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Abstract Knowledge mining sensory evaluation data is a challenging process due

to extreme sparsity of the data, and a large variation in responses from different

members (called assessors) of the panel. The main goals of knowledge mining in

sensory sciences are understanding the dependency of the perceived liking score on

the concentration levels of flavors’ ingredients, identifying ingredients that drive

liking, segmenting the panel into groups with similar liking preferences and opti-

mizing flavors to maximize liking per group. Our approach employs (1) Genetic

programming (symbolic regression) and ensemble methods to generate multiple

diverse explanations of assessor liking preferences with confidence information; (2)

statistical techniques to extrapolate using the produced ensembles to unobserved

regions of the flavor space, and segment the assessors into groups which either have

the same propensity to like flavors, or are driven by the same ingredients; and (3)

two-objective swarm optimization to identify flavors which are well and consis-

tently liked by a selected segment of assessors.
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1 Introduction

In this contribution, we knowledge mine sensory evaluation data collected for the

purposes of flavor research and design. Extracting flavor information from sensory

evaluation data has scientific and commercial value. Our particular experimental

dataset is collected for hedonic flavor evaluation. See Fig. 1. Each sample (or query)

supplied to the assessor is controlled by varying its flavoring ingredients. A hedonic

response is obtained by asking an assessor to sense (e.g. smell, taste, view)

something (e.g. a food product) and report how much he or she likes its flavor. The

assessor reports how much he or she likes the flavor using 9 distinct language

categories which range from ‘‘like extremely’’ to ‘‘dislike extremely’’ with

‘‘neutral’’ in the middle. These categoric responses are mapped to numeric scores

per Fig. 2a.

In this contribution, we deal with a hedonic experiment dataset provided by

Givaudan Flavors Inc. Research scientists at Givaudan prepared the experimental

protocol, pre-screened the assessors, and conducted the experiment prior to our

involvement in the project. Using a designed experiments approach, they prepared

36 different flavors. Each flavor is a composition of the same seven ingredients

k1; k2; . . .; k7; called keys, at different concentrations. The ranges of concentrations

of different ingredients is significant: some range between [0, 200], others between

[0, 20]. Levels chosen for each ingredient in the experiment are either extrema or

centers of each range. Each assessor, s, evaluates flavor k j 2 R
7 using 9-value

language hedonic category scale and by assigning a liking score (LS) to it (as in the

top of Fig. 1). Each of the 36 different flavors was evaluated by 69 assessors.

The intent of such a hedonic experiment is to facilitate understanding of which

ingredients drive liking of a target population (assumed to be represented by the

assessor panel), the consistency of liking preferences and to deliver insight into how

to design or identify flavors that most consumers would consistently like. To extract

information that provides this understanding is demanding because any dataset, ours

being just one example, poses numerous technical challenges:

1. The same flavors have been repeatedly measured and responses to them vary In

sensory evaluation studies, the same flavors are assessed by different assessors.

}.....,{ 721
)( kkkk j )( )( js kf 9

Like Extremely

LS

Fig. 1 Hedonic flavor evaluation data collection. Top the assessor reports a hedonic response to a
presented item using a language category. Bottom flavor ingredients are varied to present different
samples. Responses are converted to discrete, numeric, fixed range liking scores (LS)
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The resulting data is best visualized to recognize the phenomenon we have to

address. Figure 2b shows the responses for the 40 flavors for the 69 assessors.

For 19 flavors, the responses vary across the complete range from 1 to 9. For

most of the remaining flavors, the range is 7 or 8. This implies that assessors do

not agree in their hedonic judgement. More technically, it implies that there can

be no one single model that accurately describes the entire dataset. Instead, it is

more desirable to construct a model for each assessor.

2. The data is extremely sparse The risk of rapid sensory exhaustion drives

hedonic experiments to present an extremely small number of samples to an

assessor. Our dataset is, in fact, only somewhat exemplary with respect to its

sparsity1. It contains more flavor samples than usual but this amounts to only 36

flavors per assessor! Given the 7 dimensional space and range of each key, this

is a very, very small fraction of samples of the flavor space. How can such a
small fraction be used to predict out of sample behavior if we model an
assessor? How might analytic methods be validated for accuracy? Whatever

the challenge such a small sample size presents, it must be managed because

modeling the entire panel is impossible due to the variation on the repeated

measures.

3. Ingredients interact hedonically in a non-linear manner An additional

complexity of sensory evaluation knowledge mining is the non-linear nature

of the relationship between ingredients and a hedonic response. If the volumes

of all ingredients in a flavor are doubled, the hedonic response will not

necessarily stay the same, it might drastically change. This raises a question:

Could complex models be potentially necessary to accurately model an
assessor’s hedonic function?

4. Assessors may use the hedonic scale differently An inquiring observer might

wonder ‘‘What does the scale mean for each assessor?’’ Intuitively, people may
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Fig. 2 a Category anchoring of the 9 point hedonic scale, b variation in the liking scores assigned by all
assessors to a given flavor over all 40 flavors. There are 36 unique flavors in these 40 flavors. Box
boundaries correspond to the interquartile range of 69 liking scores per flavor

1 The greater than normal number of samples were enabled by a proprietary method for delivering the

flavor to the assessor which delays sensory fatigue.
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not use the same scale to describe liking. When considering combining

evaluations from many assessors, ‘‘how is it possible to ensure that the final

outcome is scale invariant?’’

5. Designing well-liked flavors Moskowitz has stated that ‘‘taste and smell, the

chemical senses, are prime examples of inter-panelist differences, especially in

terms of the hedonic tone (liking/disliking)’’ [19]. Continuing, Moscowitz

remarks that ‘‘panelist to panelist differences are simply too great to ignore as

just an inconvenience of the scientific quest.’’

In view of a business goal of designing flavors that many people like a lot, this

phenomenon in the dataset logically raises questions such as: ‘‘Can one flavor
satisfy everybody? What is a realistic liking score for a flavor that satisfies
everybody?’’

1.1 Project goals and a high level framework for solving them

Our knowledge mining framework is broadly depicted in Fig. 3. In general, to

achieve our goals and address the challenges, we combine a variety of techniques

including symbolic regression via genetic programming, ensemble methods,

statistical techniques like Monte-Carlo sampling, Pearson correlation analysis,

clustering and density estimation plus particle swarm optimization. The goals of the

framework and high level methods of achieving them are:

Foundational Goal—Assessor Modeling Our first and foremost goal is to model

each assessor. In other words, we seek to emulate individual assessors by building

Robust modeling of each assessor
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Fig. 3 Knowledge mining framework for sparse sensory data with a focus on robust modeling for
individual assessors, panel segmentation and finally optimal design of flavors
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liking score functions (see Fig. 1). These functions relate the key ingredients to the

hedonic liking score. The best way to address the sparse nature of the data is to

generate as many explanations for it as possible. Therefore, we will derive a model

ensemble for each assessor separately. Assessor modeling is a corner stone in our

knowledge mining framework. It enables us to accomplish more extensive data

analysis.

Analytic Goal #1—Segment the panel by driving ingredients and enable
sensitivity analysis To accomplish this goal, our knowledge mining process will

use the model ensemble developed for each assessor as a source of robust variable

importance (i.e. driving ingredient) information. The frequency of variable

occurrences in the models of the ensemble will be interpreted as information about

the ingredients that drive the liking of an assessor. Model ensembles with the same

dominance of variable occurrences and which demonstrate similar hedonic response

directionality when the important variables are varied, will be grouped together.

This method identifies assessors who are driven by the same ingredient set, in the

same direction. Varying the input values of the important variables, while using the

model ensembles of these panel segments, provides flavor design scientists with a

means of conducting focused hedonic sensitivity analysis.

Analytic Goal #2—Segment the panel by propensity to like the flavor space Our

goal is to to analyze an assessor’s general propensity to respond either positively,

negatively or neutrally to any flavor that is a combination of the 7 ingredients. After

each assessor is identified into one of the positive, neutral or negative categories, we

will consider those of each category to be a distinct segment. To accomplish this, we

will take advantage of the assessor’s model ensemble and generate the predicted

behavior of the assessor over a very large set of unobserved flavors. We will then

probabilistically describe the predicted responses. The three categories will be

defined as ranges on the resulting distribution. This kind of segmentation enables

flavor design scientists to take this sort of response variation into account when

generating flavors that are maximally liked by many people.

Analytic Goal #3—Flavor optimization Our goal is to generate flavors that most

people will maximally like. First, we will focus on achieving this for a single

assessor. We will stochastically search for previously unobserved flavors that

maximize the assessor liking by using the assessor’s model ensemble to predict the

hedonic response (i.e. liking score of) to each when our optimization requires an

objective evaluation. In our second step, to find flavors that segments which are

driven by the same ingredient like, we will combine predictions of multiple

assessors and integrate their variation using a pair of objectives. The objectives will

be related to maximizing the liking scores and minimizing the variance of the

segment’s responses.

We now proceed as follows: Sect. 2 addresses our foundational goal of assessor

modeling. It answers the question:‘‘How to knowledge mine where there are only
the responses of 69 assessors, each for only 36 samples?’’ It summarizes a

conventional approach to this kind of dataset then describes our proposed ensemble

based symbolic regression (EBSR) approach. We present a variety of ensemble

generation techniques, techniques to fuse multiple predictions from ensembles, and

a technique to generate confidence measures. It presents the results of using our
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approach on the 69 assessors. Section 3 describes the steps to achieve our analytic

goal #1. We provide two alternate methods to extract variable importance

information from our ensembles for each assessor. We then show different

segments of assessors derived using our technique. Section 4 provides the

methodology to segment the assessors based on their propensity to like the flavor

space to achieve analytic goal #2. We provide a Monte Carlo simulation technique

to derive a probability density function for each assessors liking score. Three

different clusters are formed within our panel of 69 assessors. Section 5 addresses

analytic goal #3 by presenting a multi objective particle swarm optimization

algorithm to optimize the flavors for a single assessor, a segment of assessors, and

the entire panel. Section revists our challenges with this data mining problem and

summarizes the solutions presented in this paper. Section 6 presents our conclusions

and future work.

2 Foundational goal: assessor modeling

Consider a set of explanatory variables x ¼ fx1. . .xng; a response variable y and an

unknown function G that relates x to y. Sparsity implies that very few data samples

that explain G are available relative to the number of the explanatory variables, i.e.

n.

In our problem the explanatory variables are the seven ingredients called keys, ki.

A flavor in the flavor space is a mixture by volume of these seven ingredients and

the jth flavor is denoted by kðjÞ: 69 assessors evaluate 36 different flavors and select

a rating for each that is translated to its liking score, LS per Fig. 2a.

Explanatory variables in the dataset were sampled using a D-optimal design for a

full second-order model. The samples were chosen so that the standard errors (or

variances) of the regression coefficients of a full second-order model are kept to a

minimum. Keeping the standard errors of the regression coefficients at a minimum

is important for analysis since these coefficients are the indications of which

ingredients (and their interactions) drive liking or disliking.

Table 1 gives the notation for different variables used in this paper. We scale all

key data to the same range in this study.

2.1 Conventional approach

A conventional approach to sensory evaluation data analysis is to explain the

dependence between the key levels and the average liking scores of the entire panel

by an empirical model. The model is constructed to approximate the average

assigned liking score per flavor, and is usually a low-order polynomial obtained by

linear regression. This model describes how much the panel, as an aggregate, likes

any flavor, on average, in the space. Variable importance information is obtained

from the analysis of model parameters. Variable sensitivity is studied based on

predictions of the model.
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The single model that inevitably predicts the average liking score completely

ignores assessor differences in the liking. Common sense favors the approach that

builds models per assessor, extract as much information about the assessor from

these models and then combines this information for multiple assessors when

necessary. To mitigate this problem for flavor optimization and include some

information about different liking patterns, in some cases a polynomial model is

constructed for each assessor. Each of these models is then aggregated additively

and maximized using a non-linear constrained optimization method.

The conventional approach to liking score modeling, analysis and optimization

has three key problems:

• Model error The main problem with developing a single model for the panel is

the true error (versus the lack of fit error). True error describes the difference in

panelists predicted and actual responses. The single model only has average

liking score predictive capability. Given the variance in responses across the

panel for many flavors, this average is a poor match to each assessor’s

responses.

• Lack of extrapolative capabilities Models build using parametric linear

regression (quadratic models on all ingredients) do not possess any reliable

extrapolation capabilities (unless the true relationship between the liking scores

and key levels is indeed quadratic). With a single model per assessor, due to

sparsity of data, it is hard to build a model that is reliable (has good predicting

Table 1 Problem specific variable description

Variable Notation Details

Flavor space F The design space of ingredient mixtures

Keys ki i 2 f1. . .7g
Flavor k A mixture of 7 keys, k ¼ fk1; . . .k7g
A specific flavor kðbÞ A specific flavor denoted by superscript b

Assessor sn n 2 f1. . .69g
Set of assessors S S = {s1, s2, … s69}

Observed flavors Fo Fo ¼ fkð1Þ. . .kð40Þg
Unobserved flavors FB Fb ¼ fkð41Þ. . .kð10041Þg
Liking score function f sðkðjÞÞ ¼ LS Relationship between a kðjÞ and LS

lsd p(LS|s) Liking score density model for assessor s

Cumulative density Px(LS C x|s) Probability of liking score C x

Assessor cluster Sc A subset of S; c 2 fE;N;Hg
Model m One model m for assessor s

Model ensemble Ms Ensemble for assessor s;Ms ¼ fms
1; . . .;ms

jg
Ensemble response MsðkÞ All responses Ms : fms

1ðkÞ; . . .;ms
j ðkÞg 2 R

jðsÞ

Ensemble prediction YðMs;kÞ MedianAverageðms
1ðkÞ; . . .;ms

j ðkÞÞ 2 R

Ensemble confidence CðMs; kÞ see Sect. 2.2.1
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capabilities on unobserved points) and robust (less error prone on observed

points), i.e. models of high accuracy and no over-fitting.

• No confidence A model constructed for the entire panel or for an individual

assessor provides liking score predictions, but totally lacks information about the

confidence in its predictions. The risk of producing untrustable predictions

through modeling cannot be mitigated unless modeling methodology provides

some measure of confidence in its prediction. This confidence measure does not

accompany a conventional parametric linear regression model.

• No optimization trade-offs Flavor optimization is inherently multi-objective,

given that assessors’ liking on the same flavor vary. Maximizing the average

liking score over the entire panel without taking into account variation among

scores is insufficient, since it does not provide insights on flavors that many
people like a lot. (A flavor with higher average liking score with a very high

variance is by design less profitable than a flavor with a slightly lower, but very

consistent liking score.)

The dimensionality of the design space is too high for parametric methods like

spatial correlation (kriging) to perform well. It calls for semi-parametric and non-

parametric methods, like neural networks and GP symbolic regression. This, in

addition to the lack of confidence information in predictions, motivates the use of

ensemble-based modeling methods. In principle, models obtained in both cases can be

grouped into ensembles, but the extrapolative capabilities of GP symbolic regression

are stronger and therefore we focus on GP symbolic regression in this study.

2.2 ParetoGP symbolic regression

Learning from sensory data is a perfect example of an application where the model

does not exist. To gain prediction robustness on this sparse data, we adopt an

ensemble based symbolic regression approach to provide multiple unbiased

explanations of the input-output relationships in the data. These multiple models,

also known as model set,M should contain diverse but high-quality models, which

are constrained to approximate all training data samples well (high-quality) and are

also constrained to diverge in predictions on unobserved data samples (diverse).

When a sufficient number of models are generated, all of them can be used to

determine both the prediction (by unifying their predictions) and the disagreement at

an arbitrary point of the original variable space.

The multiple model generating capability of GP enables us to achieve these

model sets on sparse data sets. To our surprise it is often ignored (or taken for

granted) and a GP with single-objective fitness driven selection, and a single best-

of-the run final solution (see [10, 11, 13, 25] among others) is used. In this paper, we

attempt to fully exploit the multiple model generating capability of the GP. We

employ a robust approach using ParetoGP which is symbolic regression via tree-

based GP implemented with archiving (elite-based selection with elite preserva-

tion), two-objective selection and other defining features [28]. ParetoGP gives the

aggregated final archive of multiple independent runs, called replicates. In a single

run the algorithm performs the following operations:
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1. Initialize models The following primitives are used for tree-based individuals:

{ ? , - , *, /, inverse, power(x, const), square, ln, exp}. They range in

arity 1 to 2. The list of variables, which in our case are seven keys and real

constants from [ - 5, 5] are used as terminals. We rescaled our input variables

to {0, 2} range.

2. Perform multi-objective evaluation The models are evaluated under two

objectives. The first one, model error, is defined as 1 - R2, where R is a

correlation coefficient between scaled predicted and scaled observed response.

The second objective, model complexity, is defined as the sum of all subtrees of

the tree-based genome of the GP individual. The goal is to minimize both error

and complexity.

3. Archive the best models and update An archive of individuals is created

separately from the population and an elite-preservation strategy is employed.

At generation t ? 1, the archive, which is the elite set of best individuals

discovered so far gets updated. Its size is limited to ArchiveSize by selecting the

least-dominated individuals from the union of Archive(t) and Population(t ? 1)

in the objective space of model error and model complexity.

4. Vary the models During each iteration, a new population is created using

archive mutations and crossovers. In crossovers, parents are either both sampled

from the archive, or one parent sampled from archive and one from the

population (in both cases using Pareto tournament selection). This archive-

based selection preserves genotypic diversity of GP individuals. The new

individual is generated by using a sub-tree crossover with rate 0.9 and sub-tree

mutation with rate 0.1. Every 10 generations, the population gets re-initialized

to provide diversity and avoid inbreeding.

Other parameters for the ParetoGP are given in Table 2. A run is executed for a

time interval, using all the observations, because using complexity as a second

objective and collecting multiple solutions in accuracy-complexity trade-off space

eliminates any requirement for an arbitrary maximum generation or cross-validation

that would make the training data even more sparse. Some evolved models will

‘‘over-fit’’ but they can rationally be pruned post-hoc when the model set is finalized

to be used for prediction. The time interval we chose is equivalent to 280

generations. Interval arithmetic is used to prune individuals with numerical

inconsistencies and linear scaling is used to enhance effectiveness of evolution [9].

At the end of an experiment, the models in the archives of all runs are aggregated

into a super archive. The non-dominated solutions in this archive form the super

Pareto front (SPF). This is illustrated in Fig. 4. We call this a model set, M and

generates these model sets for each subset of data samples corresponding to an

assessor F sðxÞ: When repeated for all the assessors, symbolic regression creates

rich sets of models. We generated model sets for all 69 assessors using our

approach. Figure 5 shows the super Pareto front plots achieved for a subset of

assessors (27 of them). We examined the results achieved for these 27 assessors.

Table 3 summarizes the details of the model sets achieved for the 25 assessors. An

average of 1,071 models are generated for each assessor. An average of 41 of lie on

the SPF.
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2.2.1 Ensemble selection

The idea of using ensembles for improved generalization of the response prediction

is by far not new in regression. It has been extensively used in neural networks (e.g.,

[7, 14, 17, 18, 35]) and even more extensively in boosting and machine learning in

general (albeit, mostly for classification). See [2, 4, 5, 8, 22, 24, 29] for examples.

Krogh and Vedelsby [14] presented the idea of using disagreement of ensemble

models for quantifying the ambiguity of ensemble prediction for neural networks,

but the approach has not been adapted to symbolic regression.

In [12], the authors describe an approach to selecting the models which form an

ensemble: collect models that differ according to complexity and prediction

accuracy. Complexity can be measured by examining some quantity associated with

the GP expression tree or by considering how non-linear the expression is. Accuracy

is the conventional error measure between actual and predicted observations.

Table 2 ParetoGP

experimental parameters
Parameters Comments

# Replicates 5 unless stated otherwise

# Generations 280

Population size 1,000

Archive size 100

Fitness 1 - R2

Complexity expressional complexity

Crossover rate 0.9

Subtree mutation rate 0.1

Population tournament 5

Archive tournament 5

0 200 400 600 800 1000 1200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Complexity 

E
rr

or
 (

1−
R

2
)

Run 1
Run 2
Run 3
Run 4
Run 5

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

Complexity

E
rr

or
 (

1−
R

2
) Over fit models with 

high complexity

Under fit 
models

(b)

Fig. 4 An exemplar ParetoGP simulation on the sparse data a results from multiple runs of ParetoGP.
Pareto fronts from each run show the trade-offs between model error (1 - R2) and model complexity. b A
super Pareto front is generated by aggregating the Pareto fronts from multiple runs. The super Pareto front
has 37 models
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Specific predictions are considered to assess correlations and eliminate correlated

models. Generally, each ensemble combines:

• A ‘‘box’’ of non-dominated and dominated models in the dual objective space of

model prediction error and model complexity.

• A set of models with uncorrelated prediction errors on a designated test set of

inputs. Here a model is selected based on a metric which expresses how its error

vector correlates with other models’ error vector. The correlation must not exceed

a value of q. The input samples used to compute prediction errors can belong to

the test set (if available), or be arbitrarily sampled from the observed region.

Our intent is to use symbolic regression ensembles developed for each assessor as

a surrogate for the assessor. When we want to ‘‘know’’ how much the assessor

would like a (unobserved) flavor, we feed the flavor’s ingredient levels into each

model of the ensemble and receive a prediction. The issue then is how to fuse the

predictions from the multiple models. In fact, ‘‘fusing’’ (or unifying) the multiple

predictions from an ensemble is an open area of research. In this contribution we

choose a median-average method for its robustness (see [32]). We additionally

exploit the ensemble to derive another piece of valuable information: confidence,

expressed locally, for a specific prediction. We experiment with a confidence

measure based on entropy. These are explained next in detail in Sect. 2.2.2.

2.2.2 Predictions and confidence measures

We use median-average for fusing multiple predictions from multiple members of

ensembles and use entropy as a measure for confidence. We have previously used

inter-decile range for the predictions as a measure for confidence.
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Super Pareto Front Plots for 25 PanelistsFig. 5 Super Pareto fronts
generated for multiple assessors
using ParetoGP based symbolic
regression

Table 3 Model ensemble

results for multiple assessors
Parameters Value

# of models 1,071

# of models in SPF 41
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Prediction via median-average The median prediction and its two neighbors in

the prediction space are identified and averaged.

Confidence via entropy In this method the discrete probability mass function is

formed for the liking score predictions, in YðMs; kÞ; that are approximated to

nearest integer value and the entropy [1] is evaluated using:

H ¼ �
X9

i¼1

pðaiÞlogðpðaiÞÞ ð1Þ

where p(ai) is the probability mass generated from the predictions for the liking

score values a = {1, 2, … 9}. Higher entropy implies higher random behavior.

Figure 6 illustrates the properties of the entropy based confidence placement. It

shows two different scenarios of the predictions. In the first scenario, the predictions

in the Y
s

are equally divided among the different values on the rating scale, giving

each a probability of 1/9. In the second scenario, only three values are chosen by the

predictions, i.e. 7 (1/9), 8 (1/9) and 9(7/9). The entropy is higher for the first

scenario indicating random nature of the predictions. In fact the entropy is maxi-

mally bounded by this number and we denote this value as Hmax. Higher entropy

implies lower confidence. In the second scenario, due to the spiky characteristic of

the discrete probability mass function, the entropy is lower and implies high con-

fidence because many predictions converge to the same rating. Thus we define

confidence as:

CEðYðMs; kÞÞ ¼ 1� Hnorm; ð2Þ

where Hnorm ¼ H
Hmax

. CE’s value lies between [0,1].

3 Analytic goal #1: segment the panel by driving ingredients and enable
sensitivity analysis

Figure 7 graphically describes how goal #1 is achieved. The approach of this

section, in the sensory science context, is:
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Fig. 6 Discrete probability mass of predictions for cases of a maximum entropy—low confidence and b
low entropy—high confidence
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• to identify the variables that drive liking scores of the assessors,

• to segment the panel into groups that are driven by the same ingredient.

• and to understand the direction of the driving, i.e. the analysis of the changes in

the liking scores caused by changes in the concentration of the keys (sensitivity

analysis).

We make use of the model ensembles generated for each assessor to derive

variable importance vectors and analyze their similarity and dissimilarity based on

these vectors. In Sect. 3.1, we present two techniques to derive variable importance

vectors.

3.1 Variable importance

Most non-evolutionary modeling methods are vulnerable to producing solutions that

contain insignificant inputs. This results in a fast deterioration of prediction

performance of final solutions as more irrelevant variables in the data are considered

in the model.

A conventional approach to identify the true dimensionality of the problem is to

perform a principal component analysis or a factor analysis. The former reduces the

problem dimensionality to a smaller number of meta-variables which are linear

combinations of the original variables. An alternative, factor analysis, extracts the

latent dimensionality of the problem by determining the number of factors that

contain the same information as the matrix of mutual correlations of data variables.

The potential problem of these approaches (in analysis of non-linear systems) is that

they only take into account mutual correlations between variables and hence miss

the relevance of non-linear combinations of inputs to the response. As well, they do

not select important variables from the original set, but create new variables in the

ParetoGP Archive

Multiple runs

Variable 
importance 

vector 

11 Ix
22 Ix

nn Ix

Variable Importance 
Analysis Model set

Perform 
sensitivity 
analysis 

Perform 
correlation 
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Cluster

(a)

(b) (c)

Sensitivity 
plots

Fig. 7 Panel segmentation and sensitivity analysis a the ensemble of models is analyzed for variable
importances. b The variable importance information along with the archive of models is used for
performing sensitivity analysis. c The variable importance for multiple assessors is used to perform
correlation analysis and segment them
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new reduced set. They forfeit multicollinearity (which is most often present in real

measurements).They are also sensitive to outliers.

One of the unique capabilities of genetic programming is its built-in power to

select significant variables and gradually omit the variables that are not relevant

while evolving models. Variable selection based on genetic programming has been

exploited in various applications where the significant inputs are generally unknown

(for examples see [36, 15, 21, 23, 26, 36]).

We use an effective method for variable presence analysis for a set of models

generated using ParetoGP. Note that the method could also be used on the

population of solutions at the end of a standard GP run.

We define a variable importance vector as a vector V ¼ fI 1; I2; . . .I dg of the

importance of all explanatory variables fk1; k2; . . .kdg; in percents, arranged in the

same order as the explanatory variables. The importances are relative if
P

k=1
n

Ik = 100.

In [33] the following methods were introduced:

1. Presence-weighted variable importance This method analyzes variable pres-

ence rates in a subset of models ~M from the ensemble archive and considers

variables relevant if they have a high presence rate. The aggregated importance
of the variable ki; i ¼ 1. . .; d computed on the basis of best models
~M¼ fmjg; j ¼ 1; . . .; l is

IðPWÞ
i ðki; ~MÞ ¼

Xl

j¼1

dðki;mjÞ
l

; ð3Þ

where d(ki, mj) is zero if ki is not present in model mj and one otherwise. This

aggregated variable importance provides a robust estimation of relevance if ~M is

hand selected for high-quality (i.e., fitness and complexity) from an experiment-

archive derived from many independent runs.

The second variable importance metric resolves the problem of hand selecting M
by eliminating the need for it.

2. Fitness-weighted variable importance: Fitness-weighted variable importance is

calculated using all models (in the archive or in both archive and population)

(see [27]). It first uniformly distributes the fitness of each model over all

variables present in it, thus assigning a variable a score per each model it is

present in. Then, it sums up the scores over all models,M¼ fmj; j ¼ 1; . . .; lg:

IðFWÞ
i ðki;MsÞ ¼

Xl

j¼1

fitnessðmjÞPd
i¼1 dðki;mjÞ

dðki;mjÞ; ð4Þ

Since the fitness of a model is uniformly distributed over all its variables, this

creates an explicit bias towards variables occurring in lower dimensional solutions.

Thus, the overall aggregated scores of irrelevant variables (only present in over-

fitting solutions) is much smaller than the overall score of relevant variables.

We use normalized fitness-weighted variable importances defined as:
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IðNFWÞ
i ðki;MsÞ ¼ IðFWÞ

i ðki;MsÞ
P

i I
ðFWÞ
i ðki;MsÞ

� 100%: ð5Þ

3.2 Segmentation by sensitivity to flavor ingredients

Having generated variable importance vectors for all the assessors, we are next

interested in how similar one assessor is to another. This is equivalent to identifying

people driven by the same key and, in sensory evaluation, is called segmentation.

Segmentation enables design strategies for multiple, similar people and is highly

useful.

We use the variable importance vector as the basis for deriving this similarity.

Consider a model set denoted by Ms for an assessor s and the corresponding

variable importance vector as Vs. Computing this for each assessor (s)’s model set,

Ms; we aggregate the 69 vectors of normalized fitness-weighted importances into a

table of 69 rows, with their elements reflecting the relative importance of seven keys

for predicting the liking scores of each panelist.

We then compute pairwise correlation between each pair of vectors and construct

a correlation matrix defined by b. The entry bij in this matrix is the Pearson

correlation coefficient between variable importance vectors of model set, i and j
given by:

bij ¼
Pn

k¼1ðVk
i � �ViÞð �Vj

k � �VjÞ
ðn� 1ÞrVi

rVj

; ð6Þ

where rV_i, rV_j are sample standard deviations for Vi and Vj. We then group

panelists with similar variable importance vectors using a correlation threshold h to

the matrix entries. A cluster is identified when all the pair-wise correlations exceed

h. By selecting pairs with correlations exceeding a threshold h = 0.90, we identify

groups of assessors with similar variable importance vectors.2

There are five groups of assessors with high pair-wise correlations of importances

between all members in a group. Fitness-weighted variable importances of two

groups are illustrated in Fig. 8. Notice the high consistency in variable importance

vectors per group, and the clear differences among the two groups. All the variables

except k5 are required to predict the individual liking scores of Group 1 consisting of

panelists 6, 9, 16 and 20. All variables except k3 are required for Group 2 consisting

of panelists 28, 32, 44, 48, 51 and 64.

3.3 Variable sensitivity analysis

The variable importance vector enables a means of sensitivity analysis which

supports efficient exploration of the design space to observe the response variable

under selected conditions of the explanatory variables. Consider an explanatory

variable set consisting of n variables where each variable can be explored in

2 The choice of the h threshold is highly influential in the subsequent conclusions.
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r discrete step sizes. The total number of design exploration samples is nr which is

generally intractable.

To alleviate this, the variable importance vector can be used. The distribution of

the percentages in the variable importance vector informs the choice of downsizing

the sampling. The effects of q influential variables, where q � n can be explored

while the non-influential n - q variables are clamped to a finite set of combinations,

c � (n - q)r. The q influential variables can be exhaustively sampled over qg. For

each sample, the predicted response of the predictive model ensemble is calculated

using a median-average method [31]. The predictive model ensemble is derived by

boxing the ensemble-archive. See [31] for more details. These predictions for the

q most relevant variables can subsequently be visualized to observe the assesors’s

sensitivity under the clamped conditions. The values of q, c and g are selected

based on the needs of the modeling application. It is sensible to also reduce g as the

importance ranking of an influential variable decreases. This supports coarser

grained sampling in dimensions where variable importance is less and higher

grained sampling where it is higher.

We now perform sensitivity analysis to understand whether a key has direct or

inverse relation with the liking score. By doing this we can identify assessors, for

whom both the ith key is the most important variable, but one might hate it as its

concentration increases and another who might like it. We use Group 1 and Group 2

as our exemplars. In Fig. 9 we plot the individual ensemble predictions (median of

predictions of ensemble members) of all assessors in the group for varying volume

levels of k1, while all other levels are clamped to their maximum. The step size in

varying k1 is domain related. The spread in ensemble predictions in Fig. 9 justifies

once again the differences in the assessors. In Group 1 one segment of assessors

{6, 16} have monotonically increasing predicted liking scores for increasing levels
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Fig. 8 Distribution of variable importances for two distinct segments of panelists
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of k1, another segment, {9, 20} shows decreasing liking scores as k1 is varied in the

interval [0,130]. In Group 2 the liking score increases for all the assessors as k1 is

increased.

4 Analytic goal #2 segment the panel by propensity to like the flavor space

In our knowledge mining framework, we next make use of the ensemble, Ms

designed for an assessor s to answer the question: ‘‘How likely is an assessor to
answer with a liking score/rating higher than X?’’ The answer to this question

allows us to categorize assessors, w.r.t. the flavor space, as: (1) Easy to Please, (2)

Hard to Please, (3) Neutral. We accomplish this by modeling the probability density

function given by p(LS|s) for an assessor s [34].

Density estimation poses a critical challenge in machine learning, especially with

sparse data. Even if we assume that we have finite support for the density function and

it is discrete, i.e. LS = {1, 2, … 8, 9}, we need sample sizes of the order of ‘‘supra-

polynomial’’ in the cardinality of support [30]. In addition, if the decision variables

are inter-dependent, as they are here, estimating a conditional distribution increases
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Fig. 9 Comparison of sensitivity of liking of panelists within Group 1 (top) and Group 2 (bottom) based
upon varying the levels of key k1 while k3, k5 - k7 clamped to their maximum, and k2 and k4 clamped to
zero. Numbers indicate assessor ids
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the computational complexity. Most of the research in density estimation has focused

on identifying non-parametric methods to estimate distribution of the data. Research

on estimation of density from very small sample sizes is limited[20, 30].

Figure 10 presents the steps taken to form this liking score probability density

model. We first generate 10,000 untested flavors. We use the model ensembleMs;
which gives us a set of predictionsMsðkÞ: For each untested flavor we get a set of

predictions (not just one), which plausibly represents all possible liking scores the

assessor would give. We use these to construct the liking score density model, for an

individual assessor. The process has five steps:

1. Generate flavor samples for the seven dimensional ingredients using a uniform

random number generator.

2. Thoughtfully select an ensemble of models meeting accuracy and complexity

limits to admit generalization and avoid overfitting and a correlation threshold

to avoid redundancy.

3. Use all models of the ensemble to generate multiple predictions for the unseen

flavor samples generated in 1.

4. With minor trimming of the extremes and attention to the discrete nature of

liking scores, fit the predictions to a Weibull distribution.

5. Segment based on the Weibull distribution’s probability mass.

It is significant to note that these steps respect the importance of avoiding

premature elimination of any plausible information because the data is sparse. The

ensemble provides all valid values of the random variable (in this case is the liking

score prediction) when it is presented with new inputs. This extracts maximum

possible information about the random variable, which supports more robust density

estimation.

4.1 Deriving predictions by Monte-Carlo simulation

To generate the bootstrapped data of liking scores for the Fb ¼ fkð41Þ. . .kð10041Þg we

follow the steps described in Algorithm 1.

4.2 Parametric estimation of the liking score density function

We use a parametric Weibull distribution to estimate p(LS|s). The two parameters

for the Weibull distribution, k and r are called scale and shape respectively. A

Weibull distribution is an adaptive distribution that can be made equivalent to an
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Fig. 10 Monte Carlo simulation to derive the liking score probability density model
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Exponential, Gaussian or Rayleigh distributions as its shape and scale parameters

are varied. For our problem this is a helpful capability as an assessor’s liking score

follows any one of the three distributions. The derived Weibull distribution is:

pðLS; k; rjsÞ ¼
r
k ðLS

k Þ
r�1e�ð

LS
k Þ

r

if LS� 0

0 if LS\0:

�
ð7Þ

In addition to steps taken in Sect. 4.1, we map the bootstrapped data to a range of

the support of Weibull and the hedonic rating scale i.e., [1, 9]. There are some

predictions in the Y
s

which are below 1 or are above 9. We remove 80% of these

predictions as outliers. We assign a liking score of 1 for the remaining 20% of

predictions that are less than ‘1’ in the prediction set. We similarly assign the liking

score of ‘9’ for the ones that are above 9. We use these 20% in Y
s

to capture the

scores corresponding to the ‘‘extremely dislike’’ and ‘‘extremely like’’ condition.

Each plot line of Fig. 12b–d is a liking score density model.

4.3 Segmenting the assessors by propensity to like

Having estimated the data generated from the models for 10,000 flavors in Fb ¼
fkð41Þ. . .kð10041Þg using the methods described in the previous section, we can

classify the assessors into three different categories (see Fig. 11). We divide the

liking score range [1, 9] into three regions as shown in Fig. 12. The assessors are

then classified by identifying the region in which the majority (more than 50%) of

their probability mass lies (see Algorithm 2). This is accomplished by evaluating the

cumulative distribution in each of these regions using:

Pðl1;l2�ðLS; k; rjsÞ ¼ e�
l1
kð Þ

r

� e�
l2
kð Þ

r

: ð8Þ

We applied our methodology to the dataset of 66 assessors who can be individually

modeled with adequate accuracy. 3 assessors were left out due to lack of adequate

accuracy in their models. The first segment is the ‘‘hard to please’’ panelists. We

have 23 assessors in this segment which is approximately 34.8% of the panel. These

assessors have most of their liking scores concentrated between 1 and 3.5 range. We

Algorithm 1 Monte Carlo simulation to derive the LS data for an assessor s

Generate 10,000 flavors randomly, i.e., Fb ¼ fk41. . .k10;041g (we use a fixed uniform lattice in the

experiments, same for all assessors)

for (k
b 2 Fb8b) do

(i) Collect all the predictions from Model ensemble, Ms: MsðkÞ
(ii) Sort the vector MsðkÞ

(iii) Remove the bottom and top 10% of MsðkÞ and call this vector R
s;j

(iv) Append R
s;j

to Y
s

end for

Fit the Y
s

to a Weibull distribution. See Sect. 4.2
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call these ‘‘hard-to-please’’ since low liking scores might imply that they are very

choosy in their liking.

The second segment is the segment of ‘‘neutral assessors.’’ These assesors rarely

choose the liking scores which are extremely like or extremely dislike. For most of

the sampled flavours they choose somewhere in between and hence the name

neutral. There are 31 assessors in this segment which is 47% of the total panel.

The final segment of assessors is the ‘‘easy to please’’ assessors. This segment of

assesors reports a high liking for most of the flavors presented to them or may report

moderate dislike of some. They rarely report ‘‘extremely dislike.’’ There are 12

assesors in this segment which is close to 18% of the total panel.

5 Analytic goal #3 flavor optimization

Using our models derived with ParetoGP, we now use a multi-objective particle

swarm optimization detailed in Algorithm 3 and [16] to identify flavors that

maximize the liking score function for (a) a single assessor, (b) a segment of

assessors. In a particle swarm optimization algorithm, a particle is a candidate

solution to the problem which in our case is the concentration levels of the 7 keys

(a.k.a. ingredients), given by {ki1, ki2… ki7}, that compose a flavor. Solutions are

randomly initialized. Each particle also stores in its memory the best position in the

7-dimensional space it has visited so far and is denoted by Pi. Initially, both Pi and ki

are the same. Particles are perturbed using a set of equations called velocity and

position update equations.

Once a new set of positions are created for each particle, the particles are

evaluated for different objective functions. The non-dominated solutions among the

candidate solutions are identified using non-dominated comparisons. Two solutions

are considered non-dominated if either of them are not better than the other along all

the objectives. A particle’s memory is updated with the non dominated solutions
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Fig. 11 Segmenting the assessors
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and a global best solution is carefully selected. Thus, to resolve multiple objectives

the algorithm evolves solutions towards their Pareto front. We chose particle swarm

optimization algorithm since it is simple to implement and execute.
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Fig. 12 Liking score density models: a decision regions for evaluating cumulative distribution, b hard to
please assessors, c neutral assessors, d easy to please assessors

Algorithm 2 Segmenting the assessors

for 8s 2 fSg do

1. Calculate Pl1;l2 using estimated (ks, rs) for ðl1; l2� ! ð1; 3:5�, (3.5, 6.5] and (6.5, 9.5]

2. Assign the assessor s, to the segment corresponding to the region where he/she has maximum

cumulative density

s sþ 1

end for
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5.1 Objectives for single assessor optimization

To find optimal flavors for a single assessor, our objectives are (1) maximize liking

score prediction (2) maximize the confidence. We use the median average method

for liking score prediction, and use the entropy based measure of confidence

described in Eqs. 1 and 2 of Sect. 2.2.2. An instantiation of our method for assessor

39 is shown in Fig. 13.

We experimented with 6 different assessors (each of whom rated the same 36

flavors) named A, B, C, D, E, F. In Fig. 14 the y-axis is, by definition, bounded at

1.0. A liking score with confidence of 1 (entropy of 0) implies that the model

predictions for this flavor (when rounded to nearest integer) all agreed. We can

observe that this liking score is generally between 7 and 7.5 for assessors E, A, F, at

8 for B and D, and at 6 for C.

5.2 Objective design for a segment of assessors

To identify flavors that are well-liked across the assessors, the first objective is to

maximize the mean of the predicted liking scores of different assessors where each

liking score prediction is weighted by its confidence:

LSc ¼
PN

s¼1 CsLSsPN
s¼1 Cs

ð9Þ

Cs is the confidence of the sth assessor’s prediction derived from Y
s
; and LSs is the

liking score derived from Y
s
: The confidence and liking score can be estimated

using any of the two methods described in 2.2.2.

We define a second measure called consistency that helps in two scenarios to,

(a) counter the case in which the mean is driven by a few assessors that like a

particular kðjÞ; and (b) push the flavors to the design space where they are mostly

liked. The measure is derived using the LSs derived from the Y
s
: The measure is

given by:
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Fig. 13 Multi objective particle swarm optimization for identifying flavors that maximize the liking
score as well as the confidence of a single assessor. The ensemble is used to generate multiple liking score
predictions and a fused liking score prediction and confidence in this prediction is derived using these
multiple predictions. These two form the objectives for the Particle swarm optimization algorithm. It
attempts to maximize these two values and generates new unobserved flavors to query the ensembles for
predictions. The output is flavors which approximate the true Pareto front in the 2-dimensional trade-off
space
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V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

s¼1

ðLSc
s � LScÞ2

vuut ; ð10Þ

where LSc is the mean of the liking score prediction of multiple assessors. Equa-

tion 10 simply evaluates the standard deviation of the liking scores generated by the

multiple assessors. The second objective is to minimize the variability among the

liking scores defined by (10). Figure 15 shows the interactions of different com-

ponents of this design. The ensembles of different assessors are queried with an

unobserved flavor. The predictions from the ensemble are then used to evaluate the

confidence in the predictions using Eq. 2 in Sect. 2.2.2 and the median average is

calculated. These values from multiple assessors are supplied to the ‘‘confidence

weighted fusion’’ box where Eqs. 9 and 10 are evaluated. These are objective scores

for the optimization.

Algorithm 3 Multi-objective particle swarm optimizer for flavor optimization

ðkid Þ: d ( key index, i( particle index, k( Key;

ki ( particle, Pi ( pbest, N ( number of particles

1. Initialize the particles, k randomly in the search space with in the range for each key, [li, ui]

2. Initialize Pi to be the same, V i

3. Initialize particle velocities denoted by Vi randomly, V i.

4. Initialize parameters of PSO, interia: x = 0.8, cognitive learning rate: w1 = 1, social learning rate:

w2 = 1

5. Evaluate objective function (o1) and objective function (o2) for the given k

6. Randomly initialize the ’gbest’, g

for t = 1 to maxiter do

for i = 1 to N do

for r = 1 to d do

Vir
(t?1) = x Vir

(t) ? w1 (Pir
(t) - kir

(t))U[0, 1] ? w1 (Pgr
(t) - kir

(t))U[0, 1]

kir
(t?1) = kir

(t) ? Vir
(t?1)

where U[0,1] is a uniform random number between [0, 1], and

Pir is ith particles best position along dimension r, Pgr is the position of the globaly best

performing particle along dimension r.

end for

end for

for i = 1 to number of N do

Evaluate o1 and o2 for ki

end for

Update the P with the non-dominated solutions

Identify the ’gbest’, g = 5*U[0,1]

Store the pbest vector for iteration t

t t þ 1

end for

7. Output P
ðtÞ
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5.2.1 Results for the entire panel

We experimented to generate flavors for the entire panel. Figure 16 shows the results

achieved when we optimized to generate flavors for the entire panel. We were able to

achieve a maximum liking score of 5.9 which is closer to like slightly on the hedonic

scale. Most of the flavors we found for the entire panel had a liking score of 5 and

above. Note that 5 is neither like nor dislike. Furthermore, we could not reduce the

variance to less than a value of 1. In Fig. 16b, we show the variance in the ingredient

concentration levels. It is interesting to see that to achieve consensus among the large

number of assessors, we could only vary the concentration levels in a very narrow

range. In the next section, we attempt to optimize flavors for a segments of assessors

to see if we can improve the overall liking score.
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minimize the variance in the liking score predictions from multiple panelists
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5.2.2 Results on segments of assessors driven by same ingredients

We experimented with 6 segments of assessors selected for similar flavor

preferences. These 6 segments were identified in Sect. 3. In this experiment each

ensemble computes confidence with the entropy measure. Fig. 17 shows the

iterative progress of the optimization algorithm for one of the segments. In the first

few iterations there are only a few solutions on the evolved Pareto front. With

additional iterations the front moves up and rightward and the algorithm identifies

flavors with higher liking scores, [6, 6.5], that are lower in variance before finally

identifying flavors with confidence-weighted liking scores ranging from [5.5, 7]
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Fig. 16 a Pareto front plot for the entire panel. Each point on the plot is a flavor and is evaluated for how
well it is liked (x-axis) and how consistently it is liked (y-axis). b Variation in the normalized
concentration levels for different ingredients (aka keys) among the flavors on the Pareto front for different
clusters. Box boundaries correspond to the interquartile range
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Fig. 17 Progress of multi-objective particle swarm optimization for a group of assessors. The final
evolved Pareto front of flavors achieved is also shown
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which have low variance (higher inverse of variance). Figure 18 shows the final

Pareto fronts evolved for different segments. Each point on the front is a different

flavor. For most clusters we are able to find flavors that have a fused liking score of

higher than 7, which is ‘‘like moderately’’ on the hedonic scale. However, the

variance at this high liking score is approximately 1. For two segments we are able

to achieve flavors with liking score of 6 which is equivalent to ‘‘like slightly’’.

While a liking score of 6 and above is only in the ‘‘slightly-like’’ and ‘‘moderately-

like’’ hedonic range, it is understandable that more highly liked flavors cannot be

identified because multiple assessors remain uniquely ‘‘individual’’ even when they

are clustered by similar flavor preference. This is still consistent with the

expectation that similar flavors will have a range of liking scores because of the

assessors preferential similarities. Note that when we attempted to optimize flavors

for individual assessors we were able to achieve liking scores in the range of 8–9

(see Fig. 14).

Figure 19 shows the box plots for the flavors on the evolved Pareto front for these

6 segments. The plots demonstrate the variance in key values among these flavors is

very low for all the keys, although the liking score varies from [5.8, 7.0]. It appears

that limiting the concentration to a certain range for all the keys is necessary to

arrive at a reasonable consensus. Overall the results represent the challenges in

working with hedonic-based panel aggregates.

6 Conclusions

In this paper, we presented an approach to model a liking score function for

assessors employed in sensory evaluation. A GP based symbolic regression

methodology was used to generate all plausible models that explain the given data.

From these plausible models, a subset was selected that are diverse and that explain

5 5.5 6 6.5 7 7.5
10

0

10
1

Liking Score 

In
ve

rs
e 

of
 V

ar
ia

nc
e 

Pareto front plots for a cluster of assessors(a)

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
10

0

10
1

10
2

Liking Score 

In
ve

rs
e 

of
 V

ar
ia

nc
e 

Pareto front plots for a cluster of assessors(b)

Fig. 18 Pareto front plots achieved for different segments of assessors. Each plot is for a different
segment of assessors
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as many as possible behaviors that the human expert can exhibit when a previously

unseen flavor is presented. This formed an ensemble of liking score functions. We

demonstrated a new means of knowledge mining with GP methods by conducting
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Fig. 19 Variation in the normalized concentration levels for different ingredients (aka keys) among the
flavors on the Pareto front for different clusters. Box boundaries correspond to the interquartile range
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data analysis using model ensembles. In this new space, we respect the evidence that

the response and explanatory variable relationship differs among assessors and

exploit rather than inaccurately average the differences.

The information of variable importance facilitates model similarity clustering on

this basis and efficient sensitivity analysis. Ensemble archives of Pareto genetic

programming experiments furnish the model sets for variable important analysis

that can be driven by presence or fitness weighting. The standard GP approach for

variable selection, which analyses variable presence in just one successful solution,

does not work in this context because the variable importance statistics of one

model are not reliable. We identified 6 distinct groups in our panel using multiple

models per assessors. The flavor liking of members of one group are driven by the

same ingredients.

Our methodology postpones decision making regarding a model, a prediction and

a decision boundary until the very end. For an unseen flavor, all the models are

consulted and with minor trimming, their predictions are fit to a probability density

function. Finally, as the macro-level behavior emerges and more is known about the

assessors, decision boundaries can be rationally imposed on this probability space to

allow their segmentation. Our approach allowed us to robustly identify segments in

the panel based on their propensity to like the flavor space. We conjecture from our

results that there are similar potential benefits across any sparse, repeated measure

dataset.

We then integrated the ensemble of liking score functions per assessor into two

multi-objective algorithms that identify the flavors that maximize (a) an assessor’s

liking score, or (b) a group of assessors’ liking scores. We used a particle swarm

optimization algorithm for this. We observed that for an individual assessor, the

method identified flavors that were extremely liked according to the hedonic scale.

However, when the flavors are optimized for a group of assessors, the maximum

liking score that we achieved was around ‘7’ which corresponds to ‘‘like

moderately’’ on the hedonic scale.

There are many choices in this knowledge mining process: e.g. what data to

aggregate and thresholds such as h. They should, in general, be made by an expert

on the data being modeled. A choice could depend on exogenous goals like market

targeting. For example, one could decide to use average ratings of the panel. This

would allow them to design flavors that maximize the liking scores according to this

information. In this example, strong inter-assessor differences contra-indicate this

approach. We observe that all variables are important for modeling the liking score

of the entire panel and that there exist fundamental differences in the driving

variables among individual panelists. This implies that an approach of designing

flavors for the entire panel is likely to generate designs that will be suited to a broad

population with a lesser degree of liking. Alternatively, if it is affordable to segment

the panel into multiple segments and design flavors that satisfy these smaller

segments, each resulting design would have higher likability inside a segment but

less suitability across the broad population. The advantage of our approach is that all

analysis decisions are postponed until the moment when the decision trade-offs

become clear to the domain expert. To understand the trade-offs, the domain experts

have access to efficient sensitivity analysis methods which will allow them to finally
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identify the directions in which the liking scores of panelists are steered by

important keys.

We are enthusiastic about the results, primarily because they confirm that genetic

programming symbolic regression methodology has evolved into a mature field

capable of routinely solving real-world problems. In this case study, genetic

programming allowed us to decompose a seemingly unsolvable problem (few

samples with multiple responses of high variation) into a sequence of solvable

problems generating insights at each step. The most exciting feature of the study is

its efficiency. The complete analysis when automated takes a night (or a lot less if

multiple cores are available). This, in combination with flavor optimization opens

up opportunities for new on-line protocols of flavor design, generating new insights

in days instead of months. Additionally, panel segmentation, derived on the basis of

liking being influenced by the same ingredients in the same direction, will allow a

clearer understanding of the hedonic responses to a product suite. When affordable,

it may enable the development of products for particular segments leading to higher

consumer satisfaction.
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