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Abstract: We construct a family of stochastic growth models in 2 + 1 dimensions, that
belong to the anisotropic KPZ class. Appropriate projections of these models yield 1 + 1
dimensional growth models in the KPZ class and random tiling models. We show that
correlation functions associated to our models have determinantal structure, and we
study large time asymptotics for one of the models.

The main asymptotic results are: (1) The growing surface has a limit shape that con-
sists of facets interpolated by a curved piece. (2) The one-point fluctuations of the height
function in the curved part are asymptotically normal with variance of order ln(t) for
time t � 1. (3) There is a map of the (2 + 1)-dimensional space-time to the upper
half-plane H such that on space-like submanifolds the multi-point fluctuations of the
height function are asymptotically equal to those of the pullback of the Gaussian free
(massless) field on H.
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1. Introduction

In recent years there has been a lot of progress in understanding large time fluctuations of
driven interacting particle systems on the one-dimensional lattice, see e.g. [2,3,5,13–17,
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43,47,48,58,68–70,72]. Evolution of such systems is commonly interpreted as random
growth of a one-dimensional interface, and if one views the time as an extra variable,
the evolution produces a random surface (see e.g. Fig. 4.5 in [66] for a nice illustra-
tion). In a different direction, substantial progress has also been achieved in studying
the asymptotics of random surfaces arising from dimers on planar bipartite graphs, see
the review [50] and references therein.

Although random surfaces of these two kinds were shown to share certain asymptotic
properties (also common to random matrix models), no direct connection between them
was known. One goal of this paper is to establish such a connection.

We construct a class of two-dimensional random growth models (that is, the principal
object is a randomly growing surface, embedded in the four-dimensional space-time).
In two different projections these models yield random surfaces of the two kinds men-
tioned above (one reduces the spatial dimension by one, the second projection is fixing
time). We partially compute the correlation functions of an associated (three-dimen-
sional) random point process and show that they have determinantal form that is typical
for determinantal point processes.

For one specific growth model we compute the correlation kernel explicitly, and use
it to establish Gaussian fluctuations of the growing random surface. We then determine
the covariance structure.

Let us describe our results in more detail.

1.1. A two-dimensional growth model. Consider a continuous time Markov chain on
the state space of interlacing variables

S(n) =
{
{xm

k }k=1,...,m
m=1,...,n

⊂ Z
n(n+1)

2 | xm
k−1 < xm−1

k−1 ≤ xm
k

}
, n = 1, 2, . . . . (1.1)

xm
k can be interpreted as the position of particle with label (k, m), but we will also refer

to a given particle as xm
k . As initial condition, we consider the fully-packed one, namely

at time moment t = 0 we have xm
k (0) = k − m − 1 for all k, m, see Fig. 1.

The particles evolve according to the following dynamics. Each of the particles xm
k

has an independent exponential clock of rate one, and when the xm
k -clock rings the

particle attempts to jump to the right by one. If at that moment xm
k = xm−1

k − 1
then the jump is blocked. If that is not the case, we find the largest c ≥ 1 such that

Fig. 1. Illustration of the initial conditions for the particles system and the corresponding lozenge tilings. In
the height function picture, the white circle has coordinates (x, n, h) = (−1/2, 0, 0)



Anisotropic Growth of Random Surfaces in 2 + 1 Dimensions 605

Fig. 2. From particle configurations (left) to 3d visualization via lozenge tilings (right). The corner with the
white circle has coordinates (x, n, h) = (−1/2, 0, 0)

xm
k = xm+1

k+1 = · · · = xm+c−1
k+c−1 , and all c particles in this string jump to the right by one.

For any t ≥ 0 denote by M(n)(t) the resulting measure on S(n) at time moment t .
Informally speaking, the particles with smaller upper indices are heavier than those

with larger upper indices, so that the heavier particles block and push the lighter ones
in order for the interlacing conditions to be preserved. This anisotropy is essential, see
more details in Sect. 1.4.

Let us illustrate the dynamics using Fig. 2, which shows a possible configuration of
particles obtained from our initial condition. If in this state of the system the x3

1 -clock
rings, then particle x3

1 does not move, because it is blocked by particle x2
1 . If it is the

x2
2 -clock that rings, then particle x2

2 moves to the right by one unit, but to keep the inter-
lacing property satisfied, also particles x3

3 and x4
4 move by one unit at the same time.

This aspect of the dynamics is called “pushing”.
Observe that S(n1) ⊂ S(n2) for n1 ≤ n2, and the definition of the evolution implies

that M(n1)(t) is a marginal of M(n2)(t) for any t ≥ 0. Thus, we can think of M(n)’s as
marginals of the measure M = lim←− M(n) on S = lim←− S(n). In other words, M(t) are

measures on the space S of infinite point configurations {xm
k }k=1,...,m, m≥1.

Before stating the main results, it is interesting to notice that the Markov chain has
different interpretations. Also, some projections of the Markov chain to subsets of S(n)

are still Markov chains.

1. The evolution of x1
1 is the one-dimensional Poisson process of rate one.

2. The row {xm
1 }m≥1 evolves as a Markov chain on Z known as the Totally Asymmetric

Simple Exclusion Process (TASEP), and the initial condition xm
1 (0) = −m is com-

monly referred to as the step initial condition. In this case, particle xk
1 jumps to its

right with unit rate, provided the arrival site is empty (exclusion constraint).
3. The row {xm

m }m≥1 also evolves as a Markov chain on Z that is sometimes called
“long range TASEP”; it was also called PushASEP in [13]. It is convenient to view
{xm

m + m}m≥1 as particle locations in Z. Then, when the xk
k -clock rings, the particle

xk
k + k jumps to its right and pushes by one unit the (maybe empty) block of particles

sitting next to it. If one disregards the particle labeling, one can think of particles as
independently jumping to the next free site on their right with unit rate.

4. For our initial condition, the evolution of each row {xm
k }k=1,...,m , m = 1, 2, . . ., is also

a Markov chain. It was called the Charlier process in [55] because of its relation to the
classical orthogonal Charlier polynomials. It can be defined as the Doob h-transform
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for m independent rate one Poisson processes with the harmonic function h equal to
the Vandermonde determinant.

5. Infinite point configurations {xm
k } ∈ S can be viewed as Gelfand-Tsetlin schemes.

Then M(t) is the “Fourier transform” of a suitable irreducible character of the infi-
nite-dimensional unitary group U (∞), see [22]. Interestingly enough, increasing t
corresponds to a deterministic flow on the space of irreducible characters of U (∞).

6. Elements of S can also be viewed as the lozenge tiling of a sector in the plane. To
see that one surrounds each particle location by a rhombus of one type and draws
edges through locations where there are no particles, see Fig. 2. Our initial condition
corresponds to a perfectly regular tiling, see Fig. 1.

7. The random tiling defined by M(t) is the limit of the uniformly distributed lozenge
tilings of hexagons with side lengths (a, b, c), when a, b, c → ∞ so that ab/c → t ,
and we observe the hexagon tiling at finite distances from the corner between sides
of lengths a and b.

8. Finally, Fig. 2 has a clear three-dimensional connotation. Given the random config-
uration {xn

k (t)} ∈ S at time moment t , define the random height function

h : (Z + 1
2 ) × Z>0 × R≥0 → Z≥0,

h(x, n, t) = #{k ∈ {1, . . . , n} | xn
k (t) > x}. (1.2)

In terms of the tiling on Fig. 2, the height function is defined at the vertices of rhombi,
and it counts the number of particles to the right from a given vertex. (This definition
differs by a simple linear function of (x, n) from the standard definition of the height
function for lozenge tilings, see e.g. [50,51].) The initial condition corresponds to
starting with perfectly flat facets.

Thus, our Markov chain can be viewed as a random growth model of the surface
given by the height function. In terms of the step surface of Fig. 2, the evolution con-
sists of removing all columns of (x, n, h)-dimensions (1, ∗, 1) that could be removed,
independently with exponential waiting times of rate one. For example, if x2

2 jumps to
its right, then three consecutive cubes (associated to x2

2 , x3
3 , x4

4 ) are removed. Clearly,
in this dynamics the directions x and n do not play symmetric roles. Indeed, this model
belongs to the 2 + 1 anisotropic KPZ class of stochastic growth models, see Sect. 1.4.

1.2. Determinantal formula, limit shape and one-point fluctuations. The first result
about the Markov chain M(t) that we prove is the (partial) determinantal structure
of the correlation functions. Introduce the notation

(n1, t1) ≺ (n2, t2) iff n1 ≤ n2, t1 ≥ t2, and (n1, t1) �= (n2, t2). (1.3)

Theorem 1.1. For any N = 1, 2, . . ., pick N triples,

κ j = (x j , n j , t j ) ∈ Z × Z>0 × R≥0,

such that

t1 ≤ t2 ≤ · · · ≤ tN , n1 ≥ n2 ≥ · · · ≥ nN . (1.4)

Then

P{For each j = 1, . . . , N there exists a k j ,

1 ≤ k j ≤ n j such that x
n j
k j

(t j ) = x j } = det [K(κi , κ j )]N
i, j=1, (1.5)
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Fig. 3. A configuration of the model analyzed with N = 100 particles at time t = 25, using the same
representation as in Fig. 2. In [38] there is a Java animation of the model

where

K(x1, n1, t1; x2, n2, t2) = − 1

2π i

∮

Γ0

dw

wx2−x1+1

e(t1−t2)/w

(1 − w)n2−n1
1[(n1,t1)≺(n2,t2)]

+
1

(2π i)2

∮

Γ0

dw

∮

Γ1

dz
et1/w

et2/z

(1 − w)n1

(1 − z)n2

wx1

zx2+1

1

w − z
,

(1.6)

the contours Γ0, Γ1 are simple positively oriented closed paths that include the poles 0
and 1, respectively, and no other poles (hence, they are disjoint).

This result is proved at the end of Sect. 2.8. The above kernel has in fact already appeared
in [13] in connection with PushASEP. The determinantal structure makes it possible to
study the asymptotics. On a macroscopic scale (large time limit and hydrodynamic scal-
ing) the model has a limit shape, which we now describe, see Fig. 3. Since we look at
heights at different times, we cannot use time as a large parameter. Instead, we introduce
a large parameter L and consider space and time coordinates that are comparable to L .
The limit shape consists of three facets interpolated by a curved piece. To describe it,
consider the set

D = {(ν, η, τ ) ∈ R
3
>0 | (√η − √

τ)2 < ν < (
√

η +
√

τ)2}. (1.7)

It is exactly the set of triples (ν, η, τ ) ∈ R
3
>0 for which there exists a nondegenerate tri-

angle with side lengths (
√

ν,
√

η,
√

τ). Denote by (πν, πη, πτ ) the angles of this triangle
that are opposite to the corresponding sides (see Fig. 4 too).

Our second result concerns the limit shape and the Gaussian fluctuations in the curved
region, living on a

√
ln L scale.

Theorem 1.2. For any (ν, η, τ ) ∈ D we have the moment convergence of random vari-
ables
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Fig. 4. The triangle of (3.3) on the left and its scaled version defined by intersection of circles on the right

lim
L→∞

h([(ν − η)L] + 1
2 , [ηL], τ L

)− Eh([(ν − η)L] + 1
2 , [ηL], τ L

)
√

κ ln L
= ξ ∼ N (0, 1),

(1.8)

with κ = (2π2)−1.

We also give an explicit formula for the limit shape:

lim
L→∞

Eh([(ν − η)L] + 1
2 , [ηL], τ L

)

L
=: h(ν, η, τ )

= 1

π

(
−νπη + η(π − πν) + τ

sin πν sin πη

sin πτ

)
. (1.9)

Theorem 1.2 describes the limit shape h of our growing surface, and the domain
D describes the points where this limit shape is curved. The logarithmic fluctuations
is essentially a consequence of the local asymptotic behavior being governed by the
discrete sine kernel (this local behavior occurs also in tiling models [42,49,63]). Using
the connection with the Charlier ensembles, see above, the formula (1.9) for the limit
shape can be read off the formulas of [7].

Using Theorem 1.1 it is not hard to verify (see Proposition 3.1 below) that near every
point of the limit shape in the curved region, at any fixed time moment the random loz-
enge tiling approaches the unique translation invariant measure Mπν,πη,πτ on lozenge
tilings of the plane with prescribed slope (see [27,50,53] and references therein for dis-
cussions of these measures). The slope is exactly the slope of the tangent plane to the
limit shape, given by

∂h
∂ν

= −πη

π
,

∂h
∂η

= 1 − πν

π
. (1.10)

This implies in particular, that (πν/π, πη/π, πτ /π) are the asymptotic proportions of
lozenges of three different types in the neighborhood of the point of the limit shape. One
also computes the growth velocity (see (1.12) for the definition of Ω)

∂h
∂τ

= 1

π

sin πν sin πη

sin πτ

= Im(Ω(ν, η, τ ))

π
. (1.11)

Since the right-hand side depends only on the slope of the tangent plane, this suggests
that it should be possible to extend the definition of our surface evolution to the random
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surfaces distributed according to measures Mπν,πη,πτ ; these measures have to remain
invariant under evolution, and the speed of the height growth should be given by the
right-hand side of (1.11). This is an interesting open problem that we do not address in
this paper.

1.3. Complex structure and multipoint fluctuations. To describe the correlations of the
interface, we first need to introduce a complex structure. Set H = {z ∈ C | Im(z) > 0}
and define the map Ω : D → H by

|Ω(ν, η, τ )| = √η/τ , |1 − Ω(ν, η, τ )| = √ν/τ . (1.12)

Observe that arg Ω = πν and arg(1 − Ω) = −πη. The preimage of any Ω ∈ H is a
ray in D that consists of triples (ν, η, τ ) with constant ratios (ν : η : τ). Denote this ray
by RΩ . One sees that RΩ ’s are also the level sets of the slope of the tangent plane to
the limit shape. Since h(αν, αη, ατ) = αh(ν, η, τ ) for any α > 0, the height function
grows linearly in time along each RΩ . Note also that the map Ω satisfies

(1 − Ω)
∂Ω

∂ν
= Ω

∂Ω

∂η
= −∂Ω

∂τ
, (1.13)

and the first of these relations is the complex Burgers equation, cf. [52].
From Theorem 1.2 one might think that to get non-trivial correlations we need to

consider (h − E(h))/
√

ln L . However, this is not true and the division by
√

ln L is not
needed. To state the precise result, denote by

G(z, w) = − 1

2π
ln

∣∣∣∣
z − w

z − w̄

∣∣∣∣ (1.14)

the Green function of the Laplace operator on H with Dirichlet boundary conditions.

Theorem 1.3. For any N = 1, 2, . . ., let κ j = (ν j , η j , τ j ) ∈ D be any distinct N triples
such that

τ1 ≤ τ2 ≤ · · · ≤ τN , η1 ≥ η2 ≥ · · · ≥ ηN . (1.15)

Denote

HL(ν, η, τ ) := √
π
(
h([(ν − η)L] + 1

2 , [ηL], τ L) − Eh([(ν − η)L] + 1
2 , [ηL], τ L)

)
,

(1.16)

and Ω j = Ω(ν j , η j , τ j ). Then

lim
L→∞E (HL(κ1) · · · HL(κN )) =

{∑
σ∈FN

∏N/2
j=1 G(Ωσ(2 j−1),Ωσ(2 j)), N is even,

0, N is odd,

(1.17)

where the summation is taken over all fixed point free involutions σ on {1, . . . , N }.
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The result of the theorem means that as L → ∞, HL(Ω−1(z)) is a Gaussian process
with covariance given by G, i.e., it has correlation of the Gaussian Free Field on H.
We can make this statement more precise. Indeed, in addition to Theorem 1.3, a simple
consequence of Theorem 1.2 gives (see Lemma 5.4),

E (HL(κ1) · · · HL(κN )) = O(Lε), L → ∞, (1.18)

for any κ j ∈ D and any ε > 0. This bounds the moments of HL(κ j ) for infinitesimally
close points κ j . A small extension of Theorem 1.3 together with this estimate immedi-
ately implies that on suitable surfaces in D, the random function HL(ν, η, τ ) converges
to the Ω-pullback of the Gaussian free field on H, see Theorem 5.6 and Theorem 5.8 in
Sect. 5.5 for more details.

Conjecture 1.4. The statement of Theorem 1.3 holds without the assumption (1.15),
provided that Ω-images of all the triples are pairwise distinct.

Theorem 1.3 and Conjecture 1.4 indicate that the fluctuations of the height function
along the rays RΩ vary slower than in any other space-time direction. This statement
can be rephrased more generally: the height function has smaller fluctuations along the
curves where the slope of the limit shape remains constant. We have been able to find
evidence for such a claim in one-dimensional random growth models as well [30,39].

1.4. Universality class. In the terminology of physics literature, see e.g. [4], our Mar-
kov chain falls into the class of local growth models with relaxation and lateral growth,
described by the Kardar-Parisi-Zhang (KPZ) equation

∂t h = Δh + Q(∂x h, ∂yh) + white noise, (1.19)

where Q is a quadratic form. Relations (1.10) and (1.11) imply that for our growth model
the determinant of the Hessian of ∂t h, viewed as a function of the slope, is strictly nega-
tive, which means that the form Q in our case has signature (−1, 1). In such a situation
Eq. (1.19) is called an anisotropic KPZ or AKPZ equation.

An example of such system is growth of vicinal surfaces, which are naturally aniso-
tropic because the tilt direction of the surface is special. Using non-rigorous renor-
malization group analysis based on one-loop expansion, Wolf [77] predicted that large
time fluctuations (the roughness) of the growth models described by the AKPZ equa-
tion should be similar to those of linear models described by the Edwards-Wilkinson
equation (heat equation with random term)

∂t h = Δh + white noise. (1.20)

Our results can be viewed as the first rigorous analysis of a non-equilibrium growth
model in the AKPZ class. (Some results, like logarithmic fluctuations, for an AKPZ
model in a steady state were obtained in [67]. Some numerical results are described
in [45,46,54]). Indeed, Wolf’s prediction correctly identifies the logarithmic behavior
of height fluctuations. However, it does not (at least explicitly) predict the appearance
of the Gaussian free field, and in particular the complete structure (map Ω) of the fluc-
tuations described in the previous section.

On the other hand, universality considerations imply that analogs of Theorems 1.2
and 1.3, as well as possibly Conjecture 1.4, should hold in any AKPZ growth model.
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1.5. More general growth models. It turns out that the determinantal structure of the
correlations functions stated in Theorem 1.1 holds for a much more general class of
two-dimensional growth models. In the first part of the paper we develop an algebraic
formalism needed to show that. At least three examples where this formalism applies,
other than the Markov chain considered above, are worth mentioning.
1. In the Markov chain considered above one can make the particle jump rates depend

on the upper index m in an arbitrary way. One can also allow the particles to jump both
right and left, with ratio of left and right jump rates possibly changing in time [13].

2. The shuffling algorithm for domino tilings of Aztec diamonds introduced in [37] also
fits into our formalism. The corresponding discrete time Markov chain is described
in Sect. 2 below, and its equivalence to domino shuffling is established in the recent
paper [59].

3. A shuffling algorithm for lozenge tilings of the hexagon (also known as boxed plane
partitions) has been constructed in [19] using the formalism developed in this paper,
see [19] for details.
Our original Markov chain is a suitable degeneration of each of these examples.
We expect our asymptotic methods to be applicable to many other two-dimensional

growth models produced by the general formalism, and we plan to return to this discus-
sion in a later publication.

1.6. Other connections. We have so far discussed the global asymptotic behavior of our
growing surface, and its bulk properties (measures Mπν,πη,πτ ), but have not discussed
the edge asymptotics. As was mentioned above, rows {xm

1 }m≥1 and {xm
m }m≥1 can be

viewed as one-dimensional growth models on their own, and their asymptotic behavior
was studied in [13] using essentially the same Theorem 1.1. This is exactly the edge
behavior of our two-dimensional growth model.

Of course, the successive projections to {xm
1 }m≥1 and then to a fixed (large) time

commute. In the first ordering, this can be seen as the large time interface associated to
the TASEP. In the second ordering, it corresponds to considering a tiling problem of a
large region and focusing on the border of the facet.

Interestingly enough, an analog of Theorem 1.1 remains useful for the edge compu-
tations even in the cases when the measure on the space S is no longer positive (but its
projections to {xm

1 }m≥1 and {xm
m }m≥1 remain positive). These computations lead to the

asymptotic results of [13–17,72] for one-dimensional growth models with more general
types of initial conditions.

Another natural asymptotic question that was not discussed is the limiting behavior
of M(n)(t) when t → ∞ but n remains fixed. After proper normalization, in the limit
one obtains the Markov chain investigated in [76].

Two of the four one-dimensional growth models constructed in [35] (namely, “Ber-
noulli with blocking” and “Bernoulli with pushing”) are projections to {xm

1 }m≥1 and
{xm

m }m≥1 of one of our two-dimensional growth models, see Sect. 2 below. It remains
unclear however, how to interpret the other two models of [35] in a similar fashion.

Finally, let us mention that our proof of Theorem 1.1 is based on the argument of [31]
and [74], the proof of Theorem 1.3 uses several ideas from [51], and the algebraic formal-
ism for two-dimensional growth models employs a crucial idea of constructing bivariate
Markov chains out of commuting univariate ones from [34].

Outline. The rest of the paper is organized as follows. It has essentially two main parts.
The first part is Sect. 2. It contains the construction of the Markov chains, with the final
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result being the determinantal structure and the associated kernel (Theorem 2.25). Its
continuous time analogue is Corollary 2.26, whose further specialization to particle-
independent jump rate leads to Theorem 1.1.

The second main part concerns the limit results for the continuous time model that we
analyze. We start by collecting various geometric identities in Sect. 3. We also shortly
discuss why our model is in the AKPZ class. In Sect. 4 we first give a shifted version of
the kernel, whose asymptotic analysis is the content of Sect. 6. These results then allow
us to prove Theorem 1.2 in Sect. 4 and Theorem 1.3 in Sect. 5.

Finally, we report in Appendix B certain developments that originated from the pres-
ent work since the appearance of its preprint version on the arXiv.

2. Two Dimensional Dynamics

All the constructions below are based on the following basic idea. Consider two Markov
operators P and P∗ on state spaces S and S∗, and a Markov link Λ : S∗ → S that
intertwines P and P∗, that is ΛP = P∗Λ. Then one can construct Markov chains on
(subsets of) S∗ × S that in some sense has both P and P∗ as their projections. There is
more than one way to realize this idea, and in this paper we discuss two variants.

In one of them the image (y∗, y) of (x∗, x) ∈ S∗ × S under the Markov operator is
determined by a sequential update: One first chooses y according to P(x, y), and then
one chooses y∗ so that the needed projection properties are satisfied. A characteristic
feature of the construction is that x and y∗ are independent, given x∗ and y. This bivariate
Markov chain is denoted PΛ; its construction is borrowed from [34].

In the second variant, the images y∗ and y are independent, given (x, x∗), and we say
that they are obtained by parallel update. The distribution of y is still P(x, y), indepen-
dently of what x∗ is. This Markov chain is denoted PΔ for the operator Δ = ΛP = P∗Λ
that plays an important role.

By induction, one constructs multivariate Markov chains out of finitely many univar-
iate ones and links that intertwine them. Again, we use two variants of the construction
— with sequential and parallel updates.

The key property that makes these constructions useful is the following: If the chains
P , P∗, and Λ, are h-Doob transforms of some (simpler) Markov chains, and the har-
monic functions h used are consistent, then the transition probabilities of the multivariate
Markov chains do not depend on h. Thus, participating multivariate Markov chains may
be fairly complex, while the transition probabilities of the univariate Markov chains
remain simple.

Below we first explain the abstract construction of PΛ, PΔ, and their multivariate
extensions. Then we exhibit a class of examples that are of interest to us. Finally, we
show how the knowledge of certain averages (correlation functions) for the univariate
Markov chains allows one to compute similar averages for the multivariate chains.

2.1. Bivariate Markov chains. Let S and S∗ be discrete sets, and let P and P∗ be
stochastic matrices on these sets:

∑
y∈S

P(x, y) = 1, x ∈ S;
∑

y∗∈S∗
P∗(x∗, y∗) = 1, x∗ ∈ S∗. (2.1)

Assume that there exists a third stochastic matrix Λ = ‖Λ(x∗, x)‖x∗∈S∗, x∈S such
that for any x∗ ∈ S∗ and y ∈ S,
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∑
x∈S

Λ(x∗, x)P(x, y) =
∑

y∗∈S∗
P∗(x∗, y∗)Λ(y∗, y). (2.2)

Let us denote the above quantity by Δ(x∗, y). In matrix notation

Δ = ΛP = P∗Λ. (2.3)

Set

SΛ = {(x∗, x) ∈ S∗ × S | Λ(x∗, x) > 0},
SΔ = {(x∗, x) ∈ S∗ × S | Δ(x∗, x) > 0}.

Define bivariate Markov chains on SΛ and SΔ by their corresponding transition proba-
bilities

PΛ((x∗, x), (y∗, y)) =
{

P(x,y)P∗(x∗,y∗)Λ(y∗,y)
Δ(x∗,y)

, Δ(x∗, y) > 0,

0, otherwise,
(2.4)

PΔ((x∗, x), (y∗, y)) = P(x, y)P∗(x∗, y∗)Λ(y∗, x)

Δ(x∗, x)
. (2.5)

It is immediately verified that both matrices PΛ and PΔ are stochastic.
The chain PΛ was introduced by Diaconis-Fill in [34], and we are using the notation

of that paper.
One could think of PΛ and PΔ as follows.
For PΛ, starting from (x∗, x) we first choose y according to the transition matrix

P(x, y), and then choose y∗ using P∗(x∗,y∗)Λ(y∗,y)
Δ(x∗,y)

, which is the conditional distribution
of the middle point in the successive application of P∗ and Λ provided that we start at
x∗ and finish at y.

For PΔ, starting from (x∗, x) we independently choose y according to P(x, y) and
y∗ according to P∗(x∗,y∗)Λ(y∗,x)

Δ(x∗,x)
, which is the conditional distribution of the middle point

in the successive application of P∗ and Λ provided that we start at x∗ and finish at x .

Lemma 2.1. For any (x∗, x) ∈ SΛ, y ∈ S, we have
∑

y∗∈S∗:(y∗,y)∈SΛ

PΛ((x∗, x), (y∗, y)) = P(x, y),

∑
y∗∈S∗:(y∗,y)∈SΔ

PΔ((x∗, x), (y∗, y)) = P(x, y),
(2.6)

and for any x∗ ∈ S∗, (y∗, y) ∈ SΛ,
∑

x∈S:(x∗,x)∈SΛ

Λ(x∗, x)PΛ((x∗, x), (y∗, y)) = P∗(x∗, y∗)Λ(y∗, y),

∑
x∈S:(x∗,x)∈SΔ

Δ(x∗, x)PΔ((x∗, x), (y∗, y)) = P∗(x∗, y∗)Δ(y∗, y).
(2.7)

Proof of Lemma 2.1. Straightforward computation using the relation Δ = ΛP = P∗Λ.
��
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Proposition 2.2. Let m∗(x∗) be a probability measure on S∗. Consider the evolution
of the measure m(x∗)Λ(x∗, x) on SΛ under the Markov chain PΛ and denote by
(x∗( j), x( j)) the result after j = 0, 1, 2, . . . steps. Then for any k, l = 0, 1, . . . the
joint distribution of

(x∗(0), x∗(1), . . . , x∗(k), x(k), x(k + 1), . . . , x(k + l)) (2.8)

coincides with the stochastic evolution of m∗ under transition matrices

(P∗, . . . , P∗
︸ ︷︷ ︸

k

,Λ, P, . . . , P︸ ︷︷ ︸
l

). (2.9)

Exactly the same statement holds for the Markov chain PΔ and the initial condition
m∗(x∗)Δ(x∗, x) with Λ replaced by Δ in the above sequence of matrices.

Proof of Proposition 2.2. Successive application of the first relations of Lemma 2.1 to
evaluate the sums over x∗(k + l), . . . , x∗(k + 1), and of the second relations to evaluate
the sums over x(1), . . . , x(k − 1). ��

Note that Proposition 2.2 also implies that the joint distribution of x∗(k) and x(k)

has the form m∗
k(x∗(k))Λ(x∗(k), x(k)), where m∗

k is the result of k-fold application of
P∗ to m∗.

The above constructions can be generalized to the nonautonomous situation.
Assume that we have a time variable t ∈ Z, and our state spaces as well as transition

matrices depend on t , which we will indicate as follows:

S(t), S∗(t), P(x, y | t), P∗(x∗, y∗ | t), Λ(x∗, x | t), P(t), P∗(t), Λ(t).

(2.10)

The commutation relation (1.3) is replaced by Λ(t)P(t) = P∗(t)Λ(t + 1) or

Δ(x∗, y | t) :=
∑

x∈S(t)

Λ(x∗, x | t)P(x, y | t) =
∑

y∗∈S∗(t+1)

P∗(x∗, y∗ | t)Λ(y∗, y | t + 1).

(2.11)

Further, we set

SΛ(t) = {(x∗, x) ∈ S∗(t) × S(t) | Λ(x∗, x | t) > 0},
SΔ(t) = {(x∗, x) ∈ S∗(t) × S(t + 1) | Δ(x∗, x | t) > 0}, (2.12)

and

PΛ((x∗, x), (y∗, y) | t) =
{

P(x,y | t)P∗(x∗,y∗ | t)Λ(y∗,y | t+1)
Δ(x∗,y | t) Δ(x∗, y | t) > 0,

0, otherwise,
(2.13)

PΔ((x∗, x), (y∗, y) | t) = P(x, y | t + 1)P∗(x∗, y∗ | t)Λ(y∗, x | t + 1)

Δ(x∗, x | t)
. (2.14)

The nonautonomous generalization of Proposition 2.2 is proved in exactly the same
way as Proposition 2.2. Let us state it.
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Proposition 2.3. Fix t0 ∈ Z, and let m∗(x∗) be a probability measure on S∗(t0). Con-
sider the evolution of the measure m(x∗)Λ(x∗, x | t0) on SΛ(t0) under the Markov chain
PΛ(t), and denote by (x∗(t0 + j), x(t0 + j)) ∈ SΛ(t0 + j) the result after j = 0, 1, 2, . . .

steps. Then for any k, l = 0, 1, . . . the joint distribution of

(x∗(t0), x∗(t0 + 1), . . . , x∗(t0 + k), x(t0 + k), x(t0 + k + 1), . . . , x(t0 + k + l)) (2.15)

coincides with the stochastic evolution of m∗ under transition matrices

P∗(t0), . . . , P∗(t0 + k − 1),Λ(t0 + k), P(t0 + k), . . . , P(t0 + k + l − 1) (2.16)

(for k = l = 0 only Λ(t0) remains in this string).
A similar statement holds for the Markov chain PΔ(t) and the initial condition

m∗(x∗)Δ(x∗, x | t0): For any k, l = 0, 1, . . . the joint distribution of

(x∗(t0), x∗(t0 + 1), . . . , x∗(t0 + k), x(t0 + k + 1), x(t0 + k + 2), . . . , x(t0 + k + l + 1))

(2.17)

coincides with the stochastic evolution of m∗ under transition matrices

P∗(t0), . . . , P∗(t0 + k − 1),Δ(t0 + k), P(t0 + k + 1), . . . , P(t0 + k + l). (2.18)

Remark 2.4. Observe that there is a difference in the sequences of times used in (2.8)
and (2.17). The reason is that for nonautonomous PΔ, the state space at time t is a subset
of S∗(t) × S(t + 1), and we denote its elements as (x∗(t), x(t + 1)). In the autonomous
case, an element of the state space SΔ at time t was denoted as (x∗(t), x(t)).

2.2. Multivariate Markov chains. We now aim at generalizing the constructions of
Sect. 2.1 to more than two state spaces.

Let S1, . . . ,Sn be discrete sets, P1, . . . , Pn be stochastic matrices defining Markov
chains on them, and let Λ2

1, . . . , Λ
n
n−1 be stochastic links between these sets:

Pk : Sk × Sk → [0, 1],
∑
y∈Sk

Pk(x, y) = 1, x ∈ Sk, k = 1, . . . , n;

Λk
k−1 : Sk × Sk−1 → [0, 1],

∑
y∈Sk−1

Λk
k−1(x, y) = 1, x ∈ Sk, k = 2, . . . , n.

(2.19)

Assume that these matrices satisfy the commutation relations

Δk
k−1 := Λk

k−1 Pk−1 = PkΛ
k
k−1, k = 2, . . . , n. (2.20)

The state spaces for our multivariate Markov chains are defined as follows:

S(n)
Λ =

{
(x1, . . . , xn) ∈ S1 × · · · × Sn |

n∏
k=2

Λk
k−1(xk, xk−1) �= 0

}
,

S(n)
Δ =

{
(x1, . . . , xn) ∈ S1 × · · · × Sn |

n∏
k=2

Δk
k−1(xk, xk−1) �= 0

}
.

(2.21)
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The transition probabilities for the Markov chains P(n)
Λ and P(n)

Δ are defined as (we use
the notation Xn = (x1, . . . , xn), Yn = (y1, . . . , yn))

P(n)
Λ (Xn, Yn)=

⎧⎨
⎩

P1(x1, y1)
∏n

k=2
Pk (xk ,yk )Λ

k
k−1(yk ,yk−1)

Δk
k−1(xk ,yk−1)

,
∏n

k=2 Δk
k−1(xk, yk−1) > 0,

0, otherwise,

(2.22)

P(n)
Δ (Xn, Yn)= P(x1, y1)

n∏
k=2

Pk(xk, yk)Λ
k
k−1(yk, xk−1)

Δk
k−1(xk, xk−1)

. (2.23)

One way to think of P(n)
Λ and P(n)

Δ is as follows. For P(n)
Λ , starting from

Xn = (x1, . . . , xn), we first choose y1 according to the transition matrix P(x1, y1), then

choose y2 using
P2(x2,y2)Λ

2
1(y2,y1)

Δ2
1(x2,y1)

, which is the conditional distribution of the middle

point in the successive application of P2 and Λ2
1 provided that we start at x2 and finish

at y1, after that we choose y3 using the conditional distribution of the middle point in
the successive application of P3 and Λ3

2 provided that we start at x3 and finish at y2, and
so on. Thus, one could say that Yn is obtained by the sequential update.

For P(n)
Δ , starting from Xn = (x1, . . . , xn) we independently choose y1, . . . , yn

according to P1(x1, y1) for y1 and
Pk (xk ,yk )Λ

k
k−1(yk ,xk−1)

Δk
k−1(xk ,xk−1)

, for yk , k = 2, . . . , n. The latter

formula is the conditional distribution of the middle point in the successive application
of Pk and Λk

k−1 provided that we start at xk and finish at xk−1. Thus, it is natural to say
that this Markov chain corresponds to the parallel update.

We aim at proving the following generalization of Proposition 2.2.

Proposition 2.5. Let mn(xn) be a probability measure on Sn. Consider the evolution of
the measure

mn(xn)Λn
n−1(xn, xn−1) · · · Λ2

1(x2, x1) (2.24)

on S(n)
Λ under the Markov chain P(n)

Λ , and denote by (x1( j), . . . , xn( j)) the result after
j = 0, 1, 2, . . . steps. Then for any k1 ≥ k2 ≥ · · · ≥ kn ≥ 0 the joint distribution of

(xn(0), . . . , xn(kn), xn−1(kn), xn−1(kn + 1), . . . , xn−1(kn−1),

xn−2(kn−1), . . . , x2(k2), x1(k2), . . . , x1(k1))

coincides with the stochastic evolution of mn under transition matrices

(Pn, . . . , Pn︸ ︷︷ ︸
kn

,Λn
n−1, Pn−1, . . . , Pn−1︸ ︷︷ ︸

kn−1−kn

,Λn−1
n−2, . . . , Λ

2
1, P1, . . . , P1︸ ︷︷ ︸

k1−k2

). (2.25)

Exactly the same statement holds for the Markov chain P(n)
Δ and the initial condition

m(xn)Δ
n
n−1(xn, xn−1) · · · Δ2

1(x2, x1) (2.26)

with Λ’s replaced by Δ’s in the above sequence of matrices.

The following lemma is useful.
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Lemma 2.6. Consider the matrix Λ : Sn × S(n−1)
Λ → [0, 1] given by

Λ(xn, (x1, . . . , xn−1)) := Λn
n−1(xn, xn−1) · · · Λ2

1(x2, x1). (2.27)

Then ΛP(n−1)
Λ = PnΛ. If we denote this matrix by Δ then

P(n)
Λ (Xn, Yn) =

{
P(n−1)

Λ (Xn−1,Yn−1)Pn(xn ,yn)Λ(yn ,Yn−1)

Δ(xn ,Yn−1)
, Δ(xn, Yn−1) > 0,

0, otherwise.
(2.28)

Also, using the same notation,

P(n)
Δ (Xn, Yn) = P(n−1)

Δ (Xn−1, Yn−1)Pn(xn, yn)Λ(yn, Xn−1)

Δ(xn, Xn−1)
. (2.29)

Proof of Lemma 2.6. Let us check the commutation relation ΛP(n−1)
Λ = PnΛ. We have

ΛP(n−1)
Λ (xn, Yn−1) =

∑
x1,...,xn−1

Λn
n−1(xn, xn−1) · · · Λ2

1(x2, x1)

×P1(x1, y1)

n−1∏
k=2

Pk(xk, yk)Λ
k
k−1(yk, yk−1)

Δk
k−1(xk, yk−1)

, (2.30)

where the sum is taken over all x1, . . . , xn−1 such that
∏n−1

k=2 Δk
k−1(xk, yk−1) > 0. Com-

puting the sum over x1 and using the relation Λ2
1 P1 = Δ2

1 we obtain

ΛP(n−1)
Λ (xn, Yn−1) =

∑
x2,...,xn−1

Λn
n−1(xn, xn−1) · · · Λ3

2(x3, x2)

×P2(x2, y2)Λ
2
1(y2, y1)

n−1∏
k=3

Pk(xk, yk)Λ
k
k−1(yk, yk−1)

Δk
k−1(xk, yk−1)

. (2.31)

Now we need to compute the sum over x2. If Δ2
1(x2, y1) = 0 then P2(x2, y2) = 0

because otherwise the relation Δ2
1 = P2Λ

2
1 implies that Λ2

1(y2, y1) = 0, which contra-

dicts the hypothesis that Yn−1 ∈ S(n−1)
Λ . Thus, we can extend the sum to all x2 ∈ S2,

and the relation Λ3
2 P2 = Δ3

2 gives

ΛP(n−1)
Λ (xn, Yn−1) =

∑
x3,...,xn−1

Λn
n−1(xn, xn−1) · · · Λ4

3(x4, x3)P3(x3, y3)

×Λ3
2(y3, y2)Λ

2
1(y2, y1)

n−1∏
k=4

Pk(xk, yk)Λ
k
k−1(yk, yk−1)

Δk
k−1(xk, yk−1)

.

(2.32)

Continuing like that we end up with

Λn−1
n−2(yn−1, yn−2) · · · Λ2

1(y2, y1)
∑
xn−1

Λn
n−1(xn, xn−1)Pn−1(xn−1, yn−1), (2.33)
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which, by Λn
n−1 Pn−1 = PnΛn

n−1 is exactly PnΛ(xn, Yn−1). Let us also note that

Δ(xn, Yn−1) = Δn
n−1(xn, yn−1)Λ

n−1
n−2(yn−1, yn−2) · · · Λ2

1(y2, y1). (2.34)

The needed formulas for P(n)
Λ and P(n)

Δ are now verified by straightforward substitution.
��

Proof of Proposition 2.5. Let us give the argument for P(n)
Λ ; for P(n)

Δ the proof is literally
the same. By virtue of Lemma 2.6, we can apply Proposition 2.2 by taking

S∗ = Sn, S = S(n−1)
Λ , P∗ = Pn, P = P(n−1)

Λ , k = kn, l = k1 − kn, (2.35)

and Λ(xn, Xn−1) as in Lemma 2.6. Proposition 2.2 says that the joint distribution

(xn(0), xn(1), . . . , xn(kn), Xn−1(kn), Xn−1(kn + 1), . . . , Xn−1(k1)) (2.36)

is the evolution of mn under

(Pn, . . . , Pn︸ ︷︷ ︸
kn

,Λ, P(n−1)
Λ , . . . , P(n−1)

Λ︸ ︷︷ ︸
k1−kn

). (2.37)

Induction on n completes the proof. ��
As in the previous section, Proposition 2.5 can be also proved in the nonautonomous

situation. Let us give the necessary definitions.
We now have a time variable t ∈ Z, and our state spaces as well as transition matrices

depend on t :

Sk(t), Pk(x, y | t), k = 1, . . . , n, Λk
k−1(xk, xk−1 | t), k = 2, . . . , n. (2.38)

The commutation relations are

Δk
k−1(t) := Λk

k−1(t)Pk−1(t) = Pk(t)Λ
k
k−1(t + 1), k = 2, . . . , n. (2.39)

The multivariate state spaces are defined as

S(n)
Λ (t) =

{
(x1, . . . , xn) ∈ S1(t) × · · · × Sn(t) |

n∏
k=2

Λk
k−1(xk, xk−1 | t) �= 0

}
,

S(n)
Δ (t) =

{
(x1, . . . , xn) ∈ S1(t + n − 1) × · · · × Sn(t) |

n∏
k=2

Δk
k−1(xk, xk−1 | t + n − k) �= 0

}
.

Then the transition matrices for P(n)
Λ and P(n)

Δ are defined as

P(n)
Λ (Xn, Yn | t) = P1(x1, y1 | t)

n∏
k=2

Pk(xk, yk | t)Λk
k−1(yk, yk−1 | t + 1)

Δk
k−1(xk, yk−1 | t)

(2.40)

if
∏n

k=2 Δk
k−1(xk, yk−1 | t) > 0 and 0 otherwise; and

P(n)
Δ (Xn, Yn) = P(x1, y1 | t + n − 1)

×
n∏

k=2

Pk(xk, yk | t + n − k)Λk
k−1(yk, xk−1 | t + n − k + 1)

Δk
k−1(xk, xk−1 | t + n − k)

. (2.41)
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Proposition 2.7. Fix t0 ∈ Z, and let mn(xn) be a probability measure on Sn(t0). Con-
sider the evolution of the measure

mn(xn)Λn
n−1(xn, xn−1 | t0) · · · Λ2

1(x2, x1 | t0) (2.42)

on S(n)
Λ (t0) under P(n)

Λ (t). Denote by (x1(t0 + j), . . . , xn(t0 + j)) the result after
j = 0, 1, 2, . . . steps. Then for any k1 ≥ k2 ≥ · · · ≥ kn ≥ t0 the joint distribution
of

(xn(t0), . . . , xn(kn), xn−1(kn), xn−1(kn + 1), . . . , xn−1(kn−1),

xn−2(kn−1), . . . , x2(k2), x1(k2), . . . , x1(k1))

coincides with the stochastic evolution of mn under transition matrices

Pn(t0), . . . , Pn(kn − 1),Λn
n−1(kn), Pn−1(kn), . . . , Pn−1(kn−1 − 1),

Λn−1
n−2(kn−1), . . . , Λ

2
1(k2), P1(k2), . . . , P1(k1 − 1).

A similar statement holds for the Markov chain P(n)
Δ (t) and the initial condition

m(xn)Δn
n−1(xn, xn−1 | t0) · · · Δ2

1(x2, x1 | t0 + n − 2). (2.43)

For any k1 > k2 > · · · > kn ≥ t0 the joint distribution of

(xn(t0), . . . , xn(kn), xn−1(kn + 1), xn−1(kn + 2), . . . , xn−1(kn−1),

xn−2(kn−1 + 1), . . . , x2(k2), x1(k2 + 1), . . . , x1(k1))

coincides with the stochastic evolution of mn under transition matrices

Pn(t0), . . . , Pn(kn − 1),Δn
n−1(kn), Pn−1(kn + 1), . . . , Pn−1(kn−1 − 1),

Δn−1
n−2(kn−1), . . . , Δ

2
1(k2), P1(k2 + 1), . . . , P1(k1 − 1).

The proof is very similar to that of Proposition 2.5.

2.3. Toeplitz-like transition probabilities. The goal of this section is to provide some
general recipe on how to construct commuting stochastic matrices.

Proposition 2.8. Let α1, . . . , αn be nonzero complex numbers, and let F(x) be an ana-
lytic function in an annulus A centered at the origin that contains all α−1

j ’s. Assume that

F(α−1
1 ) · · · F(α−1

n ) �= 0. Then

1

F(α−1
1 ) · · · F(α−1

n )

∑
y1<···<yn∈Z

det [αy j
i ]n

i, j=1 det [ f (x j − yi )]n
i, j=1 = det [αx j

i ]n
i, j=1,

(2.44)

where

f (m) = 1

2π i

∮
F(z)dz

zm+1 , (2.45)

and the integral is taken over any positively oriented simple loop in A.
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Proof of Proposition 2.8. Since the left-hand side is symmetric with respect to permu-
tations of y j ’s and it vanishes when two y j ’s are equal, we can extend the sum to Z

n and
divide the result by n!. We obtain

∑
y1,...,yn∈Z

det [αy j
i ]n

i, j=1 det [ f (x j − yi )]n
i, j=1 = n! det

[ +∞∑
y=−∞

α
y
k f (x j − y)

]n

k, j=1
.

(2.46)

Further,

+∞∑
y=−∞

α
y
k f (x j − y) =

+∞∑
y=−∞

1

2π i

∮
α

y
k F(z)dz

zx j −y+1

= 1

2π i

∮

|z|=c1<|αk |−1

F(z)dz
+∞∑

y=x j +1

α
y
k

zx j −y+1 +
1

2π i

∮

|z|=c2>|αk |−1

F(z)dz

x j∑
y=−∞

α
y
k

zx j −y+1

= 1

2π i

∮

|z|=c1<|αk |−1

α
x j +1
k F(z)

1 − αk z
dz − 1

2π i

∮

|z|=c2>|αk |−1

α
x j +1
k F(z)

1 − αk z
dz = α

x j
k F(α−1

k ).

��
Proposition 2.9. In the notation of Proposition 2.8, assume that the variable yn is vir-
tual, yn = virt, and set f (xk − virt) = α

xk
n for any k = 1, . . . , n. Then

1

F(α−1
1 ) · · · F(α−1

n−1)

∑
y1<···<yn−1∈Z

det [αy j
i ]n−1

i, j=1 det [ f (x j − yi )]n
i, j=1 = det [αx j

i ]n
i, j=1.

(2.47)

Proof of Proposition 2.9. Expansion of det [ f (x j − yi )]n
i, j=1 along the last row gives

det [ f (x j − yi )]n
i, j=1 =

n∑
k=1

(−1)n−kαxk
n · det [ f (x j − yi )]i=1,...,n−1

j=1,...,k−1,k+1,...,n
.

(2.48)

The application of Proposition 2.8 to each of the resulting summands in the left-hand
side of the desired equality produces the expansion of det [αx j

i ]n
i, j=1 along the last row.

��
For n = 1, 2, . . ., denote

Xn = {(x1, . . . , xn) ∈ Z
n | x1 < · · · < xn}. (2.49)

In what follows we assume that the (nonzero) complex parameters α1, α2, . . . are

such that the ratios det[αx j
i ]n

i, j=1/ det [α j−1
i ]n

i, j=1 are nonzero for all n = 1, 2, . . . and
all (x1 . . . , xn) in Xn . This holds, for example, when all α j ’s are positive. The Vander-

monde determinant in the denominator is needed to make sense of det[αx j
i ]n

i, j=1 when
some of the α j ’s are equal.
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Under this assumption, define the matrices Xn × Xn and Xn × Xn−1 by

Tn(α1, . . . , αn; F)(X, Y ) =
det [αy j

i ]n
i, j=1

det [αx j
i ]n

i, j=1

det [ f (xi − y j )]n
i, j=1∏n

j=1 F(α−1
j )

, X, Y ∈ Xn,

T n
n−1(α1, . . . , αn; F)(X, Y )=

det [αy j
i ]n−1

i, j=1

det [αx j
i ]n

i, j=1

det [ f (xi − y j )]n
i, j=1∏n−1

j=1 F(α−1
j )

, X∈Xn, Y∈Xn−1,

where in the second formula yn = virt. By Propositions 2.8 and 2.9, the sums of entries
of these matrices along rows are equal to 1. We will often omit the parameters α j from
the notation so that the above matrices will be denoted as Tn(F) and T n

n−1(F).
We are interested in these matrices because they have nice commutation relations, as

the following proposition shows.

Proposition 2.10. Let F1 and F2 be two functions holomorphic in an annulus containing
α−1

j ’s, that are also nonzero at these points. Then

Tn(F1)Tn(F2) = Tn(F2)Tn(F1) = Tn(F1 F2),

Tn(F1)T
n
n−1(F2) = T n

n−1(F1)Tn−1(F2) = T n
n−1(F1 F2).

(2.50)

Proof of Proposition 2.10. The first line and the relation T n
n−1(F1)Tn−1(F2)=T n

n−1(F1 F2)

are proved by straightforward computations using the fact the Fourier transform of F1 F2
is the convolution of those of F1 and F2. The only additional ingredient in the proof of
the relation Tn(F1)T n

n−1(F2) = T n
n−1(F1 F2) is

∑
y∈Z

f1(x − y) f2(y − virt) =
∑
y∈Z

f1(x − y)α
y
n = F1(α

−1
n )αx

n . (2.51)

��
Remark 2.11. In the same way one proves the commutation relation

T n
n−1(F1)T

n−1
n−2 (F2) = T n

n−1(F2)T
n−1
n−2 (F1) (2.52)

but we will not need it later.

2.4. Minors of some simple Toeplitz matrices. The goal of the section is to derive explicit
formulas for Tn(F) and T n

n−1(F) from the previous section for some simple functions F .

Lemma 2.12. Consider F(z) = 1 + pz, that is

f (m) =

⎧⎪⎨
⎪⎩

p, m = 1,

1, m = 0,

0, otherwise.
(2.53)

Then for integers x1 < · · · < xn and y1 < · · · < yn,

det [ f (xi − y j )]n
i, j=1 =

{
p
∑n

i=1(xi −yi ), if yi − xi ∈ {−1, 0} for all 1 ≤ i ≤ n,

0, otherwise.

(2.54)
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Proof of Lemma 2.12. If xi < yi for some i then xk < yl for k ≤ i and l ≥ i , which
implies that f (xk − yl) = 0 for such k, l, and thus the determinant in question vanishes.
If xi > yi + 1 then xk > yl + 1 for k ≥ i and l ≤ i , which means f (xk − yl) = 0, and the
determinant vanishes again. Hence, it remains to consider the case when xi − yi ∈ {0, 1}
for all 1 ≤ i ≤ n.

Split {xi }n
i=1 into blocks of neighboring integers with distance between blocks being

at least 2. Then it is easy to see that det [ f (xi − y j )] splits into the product of determi-
nants corresponding to blocks. Let (xk, . . . , xl−1) be such a block. Then there exists m,
k ≤ m < l, such that xi = yi + 1 for k ≤ i < m, and xi = yi for m ≤ i < l. The
determinant corresponding to this block is the product of determinants of two triangular
matrices, one has size m − k and diagonal entries equal to p, while the other one has
size l − m and diagonal entries equal to 1. Thus, the determinant corresponding to this
block is equal to pm−k , and collecting these factors over all blocks yields the result. ��
Lemma 2.13. Consider F(z) = (1 − qz)−1, that is

f (m) =
{

qm, m ≥ 0,

0, otherwise.
(2.55)

(i) For integers x1 < · · · < xn and y1 < · · · < yn,

det [ f (xi − y j )]n
i, j=1 =

{
q
∑n

i=1(xi −yi ), xi−1 < yi ≤ xi , 1 ≤ i ≤ n,

0, otherwise.
(2.56)

(The condition x0 < y1 above is empty.)
(ii) For integers x1 < · · · < xn and y1 < · · · < yn−1, and with virtual variable

yn = virt such that f (x − virt) = qx ,

det [ f (xi − y j )]n
i, j=1

=
{

(−1)n−1q
∑n

i=1 xi −∑n−1
i=1 yi , xi < yi ≤ xi+1, 1 ≤ i ≤ n − 1,

0, otherwise.
(2.57)

Proof of Lemma 2.13. (i) Let us first show that the needed inequalities are satisfied.
Indeed, if xi < yi for some i then det [ f (xi − y j )] = 0 by the same reasoning as
in the previous lemma. On the other hand, if xi−1 ≥ yi then xk ≥ yl for k ≥ i − 1,
l ≤ i . Let i be the smallest number such that xi−1 ≥ yi . Then columns i and i + 1
have the form

[
0 . . . 0 qxi−1−yi−1 qxi −yi−1 ∗ ∗ . . .

0 . . . 0 qxi−1−yi qxi −yi ∗ ∗ . . .

]T

, (2.58)

where the 2×2 block with powers of q is on the main diagonal. This again implies
that the determinant vanishes. On the other hand, if the interlacing inequalities are
satisfied then the matrix [ f (xi − y j )] is triangular, and computing the product of
its diagonal entries yields the result.

(ii) The statement follows from (i). Indeed, we just need to multiply both sides of (i)
by q y1 , denote y1(≤ x1) by virt, and then cyclically permute y j ’s. ��
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Lemma 2.14. Consider F(z) = p + qz(1 − qz)−1, that is

f (m) =

⎧⎪⎨
⎪⎩

p, m = 0,

qm, m ≥ 1,

0, otherwise.
(2.59)

(i) For integral x1 < · · · < xn and y1 < · · · < yn,

det [ f (xi − y j )]n
i, j=1 = q

∑n
i=1(xi −yi ) p#{i | xi =yi }(1 − p)#{i | xi−1=yi } (2.60)

if xi−1 ≤ yi ≤ xi for all 1 ≤ i ≤ n, and 0 otherwise.
(ii) For integral x1 < · · · < xn and y1 < · · · < yn−1, and with virtual variable

yn = virt such that f (x − virt) = qx ,

det [ f (xi − y j )]n
i, j=1 = (−1)n−1q

∑n
i=1 xi −∑n−1

i=1 yi p#{i | xi+1=yi }(1 − p)#{i | xi =yi }

(2.61)

if xi ≤ yi ≤ xi+1 for all 1 ≤ i ≤ n − 1, and 0 otherwise.

Proof of Lemma 2.14. (i) The interlacing conditions are verified by the same argu-
ment as in the proof of Lemma 2.13(i) (although the conditions themselves are
slightly different). Assuming that they are satisfied, we observe that the matrix
elements of [ f (xi − y j )] are zero for j ≥ i + 2 because xi ≤ yi+1 < yi+2 and
f (m) = 0 for m < 0. Further, the (i, i + 1)-element is equal to p if xi = yi+1 or 0
if xi < yi+1. Thus, the matrix is block-diagonal, with blocks being either of size 1
with entry f (xi − yi ), or of larger size having the form

⎛
⎜⎜⎜⎝

qxk−yk p 0 . . . 0
qxk+1−yk qxk+1−yk+1 p . . . 0
qxk+2−yk qxk+2−yk+1 qxk+2−yk+2 . . . 0

. . . . . . . . . . . . . . .

qxl−yk qxl−yk+1 qxl−yk+2 . . . qxl−yl

⎞
⎟⎟⎟⎠ (2.62)

with xk = yk+1, . . . , xl−1 = yl , and xk−1 < yk , xl < yl+1. The determinant of
(2.62) is computable via Lemma 1.2 of [9], and it is equal to

qxl−yk (1 − p)l−k = qxk +···+xl−(yk +···+yl )(1 − p)l−k . (2.63)

Collecting all the factors yields the desired formula.
The proof of (ii) is very similar to that of Lemma 2.13(ii). ��

2.5. Examples of bivariate Markov chains. We now use the formulas from the previous
two sections to make the constructions of the first two sections more explicit.

Let us start with bivariate Markov chains. Set S∗ = Xn and S = Xn−1, where the
sets Xm , m = 1, 2, . . ., were introduced in Sect. 2.3. We will also take

Λ = T n
n−1(α1, . . . , αn; (1 − αnz)−1) (2.64)

for some fixed α1, . . . , αn > 0.
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The first case we consider is

P = Tn−1(α1, . . . , αn−1; 1 + βz), P∗ = Tn(α1, . . . , αn; 1 + βz), β > 0. (2.65)

Then Proposition 2.10 implies that

Δ = ΛP = P∗Λ = T n
n−1(α1, . . . , αn; (1 + βz)/(1 − αnz)). (2.66)

According to (2.22), (2.23), we have to compute expressions of the form

P∗(x∗, y∗)Λ(y∗, y)

Δ(x∗, y)
,

P∗(x∗, y∗)Λ(y∗, x)

Δ(x∗, x)

for the sequential and parallel updates, respectively.
We start with the condition probability needed for the Markov chain PΛ.

Proposition 2.15. Assume that x∗ ∈ S∗ and y ∈ S are such that Δ(x∗, y) > 0, that is,
x∗

k ≤ yk ≤ x∗
k+1 for all 1 ≤ k ≤ n − 1. Then the probability distribution

P∗(x∗, y∗)Λ(y∗, y)

Δ(x∗, y)
, y∗ ∈ S∗, (2.67)

has nonzero weights iff

y∗
k − x∗

k ∈ {−1, 0}, yk−1 ≤ y∗
k < yk, k = 1, . . . , n, (2.68)

(equivalently, max(x∗
k − 1, yk−1) ≤ y∗

k ≤ min(x∗
k , yk − 1) for all k), and these weights

are equal to

∏
max(x∗

k −1,yk−1)<min(x∗
k ,yk−1)

k=1,...,n

(
β

αn + β

)x∗
k −y∗

k
(

αn

αn + β

)1−x∗
k +y∗

k

(2.69)

with empty product equal to 1.

Remark 2.16. One way to think about the distribution of y∗ ∈ S∗ is as follows. For each
k there are two possibilities for y∗

k : Either max(x∗
k − 1, yk−1) = min(x∗

k , yk − 1), in
which case y∗

k is forced to be equal to this number, or max(x∗
k − 1, yk−1) = x∗

k − 1 and
min(x∗

k , yk − 1) = x∗
k , in which case y∗

k is allowed to take one of the two values x∗
k or

x∗
k − 1. Then in the latter case, x∗

k − y∗
k are i. i. d. Bernoulli random variables with the

probability of the value 0 equal to αn/(αn + β).

Proof of Proposition 2.15. The conditions for non-vanishing of the weights follow from
those of Lemmas 2.12 and 2.13, namely from (2.54) and (2.57). Using these formulas we
extract the factors of P∗(x∗, y∗)Λ(y∗, y) that depend on y∗. This yields (αn/β)

∑n
i=1 y∗

i .
Normalizing these weights so that they provide a probability distribution leads to the
desired formula. ��

Let us now look at the conditional distribution involved in the definition of the Markov
chain PΔ. The following statement is a direct consequence of Proposition 2.15.
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Corollary 2.17. Assume that x∗ ∈ S∗ and x ∈ S are such that Δ(x∗, x) > 0, that is,
x∗

k ≤ xk ≤ x∗
k+1 for all 1 ≤ k ≤ n − 1. Then the probability distribution

P∗(x∗, y∗)Λ(y∗, x)

Δ(x∗, x)
, y∗ ∈ S∗, (2.70)

has nonzero weights iff max(x∗
k − 1, xk−1) ≤ y∗

k ≤ min(x∗
k , xk − 1), and these weights

are equal to

∏
max(x∗

k −1,xk−1)<min(x∗
k ,xk−1)

k=1,...,n

(
β

αn + β

)x∗
k −y∗

k
(

αn

αn + β

)1−x∗
k +y∗

k

. (2.71)

Let us now proceed to the case

P = Tn−1(α1, . . . , αn−1; (1 − γ z)−1), P∗ = Tn(α1, . . . , αn; (1 − γ z)−1). (2.72)

We assume that 0 < γ < min{α1, . . . , αn}.
By Proposition 2.10,

Δ = ΛP = P∗Λ = T n
n−1

(
α1, . . . , αn; 1/((1 − αnz)(1 − γ z))

)
. (2.73)

Again, let us start with PΛ.

Proposition 2.18. Assume that x∗ ∈ S∗ and y ∈ S are such that Δ(x∗, y) > 0, that is,
x∗

k−1 < yk − 1 < x∗
k+1 for all k. Then the probability distribution

P∗(x∗, y∗)Λ(y∗, y)

Δ(x∗, y)
, y∗ ∈ S∗, (2.74)

has nonzero weights iff

x∗
k−1 < y∗

k ≤ x∗
k , yk−1 ≤ y∗

k < yk, k = 1, . . . , n − 1, (2.75)

(equivalently, max(x∗
k−1 +1, yk−1) ≤ y∗

k ≤ min(x∗
k , yk −1) for all k), and these weights

are equal to

n∏
k=1

(αn/γ )y∗
k

∑min(x∗
k ,yk−1)

l=max(x∗
k−1+1,yk−1)

(αn/γ )l
. (2.76)

Here max(x∗
0 + 1, y0) is assumed to denote −∞.

Remark 2.19. Less formally, these formulas state the following: Each y∗
k has to belong to

the segment [max(x∗
k−1+1, yk−1), min(x∗

k , yk−1)], and the restriction that Δ(x∗, y) > 0
guarantees that these segments are nonempty. Then the claim is that y∗

k ’s are independent,
and the distribution of y∗

k in the corresponding segment is proportional to the weights
(αn/γ )y∗

k . In other words, this is the geometric distribution with ratio αn/γ conditioned
to live in the prescribed segment.
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Proof of Proposition 2.18. Similarly to the proof of Proposition 2.15, we use Lemma 2.13
to derive the needed inequalities and to single out the part of the ratio P∗(x∗, y∗)Λ(y∗, y)/

Δ(x∗, y) that depends on y∗. One readily sees that it is equal to (αn/γ )
∑n

k=1 y∗
k , and this

concludes the proof. ��
Let us state what this computation means in terms of the conditional distribution used

in the construction of PΔ.

Corollary 2.20. Assume that x∗ ∈ S∗ and x ∈ S are such that Δ(x∗, x) > 0, that is,
x∗

k−1 < xk − 1 < x∗
k+1 for all k. Then the probability distribution

P∗(x∗, y∗)Λ(y∗, x)

Δ(x∗, x)
, y∗ ∈ S∗, (2.77)

has nonzero weights iff max(x∗
k−1 +1, xk−1) ≤ y∗

k ≤ min(x∗
k , xk −1) for all k, and these

weights are equal to

n∏
k=1

(αn/γ )y∗
k

∑min(x∗
k ,xk−1)

l=max(x∗
k−1+1,xk−1)

(αn/γ )l
. (2.78)

In the four statements above we computed the ingredients needed for the construc-
tions of the bivariate Markov chains for the simplest possible Toeplitz-like transition
matrices. In these examples we always had x∗

k ≥ y∗
k , or, informally speaking, “particles

jump to the left”. Because of the previous works on the subject, it is more convenient to
deal with the case when particles “jump to the right”. The arguments are very similar,
so let us just state the results.

Consider

P = Tn−1(α1, . . . , αn−1; 1 + βz−1), P∗ = Tn(α1, . . . , αn; 1 + βz−1), β > 0.

(2.79)

• For PΛ, we have max(x∗
k , yk−1) ≤ y∗

k ≤ min(x∗
k + 1, yk − 1). This segment consists

of either 1 or 2 points, in the latter case y∗
k − x∗

k are i. i. d. Bernoulli random variables
with the probability of 0 equal to (1 + αnβ)−1.

• For PΔ, we have max(x∗
k , xk−1) ≤ y∗

k ≤ min(x∗
k + 1, xk − 1), and the rest is the same

as for PΛ.

Now consider

P = Tn−1(α1, . . . , αn−1; (1 − γ z−1)−1), P∗ = Tn(α1, . . . , αn; (1 − γ z−1)−1),

(2.80)

for 0 < γ < min{α−1
1 , . . . , α−1

n }.
• For PΛ, we have max(x∗

k , yk−1) ≤ y∗
k ≤ min(x∗

k+1, yk) − 1, and y∗
k are independent

geometrically distributed with ratio (αnγ ) random variables conditioned to stay in
these segments.

• For PΔ, we have max(x∗
k , xk−1) ≤ y∗

k ≤ min(x∗
k+1, xk) − 1, and the rest is the same

as for PΛ.
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Thus, we have so far considered eight bivariate Markov chains. It is natural to denote
them as

PΛ(1 + βz±1), PΔ(1 + βz±1), PΛ((1 − γ z±1)−1), PΔ((1 − γ z±1)−1).

(2.81)

Observe that although all four chains of type PΛ live on one and the same state space,
all four chains of type PΔ live on different state spaces. For the sake of completeness,
let us list those state spaces:

SΛ = {(x∗, x) ∈ Xn × Xn−1 | x∗
k + 1 ≤ xk ≤ x∗

k+1 for all k},
SΔ(1 + βz) = {(x∗, x) ∈ Xn × Xn−1 | x∗

k ≤ xk ≤ x∗
k+1 for all k},

SΔ(1 + βz−1) = {(x∗, x) ∈ Xn × Xn−1 | x∗
k + 1 ≤ xk ≤ x∗

k+1 + 1 for all k},
SΔ((1 − γ z)−1) = {(x∗, x) ∈ Xn × Xn−1 | x∗

k−1 + 2 ≤ xk ≤ x∗
k+1 for all k},

SΔ((1 − γ z−1)−1) = {(x∗, x) ∈ Xn × Xn−1 | x∗
k + 1 ≤ xk ≤ x∗

k+2 − 1 for all k}.
In the above formulas we always use the convention that if an inequality involves a
nonexistent variable (like x0 or x∗

n+1), it is omitted.

2.6. Examples of multivariate Markov chains. Let us now use some of the examples
of the bivariate Markov chains from the previous section to construct explicit examples
of multivariate (not necessarily autonomous) Markov chains following the recipe of
Sect. 2.1.

For any m ≥ 0 we set Sm = Xm , which is the set of strictly increasing m-tuples of
integers. In this section we will denote these integers by xm

1 < · · · < xm
m .

Fix an integer n ≥ 1, and choose n positive real numbers α1, . . . , αn . We take the
maps Λk

k−1 to be

Λk
k−1 = T k

k−1(α1, . . . , αk; (1 − αk z)−1), k = 2, . . . , n. (2.82)

We consider the Markov chain P(n)
Λ , i.e., the sequential update, first. Its state space

has the form

S(n)
Λ =

{
(x1, . . . , xn) ∈ S1 × · · · × Sn |

n∏
m=2

Λm
m−1(xm, xm−1) > 0

}

=
{
{xm

k }m=1,...,n
k=1,...,m

⊂ Z
n(n+1)

2 | xm+1
k < xm

k ≤ xm+1
k+1 for all k, m

}
. (2.83)

In other words, this is the space of n interlacing integer sequences of length 1, . . . , n.
Let t be an integer time variable. We now need to choose the transition probabilities

Pm(t), m = 1, . . . , n.
Let {Ft (z)}t≥t0 be a sequence of functions each of which has one of the four possi-

bilities:

Ft (z) = (1 + β+
t z) or (1 + β−

t /z) or (1 − γ +
t z)−1 or (1 − γ −

t /z)−1. (2.84)

Here we assume that

β±
t , γ ±

t > 0, γ +
t < min{α1, . . . , αn}, γ −

t < min{α−1
1 , . . . , α−1

n }. (2.85)
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We set

Pm(t) = Tm(α1, . . . , αm; Ft (z)), m = 1, . . . , n. (2.86)

Then all needed commutation relations are satisfied, thanks to Proposition 2.10.
The results of Sect. 2.5 enable us to describe the resulting Markov chain on S(n)

Λ as
follows.

At time moment t we observe a (random) point {xm
k (t)} ∈ S(n)

Λ . In order to obtain
{xm

k (t + 1)}, we perform the sequential update from level 1 to level n. When we are at
level m, 1 ≤ m ≤ n, the new positions of the particles xm

1 < · · · < xm
m are decided

independently.

(1) For Ft (z) = 1+β+
t z, the particle xm

k is either forced to stay where it is if xm−1
k−1 (t+1) =

xm
k (t), or it is forced to jump to the left by 1 if xm−1

k (t + 1) = xm
k (t), or it chooses

between staying put or jumping to the left by 1 with probability of staying equal to
1/(1 + β+

t α−1
m ). This follows from Proposition 2.15.

(2) For Ft (z) = 1 + β−
t /z, the particle xm

k is either forced to stay where it is if
xm−1

k (t + 1) = xm
k (t) + 1, or it is forced to jump to the right by 1 if xm−1

k−1 (t + 1) =
xm

k (t) + 1, or it chooses between staying put or jumping to the right by 1 with
probability of staying equal to 1/(1 + β−

t αm).

(3) For Ft (z) = (1 − γ +
t z)−1, the particle xm

k chooses its new position according to a
geometric random variable with ratio αm/γ +

t conditioned to stay in the segment

[max(xm
k−1(t) + 1, xm−1

k−1 (t + 1)), min(xm
k (t), xm−1

k (t + 1) − 1)]. (2.87)

In other words, it tries to jump to the left using the geometric distribution of jump
length, but it is conditioned not to overcome xm

k−1(t) + 1 (in order not to “interact”
with the jump of xm

k−1), and it is also conditioned to obey the interlacing inequalities
with the updated particles on level m − 1. This follows from Proposition 2.18.

(4) For Ft (z) = (1 − γ −
t /z)−1, the particle xm

k chooses its new position according to a
geometric random variable with ratio αmγ −

t conditioned to stay in the segment

[max(xm
k (t), xm−1

k−1 (t + 1)), min(xm
k+1(t), xm−1

k (t + 1)) − 1]. (2.88)

In other words, it tries to jump to the right using the geometric distribution of jump
length, but it is conditioned not to overcome xm

k+1(t) − 1 (so that it does not interact
with jumps of xm

k+1), and it is also conditioned to obey the interlacing inequalities
with the updated particles on level m − 1.

Projection to {xm
1 }m≥1. A remarkable property of the Markov chain P(n)

Λ with steps of
the first three types is that its projection onto the n-dimensional subspace {x1

1 > x2
1 >

· · · > xn
1 } (the smallest coordinates on each level) is also a Markov chain. Moreover,

since these are the leftmost particles on each level, they have no interlacing condition
on their left to be satisfied, which makes the evolution simpler. Let us describe these
Markov chains.

At time moment t we observe {x1
1(t) > x2

1 (t) > · · · > xn
1 (t)}. In order to obtain

{xm
1 (t + 1)}n

m=1, we perform the sequential update from x1
1 to xn

1 .

(1) For Ft (z) = 1 + β+
t z, the particle xm

1 is either forced to jump (it is being pushed)
to the left by 1 if xm−1

1 (t + 1) = xm
1 (t), or it chooses between not moving at all or

jumping to the left by 1 with probability of not moving equal to 1/(1 + β+
t α−1

m ).
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(2) For Ft (z) = 1 + β−
t /z, the particle xm

1 is either forced to stay where it is if
xm−1

1 (t + 1) = xm
1 (t) + 1, or it chooses between staying put or jumping to the

right by 1 with probability of staying equal to 1/(1 + β−
t αm).

(3) For Ft (z) = (1 − γ +
t z)−1, the particle xm

1 chooses its new position according
to a geometrically distributed with ratio γ +

t /αn jump to the left from the point
min(xm

1 (t), xm−1
1 (t + 1)−1). That is, if xm

1 (t) < xm−1
1 (t + 1) then xm

1 simply jumps
to the left with the geometric distribution of the jump, while if xm

1 (t) ≥ xm−1
1 (t + 1)

then xm
1 is first being pushed to the position xm−1

1 (t + 1) − 1 and then it jumps to
the left using the geometric distribution.

(4) For the transition probability with Ft (z) = (1 − γ −
t /z)−1, the particle xm

1 is con-
ditioned to stay below min(xm

2 (t), xm−1
1 (t + 1)) − 1, which involves xm

2 , thus the
projection is not Markovian.

The Markov chains on {x1
1 > · · · > xn

1 } corresponding to 1+β+
t z and 1+β−

t /z are the
“Bernoulli jumps with pushing” and “Bernoulli jumps with blocking” chains discussed
in [35].

Projection to {xm
m }m≥1. Similarly, the projection of the “big” Markov chain to

{x1
1 ≤ x2

2 ≤ · · · ≤ xn
n } is Markovian for the steps of types one, two, and four, but

it is not Markovian for the step of the third type Ft (z) = (1 − γ +
t z)−1.

Let us now consider the parallel update Markov chain P(n)
Δ , or rather one of them.

Choose a sequence of functions Gt (z) = 1 + βt z−1 with βt ≥ 0, and set

Pm(t) = Tm(α1, . . . , αm; Gt (z)), m = 1, . . . , n. (2.89)

In case βt = 0, Pm(t) is the identity matrix. As before, the needed commutation relations
are satisfied by Proposition 2.10.

The (time-dependent) state space of our Markov chain is

S(n)
Δ (t) =

{
(x1, . . . , xn) ∈ S1 × · · · × Sn |

n∏
m=2

Δm
m−1(xm, xm−1 | t + n − m) > 0

}

=
{
{xm

k }m=1,...,n
k=1,...,m

⊂ Z
n(n+1)

2 | xm
k < xm−1

k ≤ xm
k+1 if βt+n−m = 0,

xm
k < xm−1

k ≤ xm
k+1 + 1 if βt+n−m > 0

}
. (2.90)

The update rule follows from the analog of Corollary 2.17 for (1 + βt z−1). Namely,
assume we have {xm

k (t)} ∈ S(n)
Δ (t). Then we choose {xm

k (t)} independently of each other
as follows. We have

max(xm
k (t), xm−1

k−1 (t)) ≤ xm
k (t + 1) ≤ min(xm

k (t) + 1, xm−1
k (t) − 1). (2.91)

This segment consists of either 1 or 2 points, and in the latter case xm+1
k (t + 1) has

probability of not moving equal to (1 + αmβt+n−m)−1, and it jumps to the right by 1
with remaining probability. In particular, if βt+n−m = 0 then xm

k (t + 1) = xm
k (t) for all

k = 1, . . . , m.
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Less formally, each particle xm
k either stays put or moves to the right by 1. It is forced

to stay put if xm
k (t) = xm−1

k (t)−1, and it is forced to move by 1 if xm
k (t) = xm−1

k−1 (t)−1.
Otherwise, it jumps with probability 1 − (1 + αnβt+n−m)−1.

Projection to {xm
1 }m≥1. Once again, the projection of this Markov chain to {x1

1 > · · · >

xn
1 } is also a Markov chain, and its transition probabilities are as follows: Each particle

xm
1 at time moment t is either forced to stay if xm

1 (t) = xm−1
1 (t) − 1 or it stays with

probability (1 +αnβt+n−m)−1 and jumps to the right by 1 with complementary probabil-
ity. This Markov chain has no pushing because xm

1 ’s do not have neighbors on the left.
This is the “TASEP with parallel update”, see e.g. [16].

Projection to {xm
m }m≥1. We can also restrict our “big” Markov chain to the particles

{x1
1 , x2

2 , . . . , xn
n }. Then at time moment t they satisfy the inequalities

xm−1
m−1(t) ≤ xm

m (t) if βt+n−m = 0, xm−1
m−1(t) ≤ xm

m (t) + 1 if βt+n−m > 0,

(2.92)

and the update rule is as follows. If xm−1
m−1(t) = xm

m (t) + 1 then xm
m moves to the right by

1: xm
m (t + 1) = xm

m (t). However, if xm−1
m−1(t) ≤ xm

m (t) then xm
m stays put with probability

(1 + αnβt+n−m)−1, and it jumps to the right by 1 with the complementary probability.
In the special case when all α j = 1,

βk =
{

β, k ≥ n − 1,

0, k < n − 1,
(2.93)

and with the densely packed initial condition xm
k (n − m) = k − m − 1, the Markov

chain P(n)
Δ discussed above is equivalent to the so-called shuffling algorithm on domino

tilings of the Aztec diamonds that at time n produces a random domino tiling of the
diamond of size n distributed according to the measure that assigns to a tiling the weight
proportional to β raised to the number of vertical tiles, see [59].

2.7. Continuous time multivariate Markov chain. The (discrete time) Markov chains
considered above admit degenerations to continuous time Markov chains. Let us work
out one of the simplest examples.

As in the previous sections, we fix an integer n ≥ 1 and n positive real numbers
α1, . . . , αn , and take

Λk
k−1 = T k

k−1(α1, . . . , αk; (1 − αk z)−1), k = 2, . . . , n. (2.94)

We will consider a limit of the Markov chain P(n)
Λ , so our state space is

S(n)
Λ =

{
{xm

k }m=1,...,n
k=1,...,m

⊂ Z
n(n+1)

2 | xm+1
k < xm

k ≤ xm+1
k+1 for all k, m

}
. (2.95)

In the notation of the previous section, let us take Ft (z) = 1 + β−/z for a fixed
β− > 0 and t = 1, 2, . . .. Thus, we obtain an autonomous Markov chain on S(n)

Λ , whose
transition probabilities are determined by the following recipe.
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In order to obtain {xm
k (t + 1)} from {xm

k (t)}, we perform the sequential update from
level 1 to level n. When we are at level m, 1 ≤ m ≤ n, for each k = 1, . . . , m the particle
xm

k is either forced to stay if xm−1
k (t + 1) = xm

k (t) + 1, or it is forced to jump to the right
by 1 if xm−1

k−1 (t + 1) = xm
k (t) + 1, or it chooses between staying put or jumping to the

right by 1 with probability of staying equal to (1 + β−αm)−1. Note that, since particles
can only move to the right, it is easy to order the elements of the state space so that the
matrix of transition probabilities is triangular.

We are now interested in taking the limit β− → 0.

Lemma 2.21. Let A(ε) be a (possibly infinite) triangular matrix, whose matrix elements
are polynomials in an indeterminate ε > 0:

A(ε) = A0 + ε A1 + ε2 A2 + . . . , (2.96)

and assume that A0 = 1. Then for any τ ∈ R,

lim
ε→0

(A(ε))[τ/ε] = exp(τ A1). (2.97)

Proof of Lemma 2.21. For the finite size matrix the claim is standard, and the triangu-
larity assumption reduces the computation of any fixed matrix element of (A(ε))[τ/ε] to
the finite matrix case. ��

This lemma immediately implies that the transition probabilities of the Markov chain
described above converge, in the limit β− → 0 and time rescaling by β−, to those of
the continuous time Markov chain on S(n)

Λ , whose generator is the linear in β− term of
the generator of the discrete time Markov chain. Let denote this linear term by L(n). Its
off-diagonal entries are not hard to compute:

L(n)

(
{xm

k }m=1,...,n
k=1,...,m

, {ym
k }m=1,...,n

k=1,...,m

)
= 1 (2.98)

if there exists 1 ≤ a ≤ b, 1 ≤ b ≤ n, 0 ≤ c ≤ n − b such that

xb
a = xb+1

a+1 = · · · = xb+c
a+c = x,

yb
a = yb+1

a+1 = · · · = yb+c
a+c = x + 1,

and xm
k = ym

k for all other values of (k, m), and

L(n)

(
{xm

k }m=1,...,n
k=1,...,m

, {ym
k }m=1,...,n

k=1,...,m

)
= 0 (2.99)

in all other cases.
Less formally, this continuous time Markov chain can be described as follows. Each

of the particles xm
k has its own exponential clock, all clocks are independent. When

the xb
a -clock rings, the particle checks if its jump by one to the right would violate the

interlacing condition. If no violation happens, that is, if

xb
a < xb−1

a − 1 and xb
a < xb+1

a+1, (2.100)

then this jump takes place. If xb
a = xb−1

a − 1 then the jump is blocked. On the other
hand, if xb

a = xb+1
a+1 then we find the longest string xb

a = xb+1
a+1 = · · · = xb+c

a+c and move
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all the particles in this string to the right by one. One could think that the particle xb
a has

pushed the whole string.
We denote this continuous time Markov chain by P(n).
Similarly to P(n)

Λ , each of the Markov chains Pm on Sm also has a continuous limit
as β− → 0. Indeed, the transition probabilities of the Markov chain generated by
Tm(α1, . . . , αm; 1 + β−/z) converge to (xm, ym ∈ Sm),

(
lim

β−→0

(
Tm(α1, . . . , αm; 1 + β−/z)

)[τ/β−]
)

(xm, ym)

=
det [αym

j
i ]

m

i, j=1

det [αxm
j

i ]
m

i, j=1

det [τ ym
i −xm

j 1(ym
i − xm

j ≥ 0)/(ym
i − xm

j )!]m

i, j=1

exp(τ
∑m

j=1 α j )
. (2.101)

Thus, the limit of Pm is the Doob h-transform of m independent Poisson processes by
the harmonic function h(x1, . . . , xm) = det [αx j

i ]m
i, j=1, cf. [61]. Let us denote this con-

tinuous time Markov chain by Pm , and the above matrix of its transition probabilities
over time τ by Pm(τ ).

Taking the same limit β− in Proposition 2.5 leads to the following statement.

Proposition 2.22. Let mn(xn) be a probability measure on Sn. Consider the evolution
of the measure

mn(xn)Λn
n−1(xn, xn−1) · · · Λ2

1(x2, x1) (2.102)

on S(n)
Λ under the Markov chain P(n), and denote by (x1(t), . . . , xn(t)) the result after

time t ≥ 0. Then for any

0 = t0
n ≤ · · · ≤ tc(n)

n = t0
n−1 ≤ · · · ≤ tc(n−1)

n−1 = t0
n−2 ≤ · · · ≤ tc(2)

2 = t0
1 ≤ · · · ≤ tc(1)

1

(2.103)

(here c(1), . . . , c(n) are arbitrary nonnegative integers) the joint distribution of

xn(t0
n ), . . . , xn(tc(n)

n ), xn−1(t0
n−1), xn−1(t1

n−1), . . . , xn−1(tc(n−1)
n−1 ),

. . . , x2(t0
2 ), . . . , x2(tc(2)

2 ), x1(t0
1 ), . . . , x1(tc(1)

1 )

coincides with the stochastic evolution of mn under transition matrices

Pn(t1
n − t0

n ), . . . ,Pn
(
tc(n)
n − tc(n)−1

n

)
,Λn

n−1,

Pn−1(t
1
n−1 − t0

n−1), . . . ,Pn−1
(
tc(n−1)
n−1 − tc(n−1)−1

n−1

)
,Λn−1

n−2,

. . . , Λ2
1,P1(t

1
1 − t0

1 ), . . . ,P1
(
tc(1)
1 − tc(1)−1

1

)
.

Remark 2.23. It is not hard to see that if in the construction of P(n)
Λ we used Ft (z) =

(1 − γ −/z)−1 and took the limit γ − → 0 then the resulting continuous Markov chains
would have been exactly the same. On the other hand, if we used Ft (z) = (1 + β+z)
or Ft (z) = (1 − γ +z)−1 then the limiting continuous Markov chain would have been
similar to P(n), but with particles jumping to the left.
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It is slightly technically harder to establish the convergence of Markov chains with
alternating steps, for example,

F2s(z) = 1 + β+(s)z, F2s+1 = 1 + β−(s)/z, (2.104)

because the transition matrix is no longer triangular (particles jump in both directions).
It is possible to prove, however, the following fact:

For any two continuous functions a(τ ) and b(τ ) on R+ with a(0) = b(0) = 0, con-
sider the limit as ε → 0 of the Markov chain P(n)

Λ with alternating Ft ’s as above,

β−(s) = εa(εs), β+(s) = εb(εs), (2.105)

and the time rescaled by ε. Then this Markov chain converges to a continuous time
Markov chain, whose generator at time τ is equal to a(τ ) times the generator of P(n)

plus b(τ ) times the generator of the Markov chain similar to P(n) but with particles
jumping to the left.

The statement of Proposition 2.22 also remains true, but in the definition of the Mar-
kov chains Pm one needs to replace the Poisson process by the one-dimensional process
whose generator is a(τ ) times the generator of the Poisson process plus b(τ ) times the
generator of the Poisson process jumping to the left.

2.8. Determinantal structure of the correlation functions. The goal of this section is
to compute certain averages often called correlation functions for the Markov chains
P(n)

Λ and P(n)
Δ with Ft (z) = (1 + β±

t z±1) or (1 − γ ±
t z±1)−1, and their continuous time

counterpart P(n), starting from a certain specific initial condition.
As usual, we begin with P(n)

Λ . The initial condition that we will use is natural to call
a densely packed initial condition. It is defined by

xm
k (0) = k − m − 1, k = 1, . . . , m, m = 1, . . . , n. (2.106)

Definition 2.24. For any M ≥ 1, pick M points

κ j = (y j , m j , t j ) ∈ Z × {1, . . . , n} × Z≥0 or Z × {1, . . . , n} × R≥0, (2.107)

j = 1, . . . , M. The value of the Mth correlation function ρM of P(n)
Λ (or P(n)

Δ ) at
(κ1, . . . , κM ) is defined as

ρM (κ1, . . . , κM ) = Prob{For each j = 1, . . . , M there exists a k j ,

1 ≤ k j ≤ m j , such that x
m j
k j

(t j ) = y j }. (2.108)

The goal of this section is to partially evaluate the correlation functions corresponding
to the densely packed initial condition.

Introduce a partial order on pairs (m, t) ∈ {1, . . . , n} × Z≥0 or {1, . . . , n} × R≥0 via

(m1, t1) ≺ (m2, t2) iff m1 ≤ m2, t1 ≥ t2 and (m1, t1) �= (m2, t2). (2.109)

In what follows we use positive numbers α1, . . . , αn that specify the links Λk
k−1 as

in Sect. 2.6, and as before we assume that

β±
t , γ ±

t > 0, γ +
t < min{α1, . . . , αn}, γ −

t < min{α−1
1 , . . . , α−1

n }. (2.110)
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Theorem 2.25. Consider the Markov chain P(n)
Λ with the densely packed initial condi-

tion and Ft (z) = (1+β±
t z±1) or (1−γ ±

t z±1)−1. Assume that triplets κ j = (y j , m j , t j ),
j = 1, . . . , M, are such that any two distinct pairs (m j , t j ), (m j ′, t j ′) are comparable
with respect to ≺. Then

ρM (κ1, . . . , κM ) = det [K(κi , κ j )]M
i, j=1, (2.111)

where

K(y1, m1, t1; y2, m2, t2) = − 1

2π i

∮

Γ0

dw

wy2−y1+1

∏t1−1
t=t2 Ft (w)∏m2

l=m1+1(1 − αlw)
1[(m1,t1)≺(m2,t2)]

+
1

(2π i)2

∮

Γ0

dw

∮

Γ
α−1

dz

∏t1−1
t=0 Ft (w)∏t2−1
t=0 Ft (z)

∏m1
l=1(1 − αlw)∏m2
l=1(1 − αl z)

wy1

zy2+1

1

w − z
,

the contours Γ0, Γα−1 are closed and positively oriented, and they include the poles 0
and {α−1

1 , . . . , α−1
n }, respectively, and no other poles.

This statement obviously implies

Corollary 2.26. For the Markov chain P(n), with the notation of Theorem 2.25 and
densely packed initial condition, the correlation functions are given by the same deter-
minantal formula with the kernel

K(y1, m1, τ1; y2, m2, τ2)

= − 1

2π i

∮

Γ0

dw

wy2−y1+1

e(t1−t2)/w

∏m2
l=m1+1(1 − αlw)

1[(m1,t1)≺(m2,t2)]

+
1

(2π i)2

∮

Γ0

dw

∮

Γ
α−1

dz
et1/w

et2/z

∏m1
l=1(1 − αlw)∏m2
l=1(1 − αl z)

wy1

zy2+1

1

w − z
.

Remark 2.27. For the more general continuous time Markov chain described in
Remark 2.23 a similar to Corollary 2.26 result holds true, where one needs to replace
the function et/w by ea(t)/w+b(t)w.

Proof of Theorem 2.25. The starting point is Proposition 2.7. The densely packed initial
condition is a measure on S(n)

Λ of the form mn(xn)Λn
n−1(xn, xn−1) · · · Λ2

1(x2, x1) with
mn being the delta-measure at the point (−n,−n + 1, . . . ,−1) ∈ Sn .

This delta-measure can be rewritten (up to a constant) as

det[αxn
i

j ]i, j=1,...,n det[Ψ n
n−l(xn

k )]k,l=1,...,n with

Ψ n
n−l(x) = 1

2π i

∮

Γ0

n∏
j=l+1

(1 − α jw)wx+l dw

w
, l = 1, . . . , n. (2.112)

Indeed, Span(Ψ n
n−l | l = 1, . . . , n) is exactly the space of all functions on Z supported

by {−1, . . . ,−n}.
We are then in a position to apply Theorem 4.2 of [13]. For convenience of the

reader, this theorem can be found in Appendix A. (In fact, the change of notation that
facilitates the application was already used in Proposition 2.22 above.) The computation
of the matrix M−1 of that theorem follows verbatim the computation in the proof of
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Theorem 3.2 of [22], where θ j of [22] has to be replaced by α−1
j for all j = 1, . . . , n.

Arguing exactly as in that proof we arrive at the desired integral representation for the
correlation kernel. ��

Finally, one can also derive similar formulas for the Markov chain P(n)
Δ . As the state

space S(n)
Δ is now

S(n)
Δ (t) = {(xn(t), xn−1(t + 1), . . . , x1(t + n − 1)}, (2.113)

we need to define the densely packed initial condition differently, cf. the end of Sect. 2.6.
We set

xm
k (n − m) = k − m − 1, k = 1, . . . , m, m = 1, . . . , n, (2.114)

and assume that Ft (z) ≡ 1 for t = 0, . . . , n − 2. This means that

Δm
m−1(xm, xm−1 | n − m) = Λm

m−1(xm, xm−1), m = 2, . . . , n, (2.115)

and our initial condition is of the form (2.43).

Corollary 2.28. For the Markov chain P(n)
Δ , with the above assumptions, notation of

Theorem 2.25, and densely packed initial condition, under the additional assumption
that for any two pairs (m j , t j ) ≺ (m j ′, t j ′) we have

t j − t j ′ ≥ m j ′ − m j , (2.116)

the correlation functions are given by the same determinantal formula as in Theo-
rem 2.25.

Proof of Corollary 2.28. Comparing the formulas for the joint distributions for P(n)
Λ and

P(n)
Δ in Proposition 2.7 we see that with the densely packed initial conditions they simply

coincide. Hence, the correlation functions are the same. ��
Note that according to the remark at the end of Sect. 2.6, the correlation functions

for the shuffling algorithm of domino tilings of Aztec diamonds can be obtained from
Theorem 2.25 and Corollary 2.28.

3. Geometry

3.1. Macroscopic behavior, limit shape. It is more convenient for us to slightly modify
the definition of the height function (1.2) by assuming that its first argument varies over
Z, and

h(x, n, t) = ∣∣{k|xn
k (t) > x}∣∣ . (3.1)

Clearly, this modification has no effect on asymptotic statements.
We are interested in large time behavior of the interface. The macroscopic choice of

variables is

x = [(ν − η)L], n = [ηL], t = τ L , (3.2)

where (ν, η, τ ) ∈ R
3
+ and L � 1 is a large parameter setting the macroscopic scale. For

fixed η and τ , h(x, n, t) = n for ν small enough (e.g., ν = 0) and h(x, n, t) = 0 for ν

large enough. Define the x-density of our system as the local average number of parti-
cles on unit length in the x-direction. Then, for large L , one expects that −L−1∂h/∂ν �
x-density. Thus, our model has facets when the x-density is constant (equal to 0 or 1 in
our situation), which are interpolated by curved pieces of the surface, see Fig. 3.
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Claim. The domain D ⊂ R
3
+, where the x-density of our system is asymptotically

strictly between 0 and 1 is given by

|√τ − √
η| <

√
ν <

√
τ +

√
η. (3.3)

Equivalently, x-density ∈ (0, 1) iff there exists a (non-degenerate) triangle with sides√
ν,

√
η,

√
τ . Denote by πν , πη and πτ the angles of this triangle as indicated in Fig. 4.

Claim 3.1 follows from Proposition 3.1 below.
The condition (3.3) is also equivalent to saying that the circle centered at 0 of radius√

η/τ has two disjoint intersections with the circle centered at 1 of radius
√

ν/τ . In that
case, the two intersections are complex conjugate. Denote by Ω(ν, η, τ ) the intersection
in

H = {z ∈ C | Im(z) > 0}. (3.4)

Then, we have the following properties:

|Ω|2 = η

τ
, |1 − Ω|2 = ν

τ
, arg(Ω) = πν, arg(1 − Ω) = −πη. (3.5)

The cosine rule gives the angles π∗’s in (0, π) by

πν = arccos

(
τ + η − ν

2
√

τη

)
,

πη = arccos

(
τ + ν − η

2
√

τν

)
, (3.6)

πτ = arccos

(
η + ν − η

2
√

νη

)
.

Proposition 3.1 (Bulk scaling limit). For any k = 1, 2, . . ., consider

κ j (L) = (x j (L), n j (L), t j (L)), j = 1, . . . , k, (3.7)

such that for any i �= j and any L > 0 either (ni (L), ti (L)) ≺ (n j (L), t j (L)) or
(n j (L), t j (L)) ≺ (ni (L), ti (L)) (the notation ≺ was defined in (1.3)). Assume that

lim
L→∞

x j

L
= ν, lim

L→∞
n j

L
= η, lim

L→∞
t j

L
= τ, j = 1, . . . , k; (3.8)

we have (ν, η, τ ) ∈ D; and also all the differences xi − x j , ni − n j , ti − t j do not
depend on the large parameter L. Then the k-point correlation function ρk(κ1, . . . , κk)

converges to the determinant det[K bulk
i j ]1≤i, j≤k , where

K bulk
i, j = 1

2π i

∫ 1−Ω(ν,η,τ )

1−Ω(ν,η,τ )

dw
(1 − w)ni −n j e(t j −ti )w

wxi −x j +1 , (3.9)

where for (ni , ti ) �≺ (n j , t j ) the integration contour crosses R+, while for (ni , ti ) ≺
(n j , t j ) the contour crosses R−. On the other hand, if (ν, η, τ ) �∈ D, then

lim
L→∞ ρk(κ1, . . . , κk) = 0, if

√
ν >

√
η +

√
τ ,

lim
L→∞ ρk(κ1, . . . , κk) = 0, if

√
ν <

√
τ − √

η,

lim
L→∞ ρk(κ1, . . . , κk) = 1, if

√
ν <

√
η − √

τ .

(3.10)
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Proof of Proposition 3.1. One follows exactly the same steps as in Sect. 3.2 of [62],
replacing the double integral (35) in there by (4.2). The deformed paths are then like
in Fig. 12 but with zc = wc. The degenerate cases when κ j �∈ D are treated in the
same way with limiting kernel Ki, j being either 0 (no residue in the contour integral
computation) or triangular (Ki, j = 0 for xi < x j ) with Ki,i = 1, when the integral in
(3.9) is over a complete circle around the origin. ��
Corollary 3.2. Let ρ denote the asymptotic x-density. Then, in D, it is given by

ρ(ν, η, τ ) = lim
L→∞ ρ1([νL], [ηL], τ L) = πη/π ∈ [0, 1]. (3.11)

Consequently,

h(ν, η, τ ) := lim
L→∞

Eh([(ν − η)L], [ηL], τ L)

L
= 1

π

∫ (
√

τ+
√

η)2

ν

πη(ν
′, η, τ )dν′.

(3.12)

Below we perform the integral in (3.12) to get an explicit expression for the limit
shape h. Along the way we derive some interesting geometric relations. First of all, h
is homogeneous of degree one (since it is the scaling limit under the same scaling in all
directions).

Lemma 3.3. For any α > 0,

h(αν, αη, ατ) = αh(ν, η, τ ), (3.13)

from which it follows
(

ν
∂

∂ν
+ η

∂

∂η
+ τ

∂

∂τ

)
h(ν, η, τ ) = h(ν, η, τ ). (3.14)

Proof of Lemma 3.3. It follows directly from the geometric property πη(αν, αη, ατ) =
πη(ν, η, τ ). ��
Therefore, we just need to compute the partial derivatives of h, then the limit shape h
will be determined by the l.h.s. of (3.14).

Proposition 3.4. The partial derivatives of the limit shape h are given by

∂h
∂ν

= −πη

π
,

∂h
∂η

= 1 − πν

π
,

∂h
∂τ

= sin(πν) sin(πη)

π sin(πτ )
. (3.15)

Remark 3.5. Another expression for the growth velocity is

∂h
∂τ

= 1

π
ImΩ(ν, η, τ ). (3.16)

This can be understood using Proposition 3.1. The macroscopic growth velocity is equal
to the average flow of particles, J . It is computed in Sect. 5, see (5.34) with Q = 0:
E(J ) = −∂2 K (x, n, t; x, n, t). Then, by (5.40) we have E(J ) = K (x, n, t; x + 1, n, t).
Then, by Proposition 3.1 one gets E(J ) = Im(Ω)/π .

As a corollary of Lemma 3.3 and Proposition 3.4, the limit shape is given as follows.
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(a) (b)

Fig. 5. (a) Limiting density of the particles with τ = 1. (b) The associated limiting height function. Two
facets are visible

Corollary 3.6. For (ν, η, τ ) ∈ D, we have

h(ν, η, τ ) = 1

π

(
−νπη + η(π − πν) + τ

sin(πν) sin(πη)

sin(πτ )

)
. (3.17)

Proof of Proposition 3.4. From (3.12) we immediately have the first relation: ∂h/∂ν =
−πη/π . In the derivatives of h with respect to τ and η we have one term coming from the
boundary term and one from the internal derivative. The boundary terms will actually
be zero, since the density at the upper edge is zero. We need to compute (Fig. 5)

∂πη

∂η
= 1√

4ητ − (ν − η − τ)2
,

∂πη

∂τ
= ν − η − τ

2τ
√

4ητ − (ν − η − τ)2
. (3.18)

Then, we apply the indefinite integrals
∫

dx

a2 − x2 = arcsin(x/|a|) + C,

∫
xdx√

a2 − x2
= −

√
a2 − x2 + C. (3.19)

For the derivative with respect to η,

π
∂h
∂η

=
∫ (

√
η+

√
τ)2

ν

∂πη

∂η
dν′ + (1 +

√
τ/η)πη

(
(
√

η +
√

τ)2, η, τ
)

= π/2 + arcsin

(
η + τ − ν

2
√

ητ

)
= π − arccos

(
η + τ − ν

2
√

ητ

)
, (3.20)

the latter being πν . Finally,

π
∂h
∂τ

=
∫ (

√
η+

√
τ)2

ν

∂πη

∂τ
dν′ + (1 +

√
η/τ)πη

(
(
√

η +
√

τ)2, η, τ
)

=
√

4ητ − (ν − η − τ)2

2τ
= √η/τ sin(πν), (3.21)

and by the sinus theorem for the triangle of Fig. 4 we have
√

η/
√

τ = sin(πη)/ sin(πτ ).
��
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3.2. Growth model in the anisotropic KPZ class. For fixed τ , the macroscopic slopes of
the interface in the ν- and η-directions are given by hν := ∂νh and hη := ∂ηh. The speed
of growth of the surface, ∂τ h, depends only on these two slopes. Indeed, by (3.15), we
can rewrite

v = ∂h
∂τ

= − 1

π

sin(πhν) sin(πhη)

sin(π(hν + hη))
. (3.22)

Remark that the speed of growth is monotonically decreasing with the slope

∂v(hν, hη)

∂hν

< 0,
∂v(hν, hη)

∂hη

< 0 (3.23)

for hν, hη, hν + hη ∈ (0, 1).
To see which universality class our model belongs to, we need to compute the deter-

minant of the Hessian of v = v(hν, hη). Explicit computations give

∣∣∣∣
∂hν

∂hν
v ∂hν

∂hη
v

∂hη
∂hν

v ∂hη
∂hη

v

∣∣∣∣ = −4π2 sin(πhν)
2 sin(πhη)

2

sin(π(hν + hη))4 < 0 (3.24)

for hν, hη, hν + hη ∈ (0, 1), i.e., for (ν, η, τ ) ∈ D. Thus, our model belongs to the
anisotropic KPZ universality class of growth models in 2 + 1 dimensions.

3.3. A few other geometric properties. During the asymptotic analysis we will use a
few more geometric quantities, which we collect in this section. The key function to be
analyzed is

G(w) ≡ G(w|ν, η, τ ) = τw + ν ln(1 − w) − η ln(w), w ∈ C. (3.25)

The critical points of G coincide with Ω as stated below.

Proposition 3.7. On C\{0, 1}, the function G has two critical points (counted with multi-
plicities). These two points are distinct and complex conjugate if and only if (ν, η, τ ) ∈ D,
in which case the critical points are {Ω,Ω}.
Proof of Proposition 3.7. The derivative of G gives

G ′(w) = τ

w(w − 1)

((
w − η + τ − ν

2τ

)2

+
4ητ − (η + τ − ν)2

4τ 2

)
, (3.26)

and we have two distinct complex conjugate solutions iff 4ητ − (η + τ − ν)2 > 0, i.e.,
iff (ν, η, τ ) ∈ D. Also, from (3.5) and (3.6) we get

Re(Ω) = η + τ − ν

2τ
, Im(Ω) =

√
4ητ − (η + τ − ν)2

2τ
. (3.27)

Thus, Ω and Ω are the two solutions of G ′(w) = 0, i.e., the two critical points. ��
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The main formulas needed later are the partial derivatives of Ω as well as G ′′(Ω).

Proposition 3.8. Denote κ = 2τ Im(Ω) = √4ητ − (η + τ − ν)2. Then we have

G ′′(Ω) = −iκ

Ω(1 − Ω)
, (3.28)

which implies

|G ′′(Ω)| = κ

|Ω(1 − Ω)| , arg(G ′′(Ω)) = −π

2
− πν + πη. (3.29)

Moreover,

∂Ω

∂ν
= iΩ

κ
,

∂Ω

∂η
= i(1 − Ω)

κ
,

∂Ω

∂τ
= −iΩ(1 − Ω)

κ
. (3.30)

Proof of Proposition 3.8. From (3.26) we get

G ′′(Ω) = 2τ

Ω(Ω − 1)
(Ω − Re(Ω)) = 2iτ Im(Ω)

Ω(Ω − 1)
. (3.31)

The modulus is immediate, while the argument is obtained using (3.5).
Since Ω is the intersection point of the circles |z| = √

η/τ and |1 − z| = √
ν/τ ,

the direction of ∂νΩ is orthogonal to the vector Ω and ∂ηΩ is orthogonal to 1 − Ω .
Therefore, for some c1, c2 ∈ R,

∂Ω

∂ν
= c1Ωi,

∂Ω

∂η
= c2(1 − Ω)i. (3.32)

Looking at the real part of these equations, we get ∂νRe(Ω) = −c1Im(Ω), and
∂νRe(Ω) = c2Im(Ω). On the other hand,

Re(Ω) = η + τ − ν

2τ
⇒ ∂νRe(Ω) = − 1

2τ
, ∂ηRe(Ω) = 1

2τ
. (3.33)

From this we conclude that

∂νΩ = iΩ

2τ Im(Ω)
, ∂ηΩ = i(1 − Ω)

2τ Im(Ω)
. (3.34)

To get ∂τΩ , we can use the following property: Ω(aν, aη, aτ) = Ω(ν, η, τ ) for any
a > 0, which implies

(
ν∂ν + η∂η + τ∂τ

)
Ω = 0. (3.35)

This equation leads to

∂τΩ = − i

2τ Im(Ω)

(ν

τ
Ω +

η

τ
(1 − Ω)

)
= − iΩ(1 − Ω)

2τ Im(Ω)
, (3.36)

using |Ω|2 = η/τ and |1 − Ω|2 = ν/τ , see (3.5). ��
Another important function appearing in the asymptotics of the kernel is the imagi-

nary part of G(Ω) (and its derivatives).
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Proposition 3.9. We have

γ (ν, η, τ ) := Im(G(Ω)) = τ Im(Ω) − νπη − ηπν. (3.37)

Its derivatives are

∂Im(G(Ω))

∂ν
= −πη,

∂Im(G(Ω))

∂η
= −πν, (3.38)

and

∂2Im(G(Ω))

∂ν∂η
= − 1

κ
, κ = 2τ Im(Ω). (3.39)

Proof of Proposition 3.9. The relation (3.37) is a direct consequence of (3.5). The rest
are just simple computations. ��

4. Gaussian Fluctuations

In this section we first state a couple of equivalent forms of the correlation kernel. In
particular, the kernel for a fixed (n, t) has a Christoffel-Darboux representation in terms
of Charlier polynomials. In the second part of the section we prove Theorem 1.2 on the
Gaussian fluctuations.

4.1. Kernel representations. For the analysis of the variance we will use a representation
in terms of Charlier polynomials. These polynomials are defined on Z+ = {0, 1, 2, . . .},
while our particles at level n live on {−n,−n + 1, . . .}. Thus, it is convenient to shift
the position at level n by n, i.e., the positions of particles at level n will be denoted by
−n + x , x ≥ 0. Finally, we also conjugate by a factor (−1)n1−n2 . More precisely, the
relation between the shifted and conjugate kernel K and the kernel K in Theorem 1.1,
is the following,

K (x1, n1, t1; x2, n2, t2) = (−1)n1−n2K(x1 − n1, n1, t1; x2 − n2, n2, t2). (4.1)

For later use, we give the explicit double integral representation of K which will be
used in the asymptotic analysis.

Corollary 4.1. The extended kernel K can be expressed as

K (x1, n1, t1; x2, n2, t2)

=
⎧⎨
⎩

et1−t2

(2π i)2

∮
Γ1

dz
∮
Γ0

dw zn1

et1z(1−z)x1+1
et2w(1−w)x2

wn2
1

w−z , (n1, t1) �≺ (n2, t2)

et1−t2

(2π i)2

∮
Γ1

dz
∮
Γ0,z

dw zn1

et1z(1−z)x1+1
et2w(1−w)x2

wn2
1

w−z , (n1, t1) ≺ (n2, t2)
.

(4.2)

Proof of Corollary 4.1. The kernel (4.2) is obtained by substituting into (4.1) the expres-
sion for K from (1.6), and applying the change of variables z → 1/(1 − w) and w →
1/(1 − z). ��

It is instructive to see the structure of the kernel that leads the above integral repre-
sentation.
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Proposition 4.2. The extended kernel K is given by

K (x1, n1, t1; x1, n2, t2) = −φ((n1,t1),(n2,t2))(x1, x2) +
n2∑

k=1

Ψ
n1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2)

(4.3)

with

Ψ
n,t
k (x) = 1

2π i

∮

Γ0,1

dw
etw(1 − w)k

wx+1 ,

Φ
n,t
k (x) = −1

2π i

∮

Γ1

dz
zx e−t z

(1 − z)k+1 , (4.4)

φ((n1,t1),(n2,t2))(x1, x2) = 1

2π i

∮

Γ0,1

dw
ew(t1−t2)

wx1−x2+1(w − 1)n2−n1
1[(n1,t1)≺(n2,t2)],

where Γ0,1 and Γ1 are any simple anticlockwise oriented contours that include poles
{0, 1} and {1}, respectively.

Proof of Proposition 4.2. Using the integral representations for Ψ and Φ one checks
that

∑
k≥0

Ψ
n1,t1
k (x)Φ

n2,t2
k (y) = φ((n1,t1),(n2,t2))(x, y). (4.5)

Thus (4.3) becomes

K (x1, n1, t1; x2, n2, t2) =
{∑n2

k=1 Ψ
n1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2), (n1, t1) �≺ (n2, t2)

−∑∞
l=0 Ψ

n1,t1
n1+l (x1)Φ

n2,t2
n2+l (x2), (n1, t1) ≺ (n2, t2)

.

(4.6)

This new expression is good because in (4.4) we never have the case when the pole at
w = 1 in Ψ

n,t
k survives. Then, one has just to take the sums inside the integral. For

example, for (n1, t1) �≺ (n2, t2), we first take the sum inside the integrals and then we
extend it to k = ∞. This can be done provided |1 − w| > |1 − z|. Then, to get the
formula (4.2), one just has to rename the variables z → 1 − w and w → 1 − z. ��

For the computation of the variance, we will need only the kernel at fixed (n, t). It is
given in terms of the Charlier polynomials, Cn(x, t), given by

Cn(x, t) = n!
tn

1

2π i

∮

Γ0

dw
(1 − w)x ewt

wn+1 , (4.7)

which satisfy Cn(x, t) = Cx (n, t), and are orthogonal with respect to the weight wt (x) =
e−t t x

x ! , namely

∑
x≥0

Cn(x, t)Cm(x, t)wt (x) = n!
tn

δn,m, t > 0. (4.8)
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Corollary 4.3. The kernel K (x, n, t; y, n, t) is equivalent (conjugate) to the kernel
Kn,t (x, y), given by

Kn,t (x, y) = √
nt

qn−1(x, t)qn(y, t) − qn(x, t)qn−1(y, t)

x − y
, (4.9)

where

qn(x, t) = wt (x)1/2 tn/2

√
n!Cn(x, t). (4.10)

Proof of Corollary 4.3. Consider n1 = n2 = n and t1 = t2 = t in (4.3). Then,

K (x, n, t; y, n, t) =
n−1∑
k=0

Ψ
n,t
k (x)Φ

n,t
k (y). (4.11)

For all k ≥ 0, w = 1 is not a pole in the integral representation of Ψ
n,t
k . Using (4.7)

and Cn(x, t) = Cx (n, t), we get Ψ
n,t
k (x) = t x

x ! Ck(x, t). Also, by the change of variable

z → 1−w in the integral representation Φ
n,t
k we obtain Φ

n,t
k (x) = e−t tk

k! Ck(x, t). Thus
the kernel is written

K (x, n, t; y, n, t) = wt (x)

n−1∑
k=0

tk

k!Ck(x, t)Ck(y, t), (4.12)

which is conjugate to the kernel

Kn,t (x, y) =
n−1∑
k=0

qk(x, t)qk(y, t). (4.13)

From Cn(x, t) = un xn + · · · with un = 1/(−t)n , we have qn(x, t) = vn xn + · · · with
vn = (−1)n/

√
tnn!. Then, (4.9) follows from the Christoffel-Darboux formula. ��

Remark 4.4. For later use, we rewrite qn as

qn(x, t) = Bn,t (x)In,t (x), Bn,t (x) = e−t/2t x/2

√
x !

√
n!

tn/2 , (4.14)

and

In,t (x) = 1

2π i

∮

Γ0

dw
(1 − w)x ewt

wn+1 . (4.15)

4.2. Proof of Theorem 1.2. In this section we look only at the height function at a
given time. Therefore, it is convenient to set λ = ν/τ and c = η/τ so that we have
n = [ηL] = [ct] and x = [νL] = [λt]. In these variables, the equation for the bulk
region given by (3.3) is rewritten as

(1 − √
c)2 < λ < (1 +

√
c)2. (4.16)
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First we compute the variance of the height.

Proposition 4.5. For any λ ∈ ((1 − √
c)2, (

√
c + 1)2),

lim
t→∞

Var(h([(λ − c)t], [ct], t))

ln(t)
= 1

2π2 . (4.17)

With this we can prove Theorem 1.2.

Proof of Theorem 1.2. It is a consequence of Proposition 4.5 and [74]. More precisely,
in Sect. 2 of [74] the convergence in distribution (a generalization of the result for the
sine kernel of [31]) is stated. However, following the proof of the theorem, one realizes
that it is done by controlling the cumulants, i.e., also the moments converge. ��
Proof of Proposition 4.5. The variance can be written in terms of the one and two point
correlation functions ρ1 and ρ2. Namely,

Var(h([(λ − c)t], [ct], t)) =
∑

x,y>[λt]
ρ2(x, y) +

∑
x>[λt]

ρ1(x) −
( ∑

x>[λt]
ρ1(x)

)2
,

(4.18)

where ρ2(x, y) = Kn,t (x, x)Kn,t (y, y)− Kn,t (x, y)Kn,t (y, x) and ρ1(x) = Kn,t (x, x).
Using K 2

n,t = Kn,t on �2(Z+), we have

Var(h([(λ − c)t], [ct], t)) =
∑

x>[λt]
Kn,t (x, x) −

∑
x,y>[λt]

Kn,t (x, y)Kn,t (y, x)

=
∑

x>[λt]

∞∑
y=0

Kn,t (x, y)Kn,t (y, x) −
∑

x,y>[λt]
Kn,t (x, y)Kn,t (y, x)

=
∑

x>[λt]

∑
y≤[λt]

(
Kn,t (x, y)

)2
, n = [ct]. (4.19)

We use the expression (4.9) for the kernel Kn,t . We decompose the sum in (4.19) into
the following three sets:

M = {x, y ∈ Z
2
+|x > [λt], y ≤ [λt], y − x ≤ ε1t},

R1 = {x, y ∈ Z
2
+|x > [λt], y ≤ [λt], ε1t < y − x < ε2t}, (4.20)

R2 = {x, y ∈ Z
2
+|x > [λt], y ≤ [λt], ε2t ≤ y − x},

where the parameter ε2 = 1
2 min{(1 +

√
c)2 − λ, λ − (1 − √

c)2} is chosen so that R1 is
a subset of the bulk. Thus

Var(h([(λ − c)t], [ct], t)) = Mt + Rt,1 + Rt,2, (4.21)

with

Mt =
∑

x,y∈M

∣∣Kn,t (x, y)
∣∣2 , Rt,k =

∑
x,y∈Rk

∣∣Kn,t (x, y)
∣∣2 . (4.22)

Remark. The parameter ε1, small, will be chosen t-dependent in the end.
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(1) Bound on Rt,2. For x, y ∈ R2, we use y − x ≥ ε2t , and extend the sum to infinities

Rt,2 ≤ 1

ε2
2

∑
x≥λt

∑
y≤λt

(|q[ct](x, t)|2|q[ct]−1(y, t)|2 + |q[ct]−1(x, t)|2|q[ct](y, t)|2|

+ 2|q[ct]−1(x, t)q[ct](x, t)||q[ct]−1(y, t)q[ct](y, t)|) ≤ 4

ε2
2

. (4.23)

The last inequality follows from Cauchy-Schwarz and the property
∑
x≥0

|qk(x, t)|2 = 〈Ψ n,t
k , Φ

n,t
k 〉 = 1, for all k. (4.24)

(2) Bound on Rt,1. Since this time x, y ∈ R1 are always in the bulk, we just use the
bound of Lemma 6.8 and get

Rt,1 ≤ const
∑

x,y∈R1

1

(x − y)2 = const
[ε2t]∑

z=[ε1t]

1

z

= Ψ ([ε2t] + 1) − Ψ ([ε1t]), (4.25)

where Ψ (x) is the digamma function, which has the Taylor expansion at infinity
given by

Ψ (x) = ln(x) − 1/(2x) + O(1/x2). (4.26)

Thus

Rt,1 ≤ const ln(1/ε1), (4.27)

with const t-independent, as long as z, t → ∞ as t → ∞.
(3) Limit value for Mt . This time we need more than just a bound. Recall that n = ct

and set x = [λt] + ξ1, y = [λt] − ξ2. We have 1 ≤ ξ1 + ξ2 ≤ ε1t . Lemma 6.4 gives

q[ct]−�(λt + ξ, t) = 1√
π

t−1/2

4
√

c − (1+c−λ)2

4

[
O(t−1/2) + O(ε1)

+ cos
[
tα(c, λ + ξ/t) + β(c, λ) − �∂cα(c, λ)

]]
. (4.28)

We use it with � = 0, 1, together with the trigonometric identity

cos(b1 + δ) cos(b2) − cos(b1) cos(b2 + δ) = sin(δ) sin(b2 − b1), (4.29)

with δ = −∂cα(c, λ), b1 = tα(c, λ+ξ1/t)+β(c, λ), b2 = tα(c, λ−ξ1/t)+β(c, λ).
The factor sin2(δ) cancels the 4

√· · · term exactly. We obtain (using (4.9))

Mt =
[ε1t]∑
ξ1=1

ξ1−1∑
ξ2=0

1

π2

1

(ξ1 + ξ2)2

[
O(t−1/2) + O(ε1)

+ sin2
[
t (α(c, λ − ξ2/t) − α(c, λ + ξ1/t))

]]
. (4.30)
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The contribution of the error terms can be bounded by ln(ε1t)O(t−1/2, ε1), and the
remainder is

[ε1t]∑
ξ1=1

ξ1−1∑
ξ2=0

1

π2

1

(ξ1 + ξ2)2 sin2
[
t (α(c, λ − ξ2/t) − α(c, λ + ξ1/t))

]
. (4.31)

Let b(λ) = −α(c, λ), then

b′(λ) = arccos

(
1 + λ − c

2
√

λ

)
∈ (0, π), for (1 − √

c)2 < λ < (1 +
√

c)2.

(4.32)

By Lemma 4.6 below (one needs to shift the argument of b(λ ± ξ j/t) by λ to apply
it), for large t the leading term in the sum is identical to the one where sin2(· · · ) is
replaced by its mean, i.e., 1/2. Thus

(4.31) = (1 + O(ε1, (ε
2
1

√
t)−1)

[ε1t]∑
ξ1=1

ξ1−1∑
ξ2=0

1

2π2

1

(ξ1 + ξ2)2

= 1

2π2 ln(ε1t)(1 + O(ε1, (ε
2
1

√
t)−1)). (4.33)

Thus,

Mt = ln(ε1t)

(
1

2π2 + O(t−1/2, ε1, (ε
2
1

√
t)−1)

)
. (4.34)

Now we choose ε1 = 1/ ln(t). Then,

Var(h([(λ − c)t], [ct], t)) = 1

2π2 ln(t) + O
(
1, ln(ln(t)), (ln(t))3/

√
t
)
, (4.35)

which implies (4.17). Modulo Lemma 4.6, the proof of Theorem 1.2 is complete.
��

Lemma 4.6. Let b(x) be a smooth function (C2 is enough) on a neighborhood of the
origin with b′(0) ∈ (0, π). Then

[εt]∑
ξ1=1

ξ1−1∑
ξ2=0

sin2 [tb(ξ1/t) − tb(−ξ2/t)]

(ξ1 + ξ2)2 =
[εt]∑
ξ1=1

[εt]−1∑
ξ2=0

1

2(ξ1 + ξ2)2

(
1 + O

(
ε,

1

ε2
√

t

))

(4.36)

uniformly for ε > 0 small enough.

Proof of Lemma 4.6. We divide the sum into two regions

I1 = {ξ1 ≥ 1, ξ2 ≥ 0|1 ≤ ξ1 + ξ2 ≤ ε
√

t}, (4.37)

I2 = {ξ1 ≥ 1, ξ2 ≥ 0|ε√t < ξ1 + ξ2 ≤ εt}.
Let us evaluate the contribution to (4.36) of (ξ1, ξ2) ∈ I1. We set z = ξ1 + ξ2 and get

[ε√t]∑
z=1

z∑
ξ1=1

1

z2 sin2 [tb(ξ1/t) − tb((ξ1 − z)/t)] . (4.38)
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Taylor expansion around zero leads to

tb(ξ1/t) − tb((ξ1 − z)/t) = zb′(0) + O(ε2). (4.39)

Thus

(4.38) =
[ε√t]∑

z

1

z

(
sin2 [zb′(0)

]
+ O(ε2)

)
. (4.40)

The sum with the sine squared can be explicitly evaluated:

P∑
z=1

sin2(σ z)

z
= 1

2
ln(P) + O(1), as P → ∞, (4.41)

provided 0 < σ < π . Since
∑P

z=1 1/z = ln(P)/2 + O(1/P), we have

P∑
z=1

sin2(σ z)

z
=

P∑
z=1

1

2z
(1 + O(1/P)) . (4.42)

Using P = [ε√t] and going back to the original variables (ξ1, ξ2) we have

∑
(ξ1,ξ2)∈I1

sin2 [tb(ξ1/t) − tb(−ξ2/t)]

(ξ1 + ξ2)2 =
∑

(ξ1,ξ2)∈I1

1

2(ξ1 + ξ2)2

(
1 + O

( 1

ε
√

t
, ε2
))

.

(4.43)

Now we evaluate the contribution to (4.36) of (ξ1, ξ2) ∈ I2. Let (X, Y ) ∈ I2, then we
have X + Y ≥ ε

√
t . We consider a neighborhood of size M = [ε2√t] around (X, Y ),

namely the contribution

M∑
x,y=0

1

(X + Y + x + y)2 sin2 [tb((X + x)/t) − tb(−(Y + y)/t)] . (4.44)

Since sin2(· · · ) ≥ 0 and 1
(X+Y )2 − 1

(X+Y +x+y)2 ≥ 0, if we replace 1
(X+Y +x+y)2 by 1

(X+Y )2

in (4.44) the error made is bounded by

M∑
x,y=0

(
1

(X + Y )2 − 1

(X + Y + x + y)2

)

=
M∑

x,y=0

1

(X + Y )2

(
1 − 1

(1 + O(ε))2

)
=

M∑
x,y=0

1

(X + Y )2 O(ε), (4.45)

because (x + y)/(X + Y ) ≤ 2ε. This relation can be inverted and we also get

M∑
x,y=0

1

(X + Y )2 =
M∑

x,y=0

1

(X + Y + x + y)2 (1 + O(ε)) . (4.46)
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Therefore we have

(4.44) =
M∑

x,y=0

O(ε)

(X + Y + x + y)2 +
M∑

x,y=0

sin2 [tb((X + x)/t) − tb(−(Y + y)/t)]

(X + Y )2 .

(4.47)

Now we apply the Taylor expansion to the argument in the sine squared. Denote
κ1 = tb(X/t)− tb(−Y/t), θ1 = b′(X/t) and θ2 = b′(−Y/t). Then the argument in the
sin2(· · · ) is κ1 + θ1x + θ2 y + O(ε2). The ε2 error term is smaller than the O(ε) in (4.47),
thus

(4.47) =
M∑

x,y=0

O(ε)

(X + Y + x + y)2 +
M∑

x,y=0

sin2 [κ1 + θ1x + θ2 y]

(X + Y )2 . (4.48)

Since b is smooth and b′(0) ∈ (0, π), in a neighborhood of 0 we also have b′ ∈ (0, π).
Thus, for ε small enough, 0 < θ1, θ2 < π uniformly in t , because |Y |/t ≤ ε and
|X |/t ≤ ε. The second sum in (4.48) can be computed explicitly. For 0 < θ1, θ2 < π

we have the identity

M∑
x,y=0

sin2 [κ1 + θ1x + θ2 y]

= (M + 1)2

2
− cos(2κ1 + θ1 M + θ2 M) sin(θ1(M + 1)) sin(θ2(M + 1))

2 sin(θ1) sin(θ2)

=
M∑

x,y=0

1

2
(1 + O(1/M2)). (4.49)

We replace (4.49) into (4.48) and finally obtain

M∑
x,y=0

sin2 [tb((X + x)/t) − tb(−(Y + y)/t)]

(X + Y + x + y)2

=
M∑

x,y=0

1

2(X + Y + x + y)2

(
1 + O(ε, (ε4t)−1)

)
. (4.50)

This estimate holds for all the region I2, thus

∑
(ξ1,ξ2)∈I2

sin2 [tb(ξ1/t) − tb(−ξ2/t)]

(ξ1 + ξ2)2 =
∑

(ξ1,ξ2)∈I2

1

2(ξ1 + ξ2)2

(
1 + O(ε, (ε4t)−1)

)
.

(4.51)

The estimates of (4.43) and (4.51) imply the statement of the lemma. ��

5. Correlations along Space-like Paths

In this section we present an extension of Theorem 1.1 to the three types of lozenges
(see Fig. 6). Then we explain the three different ways of computing height differences.
These are then used in the proof of Theorem 1.3.
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Fig. 6. Facet’s types of Fig. 2, their associated lozenges and angles. The gray circle is at position = (x, n)

5.1. Joint distribution of the three types of lozenges. As we saw in the Introduction, par-
ticle configurations can also be interpreted as lozenge tiling (see Fig. 2) of a half-plane.
One can draw the corresponding triangular lattice by associating to the three types of
facets three lozenges made by one black and one white triangle as indicated in Fig. 6. We
define the position of a black / white triangle to be an (x, n)-coordinate on the mid-point
of its horizontal side.

Thus, in our system of coordinates, these positions are pairs of integers (x, n) with
x ∈ Z, n ∈ {0, 1, . . .} for black and n ∈ {1, 2, . . .} for white triangles. We first state the
result in the common way from the tiling point of view, and then we will reformulate it
by using the kernel K defined in (4.2).

For any pair of black and white triangles with space-time coordinates (x, n, t) and
(x ′, n′, t ′), define the kernel

K̃( (x, n, t); (x ′, n′, t ′)) = (−1)x−x ′+n−n′K(x, n, t; x ′, n′, t ′), (5.1)

where K is the kernel defined in (1.6).

Theorem 5.1. Consider a finite set of lozenges at time moments t1 ≤ t2 ≤ · · · ≤ tM ,
consisting of triangles

(bi , wi ) := ( (xi , ni , ti ), (x ′
i , n′

i , ti )). (5.2)

Assume that ni ≥ n j if ti < t j . Then

P
{
There is a lozenge (bi , wi ) at time ti ,

for every i = 1, . . . , M
} = det

[
K̃(bi , w j )

]
1≤i, j≤M . (5.3)

Proof of Theorem 5.1. We prove the statement by induction on the number of lozenges
(bi , wi ) which are not of the form . When this number is zero, then the statement is
Theorem 1.1, which is the base of the induction.
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Consider any set S of lozenges at any time moments, plus another lozenge. Then,
the l.h.s. of (5.3) obviously satisfies

P
(
S ∪ )

+ P (S ∪ ) + P (S ∪ ) = P (S) , (5.4)

where in the l.h.s we either keep the white triangle fixed, or we keep the black triangle
fixed (and we assume that S does not contain the fixed triangle). Next we verify that the
same relation holds for the r.h.s. of (5.3).

Case (a): the fixed triangle is white. From the explicit formula for the kernel, we get

K̃( (x, n, t); ) + K̃( (x, n − 1, t); ) + K̃( (x + 1, n − 1, t); )

=
{

1, if = (x, n, t),
0, otherwise.

(5.5)

This implies relation (5.4) for the r.h.s. of (5.3).

Case (b): the fixed triangle is black. There are two possibilities: (i) the black triangle
is on the lower boundary {(x, n, t) | n = 0}, or (ii) it is not on the boundary. In case (ii),
the relevant relation on the kernel is

K̃( ; (x ′, n′, t)) + K̃( ; (x ′, n′ + 1, t)) + K̃( ; (x ′ − 1, n′ + 1, t))

=
{

1, if = (x ′, n′, t),
0, otherwise.

(5.6)

In case (i), our assumption ni ≥ n′
j whenever ti < t ′j implies that we are considering

the last time moment, tM . Then, in the formula for the kernel (1.6), the first residue term
drops out and the second term vanishes on (x ′, 0, t) (since at z = 1 there is no pole
anymore). Thus (5.6) still gives the needed relation:

P (S ∪ ) + P (S ∪ ) = P (S) . (5.7)

With the relation (5.4) verified (which, in one case, degenerates to (5.7)), let us explain
the induction step. Let us take a lozenge in the set {(bi , wi ), 1 ≤ i ≤ M} which is not
of the type . For example, consider and denote by S the set of remaining M − 1
lozenges. Then

P (S ∪ ) = P (S) − P
(
S ∪ )− P (S ∪ ) , with fixed. (5.8)

So, we have a linear combination of two terms with one less lozenge of type different
from , plus the third term with whose black triangle is one position on the right
with respect to the . For this term we use

P (S ∪ ) = P (S) − P
(
S ∪

)
− P (S ∪ ) , with fixed. (5.9)

So, the third term in (5.8) is rewritten as a linear combination of two terms with one less
lozenge of type different from , plus a third term with a lozenge of type , and this
lozenge is one position to the right from the initial in the l.h.s. of (5.8). This can be
continued iteratively. A similar argument holds for lozenges of type with (5.8) and
(5.9) applied in the opposite order.
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Thus, we can represent the r.h.s. of (5.3) as a linear combination of those with fewer
lozenges of type , , plus an expression of the same kind but with one of the or

lozenges far to the right.
We still have to verify that the formula with one more lozenge of type or agrees

when such a lozenge moves to +∞. Since the determinant in (5.3) is invariant with
respect to conjugation, consider the kernel 2x−x ′K̃( (x, n, t); (x ′, n′, t ′)) instead.
Then, one verifies that

2x−x ′K̃( (x, n, t); (x ′, n′, t ′)) → 0 as x ′ → +∞,

2x−x ′K̃( (x, n, t); (x ′, n′, t ′)) → 0 as x → +∞,
(5.10)

and also for a lozenge (b, w) far to the right (i.e., when x → +∞) we have

2x−x ′K̃(b;w) →
{

1, if (b, w) = ,

0, if (b, w) = .
(5.11)

Therefore, if in the r.h.s. of (5.3) there is one lozenge that is far to the right, the
determinant tends to zero, which agrees with

P (S ∪ ) → 0 as → +∞. (5.12)

On the other hand, if in the r.h.s. of (5.3) there is one lozenge that is far to the right,
the determinant tends to the determinant of its minor corresponding to S, which is in
agreement with

P (S ∪ ) → P (S) as → +∞. (5.13)

This completes the induction step. ��
In the next section we will describe height function differences as a sum over loz-

enges of type or . To each lozenge one can associate a position. We decided to set
the position of a lozenge to be equal to the position of the white triangle, see Fig. 6.
Now we restate Theorem 5.1 in a slightly different form.

Theorem 5.2. For any N = 1, 2, . . ., pick N triples

κ j = (x j , n j , t j ) ∈ Z × Z>0 × R≥0

such that x j + n j ≥ 0 and

t1 ≤ t2 ≤ · · · ≤ tN , n1 ≥ n2 ≥ · · · ≥ nN . (5.14)

Then

P{For each j = 1, . . . , N at (x j , n j , t j ) there is a lozenge

of type θ j ∈ {I, II, III}} = det [Kθ (κi , θi ; κ j , θ j )]N
i, j=1, (5.15)

where

Kθ (x1, n1, t1, θ1; x2, n2, t2, θ2)

=
⎧⎨
⎩

K (x1 + n1, n1, t1; x2 + n2, n2, t2), if θ1 = I,

−K (x1 + n1, n1 − 1, t1; x2 + n2, n2, t2), if θ1 = II,

K (x1 + n1 − 1, n1 − 1, t1; x2 + n2, n2, t2), if θ1 = III,
(5.16)

with K as defined in Sect. 4.1.
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Proof of Theorem 5.2. The proof is simple. One just applies the correspondence

Type I at (x, n, t) ⇔ ( (x, n, t), (x, n, t)), (5.17)

Type II at (x, n, t) ⇔ ( (x + 1, n − 1, t), (x, n, t)), (5.18)

Type III at (x, n, t) ⇔ ( (x, n − 1, t), (x, n, t)) (5.19)

to (5.3) and then rewrites K̃ in terms of K. Then, using the relation (4.1), we get the
expression in terms of K . Finally, one conjugates the kernel by (−1)x1−x2 and obtains
the desired kernel Kθ . ��

5.2. Height differences as time integration of fluxes. To determine the height function
at a position (m, n) at a given time t , one can act in three different ways:

(a) Sum along the x-direction:

h(m, n, t) =
∑
x>m

1 (lozenge of type I at (x, n, t)) . (5.20)

(b) Sum along the n-direction: for n′ > n,

h(m, n, t) = h(m, n′, t) + Hn,n′(m, t), (5.21)

where

Hn,n′(m, t) = −
n′∑

p=n+1

1 (lozenge of type II at (m, p, t)) . (5.22)

(c) Integrate the current over time: for t > t ′,

h(m, n, t) = h(m, n, t ′) + Jt ′,t (m, n), (5.23)

where Jt ′,t (m, n) is the number of particles (= lozenges of type I) which jumped
from site (m, n) to site (m + 1, n) during the time interval [t ′, t].

In principle, one could use (a) alone to determine the height. However, this turns out
to be not very practical when dealing with joint distributions of height functions at dif-
ferent points (m1, n, t), . . . , (mK , n, t). The reason is that the height functions are linear
functions of lozenges of type I but the same lozenges appear in several of them. The
result is a very tedious computation. This can be avoided by using (b) and (c) depending
on the cases, see Fig. 7 for an illustration.

Therefore, the expression

E

( N∏
k=1

[h(mk, nk, tk) − E(h(mk, nk, tk))]

)
(5.24)
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Fig. 7. The black dots represent the space-time positions where we want to study the height functions. They
live on a space-like surface (i.e., for any two points (x1, n1, t1), (x2, n2, t2) on it, either (n1, t1) ≺ (n2, t2) or
(n2, t2) ≺ (n1, t1)). The white dots represents the projection of the black dots onto the (n, t)-plane

can be expressed as a sum of terms of the form

E

( M∏
k=1

[h(mk, nk, tk) − E(h(mk, nk, tk))]

×
R∏

�=M+1

[
Hn�,n′

�
(m�, t�) − E(Hn�,n′

�
(m�, t�))

]

×
N∏

j=R+1

[
Jt ′j ,t j

(m j , n j ) − E(Jt ′j ,t j
(m j , n j ))

])
. (5.25)

We now derive a formula for (5.25).

Lemma 5.3. Assume that the following paths do not intersect and lie on a space-like
surface:

{(x, nk, tk)| x > mk}, k = 1, . . . , M,

{(m�, p, t�)| p = n� + 1, . . . , n′
�}, � = M + 1, . . . , R,

{(m j , n j , t)| t ∈ [t ′j , t j ]}, j = R + 1, . . . , N .
(5.26)

Then

(5.25) =
∑

x1>m1

· · ·
∑

xM >mM

n′
M+1∑

pM+1=nM+1+1

· · ·
n′

R∑
pR=nR+1

∫ tR+1

t ′R+1

dsR+1 · · ·
∫ tN

t ′N
dsN det

⎡
⎣

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

⎤
⎦ , (5.27)

with the matrix blocks Ai, j as follows:

A1,1 = [(1 − δi, j )K (xi + ni , ni , ti ; x j + n j , n j , t j )
]

1≤i, j≤M ,

A2,1 = [K (mi + pi , pi − 1, ti ; x j + n j , n j , t j )
]

M+1≤i≤R, 1≤ j≤M ,
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A3,1 = [K (mi + ni , ni , si ; x j + n j , n j , t j )
]

R+1≤i≤N , 1≤ j≤M ,

A1,2 = [K (xi + ni , ni , ti ; m j + p j , p j , t j )
]

1≤i≤M, M+1≤ j≤R,

A2,2 = [(1 − δi, j )K (mi + pi , pi − 1, ti ; m j + p j , p j , t j )
]

M+1≤i, j≤R, (5.28)

A3,2 = [K (mi + ni , ni , si ; m j + p j , p j , t j )
]

R+1≤i≤N , M+1≤ j≤R,

A1,3 = [−∂s j K (xi + ni , ni , ti ; m j + n j , n j , s j )
]

1≤i≤M, R+1≤ j≤N
,

A2,3 = [∂s j K (mi + pi , pi − 1, ti ; m j + n j , n j , s j )
]

M+1≤i≤R, R+1≤ j≤N
.

A3,3 = [−(1 − δi, j )∂s j K (mi + ni , ni , si ; m j + n j , n j , s j )
]

R+1≤i, j≤N
.

Proof of Lemma 5.3. Below we prove that

E

( M∏
k=1

h(mk, nk, tk)
R∏

�=M+1

Hn�,n′
�
(m�, t�)

N∏
j=R+1

Jt ′j ,t j
(m j , n j )

)
(5.29)

is equal to (5.27) but without the 1 − δi, j terms in A1,1, A2,2, and A3,3. The fact that
the subtraction of the averages is given by putting zeros on the diagonal is a sim-
ple but important property, which was noticed for example in [51] (see the proof of
Theorem 7.2).

For N = R, (5.29) is a direct application of Theorem 5.2 to the formulas (5.20) and
(5.22). The absence of the minus sign in A2,∗ is a consequence of the minus in the defi-
nition of the H ’s in (5.22). Next we extend the result when N > R, by first considering
N = R + 1 for clarity. Denote by η(x, n, t, θ) the random variable that is equal to 1 if
there is a type θ lozenge at (x, n, t) and 0 otherwise. Recall that lozenges of type I are
exactly what we call particles. The flux of particles can be written as

Jt ′,t (m, n) = lim
D→∞

D∑
�=1

η(m, n, τi−1, I)(1 − η(m, n, τi , I)) (5.30)

with τi = t ′ + iΔτ , i = 0, . . . , D, Δτ = (t − t ′)/D.
The quantity η(m, n, τi−1, I)(1−η(m, n, τi , I)) equals 1 iff the site (m, n) was occu-

pied by a particle at time τi−1 and empty at time τi . Each particle tries to jump indepen-
dently with an exponential waiting time. Every time a particle moves, it can also push
other particles, but no more than one on each (higher) level n = const . In any case, since
on each level there is a finite number of particles, the probability that a particle has more
than one jump during time Δτ is O(Δτ 2). Thus, the limit Δτ → 0 is straightforward.

To obtain (5.29) we have to determine the expression at first order in Δτ of

E

⎛
⎝η(m, n, τi−1, I)(1 − η(m, n, τi , I))

Q∏
j=1

η(m j , n j , t j , θ j )

⎞
⎠ . (5.31)

Then, in the Δτ → 0 limit we will get an integral from t ′ to t .
Set K x,n(t1; t2) = ∑n−1

k=0 Ψ
n,t1
k (x + n)Φ

n,t2
k (x + n). Remark that in (4.3),

φ((n,τi ),(n,τi−1))(x, x) = 1. Then, since τi > τi−1, from (4.3) we obtain
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(5.31) = det

⎡
⎢⎣

K m,n(τi−1; τi−1) K m,n(τi−1; τi ) Kθ (m, n, τi−1, I; q)

1 − K m,n(τi ; τi−1) 1 − K m,n(τi ; τi ) −Kθ (m, n, τi , I; q)

Kθ (q; m, n, τi−1, I) Kθ (q; m, n, τi , I) K (q, q)

⎤
⎥⎦ ,

(5.32)

where by q we denoted the quadruples (m j , n j , t j , θ j ), for j ∈ {1, . . . , Q}. The kernel
Kθ is a simple function of the kernel K , see (5.16). The second line is just one in the
diagonal minus the entries of the kernel (cf. complementation principle in the Appendix
of [25]). Written in terms of K it becomes as above, since the (2, 1) entry has a 1 coming
from φ. Next we perform two operations keeping the determinant invariant:

Second row → Second row + First row

Second column → Second column − First column.

We get that (5.32) is equal to

det

⎡
⎢⎣

K m,n(τi−1; τi−1) Δτ∂2 K m,n(τi−1; τi−1) + O(Δτ 2) Kθ (m, n, τi−1, I; q)

1 − O(Δτ) O(Δτ 2) O(Δτ)

Kθ (q; m, n, τi−1, I) Δτ∂2 Kθ (q; m, n, τi−1, I)+O(Δτ 2) Kθ (q, q)

⎤
⎥⎦

= −Δτ det

[
∂2 K m,n(τi−1; τi−1) Kθ (m, n, τi−1, I; q)

∂2 Kθ (q; m, n, τi−1, I) Kθ (q, q)

]
+ O(Δτ 2), (5.33)

where ∂2 means the derivative with respect to τi−1 in the second entry of the kernel.
This formula and (5.30) imply

E

⎛
⎝Jt ′,t (m, n)

Q∏
j=1

η(m j , n j , t j ; θ j )

⎞
⎠

=
∫ t

t ′
ds det

[
−∂2 Kθ (m, n, s, I; m, n, s, I) Kθ (m, n, s, I; m j , n j , t j , θ j )

−∂2 Kθ (mi , ni , ti , θi ; m, n, s, I) Kθ (mi , ni , ti , θi ; m j , n j , t j , θ j )

]

1≤i, j≤Q

.

(5.34)

The case of several factors J is obtained by induction. Expressing Kθ for θ ∈ {I, II} in
terms of K only, and considering the fact that H is minus the sum of lozenges of type
II, we obtain the result. ��

5.3. Proof of Theorem 1.3. Consider the expectation

E

( N∏
k=1

[h(mk, nk, tk) − E(h(mk, nk, tk))]

)
. (5.35)

Our goal is to determine its limit as L → ∞ under the macroscopic scaling: tk = τk L ,
nk = [ηk L], mk = [(νk − ηk)L], with νk ∈ ((

√
ηk − √

τk)
2, (

√
ηk +

√
τk)

2).
The expression (5.35) is a linear combination of expressions from Lemma 5.3. The

r.h.s. of (5.27) contains an N × N determinant; let us write it as the sum over permu-
tations σ ∈ SN of terms each of which is sgn σ times the product of matrix elements
(i, σi ), i = 1, . . . , N .
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The contribution of all permutations with fixed points is zero (because the diagonal
matrix elements are zeroes). All other permutations can be written as unions of several
cycles of length � ≥ 2. The contributions of the permutations with only cycles of length
2 lead to the final result, i.e., to prove the theorem we first need to show that the sum of
the contributions of permutations with cycles of length � ≥ 3 vanishes in the L → ∞
limit.

Consider a cycle of length � ≥ 3 and use the indices 1, . . . , � for the corresponding
points (mi , ni , ti ). Let us order them so that

η1 ≥ η2 ≥ · · · ≥ η�, τ1 ≤ τ2 ≤ · · · ≤ τ�, no double points, (5.36)

i.e., (η j , τ j ) ≺ (η j−1, τ j−1).
For an �-cycle we need to take the product of the kernels (or their time deriva-

tives depending on the case), and do the summation over xk > [(−ηk + νk)L], or over
p� ∈ [[η�L] + 1, [η′

�L]], or the integration over [τ ′
i L , τi L] depending on whether in

(5.27) we have a sum or an integral.
We first collect all the factors related to a fixed index i . There are three possible cases:

(a) The index i is related to a sum over [(−ηi + νi )L ,∞). Then we have to analyze
∑

x>[νi L]
K (x, [ηi L], τi L; κσi )K (κ

σ−1
i

; x, [ηi L], τi L); (5.37)

(b) The index i is related to a sum over [[ηi L] + 1, [η′
i L]]. Then we have to analyze:

[η′
i L]∑

p=[ηi L]+1

K ([νi L] + p − [ηi L], p − 1, τi L; κσi )

×K (κ
σ−1

i
; [νi L] + p − [ηi L], p, τi L); (5.38)

(c) The index i is related to an integrated variable. We have in this case
∫ τi L

τ ′
i L

dt K ([νi L], [ηi L], t; κσi )K (κ
σ−1

i
; [νi L] + 1, [ηi L], t). (5.39)

The second kernel has a shift by one in the second x-entry. This comes from the
identity

− ∂s′ K (m, n, s; m′, n′, s′) = K (m, n, s; m′ + 1, n′, s′), (5.40)

which immediately follows from (4.2).

We analyze these three expressions in the L → ∞ limit using results of Sect. 6.3.
First of all, since wc − zc remains bounded away from zero all along the integrals/sums,
the bounds of Sect. 6.3 imply that the contributions of the error term O(L−1/8) in (6.56)
are of the same order, namely O(L−1/8). Therefore we can get rid of them immediately
and we will not write them explicitly in what follows.

Case (a) We divide the sum in three parts for which we use Propositions 6.9–6.13.

Case (a/1) Sum in the interval

I1 = {x ∈ N, x ≥ (
√

τi +
√

ηi )
2L − �L1/3}. (5.41)
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Then, by Propositions 6.12–6.13,

∣∣∣∣
∑
x∈I1

K (x, [ηi L], τi L; κσi )K (κ
σ−1

i
; x, [ηi L], τi L)

∣∣∣∣

≤
∑
x∈I1

const

L2/3 exp

(
−2

x − (
√

τi +
√

ηi )
2L

(τi L)1/3

)
× terms in κσi , κ

σ−1
i

≤ const

L1/3 × terms in κσi , κ
σ−1

i
. (5.42)

Therefore, as L → ∞, the contribution of this sum goes to zero.

Case (a/2) Sum in the interval

I2 = {x ∈ N, (
√

τi +
√

ηi )
2L − L2/3 < x < (

√
τi +

√
ηi )

2L − �L1/3}. (5.43)

By Propositions 6.11–6.12,

∣∣∣∣
∑
x∈I2

K (x, [ηi L], τi L; κσi )K (κ
σ−1

i
; x, [ηi L], τi L)

∣∣∣∣

≤
∑
x∈I2

const

L
√

ηiτi − 1
4 (τi + ηi − x/L)2

× terms in κσi , κ
σ−1

i

≤ const

L1/6 × terms in κσi , κ
σ−1

i
. (5.44)

Therefore, as L → ∞, this contribution is also infinitesimally small.
In the following (Cases (a/3), (b), and (c)) we will assume that all the entries κi ’s of

the kernel are in D and apply Proposition 6.9 and its Corollary 6.10. Let us justify it.
The variables corresponding to time integration (Case (c)) and sum over the p variables
(Case (b)) in (5.27) are always in D. Therefore, the only κi ’s which are not in D corre-
spond to Cases (a/1) and (a/2) above. From Propositions 6.9–6.12, the contributions in
the κi variable are of order

O(1)

L
√

ηiτi − 1
4 (ηi + τi − νi )2

, (5.45)

if κi ∈ D. The sum in Case (a/3) is then bounded by O(1) because the sum is over O(L)

sites and the square-root singularity is integrable. Even simpler is Case (b) where we
never come close to the singularity and the sum is over O(L) sites. Finally, in Case (c),
the integration is over a time span O(L). Therefore, the contributions of the terms of
Cases (a/3), (b), and (c) are O(1), and for every sum reaching the edge we get a factor
O(L−1/6). Thus, in the following we need to determine the asymptotics of Cases (a/3),
(b), and (c) in the case where all the entries κi ’s are in D.

Case (a/3) Sum in the interval

I3 = {x ∈ N, [νi L] < x ≤ (
√

τi +
√

ηi )
2L − L2/3}. (5.46)
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Define the functions

A(ν, η, τ ) = 1

2π |G ′′(Ω(ν, η, τ ))|√ν/τ
(5.47)

and

F(ν, η, τ ) = L Im(G(Ω(ν, η, τ ))). (5.48)

Then, by Proposition 6.9 we have
∑
x∈I3

K (x, [ηi L], τi L; κσi )K (κ
σ−1

i
; x, [ηi L], τi L)

=
∑
x∈I3

A(x/L , ηi , τi )

L

[
e−iβ1(i)

ω(σi ) − ω(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

+
e−iβ1(i)

ω(σi ) − ω(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

e−2iF(x/L ,ηi ,τi )

+
eiβ1(i)

ω(σi ) − ω̄(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

e2iF(x/L ,ηi ,τi )

+
eiβ1(i)

ω(σi ) − ω̄(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

+ �
]

× terms in κσi , κ
σ−1

i
, (5.49)

where we used the notation ω(i) = Ω(νi , ηi , τi ) and � means the other 12 terms
obtained by replacing ω(σi ) by ω̄(σi ) and/or ω(σ−1

i ) by ω̄(σ−1
i ).

First we want to show that the terms with F in the exponential are irrelevant in the
L → ∞ limit. For that, we sum over N = L1/3 positions around any νL in the bulk.
Then, for 0 ≤ x ≤ L1/3,

F(ν + x/L , η, τ ) = Lγ (ν, η, τ ) + x∂νγ (ν, η, τ ) + O(L−1/3) holds, (5.50)

where γ (ν, η, τ ) = L−1 F(ν, η, τ ). All the other functions (A, β1(i), β2(i), and ω(i))
are smooth functions in νi , i.e., over an interval L1/3 vary only by ∼ L−2/3. Therefore
we have to compute an expression of the form

1

N

N−1∑
x=0

e2iF(ν+x/L ,η,τ )φ(ν + x/L , η, τ ), (5.51)

where φ is a smooth function given in terms of A, β1(i), β2(i), and ω(i). Thus

(5.51) = φ(ν, η, τ )e2iLγ (ν,η,τ ) 1

N

N−1∑
x=0

eibx + O(L−1/3) (5.52)

with b = 2∂νγ (ν, η, τ ). Then, for 0 < b < 2π , we use

1

N

N−1∑
x=0

eibx = eibN − 1

N (eib − 1)
. (5.53)
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In our case, b is strictly between 0 and π as soon as we are away from the facet. When
we reach the lower facet, b → 0. However, in the sum over I3 we are at least at a distance
L2/3 from the facet, i.e., b ≥ const L−1/6. Therefore

|(5.53)| ≤ const /(bN ) ≤ const L−1/6. (5.54)

Since this holds uniformly in the domain I3, we have shown that the contribution of the
terms where the exp(±2iF) is present is at worst of order L−1/6. Therefore the only
non-vanishing terms in (5.49) are

∑
x∈I3

A(x/L , ηi , τi )

L

[
e−iβ1(i)

ω(σi ) − ω(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

+
eiβ1(i)

ω(σi ) − ω̄(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

+ �
]

× terms in κσi , κ
σ−1

i
. (5.55)

All the functions appearing now are smooth and changing over distances x ∼ L . Thus,
defining x = νL , the sum becomes, up to an error of order O(L−1/3), the integral

∫ (
√

τi +
√

ηi )
2

νi

dν A(ν, ηi , τi )

[
e−iβ1(i)

ω(σi ) − ω(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

+
eiβ1(i)

ω(σi ) − ω̄(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

+ �
]

× terms in κσi , κ
σ−1

i
. (5.56)

The final step is a change of variable. For the term with ω(i), we set z+
i = ω(i) = Ω(ν,

ηi , τi ). Denote the new integration path by Γ i
+ = {Ω(ν, ηi , τi ), ν : (

√
τi +

√
ηi )

2 → νi }.
The Jacobian was computed in Proposition 3.8, namely

∂ω(i)

∂ν
= iω(i)

κ
= 2π iA eiβ2(i)e−iβ1(i). (5.57)

For the term with ω̄(i) we set z−
i = ω̄(i) = Ω(ν, ηi , τi ) and Γ i− = Γ̄ i

+. Then (5.56)
becomes

−1

2π i

∑
εi =±

εi

∫

Γ i
εi

dzi
εi

[
1

zi
εi

− ω(σi )

1

ω(σ−1
i ) − zi

εi

+ �
]

× terms in σi , σ
−1
i . (5.58)

The factor −1 comes from the orientation of Γ i
εi

, see Fig. 8.

Case (b) We sum in the n-direction from [ηi L] + 1 to [η′
i L] for some η′

i > ηi . While
doing this, we do not exit the domain D remaining in the bulk. Therefore, the compu-
tations are just a small variation of the sum over I3 of Case (a). The minor difference
comes from the −1 shift in p in the entries of the first kernel. By changing the variable
α = p/L , we then obtain

lim
L→∞

[η′
i L]∑

p=[ηi L]+1

K ([νi L]+ p−[ηi L], p−1, τi L; κσi )K (κ
σ−1

i
; [νi L]+ p−[ηi L], p, τi L)

=
∫ η′

i

ηi

dαA(νi − ηi + α, α, τi )

[
e−iβ1(i)ω(i)−1

ω(σi ) − ω(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

+
eiβ1(i)ω̄(i)−1

ω(σi ) − ω̄(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

+ �
]

× terms in κσi , κ
σ−1

i
(5.59)
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Fig. 8. The image of paths of Fig. 7 under the map Ω

with ω(i) = Ω(νi − ηi + α, α, τi ). For the term with ω(i), we set z+
i = ω(i) and denote

the new integration path by Γ i
+ = {Ω(νi − ηi + α, α, τi ), α : η′

i → ηi } (we set the
orientation of the path as in Fig. 8). By Proposition 3.8 we get

∂ω(i)

∂α
= i

κ
= 2π iA eiβ2(i)e−iβ1(i)ω(i)−1. (5.60)

The change of variable for the term with ω̄(i) is similar. The result is the same formula
as (5.58) (of course, with the new Γ i

εi
’s).

Case (c) The last case is when we do an integration over a time interval. Similarly to
Case (b), we do not have to deal with the edges, since, by assumption, we remain in the
bulk of the system. We need to compute

∫ τi L

τ ′
i L

dt K ([νi L], [ηi L], t; κσi )K (κ
σ−1

i
; [νi L] + 1, [ηi L], t)

=
∫ τi

τ ′
i

dτ A(νi , ηi , τ )

[
e−iβ1(i)

ω(σi ) − ω(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

(1 − ω(i))

+
e−iβ1(i)

ω(σi ) − ω(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

(1 − ω̄(i))e−2iF(νi ,ηi ,τ )

+
eiβ1(i)

ω(σi ) − ω̄(i)

eiβ2(i)

ω(i) − ω(σ−1
i )

(1 − ω(i))e2iF(νi ,ηi ,τ )

+
eiβ1(i)

ω(σi ) − ω̄(i)

e−iβ2(i)

ω̄(i) − ω(σ−1
i )

(1 − ω̄(i))+ �
]

× terms in κσi , κ
σ−1

i
. (5.61)

The only rapidly changing function is F , which, as for the sum, makes the contri-
butions of the term with it vanishing small as L → ∞. We do the same change of
variable as above, i.e., z+

i = ω(i) = Ω(νi , ηi , τ ). Denote the new integration path by
Γ i

+ = {Ω(νi , ηi , τ ), τ ∈ [τ ′
i , τi ]}. The Jacobian is computed in Proposition 3.8, namely

∂ω(i)

∂τ
= −iω(i)(1 − ω(i))

κ
= −2π iAeiβ2(i)e−iβ1(i)(1 − ω(i)). (5.62)

Thus, we obtain again (5.58).



Anisotropic Growth of Random Surfaces in 2 + 1 Dimensions 661

Thus, after summing / integrating all the � variables, we get the contribution of the
�-cycle, namely

(−1)�

(2π i)�
∑

ε1,...,ε�=±

�∏
i=1

εi

∫

Γ 1
ε1

dzε1
1 · · ·

∫

Γ �
ε�

dzε�

�

�∏
i=1

1

zεi
i − z

εσi
σi

,

= (−1)�

(2π i)�
∑

ε1,...,ε�=±

�∏
i=1

εi

∫

Γ 1
ε1

dzε1
1 · · ·

∫

Γ �
ε�

dzε�

�

�∏
i=1

1

z
εσi
σi − z

εσi−1
σi−1

, (5.63)

where we set σ0 := σ�. By Lemma 7.3 in [51], which refers back to [28],

∑
σ=�–cycle in S�

�∏
i=1

1

Yσi − Yσi−1

= 0, for � ≥ 3. (5.64)

Therefore, the sum of (5.63) over all possible �-cycles on the same set of indices gives
zero for � ≥ 3.

We have shown that we have a Gaussian type formula (sum over all couplings) for
points macroscopically away. We still need to compute explicitly the covariance for such
points. The covariance is obtained from (5.63) for � = 2. We need now to consider the
signature of the permutation, which for a 2-cycle is −1. We thus obtain a sum of 4 terms
which can be put together into (see the end of Sect. 7 in [51] too)

1

(2π i)2

∫ Ω(ν1,η1,τ1)

Ω̄(ν1,η1,τ1)

dz1

∫ Ω(ν2,η2,τ2)

Ω̄(ν2,η2,τ2)

dz2
1

(z1 − z2)2

= −1

4π2 ln

(
(Ω(ν1, η1, τ1) − Ω(ν2, η2, τ2))(Ω(ν1, η1, τ1) − Ω(ν2, η2, τ2))

(Ω(ν1, η1, τ1) − Ω(ν2, η2, τ2))(Ω(ν1, η1, τ1) − Ω(ν2, η2, τ2))

)
.

(5.65)

��

5.4. Short and intermediate distance bounds. Let us first prove the short distance bound
(1.18).

Lemma 5.4. For any κ j ∈ D and any ε > 0, we have

E (HL(κ1) · · · HL(κN )) = O(Lε), L → ∞. (5.66)

Proof of Lemma 5.4. Theorem 1.2 implies, for any integer m ≥ 1,

E(HL(κ j )
2m) = O(ln(L)m). (5.67)

By the Chebyshev inequality,

P(|HL(κ j )| ≥ X ln(L)) = O(1/X2m), P(|HL(κ j )| ≥ Y ) = O(ln(L)m/Y 2m).

(5.68)

The final ingredient is that |HL(κ j )| = O(L), since on level n = L we have only L
particles. Therefore, for any Y , we can bound
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|E(HL(κ1) · · · HL(κN ))| ≤ P(|HL(κ1)| ≤ Y, . . . , |HL(κN )| ≤ Y )Y N

+P(∃ j s.t. |HL(κ j )| > Y )O(L)N

= O(Y N ) + O(L N ln(L)m/Y 2m). (5.69)

Taking Y = Lε/2 and m � 1 large enough, we obtain

|E(HL(κ1) · · · HL(κN ))| = O(Lε), for any given ε > 0. (5.70)

��
Next we give an intermediate distance bound, extending the result of Theorem 1.3.

Lemma 5.5. Consider the setting as in Theorem 1.3. If the points Ωi ’s are not closer
than L−1/(8N ), then the difference between the expectation E(HL(κ1) · · · HL(κN )) and
the r.h.s. of (1.17) is O(L−1/(12N )).

Proof of Lemma 5.5. It is a small extension of Theorem 1.3. For N = 1 the two expres-
sions are identically equal to zero. So, consider N ≥ 2. We have |Ωi − Ω j | ≥ L−1/16,
so that the estimate of (6.56) can still be applied in the proof of Theorem 1.3. All
the error terms collected are O(L−1/6) (see (5.54)) times at most N factors of order
1/|Ωi − Ω j | = O(L1/(8N )). This accounts into an error O(L−1/24). Now, since the
Ωi ’s are not away of order one, when one O(L−1/8) in (6.56) is used, it has to be
multiplied by at worst N − 1 factors of order 1/|Ωi − Ω j | = O(L1/(8N )). Therefore
the error is at most O(L(N−1)/(8N )L−1/8) = O(L−1/(8N )). Similarly, the contribution
where O(L−1/8) is used n times is O(L(N−n)/(8N )L−n/8), which is maximal at n = 1.
Thus, for N ≥ 2, we get all together O(L−1/24) + O(L−1/(8N )) = O(L−1/(12N )). ��

5.5. Gaussian Free Field. The Gaussian Free Field on H, see e.g. [73], is a generalized
Gaussian process (i.e. it is a probability measure on a suitable class of generalized
functions on H) that can be characterized as follows. If we denote by GFF the random
generalized function and take any sequence {φk} of (compactly supported) test functions,
the pairings {GFF(φk)} form a sequence of mean 0 normal variables with covariance
matrix

E(GFF(φk) GFF(φl)) =
∫

H

|dz|2(∇φk(z),∇φl(z))

=
∫

H2
|dz1|2|dz2|2φk(z1)φl(z2)G(z1, z2),

where

G(z, w) = − 1

2π
ln

∣∣∣∣
z − w

z − w̄

∣∣∣∣ (5.71)

is the Green function of the Laplacian on H with Dirichlet boundary conditions.
The value of GFF at a point cannot be defined. However, one can think of expectations

of products of values of GFF at different points as being finite and equal to

E[GFF(z1) · · · GFF(zm)]
=
{

0 if m is odd,∑
pairings σ G(zσ(1), zσ(2)) · · · G(zσ(m−1), zσ(m)) if m is even.

(5.72)
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The justification for the notation is the fact that for any finite number of test functions,

E(GFF(φ1) · · · GFF(φm)) =
∫

Hm

m∏
k=1

|dzk |2φk(zk)E [GFF(z1) · · · GFF(zm)] . (5.73)

The moments (5.73) uniquely determine the Gaussian Free Field.
To state the convergence results, we consider any (smooth) space-like surface

U ⊂ R
3 in the rounded part of the surface. Namely U ⊂ D, and for any two triples

(νi , ηi , τi ) ∈ U , i = 1, 2, η1 ≤ η2 implies τ1 ≥ τ2.
Clearly, the mapping Ω restricted to U is a bijection. Consider any smooth parametri-

zation u = (u1, u2) of U . Denote by ΩU the map from u to H, which is the composition
of the map from u to (ν, η, τ ) and Ω . Then, for any smooth compactly supported test
function f on U , we define

〈 f, HL 〉 :=
∫

U
du f (u)HL(u), (5.74)

where HL(u) is as in (1.16). Then

〈 f, HL 〉 =
∫

H

|dz|2 J (z) f (Ω−1
U (z))HL(Ω−1

U (z)), (5.75)

where J (z) is the Jacobian of the change of variables z → u by Ω−1
U .

Theorem 5.6. For any m ∈ N, and any smooth compactly supported functions
f1, . . . , fm on U ,

lim
L→∞E

[
m∏

k=1

〈 fk, HL 〉
]

=
∫

Hm

m∏
k=1

|dzk |2 f H

k (zk)E [GFF(z1) · · · GFF(zm)] , (5.76)

where f H

i (z) := J (z) f (Ω−1
U (z)).

Remark 5.7. Since moment convergence to a (multidimensional) Gaussian implies con-
vergence in distribution, Theorem 5.6 implies that the random vector (〈 fk, HL〉)m

k=1
converges in distribution (and with all moments) to the Gaussian vector with mean zero
and covariance matrix ‖ ∫

H
|dz|2(∇ f H

k (z),∇ f H

l (z))‖k,l=1,...,m .

Proof of Theorem 5.6. We have

E

[
m∏

k=1

〈 fk, HL 〉
]

=
∫

Hm

m∏
k=1

|dzk |2 f H

k (zk)E
[

HL(Ω−1
U (z1)) · · · HL(Ω−1

U (zm))
]
.

(5.77)

Theorem 1.3 and Lemma 5.5 allow us to determine the last expected value as soon as
|zi − z j | are away at least of order δ := L−1/(8m). Denote by

H
m
δ = {(z1, . . . , zm) ∈ H

m s.t. |zi − z j | ≤ δ, 1 ≤ i < j ≤ m}. (5.78)
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Then, as L → ∞, we have

∫

H
m
δ

m∏
k=1

|dzk |2 f H

k (zk)E
[

HL(Ω−1
U (z1)) · · · HL(Ω−1

U (zm))
]

=
∫

H
m
δ

m∏
k=1

|dzk |2 f H

k (zk)E [GFF(z1) · · · GFF(zm)] + O(L−1/(12m)). (5.79)

Then, since the logarithm is integrable around zero (in two but also in one dimension),
the L → ∞ limit is simply given by

lim
L→∞(5.79) =

∫

Hm

m∏
k=1

|dzk |2 f H

k (zk)E [GFF(z1) · · · GFF(zm)] . (5.80)

We still need to control the contribution coming from H
m\H

m
δ . Using Lemma 5.4,

this is bounded by

∣∣∣∣
∫

Hm\H
m
δ

m∏
k=1

|dzk |2 f H

k (zk)E
[

HL(Ω−1
U (z1)) · · · HL(Ω−1

U (zm))
] ∣∣∣∣ ≤ const δ2 Lε,

(5.81)

where const depends only on the functions f1, . . . , fm . Since δ2 = L−1/(4m) and ε > 0
can be chosen smaller than 1/(4m), in the L → ∞ limit this contribution vanishes. ��

We actually have a stronger result. Indeed the same formula holds also for smooth
functions living on one-dimensional paths. Consider now any simple path γ on U and
denote by s a coordinate on γ . Denote by Ωγ the composition of the map from s to
(ν, η, τ ) and Ω , and by γH ⊂ H the image of γ by Ωγ . Then, we define

〈 f, HL 〉γ :=
∫

γ

ds f (s)HL(s) (5.82)

and we get

〈 f, HL 〉γ =
∫

γH

dz Jγ (z) f (Ω−1
γ (z))HL(Ω−1

γ (z)), (5.83)

with Jγ (z) the Jacobian of the change of variables from z back to s by Ω−1
γ .

Theorem 5.8. For any m ∈ N, consider any smooth functions f1, . . . , fm of compact
support on γ . Then

lim
L→∞E

[
m∏

k=1

〈 fk, HL 〉γ
]

=
∫

γ m
H

m∏
k=1

|dzk | f γ

k (zk)E [GFF(z1) · · · GFF(zm)] , (5.84)

where f γ

i (z) := Jγ (z) f (Ω−1
γ (z)).

Proof of Theorem 5.8. The strategy is the same as in the proof of Theorem 5.6. The main
difference is that the contribution at small distances will be of order δLε. However, this
is fine, since we can choose ε < 1/(8m). ��
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6. Asymptotics Analysis

In this section we do the asymptotic analysis of the functions qn’s at the (upper) edge
and at the bulk. These are used to obtain the Gaussian fluctuations in Sect. 4. Then, we
do the asymptotic analysis of the extended kernel in the bulk and provide some bounds
at the (upper) edge, needed to prove the Gaussian Free Field correlations in Sect. 5.

6.1. Asymptotics at the edge. First we will determine the upper edge asymptotic of In,t
defined in (4.15), for which we apply exactly the same strategy as in previous papers
(Lemma 6.1 and 6.2 are almost identical to the computations of Propositions 15 and 17
in [16]). We first explain the strategy and then give the relevant details.

Lemma 6.1 (Upper edge). Let n = ct and x = (1 +
√

c)2t + st1/3, for any c > 0. Then,

lim
t→∞ t1/3 In,t (x)

(−√
c)n

e−√
ct (1 +

√
c)x

= κ̃2Ai(κ2s), (6.1)

uniformly for s in bounded sets, with κ2 =c1/6(1+
√

c)−2/3, and κ̃2 =(1+
√

c)1/3c−1/3.
Here Ai(·) is the classical Airy function.

Proof of Lemma 6.1. The strategy is the following. With the replacements n = ct and
x = (1 +

√
c)2t + st1/3 in (4.15), we have an integral of the form

1

2π i

∮

Γ0

dzet f0(z)+t2/3 f1(z)+t1/3 f2(z)+ f3(z) (6.2)

for some functions fk(z), k = 0, 1, 2, 3. The s-dependence is in f2(z).

Step 1: Find a steep descent path1 for the function f0(z), passing through the double
critical point zc given by the condition f ′

0(zc) = f ′′
0 (zc) = 0. In particular, the steep

descent path will be chosen so that close to the critical point the descent is the steepest.
Then, uniformly for s in a bounded set, the contribution coming from the integration
path away from a δ-neighborhood of zc is of order O(e−μt ) with μ ∼ δ3.

Step 2: Consider the contribution of the integration only on |z − zc| ≤ δ, with δ which
can still be chosen small enough, but t-independent. In a neighborhood of the critical
point, we can use the Taylor expansion of the functions f0, . . . , f3 and get

exp(t f0(zc) + t2/3 f1(zc) + t1/3 f2(zc) + f3(zc))

× 1

2π i

∫

Γ0∩|z−zc|≤δ

dz exp(tκ0(z − zc)
3/3 + t2/3κ1(z − zc)

2 + t1/3κ2(z − zc))

× exp(O(t (z − zc)
4, t2/3(z − zc)

3, t1/3(z − zc)
2, (z − zc))). (6.3)

Remark that we do not have a term t2/3(z−zc) in the exponential. If such a term remains,
then the edge scaling in x is not the right one.

Step 3: Estimate the error terms. We do the change of variable t1/3(z − zc) = w and
choose δ small enough, so that the error terms are much smaller than the main ones.

1 For an integral I = ∫γ dzet f (z), we say that γ is a steep descent path if (1) Re( f (z)) reaches the maximum
at some z0 ∈ γ : Re( f (z)) < Re( f (z0)) for z ∈ γ \ {z0}, and (2) Re( f (z)) is monotone along γ except at its
maximum point z0 and, if γ is closed, at a point z1 where the minimum of Re( f ) is reached.
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Subsequently, taking t large enough, the cubic term dominates all the others. Applying
|ey − 1| ≤ |y|e|y| with y standing for the error term O(· · · ), and changing the variable
t1/3(z − zc) = w, one sees that the difference between the integral with and without the
error term is of order O(t−1/3).

Step 4: For the integral without errors, we also do the change of variable t1/3(z − zc) = w

and then we extend the integration paths to infinity. This accounts for an error of order
O(e−μt ). The final formula is then

t−1/3 exp(t f0(zc) + t2/3 f1(zc) + t1/3 f2(zc) + f3(zc))

×
(±1

2π i

∫
dweκ0w3/3+κ1w

2+κ2w + O(t−1/3, e−μt )

)
, (6.4)

where the integral goes from e−π i/3∞ to eπ i/3∞ if κ0 > 0 and, in case κ0 < 0 it goes
from e−2π i/3∞ to e2π i/3∞. The sign ±1 depends on the position of the critical point:
we have +1 if zc > 0 and −1 if zc < 0. Finally, the integral can be rewritten in terms of
Airy functions using the following identity:

1

2π i

∫ eπ i/3∞

e−π i/3∞
eaz3/3+bz2+czdz = a−1/3Ai(b2/a4/3 − c/a1/3)e2b3/3a2−bc/a . (6.5)

Specialization to our case. In our specific situation, the critical point is zc = −√
c, and

the functions f0, . . . , f3 are

f0(z) = z + (1 +
√

c)2 ln(1 − z) − c ln(z),

f1(z) = 0,

f2(z) = s ln(1 − z),

f3(z) = − ln(z).

(6.6)

The steep descent path used in the analysis is made of pieces of the two following paths,
γρ and γloc (see Fig. 9), given by

γρ = {−ρeiφ, φ ∈ (−π, π ]}, γloc = {−√
c + e−π i/3 sgn(x)|x |, x ∈ [0,

√
c/2]}.

(6.7)

For ρ ∈ (0,
√

c], γρ is steep descent path for f0. In fact, we get

dRe( f0(z = ρeiφ))

dφ
= − ρ sin φ

|1 − z|2 (c − ρ2 + 2
√

c − 2ρ cos φ). (6.8)

The last term is minimal for φ = 0, where it equals

(
√

c − ρ)(ρ +
√

c + 2) ≥ 0, (6.9)

for ρ ∈ (0,
√

c]. γρ is a steep descent path for f0 because the value zero is attained only
for ρ = √

c and, in that case, only at one point, φ = 0. However, close to the critical
point it is not optimal, because the steepest descent path leaves zc at angle ±π/3 (there
are rays where Im(z − zc)

3 = 0). By symmetry, we need to consider only x ≥ 0,

dRe( f0(z = −√
c + e−π i/3x))

dx
= − x2 Q(x)

|z|2|1 − z|2 , (6.10)



Anisotropic Growth of Random Surfaces in 2 + 1 Dimensions 667

Fig. 9. The steep descent path used in the asymptotic analysis is the bold one

with Q(x) = √
c(1 +

√
c) − x(1 + x)/2 − √

cx . Q(0) > 0, and the computation of the
(at most) two zeros of Q(x) shows that none are in the interval [0,

√
c/2]. Thus γloc is

also a steep descent path for f0. Since this is the steepest descent path for f0 around the
critical point, we choose as path Γ0 in In,t (x) the one formed by γloc close to the critical
point, until it intersects γρ=√

3c/4 , and then we follow γ√
3c/4.

The Taylor expansions near the critical point zc = −√
c of the functions fk are given

by

f0(z) = f0(−√
c) + 1

3κ0(z +
√

c)3 + O((z +
√

c)4), κ0 = 1√
c(1 +

√
c)

,

f2(z) = f2(−√
c) + κ2(z +

√
c) + O((z +

√
c)2), κ2 = − s

1 +
√

c
, (6.11)

f3(z) = − ln(−√
c) + O(z +

√
c).

Thus in our case we have

a = κ0 = 1/(
√

c(1 +
√

c)), b = 0, c = −s/(1 +
√

c), e f3(zc) = −1/
√

c.

(6.12)

This, together with the relation

exp(t f0(zc) + t2/3 f1(zc) + t1/3 f2(zc)) = (1 +
√

c)x e−√
ct

(−√
c)n

(6.13)

proves (6.1). ��
Lemma 6.2. Fix � > 0 and consider the scaling of Lemma 6.1. Then

∣∣∣∣t1/3 In,t (x)
(−√

c)n

e−√
ct (1 +

√
c)x

∣∣∣∣ ≤ const e−s, (6.14)

uniformly for s ≥ −�, where const is a constant independent of t .
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Proof of Lemma 6.2. For any finite �̃, the bound for s ∈ [−�, �̃] is a consequence of
Lemma 6.1. The value of �̃ can be chosen large but independent of t . The strategy for
s ≥ �̃ is just a small modification of the computation made in Lemma 6.1, and was
already used for example in Proposition 17 of [16] and in Proposition 5.3 of [13]. Let
us explain it.

In Lemma 6.1 we have seen that γρ is the steep descent path for f0, for any ρ ∈
(0,

√
c]. Set s̃ = (s + � + �̃)t−2/3 ≥ �̃t−2/3 > 0 and f̃0(z) = f0(z) + s̃ ln(1 − z). For any

s̃ ≥ 0, γρ is also a steep descent path for f̃0(z). However, for s̃ > 0 there are two real
critical points for f̃0, say at z±

c with |z+
c | > |z−

c |. For s̃ small, we have at lowest order
in s̃, z±

c � −√
c ∓ √

s̃
√

κ2/κ0, with κ0 and κ2 given in (6.11). To get the best bound
we should pass through z−

c . However, this precision is not needed to get the exponential
bound and we can choose the integration path passing through

− ρ =
{

−√
c + (s̃κ2/κ0)

1/2, if 0 ≤ s̃ ≤ ε,

−√
c + (εκ2/κ0)

1/2, if s̃ ≥ ε.
(6.15)

With this choice, for ε small enough, we have −√
c < −ρ < z−

c and in particular, for
small s̃, −ρ is very close to the position of the critical point. As in Lemma 6.1, we use
the fact that γρ is steep descent to control the contribution away from |z + ρ| ≤ δ, while
the contribution close to z = −ρ is controlled by the Taylor expansion of Re( f̃0(z)),
leading to a Gaussian bound. By choosing �̃ large enough, all the terms coming from
Re( fk(z)), k = 1, 2, 3 are dominated by the leading term of Re( f0(z)). The final result
is that

∣∣∣∣t1/3 In,t (x)
(−√

c)n

e−√
ct (1 +

√
c)x

∣∣∣∣ ≤ const Q(ρ), (6.16)

with

Q(ρ) = exp(Re(t ( f0(−ρ) − f0(zc)) + t2/3( f1(−ρ) − f1(zc)) + t1/3( f2(−ρ) − f2(zc))).

(6.17)

Q(ρ) is decreasing for −ρ from zc to z−
c and −ρ − zc is at most of order

√
ε. Thus,

we can easily bound Q(ρ) by using Taylor expansions. Simple computations lead to the
desired exponential bound. ��

To get the needed bound on qn (see (4.10)–(4.14)) around the edge, we use the bound
of Lemma 6.2 on In,t which has still to be multiplied by Bn,t (x) given in (4.14).

Lemma 6.3. Let n = ct, x = (1 +
√

c)2t + st1/3 and fix � > 0. Then

|qn(x, t)| ≤ const t−1/3e−s, (6.18)

for any s ≥ −�, and const is a t-independent constant.

Proof of Lemma 6.3. This result follows from Lemma 6.2 if

B̃n,t (x) =
∣∣∣Bn,t (x)

e−√
ct (1 +

√
c)x

(−√
c)n

∣∣∣ ≤ const . (6.19)
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For the factorials we use the Stirling formula, namely

n! = √
2πn

(n

e

)n
e fn ,

1

1 + 12n
≤ fn ≤ 1

12n
. (6.20)

We obtain

B̃ct,t ((1 +
√

c)2t) =
(

c

(1 +
√

c)2

)1/4

(1 + O(1/t)). (6.21)

For x = ξ t , ξ ∈ [(1 +
√

c)2,∞), we compute

B̃ct,t (ξ t)

B̃ct,t ((1 +
√

c)2t)
=
(

(1 +
√

c)2

ξ

)1/4

(1 + O(1/t))eth(ξ), (6.22)

with

h(ξ) = 1
2ξ(1 − ln(ξ) + 2 ln(1 +

√
c)) − 1

2 (1 +
√

c)2. (6.23)

Since h′(ξ) = 0 at ξ = (1 +
√

c)2 and h′′(ξ) = −1/(2ξ) < 0, we have eth(x) ≤ 1. ��

6.2. Asymptotics in the bulk. In this section we derive a precise expansion of In,t (x) for
x = λt , with λ ∈ ((1 − √

c)2, (1 +
√

c)2). For any fixed c > 0, set n = ct and x = λt .
Then

In,t (x) = 1

2π i

∮

Γ0

dw

w
etg(w), g(w) = G(w|λ, c, 1), (6.24)

see (3.25) for the definition of G. Recall a few results from Sect. 3. For λ ∈ ((1 −√
c)2,

(1+
√

c)2), g has two complex conjugate critical points,wc and w̄c, withwc = Ω(λ, c, 1).
In particular, |wc| = √

c, |1 − wc| = √
λ, and |g′′(wc)| = 1√

λc

√
4c − (1 + c − λ)2.

When (η, ν, τ ) = (c, λ, 1), we denote by πc the angle πη and by πλ the angle πν . Then

Re(g(wc)) = 1 + c − λ

2
− c

2
ln(c) +

λ

2
ln(λ),

Im(g(wc)) = Im(wc) − λπc − cπλ,

arg(g(wc)) = −π

2
+ πc − πλ.

(6.25)

Lemma 6.4. Set α = α(c, λ) = Im(g(wc)) and β = β(c, λ) = − 1
2 (πc + πλ + π/2).

Then, as t → ∞,

Ict,t (λt) = etRe(g(wc))

√|g′′(wc)|t
[√

2

π |wc|2 cos(tα + β) + O(t−1/2)

]
. (6.26)

For any ε0 > 0, the errors are uniform for λ ∈ [(1 − √
c)2 + ε0, (1 +

√
c)2 − ε0].
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Remark 6.5. In fact, we prove the bound of (6.26) with error term

O(t−1/2) + O
(√|g′′(wc)|te−const |g′′(wc)|δ2t

)
(6.27)

for some 0 < δ � |g′′(wc)|. In Lemma 6.7 we will have to be careful with the second
term of the bound, since g′′(wc) goes to zero at the edge.

Proof of Lemma 6.4. The critical points of g, the points such that g′(w) = 0, are wc
and its complex conjugate w̄c. Close to wc the Taylor expansion of g has a first relevant
term which is quadratic,

g(w) = g(wc) + 1
2 g′′(wc)(w − wc)

2 + O((w − wc)
3). (6.28)

Now we construct the steep descent path used in the asymptotics. By symmetry we
consider only Im(w) ≥ 0, the path for Im(w) ≤ 0 will be the complex conjugate image
of the first one. Let γρ = {w = ρeiφ, φ ∈ [0, π ]}, then

d

dφ
(Re(g(w = ρeiφ))) = ρ sin(φ)

[
λ

|1 − w|2 − 1

]
. (6.29)

This is positive if |1 − w| <
√

λ, and negative otherwise.
Locally, consider the path γloc = {w = wc + θ̂x, x ∈ [−δ, δ]}. Then

g(w) = g(wc) + 1
2 g′′(wc)θ̂

2x2 + O(x3), (6.30)

where we choose

θ̂ = exp

(
iπ

2
− i

2
arg(g′′(wc))

)
= exp

(
3π i

4
+

i(πλ − πc)

2

)
. (6.31)

For −δ < x < 0, the path γloc is closer to 1 than
√

λ, while for 0 < x < δ the path γloc

is farther from 1 than
√

λ. This is the case since our γloc has an angle between π/4 and
3π/4 to the tangent to the circle |1 − w| = √

λ.
So, the steep descent path used is the following: we extend γloc by adding two cir-

cular arcs of type γρ , for adequate ρ, which connect to the real axis; finally we add the
complex conjugate image, see Fig. 10 too.

In this way, we have a steep descent path. Thus,

In,t (x) = etRe(g(wc))O(e−μt ) + 2Re

(
1

2π i

∫

γloc

dw

w
etg(w)

)
(6.32)

with μ ∼ |g′′(wc)|δ2, as soon as |g′′(wc)| > 0, i.e., as soon as the second order term
dominates all higher order terms in the Taylor expansion.

The second term of (6.32) is given by

1

2π i

∫

γloc

dw

w
etg(w) = 1

2π i

∫ δ

−δ

dx
θ̂

wc
etg(wc)e− 1

2 t |g′′(wc)|x2
eO(t x3)O(x)

= 1

2π i

θ̂

wc

∫ δ

−δ

dxetg(wc)e− 1
2 t |g′′(wc)|x2

+ E1, (6.33)
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Fig. 10. Illustration of the steep descent path

where

E1 = 1

2π i

θ̂

wc

∫ δ

−δ

dxetg(wc)e− 1
2 t |g′′(wc)|x2

eO(t x3)O(t x3, x). (6.34)

Here we used |ex − 1| ≤ |x |e|x |. Changing the variable y = x
√

t , we get that

|E1| ≤ const etRe(g(wc))
1

t

∫ δ
√

t

−δ
√

t
dye−|g′′(wc)|y2/2O(y, y3/

√
t)eO(y3/

√
t)

≤ const
etRe(g(wc))

t
√|g′′(wc)|

(6.35)

for δ small enough, i.e., for 0 < δ � |g′′(wc)|. In this small neighborhood, the quadratic
term controls the higher order ones. The final step is to extend the integral on the rest of
the r.h.s. of (6.33) from ±δ to ±∞. This can be made up to an error etRe(g(wc))O(e−μt )

as above.
Resuming we have (counting the contribution from both critical points)

In,t = etRe(g(wc))
[
O(e−μt ) + O(1/(t

√|g′′(wc)|)
]

+2Re

(
1

2π i

θ̂

wc

∫

R

dxetg(wc)e− 1
2 t |g′′(wc)|x2

)
. (6.36)

The error terms are the ones indicated in (6.26), and the Gaussian integral for the last
term gives

2etRe(g(wc))

√
2π t |wc|2 |g′′(wc)|

Re

(
−iθ̂

|wc|
wc

eitIm(g(wc))

)
. (6.37)

We then set β = arg(−iθ̂/wc) = −π/4 − (πc + πλ)/2, so that −iθ̂ |wc|
wc

= eiβ . For λ in

a compact subset of ((1 − √
c)2, (1 +

√
c)2), |g′′(wc)| is uniformly bounded away from

zero and infinity. Thus the lemma is proven. ��
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The bound of Lemma 6.4 can be easily extended until a position away of order O(t2/3)

from the upper edge.

Lemma 6.6. Set α = Im(g(wc)) and β = − 1
2 (πc + πλ + π/2). Then, for

λ ∈ [(1 − √
c)2 + ε0, (1 +

√
c)2 − t−1/3], for any fixed ε0 > 0, we have the uniform

estimate

Ict,t (λt) = etRe(g(wc))

√|g′′(wc)|t
[√

2

π |wc|2 cos(tα + β) + O(t−1/2) + O
(√

te−const t1/3
)]

.

(6.38)

Proof of Lemma 6.6. The analysis of Lemma 6.4 can be made also for this case, with
only minor differences. Indeed, for (1+

√
c)2−λ ∼ t−1/3, we have |g′′(wc)| ∼ t−1/6 and

this time we choose δ going to zero as t → ∞, setting δ = t−1/4. With this choice, (6.32)
and (6.35) are still valid because at the border of integration the quadratic term domi-
nates the cubic one. Indeed, with y = δ

√
t = t1/4, y3/

√
t ∼ t1/4 � t1/3 ∼ |g′′(wc)|y2

holds. Also, the error term coming from steep descent in (6.32) will vanish as t → ∞
but slower than before, with μt ∼ t1/3. ��

The results of Lemma 6.4 and Lemma 6.6 imply the following asymptotics for the
functions qn .

Lemma 6.7. Set α = Im(g(wc)) and β = − 1
2 (πc + πλ + π/2) and fix any ε0 > 0. Then,

uniformly in λ ∈ [(1 − √
c)2 + ε0, (1 +

√
c)2 − t−1/3], we have

qct (λt, t) = 1√
π

t−1/2

4
√

c − (1+c−λ)2

4

[
cos(tα + β) + O(t−1/2)

]
. (6.39)

Proof of Lemma 6.7. We just have to compute the prefactor Bct,t (λt)etRe(g(wc)). We
have (6.25) and applying the Stirling formula for the factorials in Bct,t (λt) we get that

Bct,t (λt)etRe(g(wc)) = (λ/c)1/4(1 + O(1/t)). (6.40)

��
Now we need to fill the gap between the bulk and the edge. In this region we do not

need precise asymptotics, just a bound. Approaching the upper edge, g′′(wc) goes to
zero, but then everything can be controlled by the cubic term, because |g′′′(wc)| �= 0 at
the edges.

Lemma 6.8. For ε0 > 0 fixed but small enough, and � > 0 large enough, we have the
bound

|qct (λt, t)| ≤ const
t−1/2

4
√

c − (1+c−λ)2

4

, (6.41)

uniformly for λ ∈ [(1 +
√

c)2 − ε0, (1 +
√

c)2 − �t−2/3].
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Proof of Lemma 6.8. Consider the ε0-region close to the upper edge with ε0 > 0 small
enough. We can compute explicitly the direction θ̂ , see (6.31). It is a continuous function
of λ and, as λ ↑ (1 +

√
c)2, θ̂ ↑ ei5π/4 (because πλ ↑ π and πc ↓ 0). We need just a

bound, so we choose θ̂ = ei5π/4 and set the local path as

γloc = {w = wc + ei5π/4x, x ∈ [−δ, Im(wc)
√

2]}. (6.42)

The path γloc reaches at x = Im(wc)
√

2 the imaginary axis and this is the reason for the
upper edge of γloc. We have

g(w) = g(wc) + 1
2 g′′(wc)(w − wc)

2 + 1
6 g′′′(wc)(w − wc)

3 + O((w − wc)
4).

(6.43)

In a δ-neighborhood of wc, along the direction θ̂ chosen,

Re( 1
2 g′′(wc)(w − wc)

2) = − 1
2 |g′′(wc)|x2(1 + O(ε0)) (6.44)

and

Re( 1
6 g′′′(wc)(w − wc)

3) = 1
6 |g′′′(wc)|x3/

√
2(1 + O(

√
ε0)). (6.45)

Therefore, for ε0 small enough, the quadratic term helps the convergence. For x ≤ 0,
the cubic term helps the convergence, while for x ∈ [0, Im(wc)

√
2] we will need to

control it by the quadratic term. Thus,

In,t (x) = etRe(g(wc))O(e−μt ) + 2Re

(
1

2π i

∫

γloc

dw

w
etg(w)

)
, (6.46)

with μ � |g′′′(wc)|δ3, where g′′′(wc) → 2/
√

c(1 +
√

c) as λ → (1 +
√

c)2.
Consider then the contribution coming from the integral over γloc. We have

∣∣∣∣
∫

γloc

dw

w
etg(w)

∣∣∣∣ ≤ etRe(g(wc))

|wc|
∫ Im(wc)

√
2

−δ

dx exp
(
− 1

2 t |g′′(wc)|x2
)

× exp
(

1
6 t |g′′′(wc)|x3/

√
2 + O(x4t)

)
(1 + O(x)), (6.47)

the last 1/
√

2 coming from Re(e−iπ/4) = 1/
√

2. A simple verification gives

− 1
2 t |g′′(wc)|x2 + 1

6 t |g′′′(wc)|x3/
√

2 ≤ − 1
4 t |g′′(wc)|x2, 0 ≤ x ≤ Im(wc)

√
2.

(6.48)

So, for x ∈ [0, Im(wc)
√

2], the quadratic term is still dominating higher order terms,
including the cubic one (the quartic term can be bounded by replacing 1

4 by 1
6 in the

above estimate).
On the other hand, for −δ ≤ x ≤ 0, we have that the cubic term is negative and

dominates all higher order terms. More precisely, for δ small enough,
∣∣∣exp

(
1
6 t |g′′′(wc)|x3/

√
2 + O(x4t)

)∣∣∣ ≤ exp
(

1
12 t |g′′′(wc)|x3

)
≤ 1, (6.49)

in the region x ∈ [−δ, 0].
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Using (6.48) for positive x and (6.49) for negative x , we get

(6.47) ≤ const etRe(g(wc))

∫ Im(wc)
√

2

−δ

dx exp
(
− 1

6 t |g′′(wc)|x2
)

≤ const etRe(g(wc))
1√|g′′(wc)|t

. (6.50)

Replacing the value of |g′′(wc)| into this expression ends the proof. ��

6.3. Asymptotics of the kernel. In this section we obtain the precise asymptotics of the
extended kernel in the bulk first and a bound to control the behavior starting from the
upper edge. Here we use several notations introduced in Sect. 3.

As usual, it is convenient to conjugate the kernel before taking the limit. For the upper
edge (cf. Lemma 6.2) set

Wi,u = exp
(
−√

ni ti + xi ln(1 +
√

ni/ti ) − ni ln(−√ni/ti ) − ti
)

, (6.51)

and, in the bulk (see Lemma 6.4) set

Wi,b = exp
( 1

2 (ti + ni − xi ) − 1
2 ni ln(ni/ti ) + 1

2 xi ln(xi/ti ) − ti
)
. (6.52)

Then, define the conjugation as

Wi =
{

Wi,b, for (
√

ti − √
ni )

2 ≤ xi ≤ (
√

ti +
√

ni )
2,

Wi,u, for xi ≥ (
√

ti +
√

ni )
2.

(6.53)

Remark that Wi is continuous. Moreover, |Wi,u − Wi,b| = O(L−1/3) for
|xi − (

√
ti +

√
ni )

2| = O(L−1/3). Therefore in such a neighborhood it is actually irrel-
evant which formula to use.

Proposition 6.9. Let us consider two triples (x1, n1, t1) and (x2, n2, t2) parameterized
by

xi = [νi L], ni = [ηi L], ti = τi L . (6.54)

Assume that they are in the bulk of the system, namely, that ε0 > 0 exists such that

(
√

τi − √
ηi )

2 + ε0 ≤ νi ≤ (
√

τi +
√

ηi )
2 − L−1/3. (6.55)

Denote zc = Ω(ν1, η1, τ1), wc = Ω(ν2, η2, τ2), and assume that these points are not
too close: |zc − wc| ≥ L−1/16. Then, the asymptotic expansion

(W1/W2)K (x1, n1, t1; x2, n2, t2) = 1

2π L
√|G ′′(wc)| |G ′′(zc)||1 − zc|

×
[

1

wc − zc

eiLIm(G(wc))+iβ2

eiLIm(G(zc))+iβ1
+

1

wc − z̄c

eiLIm(G(wc))+iβ2

e−iLIm(G(zc))−iβ1

+
1

w̄c − zc

e−iLIm(G(wc))−iβ2

eiLIm(G(zc))+iβ1
+

1

w̄c − z̄c

e−iLIm(G(wc))−iβ2

e−iLIm(G(zc))−iβ1
+ O(L−1/8)

]
(6.56)

holds, with the error uniform in L for L ≥ L0 � 1. The phases β1 and β2 are given by

β1 = −5π

4
− πν1

2
− πη1

2
, β2 = 3π

4
+

πν2

2
− πη2

2
. (6.57)
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Fig. 11. Illustration of the steep descent paths

Proof of Proposition 6.9. The analysis relies on the double integral representation (4.2)
of the kernel. The analysis for the cases (n1, t1) �≺ (n2, t2) and (n1, t1) ≺ (n2, t2) are
very similar. Let us explain the first case, corresponding to η1 > η2, or τ1 < τ2,
or (η1, τ1) = (η2, τ2). The asymptotics employs several ingredients already used in
Lemma 6.4 and Lemma 6.6. Thus, we introduce the notations

ci = ηi/τi ⇒ ni = [ci ti ], λi = νi/τi ⇒ xi = [λi ti ]. (6.58)

The conjugation factor et1−t2 in the kernel representation (4.2) will not appear in the
following computations, since it appears automatically in the factors W1/W2. Thus, we
have to analyze

1

(2π i)2

∮

Γ0

dw

∮

Γ1

dzet2g2(w)−t1g1(z) 1

(1 − z)(w − z)
(6.59)

with gi (w) = w + λi ln(1 − w) − ci ln(w) ≡ G(w|λi , ci , 1), i = 1, 2.
The critical points of g2(w) and g1(z) are given by

wc = Ω(λ2, c2, 1) = Ω(ν2, η2, τ2), zc = Ω(λ1, c1, 1) = Ω(ν1, η1, τ1). (6.60)

The integrals over w are, up to the factor w/(z − w), as in Lemma 6.4. Therefore,
the steep descent path Γ0 is chosen as in Lemma 6.4 and the steep descent path Γ1 is
chosen in a similar way. We illustrate these paths if the critical point is ζc, see Fig. 11.
In particular, |wc| = √

η2/τ2 and |zc| = √
η1/τ2. In our case, we have |wc| ≤ |zc|

and |wc − zc| ≥ L−1/16. The steep descent paths described above actually intersect.
Therefore, we have to correct (6.59) by subtracting the residue at z = w, as indicated in
Fig. 12. We call the “main term” the contribution of the integral with Γ0 and Γ1 crossing,
while we call the “residual term” the contribution of the residue.

Notice that the integral with the paths Γ0 and Γ1 crossing is integrable in the usual
sense, because the divergence term 1/(w− z) is integrable. The contribution of the main
term is the following.

Both integrals can be divided as the part in H and its complex conjugate. Therefore,
in the final expression we get the sum of four terms. Now, we restrict our attention to
the integral over the path Γ0 and Γ1 on H. The analysis of the integral over Γ0 is the
same as in Lemma 6.4 except for the missing 1/wc factor and that instead of 2Re(· · · )
we just have (· · · ) in (6.36). The integral over Γ1 is similar.
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(a) (b)

Fig. 12. The subdivision of the integration (6.59). We have |zc| ≥ |wc| and when |zc| = |wc|, they are not at
the same position

This time we choose the cutoff for the evaluation of the term with the steep descent
path equal to δ = L−1/4. There are two reasons. The first one is that we want to get
the expansion valid also for νi up to L−1/3 away from the upper edge, compare with
Lemma 6.6. The second reason is that we have the extra factor 1/(w − z). The contri-
butions of the steep descent path do not create problems, since the factor is integrable in
the usual sense (just need a bound). However, with our choice of δ, in the contribution
of the δ-neighborhoods of zc and wc we have

1/(w − z) = 1/(wc − zc) + O(δ/|wc − zc|2) = 1/(wc − zc) + O(L−1/8), (6.61)

with δ = L−1/4 and |wc − zc| ≥ L−1/16. In the end, the contribution of the main term
is given by

1

wc − zc

et2Re(g2(wc))

√
2π t2|g′′

2 (wc)|

[
et2Im(g2(wc))θ̂2(wc) + O

(
L−1/2

) ]

× e−t1Re(g1(zc))

√
2π t1|g′′

1 (zc)|
eiπc1

|1 − zc|
[

e−t1Im(g1(zc))θ̂1(zc) + O
(

L−1/2
) ]

+
et2Re(g2(wc))

√
2π t2|g′′

2 (wc)|
e−t1Re(g1(zc))

√
2π t1|g′′

1 (zc)|
1

|1 − zc|O(L−1/8). (6.62)

The term eiπc1 is the phase of 1/(1 − zc), while θ̂i are the directions of the steepest
descent paths at the critical points. Explicitly,

θ̂1(zc) = exp(i(π − 1
2 arg(g′′(zc)))) = exp(i3π/4 + i(πλ1 − πc1)/2),

θ̂2(wc) = exp(i(π
2 − 1

2 arg(g′′(wc)))) = exp(i5π/4 + i(πλ2 − πc2)/2).
(6.63)

Putting together the four terms (two times two critical points) we get the complete
contribution of the main term as

et2Re(g2(wc))−t1Re(g1(zc))

2π

√
t1t2|1 − zc|2|g′′

2 (wc)||g′′
1 (zc)|

[
O(L−1/8)

+
1

wc − zc

eit2Im(g2(wc))+iβ2

eit1Im(g1(zc))+iβ1
+

1

wc − z̄c

eit2Im(g2(wc))+iβ2

e−it1Im(g1(zc))−iβ1

+
1

w̄c − zc

e−it2Im(g2(wc))−iβ2

eit1Im(g1(zc))+iβ1
+

1

w̄c − z̄c

e−it2Im(g2(wc))−iβ2

e−it1Im(g1(zc))−iβ1

]
, (6.64)
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with β1 = − arg(θ̂1(zc)) − πc1 and β2 = arg(θ̂2(wc)). Finally, we replace
gi (w)ti = G(w|νi , ηi , τi )L , πλi = πνi , πci = πνi , and

et2Re(g2(wc))−t1Re(g1(zc))et1−t2 = W2/W1 (6.65)

to get (6.56).
The final step is to estimate the contribution of the residual term (the last case of

Fig. 12). It is given by

1

2π i

∫ ζ̄

ζ

dz
e(τ2−τ1)Lze(η1−η2)L ln(z)

(1 − z)(ν1−ν2)L+1
, (6.66)

where ζ and ζ̄ are the two intersection points of the steep descent path Γ0 and Γ1. Since
τ2 − τ1 ≥ 0, η1 − η2 ≥ 0, and |1 − z| = const along the piece of Γ1 inside Γ0, we have
Re(z) ≤ Re(ζ ) and Re(ln(z)) ≤ Re(ln(ζ )). Therefore,

|(6.66)| ≤ et2Re(g2(ζ ))−t1Re(g1(ζ )) ≤ et2Re(g2(wc))−t1Re(g1(zc))O(e−μ1t1 e−μ2t2), (6.67)

for some positive μ1, μ2 and at least one larger than L−1/8. This follows from the fact
that either one (or both) critical points are away of order L−1/16 from ζ , and ζ lies on
the steep descent paths of g2(w) and −g1(z), with local quadratic behavior. ��

While doing time integration we will also need the following corollary.

Corollary 6.10. Consider the same setting of Proposition 6.9. Then

(a) the formula for K (x1, n1, t1; x2 + 1, n2, t2) is the same as (6.56) but with an extra
factor (1 − wc), resp. (1 − w̄c), to the terms with eiβ2 , resp. e−iβ2 .

(b) the formula for K (x1, n1 − 1, t1; x2, n2, t2) is the same as (6.56) but with an extra
factor z−1

c , resp. (z̄c)
−1, to the terms with e−iβ1 , resp. eiβ1 .

Proof of Corollary 6.10. The proof is almost identical to the one of Proposition 6.9. The
only difference is that in (6.59) we have for (a) an extra term (1−w) and for (b) an extra
1/z. ��

At this point we have all the needed estimates in the bulk. However, since our system
develops facets, we need to have control at the upper edge. We will just need some bounds
and, since the integrals are the same as in Sect. 6.1, apart from the factor 1/(wc − zc),
which we will assume bounded away from zero.

Proposition 6.11. Consider the setting of Proposition 6.9, but with one or both of the νi
close to the upper edge,

(
√

τi +
√

ηi )
2 − L−1/3 ≤ νi ≤ (

√
τi +

√
ηi )

2 − �L−2/3. (6.68)

Moreover, assume that |zc −wc| is bounded away from zero uniformly in L. Then, there
exists � large enough, such that

(W1/W2)|K (x1, n1, t1; x2, n2, t2)| ≤ const

L
∏2

i=1
4
√

ηiτi − 1
4 (τi + ηi − νi )2

(6.69)

uniformly in L for L ≥ L0 � 1.
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Proof of Proposition 6.11. The proof follows the same argument as Lemma 6.8 for the
variables which are close to the edge. For the one which is away from the edges, it is a
consequence of the analysis of Proposition 6.9. ��

When one or both positions are at the edge, we need a different bound.

Proposition 6.12. Consider the setting of Proposition 6.9, but now with ν2 at the edge
or in the facet, i.e.,

ν2 ≥ (
√

τ2 +
√

η2)
2 − �L−2/3 (6.70)

for any fixed �. Assume |zc +
√

η2/τ2| is bounded away from zero uniformly in L. Then,

(W1/W2)|K (x1, n1, t1; x2, n2, t2)| ≤ const
√

L 4
√

η1τ1 − 1
4 (τ1 + η1 − ν1)2

× 1

L1/3 exp

(
− x2 − (

√
τ2 +

√
η2)

2L

(τ2L)1/3

)
,

(6.71)

uniformly in L for L ≥ L0 � 1.

Proof of Proposition 6.12. The proof is obtained along the same lines as Lemmas 6.1
and 6.2. With respect to those cases, the integral has however an extra factor 1/(w − z).
Since we need just a bound, it can simply be replaced by 1/(wc − zc) as follows. In
Lemma 6.1 wc is replaced by −√

η2/τ2, while in Lemma 6.2, we need to replace wc by
ρ as given in (6.15). Notice that in the last case we can take |wc +

√
η2/τ2| as small as

desired. The assumption |zc +
√

η2/τ2| > 0 uniformly in L ensures then that 1/(wc − zc)

remains bounded as L → ∞. ��
The last case to consider is when both ν1 and ν2 are at the upper edge.

Proposition 6.13. Consider the setting of Proposition 6.9, but now with ν1 and ν2 at the
edge or in the facet, i.e., with

νi ≥ (
√

τi +
√

ηi )
2 − �L−2/3, i = 1, 2, (6.72)

for any fixed �. Assume that |√η2/τ2 − √
η1/τ1| is bounded away from zero uniformly

in L. Then,

(W1/W2)|K (x1, n1, t1; x2, n2, t2)| ≤ const

× 1

L2/3 exp

(
− x2 − (

√
τ2 +

√
η2)

2L

(τ2 L)1/3

)
exp

(
− x1 − (

√
τ1 +

√
η1)

2L

(τ1L)1/3

)
, (6.73)

uniformly in L for L ≥ L0 � 1.

Proof of Proposition 6.13. The proof is like Proposition 6.12. We will have |wc +
√

η2/τ2|
and |zc +

√
η1/τ1| as small as desired. The assumption |√η2/τ2 − √

η1/τ1| > 0 uni-
formly in L allows us to easily bound uniformly in L the term 1/(wc − zc). ��
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A. Determinantal Structure of the Correlation Functions

Let X1, . . . ,XN be finite sets and c(1), . . . , c(N ) be arbitrary nonnegative integers.
Consider the set

X = (X1 � · · · � X1) � · · · � (XN � · · · � XN ) (A.1)

with c(n) + 1 copies of each Xn . We want to consider a particular form of weight W (X)

for any subset X ⊂ X, which turns out to have determinantal correlations.
To define the weight we need a bit of notations. Let

φn( · , · ) : Xn−1 × Xn → C, n = 2, . . . , N ,

φn(virt, · ) : Xn → C, n = 1, . . . , N ,

Ψ N
j ( · ) : XN → C, j = 0, . . . , N − 1,

(A.2)

be arbitrary functions on the corresponding sets. Here the symbol virt stands for a
“virtual” variable, which is convenient to introduce for notational purposes. In applica-
tions virt can sometimes be replaced by +∞ or −∞. The φn represents the transitions
from Xn−1 to Xn .

Also, let

t N
0 ≤ · · · ≤ t N

c(N ) = t N−1
0 ≤ · · · ≤ t N−1

c(N−1) = t N−2
0 ≤ · · · ≤ t2

c(2) = t1
0 ≤ · · · ≤ t1

c(1)

(A.3)

be real numbers. In applications, these numbers refer to time moments. Finally, let

Ttn
a ,tn

a−1
( · , · ) : Xn × Xn → C, n = 1, . . . , N , a = 1, . . . , c(n), (A.4)

be arbitrary functions. The Ttn
a ,tn

a−1
represents the transition between two copies of Xn

associated to “times” tn
a−1 and tn

a .
Then, to any subset X ⊂ X assign its weight W (X) as follows. W (X) is zero unless

X has exactly n points in each copy of Xn , n = 1, . . . , N . In the latter case, denote the
points of X in the mth copy of Xn by xn

k (tn
m), k = 1, . . . , n, m = 0, . . . , c(n). Thus,

X = {xn
k (tn

m) | k = 1, . . . , n; m = 0, . . . , c(n); n = 1, . . . , N }. (A.5)

Set

W (X) =
N∏

n=1

[
det
[
φn(xn−1

k (tn−1
0 ), xn

l (tn
c(n)))

]
1≤k,l≤n

×
c(n)∏
a=1

det
[
Ttn

a ,tn
a−1

(xn
k (tn

a ), xn
l (tn

a−1))
]

1≤k,l≤n

]
det
[
Ψ N

N−l(x N
k (t N

0 ))
]

1≤k,l≤N ,

(A.6)

where xn−1
n ( · ) = virt for all n = 1, . . . , N .

In what follows we assume that the partition function of our weights does not vanish:

Z :=
∑
X⊂X

W (X) �= 0. (A.7)
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Under this assumption, the normalized weights W̃ (X) = W (X)/Z define a (generally
speaking, complex valued) measure on 2X of total mass 1. One can say that we have a
(complex valued) random point process on X, and its correlation functions are defined
accordingly, see e.g. [26]. We are interested in computing these correlation functions.

Let us introduce the compact notation for the convolution of several transitions. For
any n = 1, . . . , N and two time moments tn

a > tn
b we define

Ttn
a ,tn

b
= Ttn

a ,tn
a−1

∗ Ttn
a−1,t

n
a−2

∗ · · · ∗ Ttn
b+1,t

n
b
, T n = Ttn

c(n)
,tn

0
, (A.8)

where we use the notation ( f ∗ g)(x, y) := ∑z f (x, z)g(z, y). For any time moments
tn1
a1 ≥ tn2

a2 with (a1, n1) �= (a2, n2), we denote the convolution over all the transitions

between them by φ(t
n1
a1 ,t

n2
a2 ):

φ(t
n1
a1 ,t

n2
a2 ) = Tt

n1
a1 ,t

n1
0

∗ φn1+1 ∗ T n1+1 ∗ · · · ∗ φn2 ∗ Tt
n2
c(n2)

,t
n2
a2

. (A.9)

If there are no such transitions, i.e., if tn1
a1 < tn2

a2 or (a1, n1) = (a2, n2), we set

φ(t
n1
a1 ,t

n2
a2 ) = 0.

Furthermore, define the matrix M = ‖Mk,l‖N
k,l=1 by

Mk,l = (φk ∗ T k ∗ · · · ∗ φN ∗ T N ∗ Ψ N
N−l

)
(virt) (A.10)

and the vector

Ψ
n,tn

a
n−l = φ(tn

a ,t N
0 ) ∗ Ψ N

N−l , l = 1, . . . , N . (A.11)

The following statement describing the correlation kernel is a part of Theorem 4.2 of [13].

Theorem 6.14. Assume that the matrix M is invertible. Then Z = det M �= 0, and the
(complex valued) random point process on X defined by the weights W̃ (X) is determi-
nantal. Its correlation kernel can be written in the form

K (tn1
a1

, x1; tn2
a2

, x2) = −φ(t
n1
a1 ,t

n2
a2 )(x1, x2)

+
N∑

k=1

n2∑
l=1

Ψ
n1,t

n1
a1

n1−k (x1)[M−1]k,l(φl ∗ φ
(tl

c(l),t
n2
a2 )

)(virt, x2).

(A.12)

The proof of Theorem 6.14 given in [13] is based on the algebraic formalism of [26].
Another proof can be found in Sect. 4.4 of [44]. Although we stated Theorem 6.14 for the
case when all sets Xn are finite, one easily extends it to a more general setting. Indeed,
the determinantal formula for the correlation functions is an algebraic identity, and the
limit transition to the case when Xn’s are allowed to be countably infinite is immedi-
ate, under the assumption that all the sums needed to define the ∗-operations above are
absolutely convergent. Another easy extension (which we do not need in this paper) is
the case when the spaces X j become continuous, and the sums have to be replaced by
the corresponding integrals over these spaces.

B. Further Developments

Here is an overview of the developments related to this paper since the appearance of
the preprint version.
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Growth models and random matrices. This paper provided the first example of a com-
pletely analyzed two-dimensional growth model in the so-called Kardar-Parisi-Zhang
(KPZ) universality class in both the mathematical and physical literature. While some
results were anticipated by physicists (logarithmic fluctuations of the height function at
a fixed space location), others were not (Gaussian Free Field fluctuations with respect to
a hidden conformal structure on the limiting surface). Results were reported in a physics
publication [12].

This paper also delivered an overarching probabilistic structure for a number of results
in (1+1)-dimensional surface growth [13,15–18] that provided a conceptual probabilis-
tic explanation for the appearance of random matrix statistics in the large time limit. The
growing interface and the random matrix evolution were realized as two marginals of
the (2+1)-dimensional object. This was the starting point of two further works relating
minor processes of (perturbed) GUE random matrices, interacting particle systems and
diffusion processes [40,41].

Combinatorics and exact sampling. The sole previously known member of the men-
tioned class of growth processes was the celebrated domino shuffling algorithm (1992)
that gives rise to uniformly distributed domino tilings of the Aztec diamond. The gen-
eral construction of this paper was used in [19] to construct lozenge shuffling – a long
sought analog of the domino shuffling on the hexagonal lattice. This lead to an efficient
exact sampling algorithm for uniformly distributed lozenge tilings of hexagons (a.k.a.
boxed plane partitions). This was further extended to more generally weighted plane
partitions related to classical hypergeometric polynomials from the Askey scheme [21]
and bi-orthogonal elliptic special functions [6,21].

Another development of these ideas lead to a general construction of Markov chains
preserving the class of the Schur processes, in particular, to an exact sampling algorithm
for plane partitions with arbitrary back wall and for random Gelfand-Tsetlin patters
related to irreducible characters of the infinite-dimensional unitary group [8].

Two-dimensional Gaussian Free Field (GFF). The 2d GFF may be viewed as a two-
dimensional analog of the classical 1d Brownian Motion. This paper developed a new
approach of proving the convergence to GFF. It applies to domains with facets, and
one such domain was analyzed with complete details. Later the approach was success-
fully extended to growth models with reflecting wall in [57], to growth models with
non-smooth limit shapes [36], to random surfaces described by Pfaffian (rather than
determinantal) point processes [75], and to random surfaces arising from lozenge ti-
lings of certain polygons drawn on the hexagonal lattice [64,65]. The simplest result
of the latter work covers lozenge tiling of the hexagon, thus proving a basic conjecture
advertised a few years years ago by Kenyon [51].

Representation theory and infinite-dimensional Markov processes. One property of the
construction of Markov dynamics presented in this paper is the fact that it preserves a
certain class of Gibbs distributions. In a special case described in the paper, these Gibbs
distributions are in one-to-one correspondence with characters (finite central traces) on
the infinite-dimensional unitary group. One thus obtains a dynamics on the space of
such characters. This dynamics may be deterministic or stochastic, and in the latter case
one obtains a Markov process with an infinite-dimensional state space. In [24] and [20]
properties of such Markov processes were investigated in detail. These processes remain
the only proven examples of Feller processes that preserve infinite-particle random point
processes similar to those that arise in random matrix theory.
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Other root systems. From the viewpoint of representations of simple Lie groups, this
paper dealt with the case of root systems of type A (unitary groups). The construc-
tions have been partially extended to the cases of orthogonal and symplectic groups
in [23,32,33,56].

Random polymers in random media. In a very recent development, the abstract formal-
ism of the discussed paper was carried over to a new ground of the so-called Macdonald
processes and applied to difference operators arising from the (multivariate) Macdon-
ald polynomials [10]. This lead to a conceptual new understanding of the asymptotic
behavior of (1+1)-dimensional random polymers in random media and finding explicit
solutions of the (nonlinear stochastic partial differential) KPZ equation [10,11]. The
development of the construction from this paper provided an alternative, analytically
more powerful approach to earlier results of [1,29,60,71].
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