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Abstract Surrogate assisted global optimization is gaining
popularity. Similarly, modern advances in computing power
increasingly rely on parallelization rather than faster proces-
sors. This paper examines some of the methods used to take
advantage of parallelization in surrogate based global optimi-
zation. A key issue focused on in this review is how different
algorithms balance exploration and exploitation. Most of the
papers surveyed are adaptive samplers that employ Gaussian
Process or Kriging surrogates. These allow sophisticated ap-
proaches for balancing exploration and exploitation and even
allow to develop algorithms with calculable rate of conver-
gence as function of the number of parallel processors. In
addition to optimization based on adaptive sampling, surro-
gate assisted parallel evolutionary algorithms are also sur-
veyed. Beyond a review of the present state of the art, the
paper also argues that methods that provide easy
parallelization, like multiple parallel runs, or methods that rely
on population of designs for diversity deserve more attention.

Keywords Surrogates . Parallel computing . Global
optimization

1 Introduction

Optimization based on computer simulations of complex sys-
tems is commonly carried out for the design of engineering
systems such as automotive or aerospace vehicles or their
components. This paper considers methods for global optimi-
zation when simulations are expensive in terms of elapsed
time and/or computational cost, so that only limited number
of simulations are possible. The throughput of computers is
continually increasing, but as Venkataraman and Haftka
(2004) observed, much of this progress does not lead to sub-
stantial reductions in the time or cost of simulations. Instead,
the increased computer throughput is used to improve the
fidelity of models and simulations.

Considered here are situations where the time required for
completing a single simulation is often 1 day or more, so that
even a 1,000 simulations may take too long to execute unless
some parallelization is built into the optimization algorithm.
Therefore, in this paper we survey only methods that use par-
allel sampling algorithms. A general distinction between
coarse or fine grained parallelization is made based on the
computation/communication ratio. As explained by
Alba and Troya (1999), if this ratio is high the algorithm is
coarse grained, and fine grained if low. Thus, for finer granu-
larity the potential for parallelism is high, but there is more
communication, for example, between the multiple threads
performing the simulation. This paper limits itself to coarse
grained parallelization in the context of the optimization algo-
rithm. That is, we do not consider parallelization of the simu-
lation itself.

* Raphael T. Haftka
haftka@ufl.edu

Diane Villanueva
dvillanu@gmail.com

Anirban Chaudhuri
anirban.chaudhuri01@gmail.com

1 Department of Mechanical and Aerospace Engineering, University
of Florida, Gainesville, FL 32611, USA

2 Present address: Universal Technology Corporation,
Dayton, OH 45432, USA

3 Department of Aeronautics and Astronautics, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA

Struct Multidisc Optim (2016) 54:3–13
DOI 10.1007/s00158-016-1432-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-016-1432-3&domain=pdf


The two most obvious techniques of coarse grain
parallelization are multiple parallel optimizations and optimi-
zation based on population of designs. Multiple parallel opti-
mizations can proceed by dividing the design space into sub-
regions and optimizing in each of these, though some articles
do not explicitly parallelize analysis of the expensive functions
for each sub-region (Wang et al. (2001), Zhao and Xue (2011),
Villanueva et al. (2013). Alternatively, multiple parallel optimi-
zations may be carried out in the entire design space. This was
suggested by Le Riche and Haftka (1993) for genetic algo-
rithms and by Schutte et al. (2007) for particle swarm optimi-
zation. The latter demonstrated that multiple short runs increase
the probability of reaching the global optimum, and in addition
provide a better estimate of this probability than a single run.

The algorithms most associated with the use of popula-
tions of designs are nature-inspired algorithms (e.g., genet-
ic algorithms, evolutionary algorithms, particle swarm op-
timization) that are popular for global optimization. For an
extensive review of nature-inspired global optimization al-
gorithms the reader is referred to Yang (2010). This paper
is mostly limited to genetic and evolutionary algorithms
and their variations. These algorithms naturally lend to
parallelization due to the evaluation of the fitness function
for the large numbers of individuals in a population over
many generations. Additionally, as explained by Alba and
Troya (1999), genetic algorithms are naturally parallelized
since the operations on candidate solutions are relatively
independent from each other, and the population can be
divided into sub-regions (Gorges-Schleuter 1989, Pettey
et al. 1987, Spiessens and Manderick 1991) to localize
competitive selection between subsets of candidate
solutions.

While parallelization is used to reduce the optimization
time, surrogates are often used to increase the power of the
optimization, so that the same number of simulations could be
used to get closer to the global optimum or to solve more
difficult optimization problems. Surrogates (a.k.a
metamodels) are simple algebraic models fit to objective func-
tions and to constraints based on their values and possibly
their derivatives at one or more points. This paper seeks to
survey global optimization methods that combine the use of
parallelization and surrogates. Furthermore, we will focus on
methods that progressively refine the surrogate. Methods that
first execute all the simulations, fit a surrogate, optimize, and
quit are only briefly considered.

There are several other devices that are used for global
optimization with expensive simulations, which are not sur-
veyed here. These include the combined use of low fidelity
and higher fidelity simulations, and methods that seek to re-
duce the dimensionality of the design space. These devices do
not impact much the issue of the potential of the algorithm to
combine surrogates with parallelization, and so they are not
discussed in this paper.

The objective of the present paper is to survey the potential
of various algorithms for parallelization. This area is not ma-
ture yet, so we do not dare to draw conclusions into the
relative efficiency of the different approaches. Instead, as we
believe that the topic is gaining importance, we seek to point
out areas where further research has the potential of additional
improvements in taking advantage of parallelization. Studies
comparing efficiencies are beginning to take place (e.g.,
Müller and Shoemaker 2014) and we hope that this paper will
further facilitate such comparisons.

The remainder of this paper proceeds with a review of one
of the most important features of a global optimization algo-
rithm – the ability to provide both exploration and exploitation
points to find the global optimum. The following section pro-
vides an overview of how this is achieved in surrogate-based
algorithms and nature-inspired algorithms. The methods of
providing exploration and exploitation points are important
as these are methods that drive the ability to parallelize the
algorithm. Sections 3 and 4 then describe how researchers
have parallelized the algorithms for adaptive sampling algo-
rithms and evolutionary algorithms, respectively. Section 5
concludes this paper with a discussion on guidelines for
choosing a method of parallel surrogate based optimization
and possible research directions.

2 Exploitation and exploration in global optimization
algorithms

Global optimization algorithms typically combine exploita-
tion and exploration. Exploitation involves zooming on re-
gions where previous simulations are close to the current best
(feasible or near feasible) objective function value, often
called present best solution (PBS). Exploration involves
adding points to sparsely sampled areas of the design space,
or regions of high uncertainty when considering the prediction
uncertainty. This section will detail some features of global
optimization algorithms that are intended to promote explora-
tion and exploitation. We will first address algorithms that use
surrogate predictions, and then cover some of the basic
exploration/exploitation mechanisms of nature-inspired algo-
rithms. In general, most algorithms considered here are used
for unconstrained problems, but the extension to constrained
problems is also discussed.

First, we note that when it comes to global optimization
algorithms that are deterministic, Jones may have had the most
profound influence on the field. His first global optimization
algorithm DIRECT (for “divided rectangles”, Jones et al.
1993) divides the design space into boxes and subdivides
boxes based on a Pareto optimal curve of the contribution to
exploration and exploitation. That is, every box is scored on
the value of the objective function (its exploitation score) and
its size (its exploration score), and all the boxes that are on the
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Pareto front of these scores are divided. The algorithm is thus
inherently parallelizable (e.g. Watson and Baker 2001), but
the number of Pareto optimal boxes at each iteration varies
and is unpredictable. This means that its parallelization payoff
is more limited. Because it is deterministic, it does not imme-
diately lend itself to multiple short runs. However, this may be
accomplished, for example, by small variation in the design
box defining the boundary of the design space. To the best of
our knowledge, though, this has not been explored.

2.1 Surrogate-based algorithms

2.1.1 Uncertainty-based criteria

While Jones’s DIRECT algorithm does not take advantage of
patterns in objective function behavior that may be revealed by
surrogate fitting, his next algorithm, EGO (for efficient global
optimization, Jones et al. 1998) corrected this deficiency by
using a Kriging surrogate to fit the data and direct the compro-
mise between exploration and exploitation. Kriging does not
only provide an estimate of the objective function everywhere,
but also a normal distribution around that value that characterizes
the uncertainty. The commonly used version of EGO employs
the uncertainty by selecting as the next simulation the point that
maximizes the expected improvement (EI) over the present best
solution (an idea introduced earlier by Mockus et al. 1978). The
exploration part of the algorithm is enhanced by the fact that EI is
actually a conditioned expected improvement, conditioned on
improvement actually taking place. This condition favors points
with large uncertainty to balance the advantage of points with
low values of the surrogate (exploitation points). However, EGO
is not easily parallelizable, and so requires ingenious methods to
parallelize, as will be described below. Figure 1 shows a one-
dimensional example of a Kriging surrogate with uncertainty
estimates and the EI over the design space. For the example,
shown the maximum EI is where the uncertainty is large and
away from the data points, thus providing an exploration point.

Another version of EGO suggested by Jones (2001) is to
maximize the probability of improvement beyond a given
target (initially introduced by Kushner 1964). Ambitious tar-
gets promote exploration and modest ones promote
exploitation. This version of EGO has not been popular
because of the difficulty of choosing a target, but in a
parallel environment this difficulty may be mitigated by the
use of multiple targets as discussed later in the paper. In fact,
since it is more readily parallelizable, it may be the preferred
version in a parallel environment.

Booker et al. (1999) sought out a balanced search strategy,
with trial points added because of low surrogate predictions,
and other points added where the mean square error of the
surrogate was large. In this strategy, the trial site with the
largest prediction variance was added to the data set, the

prediction variance was subsequently set to zero at this
point, and the next trial point was examined.

Krause and Ong (2011) analyzed another way of combin-
ing the surrogate prediction with its uncertainty estimate,
which is to maximize the surrogate prediction minus a multi-
ple of the prediction variance. This method was first men-
tioned by Jones (2001). Here again it is not clear what multiple
would serve as the best compromise between exploration and
exploitation. However, again, this difficulty may be mitigated
by the use of multiple values in parallel.

Another approach is to use surrogate prediction and its
prediction variance to maximize the expected posterior infor-
mation gain about the global maximizer. This has led to the
development of entropy (Villemonteix et al. 2009, Hennig and
Schuler 2012) and predictive entropy (Hernández-Lobato
2014) based search strategies.

If we consider exploration and exploitation as two objectives
of the optimization, it may be appropriate to treat the generation
of compromise samples as a bi-objective optimization problem.
Bischl et al. (2014) proposed this approach in their MOI-MBO
(multiobjective infill model based optimization) algorithm. This
leads to a natural way to parallelize, which is discussed later.

2.1.2 Distance-based and other criteria

EGO requires an uncertainty structure for the surrogate, so it
has been mostly applied with Kriging. However, there are
methods that fit a surrogate and balance exploitation and
exploration without requiring an uncertainty structure.
Gutmann (2001) suggested selecting a target value for the glob-
al optimum and placing the next simulation at the position that
will cause the least “bumpiness” in the surrogate, as illustrated
in Fig. 2. Gutmann suggested cycling through different targets
for the optimum. Targets that are close to the PBS will favor
exploitation, while very low targets will favor exploration.

Regis and Shoemaker (2005) proposed another method
that balances exploration and exploitation in radial-basis sur-
rogate based optimization using a more intuitive measure of
exploration—distance from existing points. They titled their
method CORS-RBF. They optimize the surrogate under the
condition that the optimum is at a given minimum distance
from any of the previous simulation points. Like Gutmann,
they cycle through a set of minimum distances, with small
values corresponding to exploitation and large values
corresponding to exploration.

Note that all of these methods require global optimization of
an inexpensive function such as EI. These functions have large
number of local optima, and it is not clear whether the conver-
gence of the overall global optimization is sensitive to the tight-
ness of the convergence of the inner global optimization.

Regis and Shoemaker (2007b) mitigated some of the re-
quirements for inner optimization with their Stochastic
Response Surface (SRS) algorithm. This algorithm generates

Parallel surrogate-assisted global optimization 5



a set of random candidate evaluation points, and one is
selected based on a compromise between distance from
existing points and the value of the function as predicted by
the surrogate. The compromise is governed by weighting the
two objectives with weights that cycle from emphasis on the
objective to emphasis on the distance.

Hu et al. (2008, 2009) developed a sampling scheme called
boundary and best neighbor searching (BBNS) that does not
use an uncertainty model. Instead it balances exploration and
exploitation by on the one hand looking for neighbors of the
best few current samples and on the other hand looking to
move towards the boundary of the design space.

Wang et al. (2004) developed the mode-pursuing sampling
approach (MPS), which generates a probability function that
samples points preferentially where the surrogate has low values,
but has a non-zero probability of sampling even when the values
are high. The originalMPS used a linear spline function as global
surrogate with local quadratic surrogates in regions of high point

density (promising regions). This approach does not deal well
with noisy functions, and it was generalized to deal with noisy
function by Wang et al. (2011) by replacing the spline surrogate
with a least square support vector regression surrogate.

2.1.3 Problems with constraints

When it comes to adaptive sampling algorithms for
constrained optimization, the state of the art is less advanced.
Regis and Shoemaker’s algorithm is applicable to constrained
problems, but EGO and Gutmann’s minimum bumpiness al-
gorithms are not, unless combined with penalty function
techniques.

There are adaptive sampling algorithms for defining the
constraint boundary that is the boundary between the feasible
and infeasible domain for that constraint. For example, Ranjan
et al. (2008, with corrections in 2011), Bichon et al. (2008),
and Picheny et al. (2010), all devised such adaptive sampling

Fig. 2 Fitting a surrogate to four
function values, plus a
hypothetical minimum value
(given by the dashed line).
Selecting the position in (a)
results in a less bumpy function
than the one in (b), fromGutmann
(2001)

Fig. 1 EGO example showing
(top) a 1-D function ytrue
approximated by a kriging
surrogate, yKRG uncertainty
bounds from the kriging surrogate
(in orange), and present best
solution yPBS given four data
points; (bottom) corresponding EI
and maximum EI point
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algorithms based on Kriging and its uncertainty model. Some
of these strategies are motivated by reliability calculations
rather than optimization, so that the algorithm developed by
Bichon et al. (2008) is called EGRA for efficient global reli-
ability analysis. However, these strategies balance exploration
and exploitation for one constraint in isolation. That is, the
exploitation points are where the constraint is likely to be near
zero because the surrogate prediction is small. Exploration
points, on the other hand are where the surrogate predictions
are not near zero, but the uncertainty is large. For constrained
global optimization, one should consider the objective func-
tions and the other constraints when choosing points for im-
proving the surrogate for any single constraints.

When the main challenge of constrained global optimiza-
tion is feasibility, the superEGO approach (Sasena 2002) may
be useful. This approach looks for identifying islands of fea-
sibility by adaptive sampling, followed by local search in each
island. Another approach for constrained EGO developed by
Basudhar et al. (2012) uses support vector machines for ap-
proximating the boundary of the feasible domain.

2.2 Nature-inspired algorithms such as GA and PSO

Population-based algorithms automatically have some explor-
atory component by virtue of having a population, and the
larger the population the larger is this component. In genetic
algorithms, exploitation is promoted via selection that is based
on fitness and crossover that combines features from parents.
Similarly, in particle swarm optimization, exploitation is bias-
ing the motion in the directions of past best results. Relying
only on the population for exploration, though, is not consid-
ered sufficient. Therefore, mutation operators, as well as ran-
domness in the other operators are added to enhance explora-
tion. The balance between exploration and exploitation is dic-
tated by population size and by the values of probabilities
controlling the randomness and mutation type operators.

Further exploration is afforded by diversity enhancing op-
erators, such as niching (Sareni and Krähenbühl (1998),
Epitropakis et al. (2011)). This is particularly popular in
multi-objective optimization, where good coverage of the
Pareto front is needed (Horn et al. (1994)). However, it is used
also for single objective optimization. Because of the impor-
tance of the balance between exploration and exploitation
there has been a number of papers that proposed methods
for controlling or tuning that balance.

3 Parallel adaptive sampling algorithms

This section reviews methods that parallelize adaptive sam-
pling surrogate-based global optimization algorithms. First,
we examine methods that use a single surrogate to find mul-
tiple points per optimization cycle, and move onto how to

parallelize via multiple surrogates. This section also covers
some algorithms that are parallelized by “zooming” on sub-
regions of the design space. It should be noted that most of the
algorithms parallelize the evaluation of the expensive function
for multiple points. That is, many seek to add multiple points
per optimization cycle, which involves evaluating the expen-
sive cost function for each point in parallel before using all
points to refit the surrogate(s).

3.1 Single surrogate

As discussed in the previous section, Jones’s EGO algorithm
is one of the most popular adaptive sampling surrogate-based
global optimization algorithms. Here, we first examine how
parallelization has been achieved for two different variants of
EGO, followed by other algorithms.

3.1.1 EGO - expected improvement

When a single surrogate (typically Kriging) is used, EGOmay
be parallelized by looking for multiple good local optima of
the expected improvement (EI) as in Sobester et al. (2004).
This does not factor in the effect of adding a point on the
expected improvement at other points.

When adding several points at once, the question of how to
do it optimally is an active area of research. Ginsbourger et al.
(2007) tackled first the problem for EGO-EI by brute force. If
q samples are desired, it is possible to optimize simultaneously
for q points. For that they introduced the multivariate EI (q-EI)
and implemented it via Monte Carlo sampling. Since this is
very expensive computationally, Ginsbourger et al. (2007,
2010) have suggested two algorithms that deal with this issue.
“Kriging Believer” assumes that at the point of maximum EI a
simulation will give the value predicted by the surrogate, and
then updates the fit and looks for the next point. The process is
repeated until the desired number of points is found. The cost
of this process is not excessive because as points are added,
the Kriging parameters are not re-optimized. Ginsbourger
et al. (2007) also proposed an alternate algorithm, dubbed
“Constant Liar” that uses a constant value (such as the mini-
mum, mean, or maximum of the function values).

Janusevskis et al. (2012) tackled directly the q-EI problem
by Monte Carlo simulation, instead of using the Kriging
Believer or Constant Liar alternatives, but that came with con-
siderable cost. Frazier (2012) proposed a q-EI stochastic gra-
dient approach that avoided the explicit calculation of q-EI.
Then, Chevalier and Ginsbourger (2013) developed an exact
formula for q-EI that is cost effective for modest (up to 10 or
so) number of variables.

Viana et al. (2012) compared the use ofmultiple surrogates,
which will be discussed later in the paper, to Kriging Believer
for contour estimation and found the performance to be quite
similar. Parr et al. (2012) extended Kriging Believer to deal
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with constraints. They compared several approaches, and con-
cluded that a multi-objective treatment of the objective and
constraints (also known as the filter method) works best.
Zhu et al. (2015) extended Kriging Believer to robust design
with expensive constraints Li et al. (2016) proposed a method
of adding multiple points by combining maximization of EI
and minimization of mutual information between the points to
be added.

3.1.2 EGO – probability of improvement

The other infill criterion used with EGO, Probability of
Improvement (PI), has the capability of addingmultiple points
per optimization cycle in a much easier way. Jones (2001)
pointed out that PI with multiple targets as a highly promising
approach and it also overcomes the shortcomings of target
setting. The advantage of using PI is that, under the
assumption of the local optima being far enough apart, it is
easy and cheap to find the joint probability of improvement
for all the added points to be used as the objective of the
optimization problem. Viana and Haftka (2010) proposed a
multi-point PI method which aimed at finding multiple new
samples using a joint PI function. Chaudhuri and Haftka
(2014) use an adaptive target setting approach to find reason-
able target setting. They then implemented multi-point PI by
finding the point with maximum PI and then constraining its
nearby region by putting a hypersphere around it and running
the optimizer to find the next best point far enough apart.

3.1.3 Other gaussian process methods

An important recent development is seeking theoretical con-
vergence rates that quantify the benefit of parallel computa-
tion. For Gaussian Process surrogates these can be derived for
appropriately structured algorithms. The measure of perfor-
mance of the algorithm is the regret, defined as the difference
or gap between the best result and the actual minimum, or the
cumulative regret, which is the sum of the regrets over all the
function evaluations. Several papers explore the bounds on
the convergence of the regret or the cumulative regret.

Srinivas et al. (2010, 2012) developed an algorithm for
maximization of noisy functions that was based on selecting
points that maximize the upper confidence bound (UCB) on
the maximum, which is the mean plus a multiple of the stan-
dard deviation. This balances exploration and exploitation.
However, the multiple is adjusted so that bounds on the regret
can be obtained, showing that it is a ‘no-regret’ algorithm (i.e.,
will almost surely converge to the maximum).

Desautels et al. (2014) extended Srinivas’s work as well as
earlier work by Krause and Ong (2011) to a parallel algorithm
called Batch UCB or GP-BUCB. The parallelized version takes
advantage of updating the prediction variance much in the
same way as in the Kriging Believer algorithm. With the batch

approach there are two multipliers of the standard deviation,
and those are again chosen to allow theoretical estimates of the
convergence of the regret. The paper proves that when the
number of iterations is substantially larger than the batch size
K, the regret bounds are reduced by the square root of K.

Contal et al. (2013) developed a similar parallel Gaussian
Process algorithm that is based on upper and lower confidence
bounds for the maximum (they treated a maximization rather
than a minimization problem). Both are based on the mean of
the Gaussian process plus or minus a fixed number of standard
deviations. The location of the upper confidence bound is one
point to be sampled, and the region where the surrogate is
above the lower confidence bound defines a “Relevant
Region”, or the region where there is good probability to find
the maximum. All the other points are taken from that relevant
region in a pure exploration approach in that region. They too
prove that with K parallel simulations, the regret decreases by
the square root of K compared to a purely sequential
approach.

These papers do not claim to have superior performance to
algorithms without proof of rate of convergence. Rather they
show by numerical experiments that they have comparable
performance with such algorithms, but with the additional
advantage of the estimates of the bounds on the regret.

Bischl et al. (2014) formalized the desirability of searching
near low predictions of the surrogate (exploitation) and high
uncertainty (exploration) by using bi-objective evolutionary
algorithm in order to find multiple points on the Pareto front
of the two objectives. They also introduced a distance objec-
tive in order to obtain points that are well separated.

3.1.4 Methods without uncertainty models

Gutmann’s (2001) minimum bumpiness algorithm can be sim-
ilarly parallelized by simultaneously optimizing for multiple
targets. This was implemented by Regis and Shoemaker
(2007a) and by Holmstrom (2008). The latter applied Jones
approach (2001) for setting multiple targets to the RBF algo-
rithm. Regis and Shoemaker (2007a) also parallelized their
own CORS-RBF algorithm by optimizing with a series of
maximum distances in parallel. Regis and Shoemaker (2009)
also parallelized their SRS algorithm and showed superior
performance for a suite of test functions both compared to
their parallel CORS-RBF algorithm as well as compared to
non-surrogate based algorithms, such as parallel pattern
search.

The boundary and best neighbor search (BBNS) method of
Hu et al. (2008) was applied in parallel fashion using support
vector regression surrogate. The approach appears to be appli-
cable to any other surrogate without using an uncertainty
structure. It was applied also by Wang et al. (2010, same Hu
Wang of the previous reference, who may have changed the
order of his name).
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3.2 Multiple surrogates

Fitting multiple surrogates to the same data provides an
easy way of adding parallelism to surrogate based optimi-
zation. This method is very straight forward in approaches
that zoom on promising regions of the design space to
restrict the search space, because it does not require an
uncertainty model for the surrogates. For example, Zerpa
et al. (2005) used multiple surrogates to optimize alkaline-
surfactant-polymer flooding processes for oil extraction,
combined with the DIRECT global optimizer. Glaz et al.
(2009) used four different surrogates as well as two dif-
ferent weighted combinations of these surrogates to per-
form six optimizations using a genetic algorithm to pro-
duce 6 different optima that could be zoomed upon to
refine the design.

Besides individual surrogates it is common also to consider
a weighted combination of surrogates (e.g., Goel et al. 2007).
Müller and Piché (2011) introduced one such combination
based on Dempster-Shafer theory, and Müller and
Shoemaker (2014) parallelized it by adding random sampling
similar to that of Regis and Shoemaker (2007b). Rosales-
Perez et al. (2013) have experimented with an ensemble of
SVM surrogates each with a different hyperparameters, and
found good performance for the NSGA-II evolutionary multi-
objective algorithm.

For use with EGO, Viana et al. (2013) suggested using
the uncertainty model of Kriging for other surrogates that
lack an uncertainty model. This allowed them to use 10
different surrogates and produce up to 10 sampling points
for each EGO cycle. The use of multiple surrogates al-
ways reduced the number of cycles needed for the opti-
mization, and for one of the test functions (Hartman 6) it
even reduced the number of function evaluations com-
pared to the use of only Kriging. This was due to the fact
that some of the other surrogates were more accurate than
Kriging. A similar approach was used by Viana et al.
(2012) for contour estimation, needed to define constraint
boundaries for constrained optimization. The approach
proved to be comparable to the Kriging Believer ap-
proach, as discussed earlier.

Additionally, Chaudhuri et al. (2015) used multiple
surrogates (Gaussian process surrogates and polynomial
response surfaces), multiple infill criteria (EGO-EI and
EGO-PI) and multiple points per EGO-PI for the same
experimental data set to add multiple points in a cycle
for optimization of flapping wing micro air vehicles for
maximum thrust in hover. In this study, parallelization
helped take advantage of batch manufacturing and testing
of designs. As the multiple surrogates and multiple
criteria provided many designs, a distance-based criterion
was used to prevent fabrication and testing of designs that
were too similar.

3.3 Global–local approaches

A common strategy for exploitation in surrogate-based opti-
mization is to construct a coarse surrogate in the entire design
space, and then use it to zoom on promising regions. Then a
more refined surrogate may be constructed in the smaller re-
gion with a newDOE, possibly utilizing points from the initial
DOE that fall in the zoomed region. It is then possible to
explore several basins simultaneously, an idea already men-
tioned in Booker et al. (1999), and van Keulen and Toropov
(1999).

For example, Wang et al. (2001, 2003) developed the
Adaptive Response Surface Method (ARSM), which
disregarded regions with large function values as predicted
by the surrogate, and built a newDOE using central composite
design or Latin Hypercube sampling (LHS) in the reduced
region. The mode-pursuing sampling method (Wang et al.
2004) creates local quadratic surrogates for promising regions,
where the sampling approach tends to generate dense samples.
Hu et al. (2008) pursued this idea further, using particle swarm
optimization to refine the sampling. Peri and Tinti (2012) used
a global surrogate of the objective function combined with
second order approximations at each DOE (based on the sur-
rogate) point to find an approximate local optimum near the
starting point. Sun et al. (2015) combined global and local
surrogates for particle swarm optimization, as discussed in
the next section.

4 Parallel surrogate-assisted evolutionary algorithms

Most evolutionary optimization methods, such as genetic al-
gorithms or particle swarm optimization are population based
algorithms, and as such have built-in parallelism that has been
exploited by many (e.g., Schutte et al. 2004). There are many
ways the surrogates may be used along with exact function
evaluations and Jin (2005 and 2011) provides a good survey
of different methods. The idea of using surrogates to improve
the efficiency of evolutionary methods continues with recent
interest in application to particle swarm optimization (e.g.,
Parno et al. 2012; Regis 2014; Sun et al. 2015) and evolution-
ary programming (Regis 2015).

Though Jin’s paper on surrogate-assisted evolutionary al-
gorithms as well as more recent papers on particle swarm
optimization do not specifically mention parallelization, as
many have pointed out, the mechanisms behind nature-
inspired algorithms easily lend themselves to parallelization.
Alba (Alba and Tomassini 2002; Alba and Troya 1999) pro-
vides a survey of parallelization techniques for genetic algo-
rithms and provides a vision for future efforts to parallelize
GAs. It mainly discusses restructuring or dividing the search
space (e.g., different islands or neighborhoods) without the
use of surrogates.
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4.1 Global surrogates

With a generational approach, a simple strategy is to have
some generations evaluated by surrogates (e.g., Harrison
et al. 1995). However, Syberfeldt et al. (2008) point out that
generational evolutionary algorithms have a disadvantage
with respect to parallelization compared to steady state evolu-
tionary algorithms. First the number of processors may not be
a good match for the ideal population size, and also time may
be wasted waiting for individuals with slow simulations. They
propose instead a steady state parallel surrogate based multi-
objective optimization. The algorithm generates large number
of child design from a given set of parents and uses the
surrogate to select candidate among them. However, the
errors manifest between the surrogate and the exact
simulation for the parents is used to adjust the surrogate
prediction for the child designs.

Similarly, Asouti et al. (2009) developed a steady state
evolutionary algorithm that generates local RBF metamodels
once a user defined number of exact evaluations are complet-
ed. Then as in Syberfeldt, multiple candidates are generated
from the metamodels and the top one is chosen for exact
evaluation. The parallelization is carried out with grid-
assisted asynchronous approach, and the method is applied
to aerodynamic shape optimization.

There has been also investigation of which surrogate are
most suitable for evolutionary algorithms. Dıaz-Manrıquez
et al. (2011) compared quadratic polynomials, kriging, RBF,
and support vector regression (SVR) for a Differential
Evolution optimizer. They found that for low dimensional
problems kriging and SVR performed best, while for high
dimensional problems RBF was best. Akhtar and
Shoemaker (2015) proposed an RBF-assisted multi-objective
evolutionary algorithm framework for achieving a balance
between exploration and exploitation through different
metrics as objectives, which can all be computed in parallel.

4.2 Local searches

Some use surrogates for improving the local search rather than
the global search. Kogiso et al. (1994) created derivative-
based local approximation near each member of the popula-
tion for accelerating the convergence of genetic algorithms.
The class of algorithms that combine evolutionary algorithms
with local search are now known as memetic algorithms (Hart
et al. 2005, Zhou et al. 2007a, b). Sun et al. (2015) combine a
global surrogate with local surrogates near particles for parti-
cle swarm optimization.

Multiple surrogates are also used to distribute the search
space to conduct multiple local searches. Ong et al. (2003)
used local surrogates to perform local search at trust regions
around individuals in the population. Parallelization is straight-
forward as the many local searches are performed in parallel.

Zhou et al. (2007a, b) developed the Multiple-Surrogate
Assisted Memetic Algorithm, in which multiple local surro-
gates are constructed to perform many local searches in paral-
lel. Shao and Krishnamurthy (2008) proposed the Clustering-
Based Multi-Location Search algorithm, using a genetic algo-
rithm using surrogate predictions to find clusters with poten-
tially local optimal points. As mentioned previously, Glaz et al.
(2009) used multiple surrogates to find different optima that
could be zoomed upon to refine the design.

5 Concluding remarks and guidelines

The field of parallel surrogate based global optimization is
relatively new, and we do not feel that it has reached the point
where one can draw definite conclusions on the relative merits
of the different options. Yet, the reader of this paper may need
to make decisions on choosing a method, and so we provide
below guidelines, with the warning that they probably reflect
our biases, so that we tend to favor methods with which we
have first-hand experience.

The first of two of questions that we would suggest a user
to ask is whether the objective function is differentiable with
readily available derivatives. For such differentiable prob-
lems, the user may want to ignore all the methods described
in this paper and consider instead multi-start local searches,
because of their ease of application as well as their advantage
in using derivatives. In particular, the use of derivatives per-
mits their application even when the number of design vari-
ables is in the thousands, while surrogate based optimization
is typically limited to under one hundred design variables.
From our experience in reviewing a large number of papers
on global optimization, it appears that authors rarely compare
their methods to this simple approach even when the problem
is differentiable. Many commercial software have built-in
multi-start capabilities, and many use this strategy in conjunc-
tion with global optimization algorithms that require multiple
starts. For example, in Villanueva et al. (2013), one method to
locate the global optimum was to use many local searches that
locate local optima using MATLAB’s built-in “fmincon”
function. In order to actually find the global optimum, multi-
ple starts were necessary for multi-modal problems and, at
times, had comparable success to other methods presented in
the paper. We feel that this should be a standard practice in
such problems.

The second question asked by the user is whether they are
committed to use a particular surrogate or particular optimiza-
tion method, or they are open to select one or the other based
on parallelization considerations. EGO users can choose be-
tween several methods described in the review. We have a
strong preference for using multiple EGO flavors and multiple
surrogates, but this is based on our own experience. EGO is
typically used with kriging (or Gaussian process surrogate),
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which is most commonly used with smooth functions. For
noisy functions, it is possible to use kriging with a nugget,
but our experience with such a surrogate is mixed, so we have
also used polynomial response surfaces for noisy data (e.g.,
Chaudhuri et al. 2015). Similarly, Wang et al. (2011) have
proposed least squares support vector regression surrogate
for fitting noisy functions with mode-pursuing sampling.

On the other hand, if the user preferences were toward
nature-inspired algorithms, they would be directed to the al-
gorithms that use those optimizationmethods. User preference
again dictates whether a global or local approach is used, and
the question of a single surrogate vs multiple surrogates. Users
of single surrogates that do not have an uncertainty structure
are directed to use the distance based refinements. Users of
multiple surrogates that do not have uncertainty structure can
use the multiplicity of the surrogates, either by itself or in
combination with the distance based approaches.

When it comes to computational costs, the main driver for
computational cost is often if surrogate(s) are fit locally in sub-
regions of the design space or globally. For the former, this
first requires the decision on where to fit the local surrogates
based on an initial global surrogate and followed by fitting
surrogates in the refined space (e.g., Booker et al. 1999). In
this article, it is assumed that the cost of training a surrogate
and using it for prediction is negligible compared to the cost of
evaluating the objective function without distinction for dif-
ferent surrogate types. However, though it is simple to gener-
ate multiple designs in parallel using multiple surrogates, cost
can vary with the number and type of surrogates fit over the
space. Additionally, the computational cost of evaluating the
surrogate prediction can vary. The overhead cost of surrogate
fitting and prediction hasn’t been considered in any literature
to the knowledge of the authors but it may become consider-
able when the number of samples increases.

When using population based algorithms such as GA or
PSO, the available parallelization is important for a decision
on whether to carry multiple runs. With very large number of
available processors, multiple parallel runs may be more effi-
cient than a single run with very large populations. However,
for methods that use surrogates, there may be more of an
advantage of a single run versus multiple runs because the
accuracy of the surrogate will be better when all the function
evaluations are used to construct it. More research may be
needed on intermediate approaches, where there is some shar-
ing of function evaluations between surrogates. Additionally,
runs may be in parallel but still asynchronous as explored by
Asouti et al. (2009). A fundamental question is under what
conditions should information be shared and what criteria call
for information to be kept private. This is an issue when com-
munication between surrogates or processors is a source of
computational overhead, an issue often brought up in cooper-
ative distributed problem solving in computer science (Durfee
et al. 1989).
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