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Abstract Given a natural number N , one may ask what configuration of N points on the
two-sphere minimizes the discrete generalized Coulomb energy. If one applies a gradient-
based numerical optimization to this problem, one encounters many configurations that are
stable but not globally minimal. This led the authors of this manuscript to the question, how
many stable configurations are there? In this manuscript we report methods for identifying
and counting observed stable configurations, and estimating the actual number of stable
configurations. These estimates indicate that for N approaching two hundred, there are at
least tens of thousands of stable configurations.

Keywords Many-body systems · Stability · Unseen species

1 Introduction

Computer trials indicate that in the range 70 ≤ N ≤ 112, the number of distinct
configurations associated with each value of N grows exponentially, i.e., M(N ) =
0.382 exp(0.0497N ). If this trend is sustained for larger values of N , identifying global
minima among a large set of nearly degenerate states for complex systems of this type
will pose formidable technical challenges. Erber and Hockney [7]

For a natural number N , we denote by ωN = {r1, . . . , rN } any configuration of N distinct
points on S

2. For a non-negative number s, one can ask what configuration minimizes the
energy
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240 M. Calef et al.

Es(ωN ) :=
N−1∑

i=1

N∑

j=i+1

ks(|ri − r j |), where ks(r) =
{

r−s when s > 0
− log r when s = 0.

For s = 1 this is known as the Thomson Problem [23]. At first glance this problem seems
remarkably simple, yet there is not a simple solution. In fact, Smale has identified a variant
of this problem as worthy of focus for this century [21].

The current theoretical progress is limited. It is known that for any N and s a globally
minimal configuration exists. For a few special cases of N and s there are rigorous proofs
that certain configurations are globally minimal. Finally, there are some asymptotic estimates
for the minimal energy as a function of N . In this last category Pólya and Szegö [20], using
measure-theoretic arguments, established some elegant estimates when s is less than the
dimension of the set on which the problem is posed, e.g., 2 in the case of S2 (also cf. Land-
kof [16, pp. 160–162]). Hardin and Saff [11], andBorodachov,Hardin and Saff [2] established
similar results when s is greater than or equal to the dimension of the set in question.

While theoretical progress is difficult, the analyticity of ks makes this an inviting problem
for numerical optimization, particularly gradient-based optimizations. Work in this area goes
back to at least 1977 [18], and there are two efforts that particularly motivated this current
effort. The first is Erber’s and Hockney’s reports and commentary [6–8] on computational
experiments for the Thomson problem for N up to 65 and N up to 112, where they provide
some initial estimate for the growth in the number of stable configurations as a function of
N . This work also includes estimates for the first two terms in the asymptotic expansion for
the minimal energy. The first term is in agreement with the earlier work of Pólya and Szegö,
and the second term was later identified in a formal conjecture by Kuijlaars and Saff [14]
and later generalized to a large class of two-manifolds [3]. The second effort is the work
by Wales and Ulker [24], and the work by Wales, McKay and Altschuler [25] that led to
the Cambridge Cluster Database, which reports, for many N and s = 1, the lowest known
energy for the Thomson problem.

A significant challenge for numerical optimization is that many configurations are locally
minimal, i.e. stable, with respect to Es , but not globallyminimal. Thismotivated us to attempt
to answer the question: how many stable configurations for a given N and s are there? An
earlier work that answers a similar question is that of Hoare and McInnis, who identify
the distinct stable clusters of modest numbers of point-particles interacting through Lennard-
Jones andMorse potentials [13]. For theLennard-Jones potential the number of stable clusters
grew rapidly. The present work estimates this growth for the generalized Thomson problem
for N up to 180 and for s = 0, 1, 2, and 3, and reports some methods we found useful.

A central question is whether the number of distinct local minima within the energy
landscape grows exponentially with the number of points. Stillinger and Weber present the
following informal argument suggesting an affirmative answer [22, p. 980]. If one can convert
one stable configuration into another with changes that are localized in space to within a fixed
number nearest neighbor lengths, then, as the number of points grows, so should the number
of available independent changes, and the number of stable configurations grows will grow
exponentially. If the number of stable configurations does not increase exponentially with
N , then this would suggest that changes from one stable configuration to another cannot be
accomplished with only localized changes.

Our work began by generating a large library of stable configurations, and we describe our
methods in Sect. 2. In doing this, we found that our optimization programwould find rotations
and reflections of the same stable configuration. In response, we used graph-isomorphisms of
the Delaunay triangulation as a means to recognize quickly a particular stable configuration.
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Estimating the Number of Stable Configurations... 241

This method accelerated our work considerably, but there are some subtle ways it can fail.
In particular we found two distinct stable configurations whose Delaunay triangulations
share the same graph structure. This is described in Sect. 3. Even after months of numerical
experiments running on many compute cores, the fraction of the most recent experiments
that generated new configurations never dropped to zero, making it clear that there are many
stable configurations we did not see. The problem of estimating the number of configurations
we didn’t see is an example of the broader “unseen species” problem, which arises in many
settings such as linguistics and ecology. We apply a method developed partly by linguists to
provide estimates in Sect. 4 for the actual number of stable configurations.

2 Stable Configurations

2.1 Optimization

We used an iterative unconstrained optimization strategy described in Sect. 3.1 of our prior
work[3] to generate candidate stable configurations. The method consists of non-linear con-
jugate gradient (NLCG) with line minimization and, when that method no longer made
progress, Newton’s Method. Our experience is that NLCG with line minimization was most
effective up until near the end of the optimization. Near the end of the optimization calcu-
lation, presumably when the configuration is at a point where the objective function Es is
locally quadratic, Newton’s Method would often make progress when NLCG could not.

When computing the energy, Es(ωN ), one has roughly N 2/2 summands that vary widely
in range, and a direct summation can lead to roundoff errors. We controlled for this error by
logarithmically binning our summands and only adding the content from the same bin. This
allowed us to ensure that we never added two numbers whose ratio was more than two or
less than one half, until the end when we summed the contents of the bins from lowest to
highest. Because we could bound the error for summation in a given bin, and because we
could count the number of summations in the bin, we were able to estimate the error in our
sums. This approach follows the work of Higham [12] and Demel and Hida [4].

2.2 Testing for Stability

Given a candidate stable configuration, we use the criteria described in Sect. 3.2 of a previous
publication [3] to test for stability. The central assumption in this criteria is that our iterative
optimization strategy will produce a candidate configuration ωc

N that is close enough to an
actual stable configuration ω̄N , so that the gradient at ω̄N , which is zero, may be expressed
as a linear expansion of the gradient about ωc

N . That is

0 = ∇Es(ω̄N ) ≈ ∇Es(ω
c
N ) + ∇2Es(ω

c
N )(ω̄N − ωc

N ), (1)

where ∇Es and ∇2Es are the gradient and the Hessian respectively of the objective function
with respect to the 2N angular free parameters. If this approximation were exact, it would
allow us to bound the term ω̄N − ωc

N , where subtraction is applied to the 2N -dimensional
space of configurations. Conceptually the calculation is

−∇2Es(ω
c
N )−1∇Es(ω

c
N ) = (ω̄N − ωc

N ),

∥∥∇2Es(ω
c
N )−1

∥∥
2

∥∥∇Es(ω
c
N )

∥∥
2 ≥ ∥∥ω̄N − ωc

N

∥∥
2 ≥ ∥∥ω̄N − ωc

N

∥∥∞ .

Here ‖ · ‖2 is the unnormalized two-norm allowing the bound of the infinity-norm.
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The Hessian is not invertible, however. For our choice of coordinates there are three
rotations of the sphere that do not change the relative distance between the points and hence
don’t change the energy. While there are choices of coordinates free of such rigid rotations,
those coordinate systems degraded the performance of NLCG. Consequently the three lowest
eigenvalues of the Hessian are zero. The gradient has no projections along the corresponding
eigenvectors, and we may choose a rotation of ω̄N so that the difference ω̄N − ωc

N similarly
does not project along these eigenvectors. We let λ∗

min denote the fourth lowest eigenvector
of the Hessian and then we have

‖∇Es(ω
c
N )‖2

λ∗
min

≥ ∥∥ω̄N − ωc
N

∥∥
2 ≥ ∥∥ω̄N − ωc

N

∥∥∞ .

Change in angle on the sphere bounds from above change in position, and so
∥∥ω̄N − ωc

N

∥∥∞
provides a bound on the distance between corresponding points in the configurations ω̄N and
ωc
N .
Our criteria for stability is that

‖∇Es(ω
c
N )‖2

λ∗
min

≤ minri 	=r j∈ωc
N

|ri − r j |
10,000

, (2)

which, in conjunction with the assumption that error in the approximation in Eq. (1) is
negligible, leads to the conclusion that no point inωc

N is further from the corresponding point
in ω̄N bymore than one ten-thousandth the minimum pairwise separation of the points inωc

N .
An important consequence of this is that if two configurations satisfy Eq. (2), and if there is a
rotation and reflection that aligns them towithin one five-thousandth of both of theirminimum
pairwise distances, then, we say that they are instances of the same stable configuration. As
previously noted [3] this criteria relies on bounding the infinity-norm with the unnormalized
2-norm. Such a bound is tight only when all the components except one are zero. The
implication is that the maximum difference between a point in our candidate configuration
and a true stable configuration is likely considerably less than one ten-thousandth of the
minimumpairwise separation of the pointswithin the configuration in question. For candidate
configurations that we believed were instances of the same stable configuration, we could
often align them to greater accuracy.

The condition in Eq. (2) is a useful, reasonably motivated, heuristic for marking a config-
uration as stable. More rigorous bounds would require estimating the error in Eq. (1).

3 Delaunay Triangulations and Graph Isomorphisms

Since the energy Es depends only on the distances between points, it is invariant under
isometry. However, that two configurations of points have the same energy does not ensure
that there is an isometry between the two configurations. With this in mind we only called
two configurations the same if we could find an isometry that mapped one configuration onto
the other to within the tolerances described in the previous section.

This leaves the question of how to search for an isometry between two configurations
of similar energy, which we’ll denote here as ω1

N = {s1, . . . , sN } and ω2
N = {r1, . . . , r2}.

A simple approach is to apply Algorithm 1 described in this manuscript. While there are
some optimizations such as, at line 5, first testing that |ri − r j | = |s1 − s2|, this algorithm is
expensive and must be applied to every pair of configurations with similar energy.
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Estimating the Number of Stable Configurations... 243

Algorithm 1 A simple way to search for isometries between ω1
N and ω2

N .
1: Isometry Found ← False.

2: ε ← 2min

{
min

si 	=s j∈ω1N
|si−s j |

10,000 ,

min
ri 	=r j∈ω2N

|ri−r j |
10,000

}

3: for ri ∈ ω2
N do

4: for r j ∈ ω2
N \{ri } do

5: if there is a rotation of ω2
N so that ri = s1 ∈ ω1

N and so that r j = s2 ∈ ω1
N to within ε then

6: if this rotation is such that
∥∥∥ω1

N − ω2
N

∥∥∥∞ < ε then

7: Isometry Found ← True.
8: else
9: ω̃2

N ← the reflection of the rotation of ω2
N about the plane defined by s1, s2 and 0.

10: if
∥∥∥ω1

N − ω̃2
N

∥∥∥∞ < ε then

11: Isometry Found ← True.
12: end if
13: end if
14: end if
15: end for
16: end for

3.1 Delaunay Triangulations

Wefound amore effective algorithmwas to look for isomorphisms between the graphs formed
from the extremal edges in the Delaunay Triangulations of the configurations in question. For
brevity we shall refer to this as an extremal triangulation. Essentially we are looking at the
edges in the set of triangles that make up the surface of the smallest polyhedron containing
a configuration, ωN .

To compute the extremal triangulation we used the QHULL software package [1]. One
immediate observation was that certain configurations did not have unique extremal trian-
gulations, for example, the configuration with the lowest observed energy for N = 24 and
s = 1, shown in Fig. 1. The four points displayed toward the middle of the image are the
vertices of a square, and either diagonal can be part of a valid extremal triangulation. Because
there can be degenerate extremal triangulations, the assumption that distinct extremal trian-

Fig. 1 This is one of many
possible extremal triangulations
for this configuration of 24 points
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244 M. Calef et al.

gulations indicate non-isometric configurations is not, in general, correct. A simple test for
non-degeneracy is to compute the set of unit normal vectors for the extremal faces, and to
make sure that the dot-product of any two is bounded away from one.

In the case that a configuration has a non-degenerate extremal triangulation, the edges of
the triangulation and the points in the configuration form a graph, and this graph is invariant
under rotation and reflection of the underlying configuration. In the degenerate case, a rotation
or reflection may lead QHULL, due to round-off errors, to find a different, but equally valid,
extremal triangulation.

3.2 Graph Isomorphisms

A graph on a sphere is a planar graph in that, by choosing one face to be mapped to the
unbounded component of the plane, the graph can be mapped onto the plane. In doing this
the edges that bound this face are retained, and the graph structure is preserved whether the
graph is embedded on S2 or R2. There are efficient algorithms to determine isomorphisms of
planar graphs and we use one following the work of Lins [17]. The approach is to generate
a tag for each graph with the property that two graphs are isomorphic if, and only if, the two
tags are the same. The cost for finding isomorphisms between M instances of graphs, or for
finding isometries between M configurations, can be written as

C1M + C2M
2.

In our approachC2 is the cost of a searching for matching tags, i.e. string comparisons, while
C1 is the cost of generating the tag. For large M , this has substantial benefits, over the case
that C1 is zero, but C2 is the cost associated with Algorithm 1.

The specific method we use for generating a tag is given in Algorithm 2. We denote our
graph as a set of vertices V and a set of edges E , and for any v ∈ V we denote by E(v) the
set of edges that have v as an endpoint. To each vertex v we assign a natural number iv . The
central idea in Algorithm 2 is to search for the lexically lowest encoding of a representation
of the connectivity matrix, where we are searching over a set of possible orderings of vertices.
We used anMD5 hash of the connectivity matrix simply to use less memory. The requirement
that the graph be planar is what allows us to generate the unique ordering ofW at line twelve.
We stored the configuration with the ordering of points that generated the lexically lowest
encoding, i.e. the tag.

When we generated a new stable configuration for a given N and s we would, when the
new configuration had a non-degenerate extremal triangulation, also generate the associated
tag. We would then collect the already generated configurations for that N and s whose
energies were close to the energy of the newly generated configuration. Within the subset
of these with unique extremal triangulations, we would search for the tag associated with
the new configuration. If we found it, then because we stored the configurations with the
orderings of points that generated the tag, we knew the rotation and reflection necessary that
would be the isometry. It was our experience that, when there was an isometry, this method
found it immediately. Further, it was our experience that almost all of the configurations had
non-degenerate extremal triangulations.

If we did not find matching tags, then we used Algorithm 1 to search for an isometry
between the newly generated configuration and the existing configurations with similar ener-
gies. We only characterized a configuration as new for a given N and s if every configuration
with that N and s had an energy thatwas sufficiently different to ensure that therewas no isom-
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Algorithm 2 Generating a tag for a planar graph.
1: Tag ← None.
2: for v ∈ V do
3: for e ∈ E(v) do
4: for r ∈ {Clockwise,Counterclockwise} do
5: Reset all indices iv for v ∈ V .
6: iv ← 1.
7: iw ← 2, where the edge e joins the points v and w.
8: n ← 3.
9: while there is a vertex that has not been indexed do
10: x ← the vertex with the lowest index that has an unindexed neighbor.
11: y ← x’s neighbor with the lowest index.
12: W ← set of neighbors of x ordered by r and starting with y.
13: for w ∈ W do
14: if w has not been indexed then
15: iw ← n.
16: n ← n + 1.
17: end if
18: end for
19: end while
20: P ← the connectivity matrix of the graph where the vertices are ordered by their indexing.
21: T ← the MD5 cryptographic hash of P .
22: if Tag = None or T < Tag then
23: Tag ← T .
24: end if
25: end for
26: end for
27: end for

etry or that the application of Algorithm 1 did not find an isometry. The graph-isomorphism
technique sped the process of finding isometries when they existed, but it was never used by
itself to determine if a configuration was new or isometric to an existing one.

There are two reasons why one should not rely exclusively on isomorphisms of non-
degenerate extremal triangulations. The first is that it is possible, although we didn’t see
this case, that the graph has a non-trivial automorphism, but that the associated mapping
of points is not a self-isometry. Put another way, there may be two orderings of the points
that lead to the same lexically minimal tag. An indication of this would be that, at line
twenty-two of Algorithm 2, Tag was not None and T = Tag, but, that there is no isome-
try between the configurations that preserves the orderings of points. An extremely simple
example is a triangle where no two sides have the same length. It has no self-isometries,
but six graph-automorphisms. Also, there is the remote possibility for collisions in the MD5
algorithm.

Themore significant reason that graph isomorphisms alone are not sufficient to identify sta-
ble configurations is that we found two distinct configurations that both have non-degenerate
extremal triangulations, but whose graphs were isomorphic. For N = 102 and s = 2, the
configurations with the fourth and fifth lowest energy have non-degenerate extremal triangu-
lation with isomorphic graphs. The dual graphs, i.e. the Voronoi cells, are shown in Fig. 2.
The difference in energy is substantially more than the estimated error in the energy sums.
The energies are 5582.2331644897 and 5582.2332117851 respectively. Algorithm 1 did not
identify an isometry. Further, out of thousands of computer trials, we reproduced the fourth
lowest configuration 205 times and the fifth lowest configuration 100 times—these were not
rare configurations.
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246 M. Calef et al.

Fig. 2 On the left is the configuration with the fourth lowest energy for N = 102 and s = 2, on the right
is the configuration with the fifth lowest energy. They have the non-degenerate extremal triangulation with
isomorphic graphs, but are distinct stable configurations. The dark (blue in the online version) cell has seven
edges, two of which in the upper left and lower left are extremely short. The reader will notice that these two
edges differ in the image on the left and the right

4 Unseen Species

After months of running on many compute cores, we found that for most N between 120 and
180 the rate at which we discovered new stable configurations was still far from zero. We
took this as an indication that more trials would result in more distinct stable configurations,
and that we had not seen all of them. In response, we aimed to estimate the number of stable
configurations that we didn’t see in our trials. Such an estimate cannot be made without
additional assumptions, which we shall make clear as we proceed. There is some precedent
for trying to estimate the number of unseen species. For example, Efron andThisted estimated
the number of words Shakespeare knew [5], although their approach is more sophisticated
than ours.

In broad terms our approach is as follows: We first compute the Good–Turing frequency
described below. This is an estimate for the combined probability of all the configurations we
did not see. In addition this method produces estimated probabilities for the S stable configu-
rations we did see, {p1, p2, . . . , pS}. We assume that when these estimated probabilities are
sorted in decreasing order the tail has a certain analytic form, i.e. that there is a p(n) so that
pn = p(n) for large n. We obtain p(n) from the data, and use it to compute how many more
configurations we would need for the sum of the probabilities of those unseen configurations
to agree with the Good–Turing frequency.

The first assumption is that the number of stable configurations is finite. While this seems
intuitively true, the function f (x) = x sin(1/x) for x 	= 0 and 0 for x = 0 has infinitely
many local minima on the closed unit interval, indicating that a proof that there are finitely
many stable configurations will depend on domain specific information.

A second assumption is that, were we to use a different gradient based optimization tech-
nique, the estimated probabilities for configurations we observed wouldn’t be so different as
to change dramatically the estimates for the unseen species. While we have no proof, our
instincts are that the basins of attraction for gradient descent methods all are qualitatively the
same, and that the initial random configurations were sufficiently disordered so as not to be
“nearer” a particular subset of stable configurations. Indeed, efforts to avoid the preponder-
ance of stable configurations while searching for the global minimum has lead researchers
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away from purely gradient-based methods such as the work by Morris et al. [19], and the
work by Lakhab and Bernoussi [15].

We now briefly summarize I. J. Good’s description of the Good–Turing estimate [10].
Suppose we perform T trials where we observed some number of distinct species—stable
configurations in our case. We let nr denote the number of species that we observed r times,
and so ∞∑

r=1

nrr = T . (3)

We then ask, for a species that we saw r times, what is a reasonable estimate for the fraction
of the population that consists of that species? The most straightforward estimate, r/T , has
the drawback that the sum of the fractions is one, i.e. this estimates assumes that there were
no unseen species. This is almost certainly wrong in our case. If the likelihood of seeing
each species is described by a binomial distribution, which is reasonable in our case, Good
arrives at the following estimate [10, Sect. 2, Eq. 15] for the probability of a species that was
observed r times

r + 1

T + 1

ET+1(nr+1)

ET (nr )
.

Here, in a slight abuse of notation, ET (nr ) indicates the expectation value for the number of
species that we would expect to see r times in T trials. To be applicable, Good makes the
following approximation

ET+1(nr+1) ≈ n′
r+1,

T + 1

T
≈ 1,

where n′
r is the smoothed number of species seen r times. The need for smoothing arises

because at large r , i.e. for species that occurred many times, the discreteness of the measure-
ment nr within T trials becomes apparent. Gale and Sampson provide a method, which we
used, for smoothing the data [9]. Figures 1 and 2 in that publication make clear the need for,
and effect of, smoothing. The result is the following estimate for the probability of a species
(configuration) that occurred r times in T trials [10, Eqs. 2, 2′]

pr = r + 1

T

n′
r+1

n′
r

The estimated probability of all species that occurred r times, denoted p̃r , is

p̃r = r + 1

T
n′
r+1

Summing these estimated probabilities over all observed species [10, Eqs. 7, 8] gives

∞∑

r=1

p̃r = 1

T

∞∑

r=1

n′
r+1(r + 1) = 1

T

( ∞∑

r=1

n′
r r − n′

1

)
.

If the smoothing process is performed so that Eq. (3) holds with nr replaced with n′
r , then

the combined probability of all of our observed species is given by

1

T
(T − n′

1) = 1 − n′
1

T
and so the estimate for the probability of the unseen species is

p0 = n′
1

T
.
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Fig. 3 This plot shows the estimated probability for all of the observed configurations, ordered in decreasing
probability

This method gives us estimated probabilities for each of the configurations we have
observed. For N = 180 and s = 3 we show these estimated probabilities in Fig. 3. The
stair-step nature for the low estimated probabilities is an artifact of the finite number of sam-
ples. The estimated probability for a configuration depends only on the number of times the
configuration occurred. This number can only be 1, 2, . . .. Gale and Sampson’s smoothing
technique addresses a similar problem, in that the observed values of nr for large r must also
be integral. We use a simple smoothing technique where, for a given probability, we take the
geometric mean of the first and last configuration number as an estimate for the configuration
number where that probability would occur. This is shown in Fig. 4.

We fit Ax + log b to the log–log tail of these data excluding the point corresponding to the
configurations that occurred once. We are operating on two assumptions here: first, the tail
of the probability distribution can be approximated p(n) ≈ bnA, and second, that the last
point in Fig. 4 is not “below” the fit line, as much as it is “to the left” of the fit line. That is to
say, for this sample, we believe that many more unseen configurations whose probability is
close to p1 than there are unseen configurations whose probability is close to or higher than
p2.

Another statement of this assumption is that nearly all the unseen configurations have
probability less than p2, but not necessarily less than p1.

With this in mind we solve the following for T f

p0 + n1 p1 =
∫ T f

Ti
bnAdn, (4)

where p0 is the estimated combined probability of all the species we didn’t see, p1 is the
estimated probability for the species we saw once, n1 is the number of species that we saw
once, and Ti is the number of configurations we saw at least twice. Note that we are only
guaranteed to get a value of T f if A ≥ −1. When we apply this method we get an estimate
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Fig. 4 This plot shows the smoothed estimated probability for all of the observed configurations

Fig. 5 The number of observed distinct stable configurations and estimates for the total number of distinct
stable configurations as a function of N for s = 0

for the total number of stable configurations. These estimates as a function of N are plotted
in Figs. 5, 6, 7 and 8 for s = 0, 1, 2 and 3 respectively. In these figures we’ve only plotted
results where the error was less then the value itself.

If these estimates for the number of stable configurations are reasonable, and if the growth
in the number of stable configurations is exponential, then fits from N = 100, . . . , 180 for
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Fig. 6 The number of observed distinct stable configurations and estimates for the total number of distinct
stable configurations as a function of N for s = 1

Fig. 7 The number of observed distinct stable configurations and estimates for the total number of distinct
stable configurations as a function of N for s = 2

the number of stable configurations as a function of N and s indicate that the number of
stable configurations as a function of N and s is given by

M(N , s) = CsN
es ,
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Fig. 8 The number of observed distinct stable configurations and estimates for the total number of distinct
stable configurations as a function of N for s = 3

where es and Cs are given by

e0 = 0.0741345 ± 0.002804 C0 = exp(−3.91164 ± 0.3044),

e1 = 0.0789298 ± 0.00176 C1 = exp(−3.97635 ± 0.1992),

e2 = 0.0836987 ± 0.002186 C2 = exp(−4.23711 ± 0.2583),

e3 = 0.0878486 ± 0.001698 C3 = exp(−4.52585 ± 0.1882).

If we perform a similar fit to the number of observed configurations for s = 1, as
opposed to the number of estimated configurations, we obtain M(N , 1) = (0.31701 ±
.1) exp(0.0518 ± 0.0012 N ), which is similar to Erber’s and Hockney’s estimate of
M(N , 1) = 0.382 exp(0.0497N ) noted above. This growth is considerably slower than
the growth in the estimated number of stable configurations, which we feel is likely closer
to the actual growth in the number of stable configurations.

5 Conclusions

When searching for isomorphisms between a set of configurations of points on a sphere, the
use of a simple invariant under isometry, the discrete energy Es , quickly filtered out many
configurations as not-isometric. After this a more comprehensive invariant under isometry,
the graph of non-degenerate extremal triangulations, was extremely effective.

It is reasonable to express concern over the number of assumptions and over the sensitivity
of N f in Eq. (4) to the other parameters. The defensible conclusion is that there are sub-
stantially more stable configurations than those we observed, and just as performing enough
trials to observe the configuration with the lowest energy is a formidable technical challenge,
so too is finding all the stable configurations.
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