λk)wesum (2.13) sequentially overλN ,…,
λk+1 using (2.7) and arrive at J asc

ρ;k . In order to further compute the projection to λk

we also sum over λ1, . . . , λk−1 using (2.3) and get Jρ;1k . ��
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Define the (open) Gelfand–Tsetlin cone via

GN =
{
y ∈ R

N (N+1)/2 : y j+1
i < y j

i < y j+1
i+1 , 1 ≤ i ≤ j ≤ N − 1

}
,

and let GN be its closure. A natural continuous analogue of Definition 2.10 is:

Definition 2.15 An absolutely continuous (with respect to the Lebesgue measure)
probability distribution P on arrays y ∈ GN is called θ–Gibbs, if the conditional
distribution of the first N − 1 levels yki , 1 ≤ i ≤ k ≤ N − 1 given the N–th level
yN1 , . . . , yNN has density

P
(
yki , 1 ≤ i ≤ k ≤ N − 1 | yN1 , . . . , yNN

)

=
N∏

k=2

(
�(kθ)

�(θ)k

∏

1≤i<m≤k−1

(yk−1
m − yk−1

i )

k−1∏

i=1

k∏

j=1

|ykj

−yk−1
i |θ−1

∏

1≤ j<n≤k

(ykn − ykj )
1−2θ

)
. (2.14)

To see that (2.14) indeed defines a probability measure, one can use a version of
the Dixon-Anderson identity (see [2,17], [20, Chapter 4]), which reads

∫ ∫
. . .

∫ ∏

1≤i< j≤m

|ui − u j |
m∏

i=1

m+1∏

j=1

|ui − v j |θ−1 du1 du2 . . . dum

= �(θ)m+1

�((m + 1)θ)

∏

1≤i< j≤m+1

|vi − v j |2θ−1 , (2.15)

where the integration is performed over the domain

v1 < u1 < v2 < u2 < v3 < · · · < um < vm+1.

Applying (2.15) sequentially to integrate the density in (2.14) with respect to the
variable y11 , then the variables y21 , y

2
2 and so on, we eventually arrive at 1.

Proposition 2.16 Let P(q), q = 1, 2, . . . be a sequence of Jack–Gibbs measures on
GT

(N ), and for each q let {λki (q)} be a P(q)–distributed random element of GT
(N ).

Suppose that there exist two sequences m(q) and b(q) such that limq→∞ b(q) = ∞
and as q → ∞ the N–dimensional vector

(
λN
N − m(q)

b(q)
,
λN
N−1 − m(q)

b(q)
, . . . ,

λN
1 − m(q)

b(q)

)

converges weakly to a random vector whose distribution is absolutely continuous with
respect to the Lebesgue measure. Then the whole N (N + 1)/2–dimensional vector
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(
λki − m(q)

b(q)

)
, 1 ≤ i ≤ k ≤ N

also converges weakly and its limiting distribution is θ–Gibbs.

Proof Since we deal with probability distributions converging to another probability
distribution, it suffices to check that the quantity in (2.12) (written in the rescaled and

reordered coordinates y j
i = λ

j
j+1−i−m(q)

b(q)
) converges to (2.14), uniformly on compact

subsets of GN .
Jλ/μ(11) can be evaluated according to the identity (2.4). Thus, with the notation

f (α) = �(α+1)
�(α+θ)

we have

Jλk/λk−1(11) =
∏

1≤i≤ j≤k−1

f (λk−1
i − λk−1

j + θ ( j − i)) f (λki − λkj+1 + θ ( j − i))

f (λk−1
i − λkj+1 + θ ( j − i)) f (λki − λk−1

j + θ ( j − i))
.

The asymptotics f (α) ∼ α1−θ as α → ∞ shows

Jλk/λk−1(11) ∼ b(q)(1−k)(1−θ)

�(θ)k−1

×
∏

1≤i< j≤k−1

(yk−1
j − yk−1

i )1−θ
∏

1≤i< j≤k

(ykj − yki )
1−θ

k−1∏

i=1

k∏

j=1

|yk−1
i − ykj |θ−1.

It remains to analyze the asymptotics of Jμ(1N ) in the denominator of (2.12). To
this end, we use the expression for Jμ(1N ) in Proposition 2.2 and recall that μ can
be identified with λN to find that the product over the boxes in the first row of μ

asymptotically (in the limit q → ∞) behaves as

μ1∏

i=1

(Nθ + i − 1)
N∏

i=1

μi∏

j=μi+1+1

1

μ1 − j + θ (i − 1) + θ

= �(Nθ + λ1)

�(Nθ)

N∏

i=1

�(λ1 − λi + iθ)

�(λ1 − λi+1 + iθ)

=
N∏

i=2

( �(λ1 − λi + iθ)

�(λ1 − λi + (i − 1) θ)

)
∼

N−1∏

i=1

(
b(q)(yNN − yNi )

)θ
.

Performing the same computations for the other rows we find that, as q → ∞,

1

Jμ(1N )
∼ b(q)−θN (N−1)/2

∏

1≤i< j≤N

(yNj − yNi )−θ .
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One obtains the desired convergence to (2.14) by putting together the asymptotics of
the factors in (2.12) and multiplying the result by the term b(q)N (N−1)/2 coming from
the space rescaling. ��

As a combination of Propositions 2.9 and 2.16 we obtain the following statement.

Corollary 2.17 Fix some N ∈ N. Then, under the rescaling

s = ε−1 t

θ
, λ

j
i = ε−1 t + ε−1/2 y j

j+1−i , 1 ≤ i ≤ j ≤ N ,

the measures J asc
rs ;N converge weakly in the limit ε → 0 to the probability measure on

the Gelfand–Tsetlin cone GN with density

1

Z

∏

i< j

(
yNj − yNi

) N∏

i=1

exp

(
− (yNi )2

2 t

)
N−1∏

n=1

∏

1≤i< j≤n

(
ynj − yni

)2−2θ

×
n∏

a=1

n+1∏

b=1

∣∣yna − yn+1
b

∣∣θ−1 (2.16)

where

Z = tθN (N−1)+N/2 (2π)N/2
N∏

j=1

(�( jθ))2

�(θ) j+1 . (2.17)

Note that the probability measure of (2.16) is precisely the Hermite β = 2θ corners
process with variance t of Definition 1.1.

Remark 2.18 When θ = 1, the factors (ynj − yni )2−2θ and |yna − yn+1
b |θ−1 in (2.16)

disappear, and the conditional distribution of y1, y2, . . . , yN−1 given yN becomes
uniform on the polytope defined by the interlacing conditions. This distribution is
known to be that of eigenvalues of corners of a random Gaussian N × N Hermitian
matrix sampled from the Gaussian Unitary Ensemble (see e.g. [4]). Similarly, for
θ = 1/2 and θ = 2 one gets the joint distribution of the eigenvalues of corners of the
Gaussian Orthogonal Ensemble and the Gaussian Symplectic Ensemble, respectively
(see e.g. [33], [35, Section 4]).

2.3 Dynamics related to Jack polynomials

We are now ready to construct the stochastic dynamics related to Jack polynomials.
Similar constructions for Schur, q-Whittacker and Macdonald polynomials can be
found in [6,7,9,11].

Definition 2.19 Given two specializations ρ, ρ′ define their union (ρ, ρ′) through the
formulas
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pk(ρ, ρ′) = pk(ρ) + pk(ρ
′), k ≥ 1

where pk , k ≥ 1 are the Newton power sums as before.

Let ρ and ρ′ be two Jack-positive specializations such that Hθ (ρ; ρ′) < ∞. Define
matrices p↑

λ→μ and p↓
λ→μ with rows and columns indexed by Young diagrams as

follows:

p↑
λ→μ(ρ; ρ′) = 1

Hθ (ρ; ρ′)
Jμ(ρ)

Jλ(ρ)
J̃μ/λ(ρ

′), λ, μ ∈ Y, Jλ(ρ) �= 0, (2.18)

p↓
λ→μ(ρ; ρ′) = Jμ(ρ)

Jλ(ρ, ρ′)
Jλ/μ(ρ′), λ, μ ∈ Y, Jλ(ρ, ρ′) �= 0. (2.19)

The next three propositions follow from (2.3), (2.6), (2.7) (see also [6,7,11] for
analogous results in the cases of Schur, q-Whittacker and Macdonald polynomials).

Proposition 2.20 The matrices p↑
λ→μ and p↓

λ→μ are stochastic, that is, all matrix
elements are non-negative, and for every λ ∈ Y we have

∑

μ∈Y
p↑
λ→μ(ρ, ρ′) = 1, if Jλ(ρ) �= 0,

∑

μ∈Y
p↓
λ→μ(ρ, ρ′) = 1, if Jλ(ρ, ρ′) �= 0.

Proposition 2.21 For any μ ∈ Y and any Jack-positive specializations ρ1, ρ2, ρ3 we
have

∑

λ∈Y:Jρ1;ρ2 (λ) �=0

Jρ1;ρ2(λ) p↑
λ→μ(ρ2; ρ3) = Jρ1,ρ3;ρ2(μ),

∑

λ∈Y:Jρ1;ρ2,ρ3 (λ) �=0

Jρ1;ρ2,ρ3(λ) p↓
λ→μ(ρ2; ρ3) = Jρ1;ρ2(μ).

Proposition 2.22 The following commutation relation on matrices p↑
λ→μ and p↓

λ→μ

holds:

p↑(ρ1, ρ2; ρ3) p
↓(ρ1; ρ2) = p↓(ρ1; ρ2) p

↑(ρ1; ρ3).

Let XN
disc(s), s ≥ 0 denote the continuous timeMarkov chain onYN with transition

probabilities given by p↑(1N ; rs), s ≥ 0 (and arbitrary initial condition XN
disc(0) ∈

Y
N ). We record the jump rates of XN

disc for later use.
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Proposition 2.23 The jump rates of the Markov chain XN
disc on Y

N are given by

qλ→μ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Jμ(1N )

Jλ(1N )
J̃μ/λ(r1), μ = λ � �,

− ∑

ν=λ��
qλ→ν, μ = λ,

0, otherwise.

(2.20)

Explicitly, for μ = λ � (i, j) we have

qλ→μ =
∏

�∈μ

Nθ + a′(�) − θ l ′(�)

a(�;μ) + θ l(�;μ) + θ

∏
�∈λ

Nθ + a′(�) − θ l ′(�)

a(�; λ) + θ l(�; λ) + θ

θ

i−1∏

k=1

a(k, j; λ) + θ (i − k + 1)

a(k, j; λ) + θ (i − k)

×a(k, j; λ) + 1 + θ (i − l − 1)

a(k, j; λ) + 1 + θ (i − l)
. (2.21)

Remark 2.24 While the jump rates qλ→μ are explicit, we are not aware of any fairly
simple formulas for the transition probabilities p↑(1N ; rs), s ≥ 0 of XN

disc.

Proof of Proposition 2.23 The formula (2.20) is readily obtained from the definition
of the transition probabilities in (2.18). In order to get (2.21) we note that Jλ(1N )

and Jμ(1N ) have been computed in Proposition 2.2. Further, observe that J̃μ/λ is a
symmetric polynomial of degree 1, thus, it is proportional to the sum of indeterminates
p1. Therefore, J̃μ/λ(11) = J̃μ/λ(r1) and we can use the formula (2.5) to evaluate it.

The following proposition will prove useful below.

Proposition 2.25 The process |XN
disc| :=

∑N
i=1(X

N
disc)i is a Poisson process with

intensity Nθ .

Proof According to Proposition 2.23 the process |XN
disc| increases by 1 with rate

∑

μ=λ��

Jμ(1N )

Jλ(1N )
J̃μ/λ(r1).

In order to evaluate the latter sum we use Pieri’s rule for Jack polynomials, which is
a formula for the product of a Jack polynomial with the sum of indeterminates and in
our case reads

∑

μ=λ��
Jμ(1N ) J̃μ/λ(r1) = θ p1(1

N ) Jλ(1
N ) = N θ Jλ(1

N ).

The proof of Pieri’s fule (for Macdonald polynomials, with the case of Jack polyno-
mials being given by the limit transition q → 1, t = qθ ) can be found in [31, (6.24)
and Section 10 in Chapter VI]. Note that in the formulas of [31] the notation ϕμ/λ is
used for J̃μ/λ(r1) = J̃μ/λ(11) and the g1 there is proportional to our p1. ��
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Proposition 2.21 implies the following statement.

Proposition 2.26 Suppose that the initial condition XN
disc(0) is the empty Young dia-

gram, that is, λ1 = λ2 = · · · = λN = 0. Then, for any fixed s > 0, the law of X N
disc(s)

is given by J1N ;rs which was computed explicitly in Proposition 2.8.

Our next goal is to define a stochastic dynamics on GT
(N ). The construction we

use is parallel to those of [6,7,9–11]; it is based on an idea going back to [16], which
allows to couple the dynamics of Young diagrams of different sizes. We start from the
degenerate discrete time dynamics λ0(n) = ∅, n ∈ N0 and construct the discrete time
dynamics of λ1, λ2, . . . , λN inductively. Given λk−1(n), n ∈ N0 and a Jack-positive
specialization ρ we define the process λk(n), n ∈ N0 with a given initial condition
λk(0) satisfying λk−1(0) ≺ λk(0) as follows. We let the distribution of λk(n + 1)
depend only on λk(n) and λk−1(n + 1) and be given by

P(λk(n + 1) = ν | λk(n) = λ, λk−1(n + 1) = μ) = J̃ν/λ(ρ) Jν/μ(11)
∑

κ∈Y J̃κ/λ(ρ) Jκ/μ(11)
.

(2.22)

Carrying out this procedure for k = 1, 2, . . . , N we end upwith a discrete timeMarkov
chain X̂multi

disc (n; ρ), n ∈ N0 on GT
(N ).

Definition 2.27 Define the continuous time dynamics Xmulti
disc (s), s ≥ 0 on GT

(N )

with an initial condition Xmulti
disc (0) ∈ GT

(N ) as the distributional limit

lim
ε→0

X̂multi
disc (�ε−1 s�; rε)

where all dynamics X̂multi
disc (·; rε) are started from the initial condition Xmulti

disc (0) and
the specialization rε is defined as in Proposition 2.3.

Remark 2.28 Alternatively, we could have started from the specialization ρ with a
single α parameter α1 = ε and we would have arrived at the same continuous time
dynamics. Analogous constructions of the continuous time dynamics in the context of
Schur and Macdonald polynomials can be found in [9] and [7].

Note that when λ ≺ κ the term J̃κ/λ(rε) is of order ε|κ|−|λ| as ε → 0. Therefore, the
leading order term in the sum on the right-hand side of (2.22) comes from the choice
κ = λ unless that κ violates μ ≺ κ , in which case the leading term corresponds to
taking κ = μ.Moreover, the first-order terms come from the choices κ = λ�� and the
resulting terms turn into the jump rates of the continuous time dynamics. Summing up,
the continuous time dynamics Xmulti

disc (s), s ≥ 0 looks as follows: given the trajectory
of λk−1, a box � is added to the Young diagram λk at time t at the rate

q(�, λk(s−), λk−1(s)) = J̃(λk (s−)��)/λk (s−)(r1)
J(λk (s−)��)/λk−1(s)(1

1)

Jλk (s−)/λk−1(s)(11)
. (2.23)

In particular, the latter jump rates incorporate the following push interaction: if the
coordinates of λk−1 evolve in a way which violates the interlacing condition λk−1 ≺
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λk , then the appropriate coordinate of λk is pushed in the sense that a box is added
immediately to the Young diagram λk to restore the interlacing. The factors on the
right-hand side of (2.23) are explicit and given by (2.4) and (2.5). Simulations of the
continuous time dynamics for θ = 0.5 and θ = 2 can be found at [25].

The following statement is based on the results of Propositions 2.20, 2.21, 2.22 and
can be proved by the argument of [9, Sections 2.2, 2.3], see also [6,7,11].

Proposition 2.29 Suppose that Xmulti
disc (s), s ≥ 0 is started from a random initial

condition with a Jack–Gibbs distribution. Then:

• the restriction of Xmulti
disc (s) to level N coincides with XN

disc(s), s ≥ 0 started from
the restriction to level N of the initial condition Xmulti

disc (0);
• the law of Xmulti

disc (s) at a fixed time s > 0 is a Jack–Gibbs distribution. Moreover,
if Xmulti

disc (0) has law J asc
ρ;N , then Xmulti

disc (s) has law J asc
ρ,rs ;N .

Remark 2.30 In fact, there is a way to generalize Proposition 2.29 to a statement
describing the restriction of our multilevel dynamics started from Jack–Gibbs initial
conditions to anymonotone space-time path (meaning that we look at level N for some
time, then at level N − 1 and so on). We refer the reader to [9, Proposition 2.5] for a
precise statement in the setting of multilevel dynamics based on Schur polynomials.

3 Convergence to Dyson Brownian motion

The goal of this section is to prove that the Markov chain XN
disc(s) converges in the

diffusive scaling limit to a Dyson Brownian Motion.
To start with, we recall the existence and uniqueness result for Dyson Brownian

motions with β > 0 (see e.g. [3, Proposition 4.3.5] for the case β ≥ 1 and [14,
Theorem 3.1] for the case 0 < β < 1).

Proposition 3.1 For any N ∈ N and β > 0, the system of SDEs

dXi (t) = β

2

∑

j �=i

1

Xi (t) − X j (t)
dt + dWi (t), (3.1)

i = 1, 2, . . . , N, with W1,W2, . . . ,WN being independent standard Brownian
motions, has a unique strong solution taking values in the Weyl chamber WN for
any initial condition X (0) ∈ WN . Moreover, for all initial conditions, the stopping
time

τ := inf{t > 0 : Xi (t) = Xi+1(t) for some i} (3.2)

is infinite with probability one if β ≥ 1 and finite with positive probability if 0 <

β < 1.

We write DN = D([0,∞),RN ) for the space of right-continuous paths with left
limits taking values in R

N and endow it with the usual Skorokhod topology (see e.g.
[19]).
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Theorem 3.2 Fix θ ≥ 1/2 and let ε > 0 be a small parameter. Let the N–dimensional
stochastic process Y N

ε (t) = (Y N
ε (t)1, . . . ,Y N

ε (t)N ) be defined through

(Y N
ε (t))i = ε1/2

(
(XN

disc)N+1−i
(
ε−1 θ−1 t

) − ε−1 t
)
, i = 1, . . . , N

where (XN
disc)i is i -th coordinate of the process X N

disc. Suppose that, as ε → 0, the

initial conditions Y N
ε (0) converge to a point Y (0) in the interior of WN . Then the

process Y N
ε (t) converges in the limit ε ↓ 0 in law on DN to the β = 2θ–Dyson

Brownian motion, that is, to the unique strong solution of (3.1) with β = 2θ .

Remark 3.3 We believe that Theorem 3.2 should hold for any θ > 0. However, the
case 0 < θ < 1/2 presents additional technical challenges, since there the stopping
time τ of (3.2) may be finite.

Let us first present the plan of the proof of Theorem 3.2. In Step 1 we study the
asymptotics of the jump rates of XN

disc in the scaling limit of Theorem 3.2. In Step
2 we prove the tightness of the processes Y N

ε as ε → 0. In Step 3 we show that
subsequential limits of that family solve the SDE (3.1). This fact and the uniqueness
of the solution to (3.1) yield together Theorem 3.2.

3.1 Step 1: Rates

Y N
ε (t) is a continuous time Markov process with state spaceWN , a (constant) drift of

−ε−1/2 in each coordinate and jump rates

pNε (y, y′, t) = θ−1 ε−1 q t
θ
ε−1+ŷε−1/2 → t

θ
ε−1+ŷ′ε−1/2

where ŷ, ŷ′ are the vectors (viewed as Young diagrams) obtained from y, y′ by reorder-
ing the components in decreasing order, and the intensities qλ→μ are given in Propo-
sition 2.23. If we write y′ ≈ε y for vectors y′, y which differ in exactly one coordinate
with the difference being ε1/2, then pNε (y, y′, t) = 0 unless y′ ≈ε y. As we will see,
in fact, pNε (y, y′, t) does not depend on t .

Now, take two sequences y′ ≈ε y with y′
N+1−i − yN+1−i = ε1/2 for some fixed

i ∈ {1, 2, . . . , N }. Define Young diagrams λ and μ via λl = t
θ

ε−1 + yN+1−l ε
−1/2,

μl = t
θ

ε−1 + y′
N+1− j ε

−1/2. Then μi = λi + 1 and μl = λl for j �= i . Also, set
j = λi + 1, so that μ = λ � (i, j).

Lemma 3.4 For sequences y′ ≈ε y differing in the (N + 1 − i)-th coordinate as
above, we have in the limit ε → 0:

pNε (y, y′, t) = ε−1 + ε−1/2

⎛

⎝
∑

j �=i

θ

yN+1−i − yN+1− j

⎞

⎠ + O(1)

where the error O(1) is uniform on compact subsets of the open Weyl chamber WN .
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Proof Using Proposition 2.23 we have

pNε (y, y′, t) = ε−1

θ

Jμ(1N )

Jλ(1N )
J̃μ/λ(r1) = ε−1

θ

∏
�∈μ

Nθ + a′(�) − θ l ′(�)

a(�;μ) + θ l(�; μ) + θ

∏
�∈λ

Nθ + a′(�) − θ l ′(�)

a(�; λ) + θ l(�; λ) + θ

× θ

i−1∏

m=1

a(m, j; λ) + θ (i − m + 1)

a(m, j; λ) + θ (i − m)

a(m, j; λ) + 1 + θ (i − m − 1)

a(m, j; λ) + 1 + θ (i − m)

= ε−1

θ

j−1∏

k=1

j − k − 1 + θ (λ′
k − i + 1)

j − k + θ (λ′
k − i + 1)

i−1∏

m=1

λm − j + θ (i − m)

λm − j + θ (i − m + 1)

× (
(N − i + 1) θ + j − 1

) i−1∏

m=1

λm − j + θ (i − m + 1)

λm − j + θ (i − m)
· λm − j + 1 + θ (i − m − 1)

λm − j + 1 + θ (i − m)

= ε−1

θ

j−1∏

k=1

j − k − 1 + θ (λ′
k − i + 1)

j − k + θ (λ′
k − i + 1)

(
(N − i + 1) θ + j − 1

)

×
i−1∏

m=1

(yN+1−m − yN+1−i ) ε−1/2 + θ (i − m − 1)

(yN+1−m − yN+1−i ) ε−1/2 + θ (i − m)
. (3.3)

Now, for any y the corresponding Young diagram λ has λN columns of length N ,
(λN−1 − λN ) columns of length (N − 1), (λN−2 − λN−1) columns of length (N − 2)
etc. Therefore, the latter expression for pNε (y, y′, t) can be simplified to

ε−1
N−i−1∏

r=0

j − 1 − λN−r + θ (N − i − r + 1)

j − 1 − λN−r + θ (N − i − r)

i−1∏

m=1

× (yN+1−m − yN+1−i ) ε−1/2 + θ (i − m − 1)

(yN+1−m − yN+1−i ) ε−1/2 + θ (i − m)

= ε−1
N∏

k=i+1

(yN+1−i − yN+1−k) ε−1/2 + θ (k − i + 1)

(yN+1−i − yN+1−k) ε−1/2 + θ (k − i)

i−1∏

m=1

× (yN+1−m − yN+1−i ) ε−1/2 + θ (i − m − 1)

(yN+1−m − yN+1−i ) ε−1/2 + θ (i − m)

= ε−1 + ε−1/2

⎛

⎝
∑

j �=i

θ

yN+1−i − yN+1− j

⎞

⎠ + O(1), (3.4)

��
with the remainder O(1) being uniform over y such that |yN+1−i − yN+1− j | > δ for
j �= i and a fixed δ > 0.

3.2 Step 2: Tightness

Let us show that the family Y N
ε , ε ∈ (0, 1) is tight on DN . To this end, we aim to

apply the necessary and sufficient condition for tightness of [19, Corollary 3.7.4] and
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need to show that, for any fixed t ≥ 0, the random variables Y N
ε (t) are tight on RN as

ε ↓ 0 and that for every � > 0 and T > 0 there exists a δ > 0 such that

lim sup
ε↓0

P

(
sup

0≤s<t≤T,t−s<δ

∣∣(Y N
ε )i (t) − (Y N

ε )i (s)
∣∣ > �

)
< �, i = 1, 2, . . . , N .

(3.5)
We first explain how to obtain the desired controls on (Y N

ε (t))+ (the vector of positive
parts of the components of Y N

ε (t)) and

sup
0≤s<t≤T,t−s<δ

(
(Y N

ε )i (t) − (Y N
ε )i (s)

)
, i = 1, 2, . . . , N . (3.6)

To control (Y N
ε (t))+ and the expressions in (3.6) we proceed by induction over the

index of the coordinates in Y N
ε . For the first coordinate (Y N

ε )1 the explicit formula
(3.4) in Step 1 shows that the jump rates of the process (Y N

ε )1 are bounded above by
ε−1. Hence, a comparison with a Poisson process with jump rate ε−1, jump size ε1/2

and drift −ε−1/2 shows that ((Y N
ε )1(t))+ and the expression in (3.6) for i = 1 behave

in accordance with the conditions of Corollary 3.7.4 in [19] as stated above. Next, we
consider (Y N

ε )i for some i ∈ {2, 3, . . . , N }. In this case, the formula (3.4) in Step 1
shows that, whenever the spacing (Y N

ε )i − (Y N
ε )i−1 exceeds �/3, the jump rate of

(Y N
ε )i is bounded above by

ε−1 +
i−1∑

j=1

θ ε−1/2

(Y N
ε )i (t) − (Y N

ε ) j (t)
+ C(�) ≤ ε−1 + 3(i − 1)θ

�
ε−1/2 + C(�).

(3.7)

Let us show that (Y N
ε )i can be coupled with a Poisson jump process Rε with jump

size ε1/2, jump rate given by the right-hand side of the last inequality and drift−ε−1/2,
so that, whenever (Y N

ε )i − (Y N
ε )i−1 exceeds �/3 and (Y N

ε )i has a jump to the right,
the process Rε has a jump to the right as well.

Todo this, recall that (by definition) the lawof the jump times ofY N
ε canbedescribed

as follows. We take N independent exponential random variables a1, . . . , aN with
means r j (Y N

ε ), j = 1, . . . , N defined by (3.3) with y and y′ differing in the j-th
coordinate. If we let k be the index for which ak = min(a1, . . . , aN ), then at time ak
the k-th particle (that is, (Y N

ε )k) jumps. After this jump we repeat the procedure again
to determine the next jump.

LetM denote the right-hand side of (3.7) and consider in each time interval between
the jumps of Y N

ε an additional independent exponential random variable b with mean
M − ri (Y N

ε ) if (Y N
ε )i − (Y N

ε )i−1 exceeds �/3 and with mean M otherwise. Now,
instead of considering min(a1, . . . , aN ), we consider min(a1, . . . , aN , b). If the min-
imum is given by b, then no jump happens and the whole procedure is repeated. Now,
we define the jump times of process Rε to be all times when the clock of the i-th
particle rings provided that (Y N

ε )i − (Y N
ε )i−1 exceeds �/3, and also all times when
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the auxilliary random variable b constitutes the minimum. One readily checks that Rε

is given by a Poisson jump process of constant intensity M and drift −ε−1/2.
We further use the convergence of Rε to Brownian motion with drift 3(i − 1)θ/�,

which implies the tightness and conditions (3.5) are satisfied for Rε. Now we get the
desired control for ((Y N

ε )i (t))+ and the quantities in (3.6) by invoking the induction
hypothesis when spacing (Y N

ε )i − (Y N
ε )i−1 is less than �/3 and by comparison with

Rε when the spacing is larger.
It remains to observe that (Y N

ε (t))− (the vector of negative parts of the components
of Y N

ε ) and

sup
0≤s<t≤T,t−s<δ

−(
(Y N

ε )i (t) − (Y N
ε )i (s)

)
, i = 1, 2, . . . , N

can be dealt with in a similar manner (but considering the rightmost particle first
and moving from right to left). Together these controls yield the conditions of [19,
Corollary 3.7.4].

We also note that, since the maximal size of the jumps tends to zero as ε ↓ 0, any
limit point of the family Y N

ε , ε ∈ (0, 1) as ε ↓ 0 must have continuous paths (see e.g.
[19, Theorem 3.10.2]).

Remark 3.5 Note that in the proof of the tightness result the condition θ ≥ 1/2 is not
used.

3.3 Step 3: SDE for subsequential limits

Throughout this section we let Y N be an arbitrary limit point of the family Y N
ε as

ε ↓ 0. Our goal is to identify Y N with the solution of (3.1). We pick a sequence of Y N
ε

which converges to Y N in law, and by virtue of the Skorokhod Embedding Theorem
(see e.g. Theorem 3.5.1 in [18]) may assume that all processes involved are defined
on the same probability space and that the convergence holds in the almost sure sense.
In the rest of this section all limits ε → 0 are taken along this sequence.

LetF denote the set of all infinitely differentiable functions onWN whose support
is a compact subset of WN . Define

Fδ := {
f ∈ F : f (x) = 0 whenever dist(x, ∂WN ) ≤ δ

}

where ∂WN denotes the boundary ofWN and dist stands for the L∞ distance:

dist(x, ∂WN ) = min
i=1,...,N−1

|xi+1 − xi |.

Clearly, F = ⋃
δ>0 Fδ .
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For functions f ∈ F we consider the processes

M f (t) := f (Y N (t)) − f (Y N (0)) −
∫ t

0

∑

1≤i �= j≤N

θ

Y N
i (s) − Y N

j (r)
fyi (Y

N (r)) dr

− 1

2

∫ t

0

N∑

i=1

fyi yi (Y
N (r)) dr. (3.8)

Here, fyi ( fyi yi resp.) stands for the first (second resp.) partial derivative of f with
respect to yi .

In Step 3a we show that the processes in (3.8) are martingales and identify their
quadratic covariations. In step 3b we use the latter results to derive the SDEs for the
processes Y N

1 ,…, Y N
N .

Step 3a.We now fix an f ∈ Fδ for some δ > 0 and consider the family of martingales

M f
ε (t) := f (Y N

ε (t)) − f (Y N
ε (0)) −

∫ t

0

( N∑

i=1

−ε−1/2 fyi (Y
N
ε (r))

+
∑

y′≈εY N (r)

pNε (Y N
ε (r), y′, s)( f (y′) − f (Y N (s)))

)
dr, ε > 0. (3.9)

Lemma 3.4 implies that the integrand in (3.9) behaves asymptotically as

1

2

N∑

i=1

fyi yi (Y
N
ε (r)) +

N∑

i=1

bi (Y
N
ε (r)) fyi (Y

N
ε (r)) + O(ε1/2),

where bi (y) = ∑
j �=i

θ
yi−y j

. Note also that, for any fixed function f ∈ F , the error

terms can be bounded uniformly for all sequences y′ ≈ε y as above, since f and all its
partial derivatives are bounded and vanish in a neighborhood of the boundary ∂WN

of WN .
By taking the limit of the corresponding martingales M f

ε for a fixed f ∈ F and
noting that their limit M f can be bounded uniformly on every compact time interval,
we conclude that M f must be a martingale as well.

In order to proceed further we recall the following definitions. For a real-valued
function f defined on an interval [0, T ] (T can be +∞ here), its quadratic variation
〈 f 〉(t) is defined for 0 ≤ t ≤ T via

〈 f 〉(t) = lim
||P||→0

P=(t0<t1<···<tk )

k∑

i=1

(
f (ti ) − f (ti−1)

)2

where P ranges over all ordered collections of points 0 = t0 < t1 < · · · < tk = t
with k being arbitrary, and ||P|| = min1≤i≤k(ti − ti−1). Similarly, for two function f
and g their quadratic covariation 〈 f, g〉(t) is defined as
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〈 f, g〉(t) = lim
||P||→0

P=(t0<t1<···<tk )

k∑

i=1

(
f (ti ) − f (ti−1)

) (
g(ti ) − g(ti−1)

)
.

Lemma 3.6 For any two functions g, h ∈ F , the quadratic covariation of Mg and
Mh is given by

〈
Mg, Mh 〉

(t) =
N∑

j=1

∫ t

0
gy j (Y

N (r))hy j (Y
N (r)) dr. (3.10)

Proof Due to the polarization identity

2 〈Mg, Mh〉(t) = 〈Mg + Mh〉(t) − 〈Mg, Mg〉(t) − 〈Mh, Mh〉(t)

it is enough to consider the case g = h, that is, to determine the quadratic variation
〈Mg〉(t).

We proceed by finding the limit of the quadratic variation processes 〈Mg
ε 〉 of Mg

ε

as ε → 0. For each ε > 0 and j = 1, . . . , N define S j
ε as the (random) set of all times

when the j-th coordinate of Y N
ε jumps. Note that the sets S j

ε are pairwise disjoint and

their union
⋃N

j=1 S
j
ε is a Poisson point process of intensity ε−1N (see Proposition

2.25).
Recall that the quadratic variation process 〈Mg

ε 〉(t) of Mg
ε is given by the sum of

squares of the jumps of the process Mg
ε (see e.g. [15, Proposition 8.9]) and conclude

〈
Mg

ε

〉
(t) =

N∑

j=1

∑

r∈S j
ε ∩[0,t]

(
ε1/2gy j (Y

N
ε (r) + O(ε)

)2
, (3.11)

with a uniform error term O(ε). Suppose that g ∈ F2δ and consider new N pair-
wise disjoint sets Ŝ j

ε , j = 1, . . . , N satisfying
⋃N

j=1 Ŝ j
ε = ⋃N

j=1 S j
ε and defined

through the following procedure. Take any r ∈ ⋃N
j=1 S

j
ε and suppose that r ∈ Sk

ε .

If dist(Y N
ε (r), ∂WN ) ≥ δ, then put r ∈ Ŝk

ε . Otherwise, take an independent random
variable κ sampled from the uniform distribution on the set {1, 2, . . . , N } and put
r ∈ Ŝκ

ε . The definition implies that, for small ε,

〈
Mg

ε

〉
(t) =

N∑

j=1

∑

r∈Ŝ j
ε ∩[0,t]

(
ε1/2gy j (Y

N
ε (r) + O(ε)

)2
, (3.12)

with a uniform error term O(ε). Now, take any two reals a < b. We claim that the
sets Ŝk

ε satisfy the following property almost surely:

lim
ε→0

ε |Ŝk
ε ∩ [a, b]| = b − a. (3.13)
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Indeed, the Law of Large Numbers for Poisson Point Processes implies

lim
ε→0

ε

∣∣∣∣∣

(
N⋃

k=1

Ŝk
ε

)
∩ [a, b]

∣∣∣∣∣ = N (b − a). (3.14)

On the other hand, Lemma 3.4 implies the following uniform asymptotics as ε → 0:

P

⎛

⎝t ∈ Ŝk
ε | �<t , t ∈

N⋃

j=1

Ŝ j
ε

⎞

⎠ = 1

N
+ o(1),

where�<t is theσ -algebra generated by the point process Ŝk
ε , j = 1, . . . , N up to time

t . Therefore, the conditional distribution of |Ŝk
ε ∩ [a, b]| given |(⋃N

k=1 Ŝk
ε ) ∩ [a, b]|

can be sandwiched between two binomial distributions with parameters 1
N ± C(ε),

where limε→0 C(ε) = 0 (see e.g. [30, Lemma 1.1]). Now, (3.14) and the Law of Large
Numbers for the Binomial Distribution imply (3.13).

It follows that the sums in (3.12) approximate the corresponding integrals and we
obtain

lim
ε↓0

〈
Mg

ε

〉
(t) =

N∑

j=1

∫ t

0
gy j (Y

N (r))2 dr. (3.15)

Note that for each g ∈ F , both Mg
ε (t)2 and 〈Mg

ε 〉(t) are uniformly integrable on
compact time intervals (this can be shown for example by another comparison with a
Poisson jump process). Further, one of the properties of the quadratic variation (see
e.g. [19, Chapter 2, Proposition 6.1]) is thatMg

ε (t)2−〈Mg
ε 〉(t) is amartingale. Sending

ε → 0 (see e.g. [19, Chapter 7, Problem 7] for a justification) it follows that the process

Mg(t)2 −
N∑

j=1

∫ t

0
gy j (Y

N (r))2 dr = lim
ε→0

(
Mg

ε (t)2 − [Mg
ε ](t)

)
(3.16)

is a martingale. On the other hand, since Mg(t) is continuous in t (see the end of Step
2), its quadratic variation 〈Mg〉(t) is a unique increasing predictable process such that
Mg(t) − 〈Mg〉(t) is a martingale (see [19, Chapter 2, Section 6]). We conclude that

〈
Mg〉

(t) =
N∑

j=1

∫ t

0
gy j (Y

N (r))2 dr.

��
Step 3b.We are now ready to derive the SDEs for the processes Y N

1 , . . . ,Y N
N . Define

the stopping times τδ , δ > 0 by
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τδ = inf{t ≥ 0 : Y N
i (t) − Y N

i−1(t)

≤ δ for some i} ∧ inf{t ≥ 0 : |Y N
i (t)| ≥ 1/δ for some i}. (3.17)

Our next aim is to derive the stochastic integral equations for the processes

(
Y N
j (t ∧ τδ)

)
j=1,...,N .

Let f j , j = 1, . . . , N , be an arbitrary function from F such that f j (y) = y j for

y inside the box |y j | ≤ 1/δ and such that dist(y, ∂WN ) ≥ δ. The results of Step
3a imply that the processes M f j are martingales. Note that the definition of stopping
times τδ imply that on the time interval [0, τδ] the processes M f j and Myj almost
surely coincide. At this point we can use Lemma 3.6 to conclude that

Y N
j (t ∧ τδ) − Y N

j (0) −
∫ t∧τδ

0

∑

n �= j

θ

Y N
j (r) − Y N

n (r)
dr, j = 1, . . . , N

are martingales with quadratic variations given by t∧τδ and with the quadratic covari-
ation between any two of them being zero. We may now apply the Martingale Rep-
resentation Theorem in the form of [29, Theorem 3.4.2] to deduce the existence of
independent standard Brownian motions W1, . . . ,WN (possibly on an extension of
the underlying probability space) such that

Y N
j (t∧τδ)−Y N

j (0)−
∫ t∧τδ

0

∑

n �= j

θ

Y N
j (r) − Y N

n (r)
dr =

∫ t∧τδ

0
dWj (s), j = 1, . . . , N .

(3.18)
To finish the proof of Theorem 3.2 it remains to observe that Proposition 3.1 implies

lim
δ→0

τδ = ∞

with probability one.

Remark 3.7 An alternative way to derive the system of SDEs for the components of
Y N is to use [29, Chapter 5, Proposition 4.6]. We will employ this strategy in Sect. 5.3
due to the lack of a straightforward generalization of Lemma 3.6 to the multilevel
setting.

3.4 Zero initial condition

A refinement of the proof of Theorem 3.2 involving Proposition 2.9 allows us to deal
with the limiting process which is started from 0 ∈ WN .

Corollary 3.8 Fix θ ≥ 1. In the notations of Theorem 3.2 and assuming the conver-
gence of the initial conditions to 0 ∈ WN , the process X N

disc converges in the limit

123



Multilevel Dyson Brownian motions via Jack polynomials 443

ε ↓ 0 in law on DN to the β = 2θ–Dyson Brownian motion started from 0 ∈ WN ,
that is, to the unique strong solution of (3.1) with β = 2θ and Y (0) = 0 ∈ WN .

Proof Using Proposition 2.9 and arguing as in the proof of Theorem 3.2 one obtains
the convergence of the rescaled versions of the process XN

disc on every time interval
[t,∞) with t > 0 to the solution of (3.1) starting according to the initial distribution
of (2.10). Since (2.10) converges to the delta–function at the origin as t → 0, we
identify the limit points of the rescaled versions of XN

disc with the solution of (3.1)

started from 0 ∈ WN . ��

4 Existence and uniqueness for multilevel DBM

The aim of this section is to prove an analogue of Proposition3.1 for the multilevel
Dyson Brownian motion.

Theorem 4.1 For any N ∈ N and θ > 1 (that is, β = 2θ > 2), and for any initial
condition X (0) in the interior of GN , the system of SDEs

dXk
i (t) =

(∑

m �=i

1 − θ

Xk
i (t) − Xk

m(t)
−

k−1∑

m=1

1 − θ

Xk
i (t) − Xk−1

m (t)

)
dt + dWk

i , 1 ≤ i ≤ k ≤ N

(4.1)

with Wk
i , 1 ≤ i ≤ k ≤ N being independent standard Brownian motions, possesses a

unique weak solution taking values in the Gelfand–Tsetlin cone GN .

Proof Given a stochastic process X (t) taking values in GN , for any fixed δ > 0, let
τ̂δ(X) denote

τ̂δ[X ] = inf{t ≥ 0 : |Xk
i (t) − Xk′

i ′ (t)| ≤ δ, |k − k′| ≤ 1},

that is, the first time when two particles on adjacent levels are at the distance of at most
δ. Further, we define the stopping time τδ[X ] as the first time when three particles on
adjacent levels are at the distance of at most δ:

τδ[X ] = inf

{
t ≥ 0 : |Xk

i (t) − Xk′
i ′ (t)| ≤ δ, |Xk

i (t) − Xk′′
i ′′ (t)| ≤ δ,

for (k′, i ′) �= (k′′, i ′′) such that |k − k′| = |k − k′′| = 1

}
.

Figure2 shows schematically the six possible triplets of nearby particles at time τδ .

The following proposition will be proved in Sect. 4.1.
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A B C D E F

Fig. 2 Six possible triplets of nearby particles: one of these situations occurs at time τδ

Proposition 4.2 For any N ∈ N, δ > 0 and θ > 1 (that is, β = 2θ > 2), and for any
initial condition X (0) in the interior of GN the system of stochastic integral equations

Xk
i (t) − Xk

i (0) =
∫ t∧τδ[X ]

0

⎛

⎝
∑

m �=i

1 − θ

Xk
i (s) − Xk

m(s)
−

k−1∑

m=1

1 − θ

Xk
i (t) − Xk−1

m (t)

⎞

⎠ ds

+Wk
i (t ∧ τδ[X ]), 1 ≤ i ≤ k ≤ N , (4.2)

with Wk
i , 1 ≤ i ≤ k ≤ N being independent standard Brownian motions, possesses a

unique weak solution.

In view of Proposition 4.2 we can consider a product probability space which
supports independent weak solutions of (4.2) for all δ > 0 and all initial conditions
in the interior of GN . Choosing a sequence δl , l ∈ N decreasing to zero, we can define
on this space a process X such that the law of X (t ∧ τδ1 [X ]), t ≥ 0 coincides with
the law of the solution of (4.2) with δ = δ1 and initial condition X (0), the law of
X ((τδ1 [X ] + t) ∧ τδ2 [X ]), t ≥ 0 is given by the law of the solution of (4.2) with
δ = δ2 and initial condition X (τδ1[X ]) etc. The uniqueness part of Proposition 4.2 now
shows that, for each l ∈ N, the law of X (t ∧ τδl [X ]), t ≥ 0 is that of the weak solution
of (4.2) with δ = δl . Since the paths of X are continuous by construction and hence
liml→∞ τδl [X ] = τ0[X ], we have constructed a weak solution of the system

Xk
i (t) − Xk

i (0) =
∫ t∧τ0[X ]

0

⎛

⎝
∑

m �=i

1 − θ

Xk
i (s) − Xk

m(s)
−

k−1∑

m=1

1 − θ

Xk
i (t) − Xk−1

m (t)

⎞

⎠ ds

+Wk
i (t ∧ τ0[X ]), 1 ≤ i ≤ k ≤ N (4.3)

withWk
i , 1 ≤ i ≤ k ≤ N being independent standard Brownian motions as before. In

addition,we note that the lawof the solution to (4.3) is uniquely determined. Indeed, for
any δ > 0, the process X stopped at time τδ would give a solution to (4.2). Uniqueness
of the latter for any δ > 0 now readily implies the uniqueness of the weak solution to
(4.3). At this point, Theorem 4.1 is a consequence of the following statement which
will be proved in Sect. 4.2.

Proposition 4.3 Suppose that X (0) lies in the interior of the cone GN and let X be a
solution to (4.3).
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Fig. 3 A pair-partition with
N = 3, two pairs and two
singletons

(a) If θ > 1, then almost surely τ0[X ] = ∞.

(b) If θ ≥ 2, then almost surely τ̂0[X ] = ∞.

4.1 Proof of Proposition 4.2

Our proof of Proposition 4.2 is based on a Girsanov change of measure that will
dramatically simplify the SDE in consideration. We refer the reader to [29, Section
3.5] and [29, Section 5.3] for general information about Girsanov’s theorem and weak
solutions of SDEs.

We start with the uniqueness part. Fix N ∈ {1, 2, . . .}, θ ≥ 1, δ > 0, and let X be
a solution of (4.2). Let I denote the set of N (N + 1)/2 pairs (k, i), k = 1, . . . , N ,
i = 1, . . . , k which represent different coordinates (particles) in the process X . We
will subdivide I into disjoint singletons and pairs of neighboring particles, that is, pairs
of the form ((k, i), (k − 1, i)) or ((k, i), (k − 1, i − 1)). We call any such subdivision
a pair-partition of I. An example is shown in Fig. 3.

Lemma 4.4 There exists a sequence of stopping times 0 = σ0 ≤ σ1 ≤ σ2 ≤ · · · ≤
τδ[X ] and (random) pair–partitions A1, A2, . . . such that

• for any n = 1, 2, . . . , any σn−1 ≤ t < σn, any two pairs (k, i), (k′, i ′), 1 ≤ i ≤
k ≤ N, 1 ≤ i ′ ≤ k′ ≤ N, |k − k′| ≤ 1, we have |Xk

i (t) − Xk′
i ′ (t)| ≥ δ/2 unless

the pair ((k, i), (k′, i ′)) is one of the pairs of the pair-partition An, and
• for any n = 1, 2, . . . , either σn = τδ or |Xk

i (σn+1) − Xk
i (σn)| ≥ δ/2 for some

(k, i).

Proof Define the (random) sets Bk
i , Dk

i by setting

Bk
i =

{
0 ≤ t ≤ τδ[X ] | |Xk

i (t) − Xk−1
i (t)| ≤ δ

}
,

Dk
i =

{
0 ≤ t ≤ τδ[X ] | |Xk

i (t) − Xk−1
i−1 (t)| ≤ δ

}
.

Note that these sets are closed due to the continuity of the trajectories of X , which
in turn is a consequence of (4.2). Define A(t; δ) as a pair-partition such that pair
((k, i), (k−1, i)) belongs to A(t; δ) iff t ∈ Bk

i and pair ((k, i), (k−1, i −1)) belongs
to A(t; δ) iff t ∈ Dk

i . Define A(t, δ/2) similarly. The definition of τδ[X ] implies that
such pair-partitions A(t; δ/2) ⊂ A(t; δ) are well-defined for any 0 ≤ t ≤ τδ[X ].

Now, we define σn and An inductively. First, set σ0 = 0. Further, for n = 1, 2, . . .
let An = A(σn−1; δ) and set σn to be the minimal t satisfying τδ[X ] ≥ t ≥ σn−1 and
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such that A(t; δ/2) has a pair which A(σn−1; δ) does not have. Since the sets Bk
i , Dk

i
are closed, either such t exists or no new pairs are added after time σn−1 and up to
time τδ[X ]. In the latter case we set σn = τδ . ��

Next, we fix a T > 0, set In = [σn−1, σn), n = 1, 2, . . . and apply a Girsanov
change of measure (see e.g. [29, Theorem 5.1, Chapter 3] and note that Novikov’s
condition as in [29, Corollary 5.13, Chapter 3] is satisfied due to the boundedness of
the integrand in the stochastic exponential) with a density of the form

exp

⎛

⎝
∞∑

n=0

∑

1≤i≤k≤N

(∫ T

0
bki,n(t) 1In (t) dW

k
i (t) − 1

2

∫ T

0
(bki,n(t))

2 1In (t) dt
)⎞

⎠ , (4.4)

so that under the new measure P̃ for every fixed k, i , n and 0 ≤ t ≤ T :

Xk
i (t ∧ σn) − Xk

i (t ∧ σn−1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

t∧σn∫
t∧σn−1

(
dW̃ k

i − (1−θ) ds
Xk
i (s)−Xk−1

i−1 (s)

)
, if ((k, i), (k − 1, i − 1)) ∈ An,

t∧σn∫
t∧σn−1

(
dW̃ k

i − (1−θ)ds
Xk
i (s)−Xk−1

i (s)

)
, if ((k, i), (k − 1, i)) ∈ An,

t∧σn∫
t∧σn−1

dW̃ k
i , otherwise

(4.5)

where W̃ k
i , 1 ≤ i ≤ k ≤ N are independent standard Brownian motions under the

measure P̃ .We claim that the solution of the resulting systemof SDEs (4.5) is pathwise
unique on [0, limn→∞ σn) (that is, for any two strong solutions of (4.5) adapted to the
same Brownian filtration, the quantities limn→∞ σn for the two solutions will be the
same with probability one and the trajectories of the two solutions on [0, limn→∞ σn)

will be identical with probability one). Indeed, on each time interval σn−1 ≤ t ≤ σn the
system (4.5) splits into |An| non-interacting systems of SDEs each of which consists
of one equation

Xk
i (t ∧ σn) − Xk

i (t ∧ σn−1) =
t∧σn∫

t∧σn−1

dW̃ k
i , (4.6)

if (k, i) is a singleton in An , or of a system of two equations

(
Xk
i (t ∧ σn) − Xk−1

i ′ (t ∧ σn)
) − (

Xk
i (t ∧ σn−1) − Xk

i ′(t ∧ σn−1)
)

=
t∧σn∫

t∧σn−1

(
dW̃ k

i − dW̃ k−1
i ′

)

−
t∧σn∫

t∧σn−1

(1 − θ) ds

Xk
i (s) − Xk−1

i ′ (s)
, (4.7)
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Xk−1
i ′ (t ∧ σn) − Xk

i (t ∧ σn−1) =
t∧σn∫

t∧σn−1

dW̃ k
i , (4.8)

if ((k, i), (k − 1, i ′)) is a pair in An . Therefore, one can argue by induction over n
and, once pathwise uniqueness of the triplet ((X (t ∧ σn−1) : t ≥ 0), σn−1, An−1) is
established, appeal to the pathwise uniqueness for (4.6), (4.8) and (4.7) (the latter being
the equation for the Bessel process of dimension θ > 1, see [42, Section 1, Chapter
XI]) to deduce the pathwise uniqueness of the triplet ((X (t ∧ σn) : t ≥ 0), σn, An).

The SDEs in (4.5) also allow us to prove the following statement.

Lemma 4.5 The identity limn→∞ σn = τδ[X ] holds with probability one.
Proof It suffices to show that limn→∞ σn ∧ T = τδ[X ] ∧ T for any given T > 0.
Indeed, then

lim
n→∞ σn ≥ lim

T→∞ lim
n→∞ σn ∧ T = lim

T→∞ τδ[X ] ∧ T = τδ[X ]

and limn→∞ σn ≤ τδ[X ] holds by the definitions of the stopping times involved. If for
some nwe have τδ[X ]∧T = σn∧T , thenwe are done. Otherwise, σn < T for all n and
the definition in Lemma 4.4 shows that |Xk

i (σn+1) − Xk
i (σn)| ≥ δ/2 for some (k, i).

In addition, (4.5) yields that, under the measure P̃ , |Xk
i (σn+1) − Xk

i (σn)| is bounded
above by the sumof absolute values of the increments of atmost twoBrownianmotions
and one Bessel process in time (σn+1 − σn). Since the trajectories of such processes
are uniformly continuous on the compact interval [0, T ] with probability one, there
exist two constants c > 0 and p > 0 such that P̃(σn+1 −σn > c) > p. Consequently,
σn/c stochastically dominates a binomial random variable Bin(n, p). In view of the
law of large numbers for the latter, this is a contradiction to σn < T for all n. ��

Now, we make a Girsanov change of measure back to the original probability
measure and conclude that the joint law of X (t ∧ τδ ∧ T ), t ≥ 0, σn ∧ T and τδ ∧ T
under the original probability measure is determined by such law under the measure
P̃ (the justification for this conclusion can be found for example in the proof of [29,
Proposition 5.3.10]). Since the latter is uniquely defined (by the law of the solution to
(4.5)), so is the former. Finally, since T > 0 was arbitrary, we conclude that the joint
law of X (t ∧ τδ[X ]), t ≥ 0 and τδ[X ] is uniquely determined.

To construct aweak solution to (4.2) we start with a probability space (�,F ,P) that
supports a family of independent standard Brownian motions W̃ k

i , 1 ≤ i ≤ k ≤ N .
In addition, we note (see [42, Section XI] for a proof) that to each pair of Brownian
motions of the form (W̃ k

i , W̃ k−1
i−1 ) or (W̃ k

i , W̃ k−1
i ) and all initial conditions we can

associate the unique strong solutions of the SDEs

dRk,−
i (t) = θ − 1

Rk,−
i (t)

dt + dW̃ k
i (t) − dW̃ k−1

i−1 (t), (4.9)

dRk,+
i (t) = θ − 1

Rk,+
i (t)

dt + dW̃ k
i (t) − dW̃ k−1

i (t), (4.10)

defined on the same probability space.
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We will now construct an N (N + 1)/2-dimensional process X (t), t ≥ 0, stopping
times τδ , σn , n = 0, 1, 2, . . . and pair-partitions An , n = 0, 1, 2, . . . which satisfy the
conditions of Lemma 4.4 and the system of equations (4.5).

The construction proceeds for each ω ∈ � independently, and is inductive. If the
initial condition X (0) is such that τδ[X ] = 0, then there is nothing to prove. Otherwise,
we set σ0 = 0 and A1 = A(0; δ) (see the proof of Lemma 4.4 for the definition of
A(t; δ)). Next, we define X̂ as the unique strong solution of

X̂ k
i (t) − X̂ k

i (0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

t∫

0

(
dW̃ k

i − (1−θ) ds
X̂k
i (s)−X̂ k−1

i−1 (s)

)
, if ((k, i), (k − 1, i − 1)) ∈ A1,

t∫

0

(
dW̃ k

i − (1−θ)ds
X̂k
i (s)−X̂ k−1

i (s)

)
, if ((k, i), (k − 1, i)) ∈ A1,

t∫

0
dW̃ k

i , otherwise,

(4.11)
with initial condition X̂(0) = X (0).

Now, we can define σ1 as in Lemma 4.4, but with X̂(t) instead of X (t). After
this, we set X (t) to be equal to X̂(t) on the time interval [0, σ1]. We further define
A2 = A(σ1; δ) and repeat the above procedure to define X (t) on the time interval
[σ1, σ2]. Iterating this process we can define X (t) up to time τδ[X ] thanks to Lemma
4.5. We extend it to all t ≥ 0 by setting Xk

i (t) = Xk
i (τδ[X ]) for t > τδ[X ].

Next, we apply the Girsanov Theorem as in the uniqueness part to conclude that,
for each T > 0, there exists a probability measureQT which is absolutely continuous
with respect to P and such that the representation

Xk
i (t ∧ T )−Xk

i (0) =
∫ t∧T∧τδ[X ]

0

⎛

⎝
∑

m �=i

1 − θ

Xk
i (s)−Xk

m(s)
−

k−1∑

m=1

1 − θ

Xk
i (s)−Xk−1

m (s)

⎞

⎠ ds

+Wk
i (t ∧ T ∧ τδ[X ]), 1 ≤ i ≤ k ≤ N

holds with Wk
i , 1 ≤ i ≤ k ≤ N being independent standard Brownian motions under

QT .
Finally, replacing T by a sequence Tn ↑ ∞ and using the Kolmogorov Exten-

sion Theorem (see e.g. [28, Theorem 6.16] and note that the consistency condition is
satisfied due to the uniqueness of the solution to (4.2)), we deduce the existence of
processes Xk

i , 1 ≤ i ≤ k ≤ N defined on a suitable probability space which solve
(4.2).

4.2 Proof of Proposition 4.3

We start with a version of Feller’s test for explosions that will be used below (see e.g.
[29, Section 5.5.C] and the references therein for related results).
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Lemma 4.6 Let Z be a one-dimensional continuous semimartingale satisfying
Z(0) > 0 and

∀ 0 ≤ t1 < t2 : Z(t2) − Z(t1) = b(t2 − t1) + M(t2) − M(t1) (4.12)

with a constant b > 0 and a local martingale M. If the quadratic variation of M
satisfies

∀ 0 ≤ t1 < t2 : 〈M〉 (t2) − 〈M〉 (t1) ≤ 2b
∫ t2

t1
Z(t) dt, (4.13)

then the process Z does not reach zero in finite time with probability one.

Proof We fix two constants 0 < r1 < Z(0) < R1 < ∞ and let τr1,R1 be the first time
that Z reaches r1 or R1. Next, we apply Itô’s formula (see e.g. [29, Section 3.3.A]) to
obtain

ln Z(t ∧ τr1,R1 ∧ ζ ) − ln Z(0) =
∫ t∧τr1,R1∧ζ

0

(
b ds

Z(s)
− d〈M〉(s)

2 Z(s)2

)

+
∫ t∧τr1,R1∧ζ

0

dM(s)

Z(s)
(4.14)

for any stopping time ζ . By (4.13), the first integral in (4.14) takes non-negative values.
Hence, picking a localizing sequence of stopping times ζ = ζm for the localmartingale
given by the second integral in (4.14), taking the expectation in (4.14) and passing to
the limit m → ∞, we obtain

E
[
ln Z(t ∧ τr1,R1)

] ≥ ln Z(0).

Now, Fatou’s Lemma and Z(t ∧ τr1,R1) ≤ R1 yield the chain of estimates

ln Z(0) ≤ E

[
lim sup
t→∞

ln Z(t ∧ τr1,R1)

]
≤ pr1 ln r1 + (1 − pr1) ln R1

where pr1 = P(lim supt→∞ ln Z(t ∧ τr1,R1) = r1). Consequently,

pr1 ≤ ln R1 − ln Z(0)

ln R1 − ln r1
.

The lemma now follows by taking the limit r1 ↓ 0. ��
We will now show that τ0[X ] = ∞ for the solution of (4.2) with initial condition

X (0) such that τ0[X ] > 0 (in particular, this includes the case that X (0) belongs to
the interior of GN ). Recall that τ0 was defined as the first time at which one of the
events in Fig. 2 with δ = 0 occurs. We will show that neither of the cases A − F in
Fig. 2 can occur in finite time. We will argue by induction over k to prove that none
of these events can happen on the first k levels for k = 1, 2, . . . , N .
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Fig. 4 Decoupling of the
particles Xk

i , X
k
i+1, X

k−1
i

First, we focus on the cases A and B.

Lemma 4.7 An event of the form Xk
i (t) = Xk

i+1(t) cannot occur in finite time without
one of the events

Xk−1
i (t) − Xk−2

i−1 (t) = 0, Xk−2
i (t) − Xk−1

i (t) = 0 (4.15)

occurring at the same time.

Proof If the statement of the lemmawas not true, then the continuity of the paths of the
particles would allow us to find stopping times σ , σ ′ similar to the ones introduced in
Sect. 4.1 and a real number κ > 0 such that σ < σ ′ with probability one, the spacings
in (4.15) are at least κ during the time interval [σ, σ ′] and the event Xk

i (t) = Xk
i+1(t)

occurs for thefirst time at timeσ ′.Moreover, the interlacing condition and the induction
hypothesis imply together that [σ, σ ′] and κ can be chosen such that the spacings

Xk
i − Xk−1

i−1 , Xk−1
i+1 − Xk

i+1

do not fall below κ on [σ, σ ′] (otherwise at least one of the events Xk−1
i−1 (t) = Xk−1

i (t)

or Xk−1
i (t) = Xk−1

i+1 (t)would have occurred at time σ ′ in contradiction to the induction
hypothesis). The described inequalities are shown in Fig. 4.

Now, making a Girsanov change of measure similar to the one in Sect. 4.1, we
can decouple the particles Xk

i , X
k
i+1, X

k−1
i from the rest of the particle system, thus

reducing their dynamics on the time interval [σ, σ ′] to the two-level dynamics:

Xk
i (t ∧ σ ′) − Xk

i (t ∧ σ) =
∫ t∧σ ′

t∧σ

(
dW̃ k

i + (1 − θ) ds

Xk
i (s) − Xk

i+1(s)
− (1 − θ) ds

Xk
i (s) − Xk−1

i (s)

)
,

Xk
i+1(t ∧ σ ′) − Xk

i+1(t ∧ σ) =
∫ t∧σ ′

t∧σ

(
dW̃ k

i+1 + (1 − θ) ds

Xk
i+1(s) − Xk

i (s)
− (1 − θ) ds

Xk
i+1(s) − Xk−1

i (s)

)
,

Xk−1
i (t ∧ σ ′) − Xk−1

i (t ∧ σ) =
∫ t∧σ ′

t∧σ

dW̃ k−1
i ,
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with W̃ k
i , W̃

k
i+1, W̃

k−1
i being standard Brownian motions under the new probability

measure. Next, we note that the process Xk
i+1 − Xk

i hits zero if and only if the process

Z = 1

2

(
(Xk−1

i − Xk
i )

2 + (Xk
i+1 − Xk−1

i )2
)

(4.16)

hits zero and in this case both events occur at the same time. Moreover, applying Itô’s
formula (see e.g. [29, Section 3.3.A]) and simplifying the result we obtain

Z(t ∧ σ ′) − Z(t ∧ σ) =
∫ t∧σ ′

t∧σ

(
(1 + θ) ds + (Xk−1

i − Xk
i ) d(W̃

k−1
i − W̃ k

i )

+ (Xk
i+1 − Xk−1

i ) d(W̃ k
i+1 − W̃ k−1

i )
)

=:
∫ t∧σ ′

t∧σ

(
(1 + θ) ds + dM

)

where M is a local martingale whose quadratic variation process satisfies

〈M〉(t ∧ σ ′) − 〈M〉(t ∧ σ) =
∫ t∧σ ′

t∧σ

(
2 (Xk−1

i − Xk
i )

2 + 2 (Xk
i+1 − Xk−1

i )2

−(Xk−1
i − Xk

i )(X
k
i+1 − Xk−1

i )
)
ds, t ≥ 0.

We can now define the (random) time change

s(t) = inf

{
s ≥ 0 :

∫ s∧σ ′

s∧σ

(1 + θ) du = t

}
, 0 ≤ t ≤

∫ σ ′

σ

(1 + θ) du

and rewrite the stochastic integral equation for Z as

Z(s(t2)) − Z(s(t1)) = (t2 − t1) + M(s(t2)) − M(s(t1)), 0 ≤ t1 ≤ t2 ≤
∫ σ ′

σ
(1 + θ) du.

A standard application of the Optional Sampling Theorem (see e.g. the proof of [29,
Theorem 4.6, Chapter 3] for a similar argument) shows that the processM(s(t)), t ≥ 0
is a local martingale in its natural filtration. In addition,

〈M〉(s(t2)) − 〈M〉(s(t1)) ≤
∫ t2

t1

2 (Xk−1
i (s(t)) − Xk

i (s(t)))
2 + 2 (Xk

i+1(s(t)) − Xk−1
i (s(t)))2

1 + θ
dt

≤ 2
∫ t2

t1
Z(s(t)) dt, 0 ≤ t1 ≤ t2 ≤

∫ σ ′

σ

(1 + θ) du.

It follows that the process

Z̃(t) =
{
Z(s(t)) if t ∈ [

0,
∫ σ ′
σ

(1 + θ) du
]

Z
(
s
( ∫ σ ′

σ
(1 + θ) du

)) + (
t − ∫ σ ′

σ
(1 + θ) du

)
if t ∈ ( ∫ σ ′

σ
(1 + θ) du,∞)
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falls into the framework of Lemma 4.6. Consequently, the original process Z(t), t ≥ 0
does not reach zero on the time interval [σ, σ ′]with probability one. Using Girsanov’s
Theorem again (now to go back to the original probability measure) we conclude that
Xk
i+1 − Xk

i does not hit zero on [σ, σ ′] under the original probability measure, which
is the desired contradiction. ��

Next, we study the events C − F in Fig. 2. All of them can be dealt in exactly the
same manner (in particular, using a Lyapunov function of the same form) and we will
only show the following:

Lemma 4.8 The event

Xk
i (t) = Xk−1

i (t) = Xk−2
i (t) (4.17)

cannot occur in finite time.

Proof To show the non-occurrence of the event in (4.17), we again argue by induc-
tion over k and by contradiction. Assuming that the event in (4.17) occurs in finite
time, we may invoke the induction hypothesis and Lemma 4.7 to find a random time
interval [σ, σ ′] with σ , σ ′ being stopping times and a real number κ > 0 such that
the event in (4.17) occurs for the first time at σ ′, and either Xk

i (σ
′) = Xk

i+1(σ
′) =

Xk−1
i (σ ′) = Xk−2

i (σ ′) and the spacings Xk
i − Xk−1

i−1 , X
k−1
i − Xk−2

i−1 , X
k−2
i − Xk−3

i−1 ,

Xk−3
i − Xk−2

i , Xk−1
i+1 − Xk−2

i , Xk−1
i+1 − Xk

i+1 are bounded below by κ on [σ, σ ′];
or Xk

i (σ
′) = Xk−1

i (σ ′) = Xk−2
i (σ ′) and the spacings Xk

i − Xk−1
i−1 , X

k−1
i − Xk−2

i−1 ,

Xk−2
i − Xk−3

i−1 , X
k−3
i − Xk−2

i , Xk−1
i+1 − Xk−2

i , Xk
i+1 − Xk−1

i are bounded below by κ on
[σ, σ ′]. Figure5 shows schematic illustrations of these two cases. In the first case, we
canmake aGirsanov change ofmeasure such that under the newmeasure the evolution
of the particles Xk

i , X
k
i+1, X

k−1
i , Xk−2

i decouples from the rest of the particle system

Fig. 5 Decoupling of the particles Xk
i , X

k
i+1, X

k−1
i , Xk−2

i (left panel) and the particles Xk
i , X

k−1
i , Xk−2

i
(right panel)
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on the time interval [σ, σ ′]. Similarly, in the second case, we can apply a Girsanov
change of measure such that under the new measure the dynamics of the particles Xk

i ,
Xk−1
i , Xk−2

i decouples from the dynamics of the rest of the particle configuration.
We only treat the first of the two cases in detail (the second case can be dealt

with by proceeding as below with the same definitions for R, S, and Z redefined to
1
2 (R

2 + S2 + 2 R S)). In the first case, the decoupled particles satisfy under the new
measure:

Xk
i (t ∧ σ ′) − Xk

i (t ∧ σ) =
∫ t∧σ ′

t∧σ

(
dW̃ k

i + (1 − θ) ds

Xk
i (s) − Xk

i+1(s)
− (1 − θ) ds

Xk
i (s) − Xk−1

i (s)

)
,

Xk
i+1(t ∧ σ ′) − Xk

i+1(t ∧ σ) =
∫ t∧σ ′

t∧σ

(
dW̃ k

i+1 + (1 − θ) ds

Xk
i+1(s) − Xk

i (s)
− (1 − θ) ds

Xk
i+1(s) − Xk−1

i (s)

)
,

Xk−1
i (t ∧ σ ′) − Xk−1

i (t ∧ σ) =
∫ t∧σ ′

t∧σ

(
dW̃ k−1

i − (1 − θ) ds

Xk−1
i (s) − Xk−2

i (s)

)
,

Xk−2
i (t ∧ σ ′) − Xk−2

i (t ∧ σ) =
∫ t∧σ ′

t∧σ

dW̃ k−2
i

where W̃ k
i , W̃ k

i+1, W̃
k−1
i , W̃ k−2

i are independent standard Brownian motions under

the new measure. Next, we set R := Xk−1
i − Xk

i , S := Xk−2
i − Xk−1

i , U := Xk
i+1 −

Xk−1
i , B1 := W̃ k−1

i − W̃ k
i , B2 := W̃ k−2

i − W̃ k−1
i , B3 := W̃ k

i+1 − W̃ k−1
i and define

Z := 1
2 (R

2 + S2 +U 2 +2 RU ). Applying Itô’s formula (see e.g. [29, Section 3.3.A])
and simplifying, we obtain

Z(t ∧ σ ′) − Z(t ∧ σ) =
∫ t∧σ ′

t∧σ

(
4 + θ + (θ − 1)

(
U (s)

R(s)
+ R(s)

U (s)

))
ds

+ (R +U )d(B1 + B3) + SdB2 =:
∫ t∧σ ′

t∧σ

(
D(s) ds + dM

)

where M is a local martingale whose quadratic variation process satisfies

〈M〉(t ∧ σ ′) − 〈M〉(t ∧ σ) =
∫ t∧σ ′

t∧σ

2 (R2 + S2 +U 2 + 2 RU ) ds

=
∫ t∧σ ′

t∧σ

4 Z ds, t ≥ 0.

Next, we introduce the time change

s(t) = inf

{
s ≥ 0 :

∫ t∧σ ′

t∧σ

D(u) du = t

}
, 0 ≤ t ≤

∫ σ ′

σ

D(u) du

and rewrite the latter stochastic integral equation for Z as
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Z(s(t2)) − Z(s(t1)) = (t2 − t1) + M(s(t2)) − M(s(t1)), 0 ≤ t1 ≤ t2 ≤
∫ σ ′

σ
D(u) du.

At this point, a routine application of the Optional Sampling Theorem (see e.g. the
proof of [29, Theorem4.6, Chapter 3] for an argument of this type) shows thatM(s(t)),
t ≥ 0 is a local martingale in its natural filtration. In addition,

〈M〉(s(t2)) − 〈M〉(s(t1)) =
∫ t2

t1

4 Z(s(t))

D(s(t))
dt ≤ 2

∫ t2

t1
Z(s(t)) dt, 0 ≤ t1 ≤ t2 ≤

∫ σ ′

σ

D(u) du.

Hence, the process

Z̃(t) =
{
Z(s(t)) if t ∈ [

0,
∫ σ ′
σ

D(u) du
]

Z
(
s
( ∫ σ ′

σ
D(u) du

)) + (
t − ∫ σ ′

σ
D(u) du

)
if t ∈ ( ∫ σ ′

σ
D(u) du,∞)

falls into the setting of Lemma 4.6. The result of that lemma implies that the original
process Z(t), t ≥ 0 does not hit zero on the time interval [σ, σ ′] with probability one.
Changing themeasure back to the original probabilitymeasure by a suitable application
of Girsanov’s Theoremwe conclude that the same is true under the original probability
measure. This is the desired contradiction. ��

Putting together Lemmas 4.7 and 4.8 we deduce that τ0[X ] = ∞ for all θ > 1.
Finally, for θ ≥ 2 and any T > 0, we have shown that the law of our process

up to time τδ[X ] ∧ T is absolutely continuous with respect to the law of a process
comprised of a number of Brownian motions and Bessel processes of dimension θ .
The definition of the latter implies that two of its components can collide only if the
corresponding Bessel process hits zero. However, it is well-known that the Bessel
process of dimension θ ≥ 2 does not reach zero with probability one (see e.g. [42,
Chapter XI, Section 1]). It follows that τ̂δ[X ] ≥ limT→∞ τδ[X ]∧T = τδ[X ]. Passing
to the limit δ ↓ 0, we conclude that τ̂0[X ] = ∞.

5 Convergence to multilevel Dyson Brownian Motion

In this section we study the diffusive scaling limit of the multilevel process Xmulti
disc of

Definition 2.27. We start by formulating our main results.
We fix θ > 0, let ε > 0 be a small parameter and define the N (N+1)

2 -dimensional
stochastic process Ymu

ε = ((Ymu
ε )ki : 1 ≤ i ≤ k ≤ N ) by

(Ymu
ε )ki (t) = ε1/2

(
(Xmulti

disc )kN+1−i

( t

θε

)
− t

ε

)
, t ≥ 0, 1 ≤ i ≤ k ≤ N

where (Xmulti
disc )ki , 1 ≤ i ≤ k ≤ N are the coordinate processes of Xmulti

disc . Here, in
contrast to Definition 2.27, we allow Xmulti

disc (or, equivalently, Ymu
ε ) to start from an

arbitrary initial condition, in particular, one that depends on ε. In addition, we use the
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notation DN (N+1)/2 = D([0,∞),RN (N+1)/2) for the space of right-continuous paths
with left limits taking values in RN (N+1)/2, endowed with the Skorokhod topology.

Theorem 5.1 Let θ > 0 and suppose that the family of initial conditions Ymu
ε (0),

ε ∈ (0, 1) is tight onRN (N+1)/2. Then the family Ymu
ε , ε ∈ (0, 1) is tight on DN (N+1)/2.

We defer the proof of Theorem 5.1 to Sect. 5.2.
Next, we let Ymu be an arbitrary limit point as ε ↓ 0 of the tight family Ymu

ε ,
ε ∈ (0, 1). For θ ≥ 2, we can uniquely identify the limit point with the solution of
(4.1), thus, obtaining the diffusive scaling limit. For θ ∈ [ 1

2 , 2
)
, we give a partial result

towards such an identification.

Theorem 5.2 Let θ ≥ 2 (that is, β = 2θ ≥ 4) and suppose that the initial conditions
Ymu

ε (0), ε ∈ (0, 1) converge as ε ↓ 0 in distribution to a limit Ymu(0) which takes

values in the interior of the Gelfand–Tsetlin cone GN with probability one. Then the
family Ymu

ε , ε ∈ (0, 1) converges as ε ↓ 0 in distribution in DN (N+1)/2 to the unique
solution of the system of SDEs

d(Ymu)ki =
⎛

⎝
∑

m �=i

1 − θ

(Ymu)ki − (Ymu)km
−

k−1∑

m=1

1 − θ

(Ymu)ki − (Ymu)k−1
m

⎞

⎠ dt

+ dWk
i , 1 ≤ i ≤ k ≤ N

started from Ymu(0) and where Wk
i , 1 ≤ i ≤ k ≤ N are independent standard

Brownian motions.

We give the proof of Theorem 5.2 in Sect. 5.3. We expect Theorem 5.2 to be valid
for all θ > 1, but we are not able to prove this generalization.

Theorem 5.3 Suppose that the initial conditions Ymu
ε (0), ε ∈ (0, 1) converge as ε ↓ 0

in distribution to a limit Ymu(0) which takes values in the interior of the Gelfand–
Tsetlin cone GN with probability one. In addition, suppose that the distribution of
Ymu(0) is θ -Gibbs in the sense of Definition 2.15.

(a) If θ ≥ 1
2 (that is, β = 2θ ≥ 1), then the restriction of Ymu to level N , that is the

process ((Ymu)N1 , . . . , (Ymu)NN ), is a (2θ)-Dyson Brownian motion:

d(Ymu)Ni (t) =
∑

m �=i

θ

(Ymu)Ni (t) − (Ymu)Nm (t)
dt + dWi , 1 ≤ i ≤ N

with Wk
i , 1 ≤ i ≤ k ≤ N being independent standard Brownian motions.

(b) For any θ > 0 and any fixed t > 0, the distribution of Ymu(t) is θ -Gibbs.

We expect the first part of Theorem 5.3 to be valid for all θ > 0, but we are currently
not able to prove this.

Proof of Theorem 5.3 The theorem follows from a combination of Propositions 2.29,
2.16 and Theorem 3.2. ��

123



456 V. Gorin, M. Shkolnikov

Corollary 5.4 Take any θ > 0 and suppose that Ymu
ε (0) = 0 ∈ R

N (N+1)/2, ε ∈
(0, 1). Then, for any t ≥ 0, the distribution of Ymu(t) is given by the Hermite β = 2θ
corners process of variance t (see Definition 1.1).

Remark 5.5 Since for any t > 0, the Hermite β = 2θ corners process of variance t
is supported by the interior of the Gelfand–Tsetlin cone GN , it follows that Theorem
5.2 (for θ ≥ 2) can be applied in this case as well. Consequently, for θ ≥ 2, the
process Ymu started from the zero initial condition is a diffusion that combines Dyson
Brownian motions and corners processes into a single picture as desired.

Proof of Corollary 5.4 The corollary is a consequence of Proposition 2.29 and Corol-
lary 2.17. ��

The rest of this section is devoted to the proofs of Theorems 5.1 and 5.2. Our proof
strategy is similar to that in the proof of Theorem 3.2: In Sect. 5.1 we analyze the
asymptotic behavior of the jump rates of the processes Ymu

ε , ε ∈ (0, 1), in Sect. 5.2 we
use this asymptotics to prove that the family Ymu

ε , ε ∈ (0, 1) is tight, and in Sect. 5.3
we deduce the SDE (4.1) for subsequential limits as ε ↓ 0 of this family when θ ≥ 2.
We omit the details in the parts that are parallel to the arguments of Sect. 3.

5.1 Step 1: Rates

We start by noting that, for each ε ∈ (0, 1), Ymu
ε is a continuous time Markov process

with state space GN , a (constant) drift of −ε−1/2 in each coordinate and jump rates

qmu
ε (y, y′, t) = 1

θε
q t

θ
ε−1+ŷ ε−1/2 → t

θ
ε−1+ŷ′ ε−1/2

where ŷ, ŷ′ are the vectors obtained from y, y′ by reordering the coordinates on each
level in decreasing order, and intensities q are given by (2.23). Write y′ ≈ε y for
vectors y, y′ ∈ GN such that y′ can be obtained from y by increasing one coordinate
(say, yki ) by ε1/2, and, if necessary, by increasing other coordinates as well to preserve
the interlacing condition (in the sense of the push interaction as explained after (2.23)).
Clearly, qmu

ε (y, y′, t) = 0 unless y′ ≈ε y. As we will see, in fact, qmu
ε (y, y′, t) does

not depend on t .

Lemma 5.6 For any sequence of vectors y′ ≈ε y and any fixed k ∈ {1, . . . , N },
i ∈ {1, 2, . . . , k} as above one has the following ε ↓ 0 asymptotics:

qmu
ε (y, y′, t) = ε−1 + ε−1/2

( ∑

m �=i

1 − θ

yki − ykm
−

k−1∑

m=1

1 − θ

yki − yk−1
m

)
+ O(1) (5.1)

with a uniform O(1) remainder on compact subsets of the open Gelfand–Tsetlin cone
GN .
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Proof We write ŷki for ykk+1−i and (ŷ′)ki for (y′)kk+1−i . Using (2.23), Proposition 2.4
and arguing as in Lemma 3.4 we rewrite qmu

ε (y, y′, t) as

ε−1
i−1∏

l=1

(ŷkl − ŷki ) ε−1/2 − 1 + θ (i − l + 1)

(ŷkl − ŷki ) ε−1/2 − 1 + θ (i − l)
· (ŷkl − ŷki ) ε−1/2 + θ (i − l − 1)

(ŷkl − ŷki ) ε−1/2 + θ (i − l)

×
∏

1≤m≤n≤k−1

(
((ŷ′)k−1

m − (ŷ′)k−1
n ) ε−1/2 + θ (n − m) + θ

)
((ŷ′)k−1

n −(ŷ′)kn+1) ε−1/2

(
((ŷ′)k−1

m − (ŷ′)k−1
n ) ε−1/2 + θ (n − m) + 1

)
((ŷ′)k−1

n −(ŷ′)kn+1) ε−1/2

×
(
((ŷ′)km − (ŷ′)k−1

n ) ε−1/2 + θ (n − m) + 1
)
((ŷ′)k−1

n −(ŷ′)kn+1) ε−1/2

(
((ŷ′)km − (ŷ′)k−1

n ) ε−1/2 + θ (n − m) + θ
)
((ŷ′)k−1

n −(ŷ′)kn+1) ε−1/2

×
∏

1≤m≤n≤k−1

(
(yk−1

m − yk−1
n ) ε−1/2 + θ (n − m) + 1

)
(yk−1

n −ykn+1) ε−1/2

(
(yk−1

m − yk−1
n ) ε−1/2 + θ (n − m) + θ

)
(yk−1

n −ykn+1) ε−1/2

×
(
(ykm − yk−1

n ) ε−1/2 + θ (n − m) + θ
)
(yk−1

n −ykn+1) ε−1/2

(
(ykm − yk−1

n ) ε−1/2 + θ (n − m) + 1
)
(yk−1

n −ykn+1) ε−1/2

.

Using the fact that y and y′ differ only in one coordinate, we can simplify the latter
expression to

ε−1
i−1∏

m=1

(ŷkm − ŷki ) ε−1/2 − 1 + θ (i − m + 1)

(ŷkm − ŷki ) ε−1/2 − 1 + θ (i − m)

(ŷkm − ŷki ) ε−1/2 + θ (i − m − 1)

(ŷkm − ŷki ) ε−1/2 + θ (i − m)

×
i−1∏

m=1

(ŷk−1
m − ŷki ) ε−1/2 + θ (i − 1 − m)

(ŷk−1
m − ŷki ) ε−1/2 − 1 + θ (i − m)

k−1∏

n=i

(ŷki − ŷkn+1) ε−1/2 + θ (n − i) + 1

(ŷki − ŷk−1
n ) ε−1/2 + θ (n − i) + 1

×
i−1∏

m=1

(ŷkm − ŷki ) ε−1/2 + θ (i − m) − 1

(ŷkm − ŷki ) ε−1/2 + θ (i − 1 − m)

k−1∏

n=i

(ŷki − ŷk−1
n ) ε−1/2 + θ (n − i + 1)

(ŷki − ŷkn+1) ε−1/2 + θ (n − i + 1)

= ε−1
i−1∏

m=1

(ŷkm − ŷki ) ε−1/2 − 1 + θ (i − m + 1)

(ŷkm − ŷki ) ε−1/2 + θ (i − m)

× (ŷk−1
m − ŷki ) ε−1/2 + θ (i − 1 − m)

(ŷk−1
m − ŷki ) ε−1/2 − 1 + θ (i − m)

×
k−1∏

n=i

(ŷki − ŷkn+1) ε−1/2 + θ (n − i) + 1

(ŷki − ŷkn+1) ε−1/2 + θ (n − i + 1)

(ŷki − ŷk−1
n ) ε−1/2 + θ (n − i + 1)

(ŷki − ŷk−1
n ) ε−1/2 + θ (n − i) + 1

.
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Expanding the last expression into a Taylor series in terms of ε1/2 we get

ε−1 + ε−1/2

(
i−1∑

m=1

(
θ − 1

ŷkm − ŷki
+ 1 − θ

ŷk−1
m − ŷki

))

+
(
k−1∑

n=i

(
1 − θ

ŷki − ŷkn+1

+ θ − 1

ŷki − ŷk−1
n

))
+ O(1).

The lemma now readily follows. ��

5.2 Step 2: Tightness

We show next that the family Ymu
ε , ε ∈ (0, 1) is tight on DN (N+1)/2. To this end,

we aim to apply the necessary and sufficient conditions for tightness of [19, Corollary
3.7.4] which amount to showing that, for any fixed t ≥ 0, the randomvariables Ymu

ε (t),
ε ∈ (0, 1) are tight on RN (N+1)/2 and that, for every � > 0 and T > 0, there exists a
δ > 0 such that

lim sup
ε↓0

P

(
sup

0≤s<t≤T,t−s<δ

∣∣(Ymu
ε )ki (t) − (Ymu

ε )ki (s)
∣∣ > �

)
< �, 1 ≤ i ≤ k ≤ N .

We start by explaining how to deal with (Ymu
ε (t))+ (the vector of positive parts of

components of Ymu
ε (t)) and

sup
0≤s<t≤T,t−s<δ

(
(Ymu

ε )ki (t) − (Ymu
ε )ki (s)

)
, 1 ≤ i ≤ k ≤ N . (5.2)

We argue by induction over k. For k = 1, it is sufficient to observe that (Ymu
ε )11 is

a Poisson process with jump size ε1/2, jump rate ε−1 and drift −ε−1/2 and, hence,
converges to a standard Brownian motion in the limit ε ↓ 0. Therefore, the necessary
and sufficient conditions of [19, Corollary 3.7.4] hold for (Ymu

ε )11.
We now fix some k ≥ 2 and distinguish the cases 0 < θ ≤ 1 and θ > 1. In the first

case, we consider first i = k. It is easy to see from the formulas for the jump rates in
the proof of Lemma 5.6 that for 0 < θ < 1, whenever the spacing (Ymu

ε )kk − (Ymu
ε )k−1

k−1
exceeds�/3, the jump rate to the right of (Ymu

ε )kk is bounded above by ε−1. For θ = 1
the jump rate is equal to ε−1. Hence, arguing as in Sect. 3.2, we conclude that for
0 < θ ≤ 1, (Ymu

ε )kk can be coupled with a Poisson process with jump size ε1/2, jump
rate ε−1 and drift −ε−1/2 in such a way that, whenever (Ymu

ε )kk − (Ymu
ε )k−1

k−1 exceeds
�/3 and (Ymu

ε )kk has a jump to the right, the Poisson process jumps to the right as
well. Therefore, the convergence of such Poisson processes to a standard Brownian
motion and the necessary and sufficient conditions of [19, Corollary 3.7.4] for them
imply the corresponding conditions for ((Ymu

ε )kk(t))+ and the quantity in (5.2) with
i = k.

123



Multilevel Dyson Brownian motions via Jack polynomials 459

For i ∈ {1, 2, . . . , k − 1}, the quantity ((Ymu
ε )ki (t))+ can be bounded above by the

quantity ((Ymu
ε )k−1

i (t))+ and the latter satisfies the required condition by the induction
hypothesis. Moreover, the formula for the jump rates (5.1) reveals that, whenever
(Ymu

ε )ki − (Ymu
ε )k−1

i−1 and (Ymu
ε )k−1

i − (Ymu
ε )ki both exceed �/4, the jump rate to the

right of (Ymu
ε )ki is bounded above by

ε−1 + ε−1/2(1 − θ)

(Ymu
ε )k−1

i (t) − (Ymu
ε )ki (t)

+ O(1) ≤ ε−1 + 4 ε−1/2(1 − θ)/� + O(1).

(5.3)

Hence, (Ymu
ε )ki can be coupled with a Poisson process with jump size ε1/2, jump rate

given by the right-hand side of the latter inequality and drift −ε−1/2 in such a way
that, whenever (Ymu

ε )ki − (Ymu
ε )k−1

i−1 and (Ymu
ε )k−1

i − (Ymu
ε )ki both exceed �/4 and

(Ymu
ε )ki has a jump to the right, the Poisson process jumps to the right as well. Thus,

the convergence of such Poisson processes to Brownian motion with drift 4 (1−θ)/�

and the necessary and sufficient conditions of [19, Corollary 3.7.4] for them imply the
corresponding control on the quantities in (5.2).

In the case θ > 1, we first consider i = 1. From the formulas for the jump rates in
the proof of Lemma 5.6 it is not hard to see that the jump rate to the right of the process
(Ymu

ε )k1 is bounded above by ε−1. Therefore, it can be coupled with a Poisson process
with jump size ε1/2, jump rate ε−1 and drift −ε−1/2 in such a way that, whenever
(Ymu

ε )k1 has a jump to the right, the Poisson process jumps to the right as well. Thus, as
in Sect. 3.2, the convergence of such Poisson processes to a Brownian motion and the
necessary and sufficient conditions of [19, Corollary 3.7.4] for them give the desired
control on ((Ymu

ε )k1(t))+ and the quantity in (5.2) with i = 1.
For i ∈ {2, 3, . . . , k}, the formulas for the jump rates in the proof of Lemma 5.6

reveal that, whenever (Ymu
ε )ki − (Ymu

ε )k−1
i−1 exceeds �/3, the jump rate to the right of

(Ymu
ε )ki is bounded above by

ε−1− ε−1/2(1−θ)

(Ymu
ε )ki (t)−(Ymu

ε )k−1
i−1 (t)

+O(1)≤ε−1−3 ε−1/2(1−θ)/�+O(1). (5.4)

Hence, (Ymu
ε )ki can be coupled with a Poisson process with jump size ε1/2, jump rate

given by the right-hand side of the last inequality and drift −ε−1/2, so that, whenever
(Ymu

ε )ki − (Ymu
ε )k−1

i−1 exceeds �/3 and (Ymu
ε )ki has a jump to the right, the Poisson

process jumps to the right as well. Therefore, as in Sect. 3.2, the convergence of such
Poisson processes to Brownian motion with drift −3 (1 − θ)/� and the necessary
and sufficient conditions of [19, Corollary 3.7.4] for them yield the corresponding
conditions for ((Ymu

ε )ki (t))+ and the quantities in (5.2).
Finally, we note that the quantities (Ymu

ε (t))− (the vector of negative parts of com-
ponents of Ymu

ε (t)) and

sup
0≤s<t≤T,t−s<δ

−(
(Ymu

ε )ki (t) − (Ymu
ε )ki (s)

)
, 1 ≤ i ≤ k ≤ N
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can be analyzed in a similar manner (however, now by moving from the leftmost to
the rightmost particle on every level for 0 < θ ≤ 1 and vice versa for θ > 1). By
combining everything together and using [19, Corollary 3.7.4] we conclude that the
family Ymu

ε , ε ∈ (0, 1) is tight.
We also note that, since the maximal size of the jumps tends to zero as ε ↓ 0, any

limit point of the family Ymu
ε , ε ∈ (0, 1) as ε ↓ 0 must have continuous paths (see e.g.

[19, Theorem 3.10.2]).

5.3 Step 3: SDE for subsequential limits

Writing Ymu for an arbitrary limit point as ε ↓ 0 of the tight family Ymu
ε , ε ∈ (0, 1) as

before, our goal now is to prove that Ymu solves the SDE (4.1). We pick a sequence
of Ymu

ε which converges to Ymu in law, and by virtue of the Skorokhod Embedding
Theorem (see e.g. [18, Theorem 3.5.1]) may assume that all processes involved are
defined on the same probability space and that the convergence holds in the almost sure
sense. In the rest of this section all the limits ε ↓ 0 are taken along such a sequence.

Define Fmu as the set of all infinitely differentiable functions on GN with support
in a compact subset of GN . Further, set

Fmu
δ := {

f ∈ Fmu | f (x) = 0 whenever dist(x, ∂GN ) ≤ δ
}
,

where ∂GN stands for the boundary of GN and dist(x, ∂GN ) is the L∞ distance to the
boundary, i.e.

dist(x, ∂GN ) = inf
1≤i≤ j≤N ,

1≤i ′≤ j ′≤N ,

(i, j) �=(i ′, j ′)

|x j
i − x j ′

i ′ |.

Clearly Fmu = ⋃
δ>0 Fmu

δ .
In addition, for every test function f ∈ Fmu , define the process

M f (t) := f (Ymu(t)) − f (Ymu(0)) −
∑

1≤i≤k≤N

∫ t

0

1

2
fyki y

k
i
(Ymu(s)) ds

−
∑

1≤i≤k≤N

∫ t

0

( ∑

m �=i

1 − θ

(Ymu)ki (s) − (Ymu)km(s)

−
k−1∑

m=1

1 − θ

(Ymu)ki (s) − (Ymu)k−1
m (s)

)
fyki

(Ymu(s)) ds.

Our first aim is to show that each M f is a martingale. To this end, we fix an f ∈ Fmu

and consider the family of martingales
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M f
ε (t) := f (Ymu

ε (t)) − f (Ymu
ε (0)) +

∫ t

0

∑

1≤i≤k≤N

ε−1/2 fyki
(Ymu

ε (s)) ds

−
∫ t

0

∑

y′≈εYmu
ε (s)

qmu
ε (Ymu

ε (s), ŷ′, s)
(
f (y′) − f (Ymu

ε (s))
)
ds, ε > 0

where the notations are the same as in Sect. 5.1. Now, one can argue as in Sect. 3.3,
Step 3a to conclude that M f is a martingale, as the ε ↓ 0 limit of the martingales M f

ε

which can be bounded uniformly on every compact time interval.
Next, for each δ > 0 and K > 0, we define the stopping time

τ̂δ,K := inf
{
t ≥ 0 : dist(Ymu(t), ∂GN ) ≤ δ or |(Ymu)ki (t)| ≥ K for some (k, i)

}
.

Now, note that for every function GN → R of the form x �→ xki or x �→ xki x
k′
i ′ , there

is a function f ∈ Fmu which coincides with that function on

{x ∈ GN : dist(x, ∂GN ) ≥ δ, |xki | ≤ K for all (k, i)}.

Combining this observation, the Optional Sampling Theorem and the conclusion of
the preceeding paragraph we deduce that all processes of the two forms

M (k,i)(t) := (Ymu)ki (t ∧ τ̂δ,K ) − (Ymu)ki (0)

−
∫ t∧τ̂δ,K

0

⎛

⎝
∑

m �=i

1 − θ

(Ymu)ki (s) − (Ymu)km(s)
−

k−1∑

m=1

1 − θ

(Ymu)ki (s) − (Ymu)k−1
m (s)

⎞

⎠ ds,

M (k,i),(k′,i ′)(t) := (Ymu)ki (t ∧ τ̂δ,K )(Ymu)k
′

i ′ (t ∧ τ̂δ,K )

−(Ymu)ki (0)(Y
mu)k

′
i ′ (0) − 1{k=k′,i=i ′} · t ∧ τ̂δ,K

−
∫ t∧τ̂δ,K

0

⎛

⎝
∑

m �=i

(1 − θ)(Ymu)k
′

i ′ (s)

(Ymu)ki (s) − (Ymu)km(s)
−

k−1∑

m=1

(1 − θ)(Ymu)k
′

i ′ (s)

(Ymu)ki (s) − (Ymu)k−1
m (s)

⎞

⎠ ds

−
∫ t∧τ̂δ,K

0

⎛

⎝
∑

m �=i ′

(1 − θ)(Ymu)ki (s)

(Ymu)k
′

i ′ (s) − (Ymu)k
′

m(s)
−

k′−1∑

m=1

(1 − θ)(Ymu)ki (s)

(Ymu)k
′

i ′ (s) − (Ymu)k
′−1

m (s)

⎞

⎠ ds

are martingales. Now, the argument of [29, Chapter 5, Proposition 4.6] (only replacing
every occurrence of t by t∧τ̂δ,K there) yields thatYmu satisfies the systemof stochastic
integral equations

(Ymu)ki (t ∧ τ̂δ,K ) − (Ymu)ki (0)

=
∫ t∧τ̂δ,K

0

⎛

⎝
∑

m �=i

1 − θ

(Ymu)ki (s) − (Ymu)km(s)
−

k−1∑

m=1

1 − θ

(Ymu)ki (s) − (Ymu)k−1
m (s)

⎞

⎠ ds

+Wk
i (t ∧ τ̂δ,K ), 1 ≤ i ≤ k ≤ N
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where Wk
i , 1 ≤ i ≤ k ≤ N are independent standard Brownian motions, possibly

defined on an extension of the underlying probability space. At this stage, one can
repeat the argument at the end of Sect. 4.2 to show that limK↑∞ τ̂δ,K ≥ τδ[Ymu] and
then combine Propositions 4.2 and 4.3 to end up with the SDE of Theorem 5.2 as
desired.

Remark 5.7 In Sect. 3.3 we have used Lemma 3.6 instead of [29, Chapter 5, Propo-
sition 4.6], but we could have used the latter as well. On the other hand, it is not
straightforward to generalize Lemma 3.6 to the setting of the current section, because
there is no obvious multilevel analogue for Proposition 2.25.
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