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Abstract Negotiating contracts with multiple interdependent issues may yield non- mono-
tonic, highly uncorrelated preference spaces for the participating agents. These scenarios are
specially challenging because the complexity of the agents’ utility functions makes tradi-
tional negotiation mechanisms not applicable. There is a number of recent research lines
addressing complex negotiations in uncorrelated utility spaces. However, most of them focus
on overcoming the problems imposed by the complexity of the scenario, without analyzing

M. A. Lopez-Carmona and I. Marsa-Maestre are visiting scholars at Massachusetts Institute of Technology
(MIT) from Universidad de Alcala.

M. A. Lopez-Carmona (B) · I. Marsa-Maestre
Computer Engineering Department, Edificio Politecnico, Universidad de Alcala,
Ctra. N-II, Km 33.6, 28805, Alcala de Henares, Madrid, Spain
e-mail: miguelangel.lopez@uah.es

I. Marsa-Maestre
e-mail: ivan.marsa@uah.es

M. A. Lopez-Carmona · I. Marsa-Maestre · M. Klein
Center for Collective Intelligence, MIT Sloan School of Management, Massachusetts Institute
of Technology (MIT), 5 Cambridge Center, NE25-749A, Cambridge, MA 02142, USA

M. Klein
e-mail: m_klein@mit.edu

T. Ito
Department of Computer Science and Engineering, Graduate School of Engineering,
Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
e-mail: ito.takayuki@nitech.ac.jp

T. Ito
Todai Policy Alternatives Research Institute, University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan

T. Ito
Precursory Research for Embryonic Science and Technology (PRESTO),
Japan Science and Technology Agency (JST), Tokyo, Japan

123



486 Auton Agent Multi-Agent Syst (2012) 24:485–535

the potential consequences of the strategic behavior of the negotiating agents in the models
they propose. Analyzing the dynamics of the negotiation process when agents with differ-
ent strategies interact is necessary to apply these models to real, competitive environments.
Specially problematic are high price of anarchy situations, which imply that individual ratio-
nality drives the agents towards strategies which yield low individual and social welfares. In
scenarios involving highly uncorrelated utility spaces, “low social welfare” usually means
that the negotiations fail, and therefore high price of anarchy situations should be avoided
in the negotiation mechanisms. In our previous work, we proposed an auction-based nego-
tiation model designed for negotiations about complex contracts when highly uncorrelated,
constraint-based utility spaces are involved. This paper performs a strategy analysis of this
model, revealing that the approach raises stability concerns, leading to situations with a high
(or even infinite) price of anarchy. In addition, a set of techniques to solve this problem
are proposed, and an experimental evaluation is performed to validate the adequacy of the
proposed approaches to improve the strategic stability of the negotiation process. Finally,
incentive-compatibility of the model is studied.

Keywords Automated multi-issue negotiation · Complex utility spaces · Strategy analysis

1 Introduction

Automated negotiation provides an important mechanism to reach agreements among dis-
tributed decision makers [4,42,43,71]. It has been extensively studied from the perspective
of e-commerce [23,25,49,76], though it can be seen from a more general perspective as
a paradigm to solve coordination and cooperation problems in complex systems [38,32],
providing a mechanism for autonomous agents to reach agreements on, e.g., task allocation,
resource sharing, or surplus division [15,37].

A variety of negotiation models have been proposed according to the many different
parameters which may characterize a negotiation scenario [6,43]. We briefly review the key
concepts about multi-attribute negotiation and the most relevant works in the field in Sect. 2.1.
In the last years, there has been an increasing interest in complex negotiations [39]. Complex-
ity of a negotiation scenario may depend on several factors, like the cardinality of the solution
space, the number of negotiating agents, the number of issues under negotiation, the degree
of interdependency between the issues, and structural properties of the preference landscape
of the different agents, like ruggedness, modality or correlation length [80]. Specially chal-
lenging are those scenarios involving high cardinality solution spaces, since they tend to
make exhaustive search in the solution space highly inefficient, and those involving highly
rugged or highly uncorrelated utility spaces, since traditional negotiation approaches (mostly
intended for linear or quasi-concave utility functions) cannot be applied to these scenarios.
We briefly discuss utility space complexity and the techniques used to measure it in Sect. 2.2.

We can find some successful research works in the literature addressing negotiation in
nonlinear utility spaces. [39] presented, as far as we are aware, the first negotiation protocol
specific for complex preference spaces, based on using simulated annealing to progressively
enhance an agreement between two agents. In [26], a different approach is taken, reducing
the complexity of the agent’s preference space by using approximations of the agents’ utility
functions where issue interdependency has been removed. [17] do not study the inherent
complexity of agent preference spaces, but the complexity introduced in a negotiation when
agent preferences change over time. We comprehensively review these and other related
works in Sect. 2.3.
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In our previous work [54], we proposed a mediated, auction-based protocol for nonlinear
utility spaces generated using weighted constraints, such as the ones we may encounter when
negotiating complex contracts with multiple, interdependent clauses [30]. We also proposed
a set of decision mechanisms to generate bids at the negotiating agents and to identify feasi-
ble deals at the mediator once the bids from the negotiating agents have been received [54].
We briefly summarize the approach in Sect. 3. Experiments showed that these approaches
achieve high effectiveness (measured as high optimality rates and low failure rates for the
negotiations) in moderately rugged utility spaces.

In [55], we extended this work to address highly-rugged utility spaces. We proposed the
use of a technique to balance utility and deal probability in the negotiation process, which
we called quality factor. This quality factor is used to bias bid generation and deal identi-
fication taking into account the agents’ attitudes (e.g. risk attitude, selfishness, willingness
to cooperate). From the mechanisms we proposed to take into account quality factor in the
negotiations, the most successful ones are detailed in Sect. 3.4. The experiments showed that
this balance between utility and deal probability greatly improves the effectiveness of the
negotiation in highly-rugged utility spaces.

However, the proposed approach draws several concerns. Though the quality factor is sup-
posed to be able to model agents’ attitudes, our previous experiments limited these attitudes
to a somewhat “cooperative” environment, where all agents have the same, neutral attitude.
In a real, competitive environment, we expect to have agents with different attitudes interact-
ing. This raises the problem of agent strategic behavior, which is introduced in Sect. 4. What
happens when risk averse agents interact with risk willing agents? Is there a an individually
optimal strategy? If so, does this individually optimal strategy lead to satisfying solutions,
or is the approach prone to situations where individual rationality lead to solutions of low
social value? Furthermore, since the complexity of the utility spaces of the agents may also
vary, it seems logical to think that agent strategies should vary accordingly. In this paper, we
intend to address these questions in the following ways:

– We perform a strategy analysis of the auction-based protocol for constraint-based utility
spaces. This analysis allows us to determine the individually optimal strategy and the
socially optimal strategy for different utility space complexity levels. From the results of
the analysis we conclude that the auction-based protocol, as described in [55], has stabil-
ity problems, leading to situations resulting in high expected price of anarchy (Sect. 4).

– We propose a set of mechanisms intended to improve protocol stability. These approaches
are based on decoupling the agent’s strategies from the deal identification process,
by applying different techniques on the mediator after the agents have sent their bids
(Sect. 5).

– We separately study a specific stability concern, incentive compatibility, related to the
possibility of agents manipulating the protocol by means of insincere revelation of infor-
mation (Sect. 6).

For each contribution, an experimental evaluation has been performed to validate our hypoth-
esis and evaluate its effect. The experimental settings are described in Sects. 4.2, 5.2, 6.2 and
6.3, along with the discussion of the results obtained. Finally, the last section summarizes
our conclusions and sheds light on some future research.

2 Complex negotiation scenarios

In the last years, there has been an increasing interest in complex negotiation scenarios,
where agents negotiate about multiple, interdependent issues [39]. These scenarios are spe-
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cially challenging, since issue interdependency yields nonlinear utility spaces, which make
classic negotiation approaches not applicable [30]. In this section we first briefly review exist-
ing research on multi-attribute negotiation and outline the key components of any negotiation
model. Then we discuss the most relevant works so far on the field of agent-based complex
automated negotiations. Finally, some of the issues raised by complex negotiation scenarios,
which are directly relevant to our research, are described.

2.1 Multi-attribute negotiation

Multi-attribute negotiation may be seen as an interaction between two or more agents with
the goal of reaching an agreement about a range of issues which usually involves solving
a conflict of interests between the agents. This kind of interaction has been widely studied
in different research areas, such as game theory [71], distributed artificial intelligence [13]
and economics [67]. Using a notation similar to that used in [71] and [88], we can formally
define a multi-attribute negotiation domain as a tuple

〈X, D, Ag,U 〉
where

– X = {xi |i = 1, . . . , n} is a finite set of variables, called attributes or issues;
– D = {di |i = 1, . . . , n} is a finite set of domains, such that each domain di represents

the feasible values of the variable xi ;
– Ag = {1, . . . ,m} is the set of negotiating agents, also assumed finite;
– U = {U j | j = 1, . . . ,m}, where U j : D → R represents the preference structure or

utility for agent j .

Multi-attribute negotiation is seen as an important challenge for the multi-agent sys-
tem research community [43], and there is a great variety of negotiation models and pro-
tocols intended to address different parts of this challenge. These models may be classified
according to different criteria [6], such as their structure, the dynamics of the negotiation
process, or the different constraints (e.g. deadlines, information availability…). Accord-
ing to the theoretical foundations of the negotiation models, we can find approaches based
on game theory, heuristic approaches and argumentation-based approaches. Game theory
approaches aim to find optimal solutions analytically, analyzing equilibrium conditions [59].
These models are mathematically sound and elegant, but their pratical use in some nego-
tiation scenarios is somewhat restricted due to the assumptions usually made: unlimited
computation and memory resources, perfect rationality and complete information. In heu-
ristic approaches, however, these assumptions are relaxed, and participants attempt to find
an “approximately-optimal” under bound rationality using heuristic search and evaluation
methods [12–14,20,31,39,44,70]. In argumentation based negotiation, agents are given the
ability to reason their positions, including a meta-information level which allows them to use
promises, rewards, threats and other incentives [66].

Regardless of the theoretical approach involved, different authors agree that there are three
key components in a negotiation model [16,33,41]:

– An interaction protocol, which defines the rules of encounter among the negotiating
agents, including what kind of offer exchange is allowed and what kind of deals may be
reached and how they are established.

– The preference sets of the different agents, which allow them to assess the different
solutions in terms of gain or utility and to compare them.
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– A set of decision mechanisms and strategies, which govern agents’ decision making,
allowing them to determine which shall be their next action for a given negotiation state.

2.1.1 Interaction protocols for negotiation

The most-widespread interaction protocol for negotiation is based on the exchange of offers
and counter offers, which are expressed as an assignation of values to the different attributes.
This kind of negotiation protocols are known as positional bargaining. In argumentation
based negotiation, however, this exchange of offers also includes meta-information, in order
to allow reasoning about the positions of the different agents. A particular protocol family for
multi-lateral negotiations are auction-based protocols, where negotiating agents send their
offers (also called bids) to a mediator, which then decides the winning deal [77]. Auction-
based protocols allow to efficiently deal with one-to-many and many-to-many negotiations.
Another important division regarding interaction protocols is between one-shot protocols
and iterative protocols. In one-shot protocols, there is a single interaction step between the
agents [59]. In iterative protocols, on the other hand, agents have the opportunity to refine
their positions in successive protocol iterations [62].

2.1.2 Preference sets, utility functions and the use of constraints

From the decision theory perspective, preferences express the absolute or relative satisfaction
for an individual about a particular choice among different options [36]. [7] classify agent
preference structures in four broad families: binary, ordinal, cardinal and fuzzy preference
structures. Among these families, cardinal preference structures are probably the most widely
used in complex negotiations. In particular, it is usual to define agent preferences by means
of utility functions.

Formally, for a given multi-attribute domain 〈X, D, Ag,U 〉, the utility function for each
agent j ∈ Ag is defined as

U j : D → R,

assigning to each possible combination of values in X or deal s = {si |i = 1, . . . , n; si ∈ di }
a real number, which represents the utility that deal s yields for agent j .

The most basic form to represent a utility function is to make an enumeration of the points
in the solution space which yield a non-zero utility value. In this way, an agent’s utility
function may be represented as a set of pairs 〈s, u (s)〉 |u (s) �= 0, where u (s) is the utility
of the solution s for the agent. It is easy to see that, though this representation for utility
functions is fully expressive, its cardinality may grow greatly with the number of issues or
with the cardinality of each issue’s domain. Because of that, more succinct representations for
utility functions are used in most cases. Examples of such representations which are widely
used in the negotiation literature are linear-additive utility functions [14] or k-additive utility
functions [22].

Another widely used way to represent preferences and utility functions is the use of con-
straints over the values of the attributes. There is a vast variety of multi-attribute negotiation
models and approaches making use of constraints in different forms, from hard constraints to
soft, probabilistic or fuzzy constraints [31,47,52]. There are several reasons which favor the
use of constraints in negotiation models. First, they allow for efficient methods for preference
elicitation. Moreover, constraints allow to express dependencies between the possible values
of the different attributes. Finally, the use of constraints for offer expression allow to limit the
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Fig. 1 Example of a nonlinear utility space defined by means of weighted constraints

region of the solution space which has to be explored in a given negotiation step. Reducing
the region of the utility space under exploration according to the constraints exchanged by
agents is a widely used technique in automated negotiation [48], since it makes the search
for agreements a more efficient process than when using positional bargaining, specially in
complex negotiation scenarios.

A particular case of constraint-based utility representation which has been used to model
complex utility spaces for negotiation are weighted constraints. There is a utility value for
each constraint, and the total utility is defined as the sum of the utilities of all satisfied
constraints.

More formally, the utility space of the agents may be defined as a set of constraints
C = {ck |k = 1, . . . , l}. Each constraint ck has an associated utility value u(ck). If we note
as s ∈ x(ck) the fact that a given contract s = {si |i = 1, . . . , n} is in the set of contracts that
satisfy constraint ck , an agent’s utility for contract s may be defined as

u(s) =
∑

ck∈C |s∈x(ck )

u(ck),

that is, the sum of the utility values of all constraints satisfied by s. This kind of utility func-
tions produces nonlinear utility spaces, with high points where many constraints are satisfied,
and lower regions where few or no constraints are satisfied. Figure 1 shows an example of
the kind of utility spaces which may be modeled using weighted constraints.

2.1.3 Agent strategies, mechanism stability and incentive-compatibility

In an automated negotiation, a strategy guides the decision making process of an agent
throughout the different stages of the negotiation protocol [41]. The main challenge in an
automated negotiation scenario as far as decision mechanisms are concerned is to design
rational agents, able to choose an adequate negotiation strategy. In negotiations among self-
ish agents, negotiation mechanisms must be designed in a way that makes them stable,
understanding stability as the impossibility (or at least difficulty) of the strategic manipu-
lation of the mechanisms. This means that the mechanisms should motivate the agents to
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act in an adequate way, since if a rational, selfish agent may benefit from taking a strategy
which is different to the one expected by the protocol, it will do so. This problem is closely
related to the notion of equilibrium defined in game theory. In an equilibrium, each player
of the game has adopted a strategy that they have no rational incentive to change (because it
is the best alternative, given the circumstances). There are different equilibrium conditions
which can be defined, like dominant strategies [40,83], Nash equilibrium [60] or Bayes-Nash
equilibrium [24].

Achieving stability in a negotiation mechanism does not guarantee to reach solutions max-
imizing social welfare. Therefore, stability must not be used as a single criterion to evaluate
decision mechanisms, and social welfare should also be considered. An specially illustrative
example is the prisoner’s dilemma [65], which describes an scenario where Nash equilibrium
yields low utility values for the agents involved. A more generic concept which is becoming
widely used to characterize situations where individual rationality leads agents to results
which yield low social welfares is the notion of price of anarchy. The price of anarchy was
first introduced in [63] in the context of selfish routing, as a measure of loss of social effi-
ciency due to selfish behavior. In the context of a problem of social welfare maximization,
price of anarchy can be defined as follows:

Definition 1 Price of anarchy.[63] The price of anarchy (PoA) in a given game is defined as
the ratio between the social welfare of the best possible outcome of the game and the social
welfare of the worst Nash equilibrium in the game:

PoA = maxs∈Ssw(s)

mins∈SNash sw(s)
,

where S is the set of all possible outcomes of the game, SNash ⊆ S is the set of all possible
outcomes induced by a Nash equilibrium in the game, and sw(s) is the social welfare of a
given outcome s.

Defined in this way, price of anarchy gives an indication of the potential loss in a given
game when individually rational agents are confronted. In situations where PoA is high,
additional mechanisms which incentivize social behavior are desirable, in order to modify
the equilibrium conditions of the game and reduce this value of PoA, thus improving the
stability of the protocol. Stability, however, may also come at a price. Even when worst-case
equilibria can be avoided, equilibrium conditions may lead to solutions which are distant to
the social optimum (generally due to the fact that stability enhancing measures favor “fair”
solutions against Pareto-optimal ones). To measure this, price of stability is introduced in an
analogous manner:

Definition 2 Price of stability.[2] The price of stability (PoS) in a given game is defined as
the ratio between the social welfare of the best possible outcome of the game and the social
welfare of the best Nash equilibrium in the game:

PoS = maxs∈Ssw(s)

maxs∈SNash sw(s)
,

where S is the set of all possible outcomes of the game, SNash ⊆ S is the set of all possible
outcomes induced by a Nash equilibrium in the game, and sw(s) is the social welfare of a
given outcome s.

Taking this into account, when mechanisms are introduced to reduce price of anarchy in
a game, their impact over price of stability should also be evaluated.
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Another threat to mechanism stability is strategic revelation of information. In incomplete
information scenarios [34], since the agents’ beliefs about the preferences of a given agent
may influence the decision mechanisms they use, an agent may use as a strategy to lie about
its own preferences in order to manipulate the decision mechanisms of the rest of the agents
to its own benefit. This raises an additional concern to mechanism design [83].

It would be desirable to design protocols which are not prone to be manipulated through
insincere revelation of information. Incentive-compatibility is defined as the property of a
negotiation mechanism which makes telling the truth the best strategy for any agent, assuming
the rest of the agents also tell the truth.Though incentive-compatibility is usually indepen-
dently studied, it is closely related to the notions of strategic equilibrium seen above. In
particular, incentive-compatibility may be seen as the property of a negotiation model where,
regarding the possibility of telling or not telling the truth, having all agents telling the truth is
a Nash equilibrium. A more restrictive property is (strategy-proofness), which imposes truth-
ful revelation of information to be a dominant strategy. This means that for any agent the
best choice is to tell the truth regardless of the other agents’ attitudes towards sincerity [19].

An example of an incentive-compatible protocol is the Vickrey auction. The Vickrey auc-
tions are second-price, sealed, one shot auctions. In this kind of auction, that an agent i bids
above its real utility value ui (s) is a bad strategy, since there is a chance that the second
highest bid is also above that utility value, which would imply that the agent would have
to pay for the product more than its value. Furthermore, as Vickrey auction is second price,
bidding below the utility level ui (s) is also a bad strategy, since it reduces the chance to bid
without any advantage, as the price the agent will have to pay for the product is not given by
its bid, but by the second highest bid. Another incentive compatible mechanism is the Clarke
tax method [11], where a tax is imposed to each agent once the negotiation has ended, and
this tax makes each agent “pay” for the impact that its participation had over other agents’
utilities, showing that, in this way, if an agent’s false valuation changes the negotiation result,
the utility obtained by that agent (after taxes are applied) is never higher that the utility it
would have gained using truthful valuations [83].

2.2 Negotiation, optimization and complexity

Though there has been an increasing interest in complex negotiations in the last years, little
efforts have been made to study complexity itself within negotiation (apart from compu-
tational complexity, which has been thoroughly studied in many scenarios). Therefore, if
we want to be able to assess complexity in negotiations, we need to resort to other knowl-
edge areas. One area where many authors have dealt with complexity characterization and
measurement is optimization. In fact, negotiation scenarios and optimization problems are
often closely related, since there are many similarities in the ways both problem families
are defined and addressed. For example, negotiating agents are usually utility optimizers,
and negotiation mechanisms are often evaluated in terms of their ability to reach Pareto-
optimal solutions. In negotiation, Pareto-optimal solutions are those where payoff cannot be
improved for any of the agents without decreasing the payoff for another agent. This concept
of Pareto-efficiency is also sought in multi-objective optimization, trying to find solutions
where no further gains can be achieved in one of the objectives without losing in another
[74]. Multi-objective optimization has been widely used for negotiation support [84], and
negotiation mechanisms have also been used to solve multiobjective optimization problems,
usually by distributing the different objectives among negotiating agents [75]. Therefore,
some of the concepts studied in multiobjective optimization may be used in negotiation, and
vice versa.
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In the context of a multi-attribute negotiation, complexity of a given scenario may depend
at least on the number of issues, the level of interdependency between the preferences on
the issues, the domain of the issues, the possibility of change over time of the negotiation
context, the method used to describe preferences and the structural properties of the agent’s
utility spaces. In general, a large number of issues with a high interdependency and a large
domain contribute to more complex preference spaces. If the negotiation context changes
over time, complexity also increases. The method to describe preferences also has an influ-
ence in the complexity of the negotiation scenario. This is specially true when optimization
techniques are used to find high utility regions within an agent’s utility spaces, or to find deals
among different agents. A constraint-based preference space, for instance, may present dis-
continuities which make gradient based optimizers not applicable, while differentiable utility
functions contribute to a faster local optimization. Therefore, to study complexity in negotia-
tion scenarios, we may find useful to characterize structural complexity of the agents’ utility
spaces, and to this end we may benefit from existing research on function characterization
for optimization.

In this context, and more specifically in the field of optimization using evolutionary algo-
rithms, structural complexity analysis plays a crucial role, since algorithm search capabilities
are greatly impacted by some structural properties of the optimized function, which is usually
known as fitness landscape in evolutionary computation.

An interesting detail about fitness landscapes is that they include the definition of a neigh-
borhood operator φ, which expresses the probability that the search function (usually, a
genetic algorithm) passes from one point in the landscape to another [27]. This operator
is directly related to the search mechanism used and its parameters (e.g. simulated anneal-
ing temperature or mutation probability for genetic algorithms), which implies an important
consequence: the complexity of a utility space may be different depending on the consid-
ered search algorithm and its parameters. This operator also defines the concept of neighbor
solutions in the space, which in turn influences the definition of local optima (maxima and
minima), and therefore the structural properties of a fitness landscape which are interesting
regarding search complexity within the space, such as modality [28], ruggedness, smoothness
and neutrality [80].

Once the properties which has an influence on the complexity of a fitness landscape or
a solution space have been studied, techniques which allow to measure the complexity of a
given space are needed. Most of the approaches we can find in the literature are based on the
correlation between different samples of the fitness function f , like fitness distance correla-
tion metrics [79] or stochastic models representing the correlation structure of the space [27].
A metric which is easy to compute in most scenarios and allows to make quantitative evalua-
tions about the complexity of a fitness or utility landscape is correlation length or correlation
distance. Correlation distance is defined as the minimum distanceψ which makes correlation
fall below a given threshold (usually 0.5), which gives an idea of the distance we can move
throughout the solution space while keeping a certain correlation between samples [53].

2.3 Related research on automated negotiation in complex utility spaces

Klein et al. [39] present, as far as we are aware, the first negotiation protocols specific for
complex preference spaces. They propose a simulated annealing-based approach, a refined
version based on a parity-maintaining annealing mediator, and an unmediated version of
the negotiation protocol. Of great interest in this work are the positive results about the use
of simulated annealing as a way to regulate agent decision making, along with the use of
agent expressiveness to allow the mediator to improve its proposals. However, this expres-
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siveness is somewhat limited, with only four possible valuations which allow the mediator
to decide which contract to use as a parent for mutation, but not in which direction to mutate
it. On the other hand, the performed experiments only consider the bilateral negotiation
scenario, though authors claim that the multiparty generalization is simple. Finally, the family
of negotiation protocols they propose are specific for binary issues and binary dependencies.
Higher-order dependencies and continuous-valued issues, common in many real-world con-
texts, are known to generate more challenging utility landscapes which are not considered in
their work.

Luo et al. [51] propose a fuzzy constraint based framework for multi-attribute negotiations.
In this framework a buyer agent defines a set of fuzzy constraints to describe its preferences.
The proposals of the buyer agent are a set of hard constraints which are extracted from the
set of fuzzy constraints. The seller agent responds with an offer or with a relaxation request.
The buyer then decides whether to accept or reject an offer, or to relax some constraints by
priority from the lowest to highest. In Lopez-Carmona and Velasco [49], Lopez-Carmona
et al. [50] an improvement to Luo’s model is presented. They devise an expressive negoti-
ation protocol where proposals include a valuation of the different constraints, and seller’s
responses may contain explicit relaxation requests. It means that a seller agent may suggest
the specific relaxation of one or more constraints. The relaxation suggested by a seller agent
is based on utility and viability criteria, which improves the negotiation process. Though
these constraint-based works model discontinuous preference spaces, the operators used to
compute utility and the utility spaces defined yield monotonic preference spaces, which are
far from the complex preference spaces covered in our work.

Another interesting approach to solve the computational cost and complexity of negotiat-
ing interdependent issues is to simplify the negotiation space. Hindriks et al. [26] propose a
weighted approximation technique to simplify the utility space. They show that for smooth
utility functions the application of this technique results in an outcome that closely matches
the outcome based on the original interdependent utility structure. The method is evaluated
for a number of randomly generated utility spaces with interdependent issues. Experiments
show that this approach can achieve reasonably good outcomes for utility spaces with simple
dependencies. However, an approximation error that deviates negotiation outcomes from the
optimal solutions cannot be avoided, and this error may become larger when the approxi-
mated utility functions become more complex. Authors acknowledge as a necessary future
work to study which kind of functions can be approximated accurately enough using this
mechanism. Another limitation of this approach is that it is necessary to estimate a region of
utility space where the actual outcome is expected to be (i.e. it is assumed that the region is
known a priori by the agents).

In Robu et al. [69] utility graphs are used to model issue interdependencies for binary-
valued issues. Utility graphs are inspired by graph theory and probabilistic influence net-
works to derive efficient heuristics for non-mediated bilateral negotiations about multiple
issues. The idea is to decompose highly non-linear utility functions in sub-utilities of clusters
of inter-related items. They show how utility graphs can be used to model an opponent’s
preferences. In this approach agents need prior information about the maximal structure of
the utility space to be explored. Authors argue that this prior information could be obtained
through a history of past negotiations or the input of domain experts. However, our approach
has the advantage that outcomes can be reached without any prior information and that it is
not restricted to binary-valued issues.

There are several proposals which employ genetic algorithms to learn opponent’s prefer-
ences according to the history of the counter-offers based upon stochastic approximation. In
Choi et al. [9] a system based on genetic-algorithms for electronic business is proposed. In
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this work the utility functions are restricted to take a product combination form (i.e. utility
of an outcome is the product of the utility values of the different issues). The objective func-
tion used is based on the comparison of the changes of consecutive offers. Small changes
of an issue suggest that this issue is more important. For each new population, the protocol
enforces that the generated candidates cannot be better than the previous offer. Unlike other
negotiation models based on genetic algorithms, this proposal adapts to the environment by
dynamically modifying its mutation rate. Lau et al. [45] have also reported a negotiation
mechanism for non-mediated automated negotiations based on genetic algorithms. The fit-
ness function relies on three aspects: an agent’s own preference, the distance of a candidate
offer to the previous opponent’s offer, and time pressure. In this work agents’ preferences
are quantified by a linear aggregation of the issue valuations. However, non-monotonic and
discontinuous preference spaces are not explored. In Chou et al. [10] a genetic algorithm
is proposed which is based on a joint elitism operation and a joint fitness operation. In the
joint elitism operation an agent stores the latest offers received from the opponent. The joint
fitness operation combines agent’s own utility function and euclidean distance to the oppo-
nent’s offer. In this work two different negotiation scenarios are considered. In the first one
utility is defined as the weighted sum of the different issue values (i.e. issues are indepen-
dent). The second scenario defines a utility function where there is a master issue and a set
of slave issues. Utility is calculated as the weighted sum of the different issue values, but the
weights of the slave and master issues change according to the value of the master issue.

In Yager [87] a mediated negotiation framework for multi-agent negotiation is presented.
This framework involves a mediation step in which the individual preference functions are
aggregated to obtain a group preference function. The main interest is focused on the imple-
mentation of the mediation rule where they allow a linguistic description of the rule using
fuzzy logic. A notable feature of their approach is the inclusion of a mechanism rewarding the
agents for being open to alternatives other than simply their most preferred. The negotiation
space and utility values are assumed to be arbitrary (i.e. preferences can be non-monotonic).
However, the set of possible solutions is defined a priori and is fixed. Moreover, the preference
function needs to be provided to the mediation step in the negotiation process, and pareto-
optimality is not considered. Instead, the stopping rule is considered, which determines when
the rounds of mediation stop.

Fatima et al. [18] analyze bilateral multi-issue negotiation involving nonlinear utility
functions. They consider the case where issues are divisible and there are time constraints
in the form of deadlines and discounts. They show that it is possible to reach Pareto-
optimal agreements by negotiating all the issues together, and that finding an equilibrium is
not computationally easy if the agents’ utility functions are nonlinear. In order to overcome
this complexity they investigate two solutions: approximating nonlinear utilities with linear
ones; and using a simultaneous procedure where the issues are discussed in parallel but inde-
pendently of each other. This study shows that the equilibrium can be computed in polynomial
time. An important part of this work is the complexity analysis and estimated approximation
error analysis performed over the proposed approximated equilibrium strategies. Heuristic
approaches have generally the drawback of the lack of a solid mathematical structure which
guarantees their viability, which raises the need of an exhaustive experimental evaluation.
An adequate complexity analysis and establishing a bound over the approximation error con-
tribute to give heuristic approaches part of the technical soundness they usually lack. Among
the limitations of the proposal, we can point out that this work is focused on symmetric
agents where the preferences are distributed identically, and the utility functions are sepa-
rable in nonlinear polynomials of a single variable. This somewhat limits the complexity of
the preference space.
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Finally, combinatorial auctions [21,29,72,73,82,86] can enable large-scale collective
decision making in nonlinear domains, but only of a very limited type (i.e. negotiations
consisting solely of resource allocation decisions). Multi-attribute auctions, wherein buyers
advertise their utility functions, and sellers compete to offer the highest-utility bid [5,78,64]
are also aimed at a fundamentally limited problem (a purchase negotiation with a single
buyer) and require full revelation of preference information.

In summary, in the existing research nearly all the models which assume issue interde-
pendency rely on monotonic utility spaces, binary valued issues, low-order dependencies,
or a fixed set of defined a priori solutions. Simplification of the negotiation space has also
been reported as a valid approach for simple utility functions, but it cannot be used with
higher-order issue dependencies, which generate highly uncorrelated utility spaces. There-
fore, new approaches are needed if automated negotiation is to be applied to settings involving
non-monotonic, highly uncorrelated preference spaces.

3 An auction based approach for negotiations in highly uncorrelated, constraint based
utility spaces

In this work we analyze agents’ strategic behavior and mechanism stability for a mediated,
auction-based negotiation approach we designed for highly uncorrelated, constraint based
utility spaces [30,54]. To make such strategic analysis easier to understand, in this section
we motivate and review the most relevant aspects of our negotiation model.

3.1 Negotiation domain and agent preference model

We explore the problem of negotiating complex contracts, which was first introduced by
Klein et al. [39]. Contracts are defined as a set of issues or clauses, each of which may have
a value. The aforementioned authors limited encounters to bilateral negotiations (i.e. two
negotiating agents), and clauses were limited to binary values, meaning than the clause was
or not present in a given contract. Even with such restrictions, the domain of the solution
space may become very large. For instance, a negotiation scenario with 50 possible clauses
would yield a search space of about 1015 possible contracts. This, along with the assump-
tion of non-linearity in the agents’ preference spaces, imposed serious difficulties for the
negotiation. First, agents needed to use nonlinear optimization mechanisms to try to find
desirable contracts within their own preference spaces. Once desirable contracts for each
agent were identified, building agreements had its own difficulties, since the scenario was
assumed competitive, and thus agents were not inclined to fully disclose their preferences.

Though there are negotiation scenarios about complex contracts which may be modeled
with such a solution space, in many cases more than two agents are involved in a negotia-
tion. Also, most contracts may have non-binary clauses. In a rental agreement, for instance,
clauses may state the rent, the security deposit or the length of the lease. A labor agreement
may include different insurance options. Such issues may have a larger domain, which can
greatly increase the solution and preference space complexity.

Taking this into account, in this work we focus in the general case of multilateral nego-
tiations of complex contracts, where the issues or clauses included in the contracts have
discrete domains. We also assume that agents’ preferences about the different issues are not
independent, which means that the utility that a given clause in the contract yields for an
agent may depend on the presence of other clauses. Interdependence between attributes in
agent preferences can be described by using different categories of functions, like K-additive
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Fig. 2 Example of a utility space
with two issues and three
constraints
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utility functions [8,22], bidding languages [61], or weighted constraints [31]. In this work,
we model this dependency in agent preferences by means of weighted constraints, which are
a natural way to model user preferences and to express dependencies between issues [51].
These constraints may represent ranges of values over different issues, meaning that when
all the clauses affected by the constraint have values satisfying it, that yields a given utility
value for the agent. The set of an agent’s constraints and their associated utility values builds
the preference space of the agent.

From a geometrical point of view, each constraint represents a region with one or more
dimensions, and has an associated utility value. The number of dimensions of the space is
given by the number of issues n under negotiation, and the number of dimensions of each
constraint must be lesser than or equal to n. The utility yielded by a given potential solution
(contract) in the utility space for an agent is the sum of the utility values of all the con-
straints that are satisfied by that contract. Figure 2 shows an example for two issues and
three constraints: a unary constraint C1 and two binary constraint C2 and C3. The utility
values associated to the constraints are also shown in the figure. In this example, contract x
would yield a utility value for the agent u(x) = 15, since it satisfies both C1 and C2 (that is,
constraints C1 and C2 overlap, creating a region of higher utility). Contract y, on the other
hand, would yield a utility value u(y) = 5, because it only satisfies C1. It can also be noted
that unary constraint C1 can be seen as a binary constraint where the width of the constraint
for issue 2 is all the domain of the issue, so we can generalize and say that all constraints
have n dimensions.

More formally, we can define the negotiation domain and an agent’s preference model by
means of a set of definitions:

Definition 3 Issues under negotiation. The issues under negotiation are defined as a finite
set of variables X = {xi |i = 1, . . . , n}.

Definition 4 Solution space. The negotiation solution space is defined by the values that the
different values may take. To simplify, we assume that issues take values from the domain
of integers

[
0, xmax

D

]
:

D = [
0, xmax

D

]n
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Definition 5 Contract or potential solution. A contract or potential solution to the nego-
tiation problem is a vector s = {si |i = 1, . . . , n} such that s ∈ D defined by the issues’
values.

Definition 6 Constraint. A constraint is a set of intervals which define the region where a
contract must be contained to satisfy the constraint. Formally, a constraint c is defined as

c = {I c
i |i = 1, . . . , n},

where I c
i = [

xmin
i , xmax

i

]
, with xmin

i , xmax
i ∈ [

0, xmax
D

]
defines the minimum and maxi-

mum values for each issue to satisfy the constraint. Constraints defined in this way describe
hyper-rectangular regions in the n-dimensional space.

Definition 7 Constraint satisfaction. A contract s satisfies a constraint c if and only if xs
i ∈

I c
i ∀i. For notation simplicity, we denote this as s ∈ x(c), meaning that s is in the set of

contracts that satisfy c.

Definition 8 Preference space. An agent’s preference space may be defined as a tuple

〈C,�〉 ,
where C = {ck |k = 1, . . . , l} is a set of constraints over the values of the issues xi for the
agent and � = {ω (ck) |k = 1, . . . , l;ω (ck) ∈ N

+} is a set of weights or utility values, such
that ω(ck) is the associated utility value for constraint ck . For simplicity, we will assume that
constraint weights take values from the set of positive integers.

Definition 9 Utility function. An agent’s utility function for a contract s is defined as

u(s) =
∑

ck∈C |s∈x(ck )

u(ck),

that is, the sum of the utility values of all constraints satisfied by s.

This kind of utility functions produces nonlinear utility spaces, with high points where
many constraints are satisfied, and lower regions where few or no constraints are satisfied
[31]. As we have seen in Sect. 2.2, the degree of complexity of the utility spaces produced
depends on the number of issues, the domain of the issues and the structural properties of
the utility spaces. For the purpose of this work, we make the following assumptions:

– We assume that the number of issues and the domains of the issues are such that they
make exhaustive search within the utility space of the agents intractable.

– We assume that the utility spaces of the agent are highly uncorrelated, and so no a priori
assumptions may be made about where high utility contracts may be located. Therefore,
agents may need to resort to local nonlinear optimization techniques to identify such
high-utility contracts.

– We assume knowledge about other agent’s preferences not to be common (i.e. agents
do not know their opponent preference structures, neither they can compute opponent’s
utility for a given contract).

– We assume that the negotiation setting is competitive, and that agents may be unwilling
to reveal too much information about their preferences to the other negotiating agents.

The negotiation protocol and mechanisms proposed, which are described in the next sec-
tions, are specifically designed to address this negotiation setting. However, through the study
performed in the latter sections of this paper, some of the assumptions are relaxed to evaluate
the influence of agent strategies and variations in the correlation lengths of the utility spaces
over the negotiation outcomes.
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3.2 Interaction protocol

As we stated at the beginning of this section, our model relies on a mediated, auction-based
protocol to support agent interaction. The reason for the choice of such a protocol is two-
fold. On one hand, the auction-based approach allows to efficiently cope with many of the
challenges imposed by multilateral interactions [39]. On the other hand, the use of a medi-
ator allows to decouple individual agent goals (maximizing their own payoff) from social
negotiation goals (usually, reaching an agreement which maximizes social welfare). This
makes easier mechanism and strategy definition, since agents can be assumed selfish and
competitive, while the mediator can be entitled with the more-cooperative task of pursuing
social welfare.

Since the main focus of this work is on agent strategic behavior, we have chosen a simple,
one shot, auction based interaction protocol for the negotiation, which mainly consists of two
steps:

1. Bidding: Each agent j generates a set of n j
b bids B j = {b j

i |i = 1, . . . , n j
b}, where each

bid b j
i represents a region within the solution space which only contains contracts that

agent j would be willing to accept as solutions. Each agent sends its bid set B j to the
mediator, along with the utility associated to each bid.

2. Deal identification: The mediator tries to find overlaps between the bids of the different
agents. The regions of the contract space corresponding to the intersections of at least
one bid of each agent are tagged as potential solutions. A final deal is chosen from the
set of potential solutions, according to social welfare criteria.

The protocol, as described, is fairly straightforward, and the decision mechanisms which
agents employ for bidding and deal identification are the ones which mostly determine the
effect of agent strategic behavior. There are many different mechanisms which can be used
in this context. In the following we briefly describe the ones we have found to yield better
results in terms of negotiation efficiency and failure rate. All these mechanisms rely on the
concept of quality factor, which we introduce in the following section.

3.3 Constraint/bid quality factor

The use of weighted constraints generates a “bumpy” utility space, with many peaks and
valleys. However, the degree of “bumpiness” is highly dependent on the way the constraint
set is generated, and specially on the average width of the constraints. Figure 3 shows an
example of the resulting two-dimensional utility space for 50 binary constraints, where the
domain of the issues is chosen to be [0,9], and constraints are generated by choosing the
width of each constraint in each issue randomly within the [3,7] interval. This generates
rather “wide” constraints. On the other hand, Fig. 4 shows an utility space obtained using
“narrow” constraints, choosing their widths from the [1,2] interval. Comparing both figures
we can see that, though both utility spaces are nonlinear, the space generated using narrow
constraints is more complex, with narrower peaks and valleys. As the number of issues under
consideration increases, the differences between having wide or narrow constraints become
more relevant. For instance, the average correlation length for utility spaces generated using
[3,7] constraints for six issues is ψ = 5.9, while average correlation length for utility spaces
generated using [1,2] constraints is ψ = 2.8. Though most utility-maximizing negotiation
approaches work in scenarios like the example shown in Fig. 3, their performance (in terms of
optimality and failure rate) decreases drastically in highly nonlinear scenarios defined using
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Fig. 3 Example of a nonlinear utility space generated by using “wide” constraints
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Fig. 4 Example of a highly uncorrelated utility space generated by using “narrow” constraints

narrow constraints, and therefore an alternative approach is needed to deal with these highly
uncorrelated utility spaces [55].

If we compare the utility spaces shown in Figs. 3 and 4, we can see that the main difference
between them (apart from the absolute utility values, but they have no effect in optimality)
is the width of the peaks. Highly-nonlinear scenarios will yield narrower peaks. Utility max-
imizing agents tend to choose those peaks (or high-utility regions) as bids, and the result is
that narrower bids will be sent to the mediator. The width of the bids (or more generally, the
volume of the bids), will directly impact the probability that the bid overlaps a bid of another
agent, and thus its viability, that is, the probability of the bid resulting in a deal. Intuitively,
in such complex scenarios, an agent with no knowledge of the other agents’ preferences
should deviate from the “plain utility maximization strategy” and try to adequately balance
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the utility of their bids (to maximize its own profit) and the volume of those bids (to maximize
the probability of a successful negotiation).

We formally represent this through the following definitions:

Definition 10 Volume of a region. The volume of a given region r within the solution space
D (be it a constraint or a bid) is defined as the cardinality of the set of contracts contained
within the region.

vr = |r | , with r ⊂ D

Definition 11 Quality factor. The quality factor of a given region r within the solution space
D (be it a constraint or a bid) is defined as

Qr = uαr · v1−α
r ,

where ur and vr are, respectively, the utility and volume of the bid or constraint r , and
α ∈ [0, 1] is a parameter which models the attitude of the agent. A social, cooperative or risk
averse agent (α < 0.5) will tend to qualify as better bids those that are wider, and thus are
more likely to result in a deal. A risk willing, highly competitive or selfish agent (α > 0.5)
will, in contrast, give more importance to bid utility.

3.4 Bid generation mechanisms

3.4.1 Contracts sampling and simulated annealing

We can see the problem of finding the adequate set of bids for an agent as a local optimiza-
tion problem, since for rational agents bids should be high-utility regions or, more generally,
regions of high quality factor. Therefore, nonlinear optimization mechanisms may be used by
the agents to find those regions suitable to be sent to the mediator as bids. Here we describe
a bidding mechanism based on simulated annealing, which consists of three steps:

1. Sampling: Each agent takes a fixed number of random samples from the contract space,
using a uniform distribution.

2. Adjusting: Each agent applies simulated annealing to each sample to try to find a local
optimum in its neighborhood. The function which is tried to maximize by the simulated
annealing optimizer is the quality factor Q. Since the quality factor Q is a feature of a
region, not a contract, the adjusted contracts must be mapped to the high utility regions
where they are contained before they are accepted or rejected by the simulated annealing
engine. This can be easily done by checking all constraints in the agent preference model
and computing the intersection of the constraints which are satisfied by the candidate
contract. The volume of this intersection can then be used to compute the quality factor
Q of the region.This results in a set of high-quality contracts.

3. Bidding: Each agent generates a bid for each high-quality, adjusted contract. The bids
are generated as the intersection of all constraints which are satisfied by the contract.
Bids defined in this way represent hyper-rectangle regions in the n-dimensional solution
space. Each agent sends its bids to the mediator, along with the utility associated to each
bid.

The bid generation mechanism may be seen formally in Algorithm 1. Also, some details
about the mechanism are highlighted. The algorithm is run for a fixed number of iterations nb,
which imposes the maximum number of generated bids (1). The function ad just_annealing
(x, Q(., α), nS A, TS A) uses simulated annealing to return a region of optimal quality factor
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using as starting point a sampled contract x (2). There are some parameters in this function
which may be adjusted to influence the behavior of the simulated annealing algorithm, like
the initial temperature and the number of iterations. As studied in [30], best results in term of
optimality and efficiency are achieved using nS A = 30; TS A = 30. Moreover, the algorithm
discards any contract which, once adjusted, yields less utility than the agent’s reservation
value u R , which guarantees that all bids would be accepted by the agent as final solutions
(3). Finally, duplicate bids or bids contained in other bids are also discarded (4). Some of
these ideas are also used in the next bidding mechanism described.

Algorithm 1: Bid generation using simulated annealing over quality factor

Input:
D: solution space domain
nb: maximum number of bids
u R : reservation utility for the agent
C : constraint set defining agent’s utility space
u: agent’s utility function
α: agent’s attitude parameter
Q: function which computes the quality factor of a region
nS A: iteration bound for the simulated annealing algorithm
TS A: initial temperature for the simulated annealing algorithm

Output:
B: bid set

B = ∅;
k = 0;

1 while k < nb do
k = k + 1;
x = random_contract ();

2 b = ad just_annealing(x, Q(., α), nS A, TS A);
3 if u(b) ≥ u R then

B = B
⋃

b;

end
4 remove_duplicates(B)

3.4.2 Maximum weight independent set and the max-product algorithm

There have been a number of recent successful efforts in literature for using graphs to model
negotiation scenarios in multi-link negotiations [89] or combinatorial auctions [21]. One
of the advantages of such approaches is that they allow to use well-known graph methods
for solving the negotiation problem. In our case, graphs provide an alternative perspective
for the bidding process, looking at the constraint-based agent utility space as a weighted
undirected graph. Consider again the simple utility space example shown in Fig. 2. Think
about each constraint as a node in the graph, with an associated weight which is the utility
value associated to the constraint. Now we will connect all nodes whose corresponding con-
straints are incompatibles, that is, they have no intersection. The resulting graph is shown in
Fig. 5.

To find the highest utility bid in such a graph can be seen as finding the set of unconnected
nodes which maximizes the sum of the nodes’ weights. Since only incompatible nodes are
connected, the corresponding constraints will have non-null intersection. In the example, this
would be achieved by taking the set {C1,C2}. The problem of finding a maximum weight
set of unconnected nodes is a well-known problem called maximum weight independent set
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Fig. 5 Weighted undirected
graph resulting from the utility
space in Fig. 2

(MWIS). Though MWIS problems are NP-hard, in [3], a message passing algorithm is used
to estimate MWIS. The algorithm is a reformulation of the classical max-product algorithm
called “ min-sum”, and works as follows. Initially, every nodes i send their weights ωi to
their neighbors N (i) as messages. At each iteration, each node i updates the message to send
to each neighbor j by subtracting from its weight ωi the sum of the messages received from
all other neighbors except j . If the result is negative, a zero value is sent as message. Upon
receiving the messages, a node is included in the estimation of the MW I S if and only if its
weight is greater than the sum of all messages received from its neighbors. Message passing
continues until MW I S converges or the maximum number of iterations is exceeded. This is
formally shown in Algorithm 2.

Algorithm 2: Min-sum algorithm for MWIS estimation

Input: i = 1, . . . , n: nodes (constraints) in the weighted graph ωi |i = 1, . . . , n: weight (utility) of
each node (constraint) N (i): set of neighbors of each node (incompatible constraints)
tmax: maximum number of iterations

Output: MW I S: estimation of the MWIS
t = 0; mt

i→ j = ωi ∀ j ∈ N (i) while t < tmax do
t = t + 1; foreach i do

mt
i→ j = max{0, ωi −∑

k �= j,k∈N (i) mt−1
k→i }

end

MW I St = {i |ωi >
∑

k∈N (i) mt−1
k→i } if t > 1 and MW I St = MW I St−1 then

return MW I St

end

However, this reformulation of the bidding problem is not in itself a suitable solution,
since it has some serious drawbacks. On one hand, the algorithm is deterministic, and thus
only one bid can be generated for a given set of constraints. On the other hand, the algorithm
is based on utility maximization, so it does not allow the agent to search for high quality
bids. Moreover, the quality factor Q cannot be directly introduced into the max-product or
min-sum algorithm, because the algorithm is based in a weighted graph where weights are
additive, and the quality factor is not additive (that is, the quality factor of the intersection of
a set of constraints is not the sum of the quality factor of the constraints).

To solve this, the algorithm is applied to a subset of constraints C ′ = {c′
k |k = 1, . . . , nc; nc

< l; c′
k ∈ C}. The constraints c′

k are randomly chosen from the constraint set C . In this way,
a different constraint subset C ′ is passed to the algorithm at each run, which will result in dif-
ferent, non-deterministic bids. The approach proposed in can be seen in Algorithm 3. In order
to maximize quality factor of the generated bids, a tournament selection [57] is used when
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generating the subset of constraints C ′ to be passed to the max-product algorithm (1). This
tournament selection works as follows. For each bid to generate, a number nt of candidate
constraint subsets are randomly generated. From these subsets, the one which maximizes the
product of the quality factors Q of its constraints is chosen as the subset C ′ to be used for the
max-product algorithm. In this way, since high-Q constraints are more likely to be selected,
we expect the average Q for the resulting bids to be higher.

Algorithm 3: Bid generation using MWIS and Q-based tournament selection

Input:
nb: maximum number of bids
u R : reservation utility for the agent
C : constraint set defining agent’s utility space
�: constraint weights for the agents
u: agent’s utility function
nc: number of randomly chosen constraints passed to the MWIS algorithm
nMW I S : maximum number of iterations for the MWIS algorithm
α: agent’s attitude parameter
nt : number of candidate subsets in tournament selection

Output:
B: bid set

B = ∅;
k = 0;
while k < nb do

k = k + 1;
1 C ′ = tournament_selection(C, nc, α, nt );

{nodes, weights, neighbors} = build_tree(C ′, �);
MW I S = minsum(nodes, weights, neighbors, nMW I S);
b = generate_bid(C ′,MW I S); if u(b) ≥ u R then

B = B
⋃

b;

end
remove_duplicates(B)

3.5 A probabilistic mechanism for deal-identification

Once agents have placed their bids, it is the turn to the mediator to try to find deals among
them. The most straightforward way to do this is to perform an exhaustive search of overlaps
between the different agents’ bids, tagging those overlaps found as potential solutions, and
then selecting a winner solution from the potential solution set according to social welfare
criteria.

The problem with such an exhaustive search is scalability with the number of agents. In a
worst case scenario, the mediator would have to search through a total of nna

b bid combina-
tions, where nb is the number of bids per agent, and na is the number of negotiating agents.
This imposes a limit on the maximum number of bids that an agent may send to the mediator.
For instance, if we limited the number of combinations to 6, 400, 000, this means that, for
four negotiating agents, the maximum number of bids per agent is na

√
6400000 = 50. This

limit becomes harder as the number of agents increases. For example, for ten agents, the limit
is four bids per agent, which drastically reduces the probability of reaching a deal. This is
specially true for highly-nonlinear utility spaces, where the bids are narrower.
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To address this scalability limitation, we perform a probabilistic search in the mediator
instead of an exhaustive search. This means that the mediator will try a certain number nbc of
randomly chosen bid combinations, where nbc < nna

b . In this way, nbc acts as a performance
parameter in the mediator, which limits the computational cost of the deal identification
phase. Of course, restricting the search for solutions to a limited number of combinations
may cause the mediator to miss good deals. Taking this into account, the random selection of
combinations is biased to maximize the probability of finding a good deal. Again, the param-
eter used to bias the random selection is Q, so that higher-Q bids have more probability of
being selected for bid combinations at the mediator.

The mechanism is formally shown in Algorithm 4. We can see that the number of analyzed
bid combinations is limited to nbc (1), and that the function combine_bids (. . .) selects the
bid combinations to analyze (2). Limiting bid combinations at the mediator allows us to
remove the limit on the bids issued by the agents, which increases the probability of finding
potential deals. Finally, the algorithm selects from all deals found the one which maximizes
social welfare, computed using the sw (s,U ) function (3). Social welfare is computed as the
Nash product [60], that is, the product of the utilities that a potential solution gives to every
agent.

Algorithm 4: Probabilistic deal identification

Input:
A: set of negotiating agents
na = |A|: number of negotiating agents
B: set of bids issued by every agent
U : declared utilities for every agent’s bids
Q: declared quality factors for every agent’s bids
sw: social welfare function
nbc: maximum number of bid combinations at the mediator

Output:
s f : final deal

n = 0;
S = ∅;

1 while n < nbc do
2 s = combine_bids (A, na , B,U, Q) ;

if s �= ∅ then
S = S ∪ s;

n = n + 1;
end

3 s f = arg {maxs∈S sw (s,U )};

3.6 Discussion

We approach the negotiation problem as a mechanism design problem, where we aim to
design the structure of the game in a way that facilitates social welfare optimizing outcomes
[58]. We assume a complex agent preference space, where exhaustive search for high-value
solutions is unfeasible for the agents. Therefore, preference revelation is performed in the
form of bids, which are subsets of the preference space. In fact, the bidding process is seen as
a local constraint-based optimization problem, where each agent needs to find combinations
of compatible constraints which maximize its own utility. Analogously, the deal identifica-
tion process is seen as a constraint-based multi-objective optimization problem, where the
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mediator tries to find overlaps between agents’ bids which maximize social welfare. We
have chosen a mediated approach for the negotiation to facilitate social-welfare maximizing
mechanism design, and we have used a heuristic search at the mediator to cope with the
scalability problems imposed by the high cardinality of the solutions space.

The experimental evaluation performed in our previous work showed that the use of the
quality factor in the bidding and identification mechanisms described significantly improved
the performance of the negotiations over the previous approaches in highly uncorrelated
utility spaces [55]. Furthermore, it was also pointed out that the use of the quality factor
greatly improved the scalability of the model, allowing to perform negotiations with up to 14
agents and 20 issues while keeping high optimality values and low failure rates. However,
there are some issues which are not addressed in the work. Even when the quality factor is
designed to model the attitude of an agent (be it risk attitude, tendency to cooperation or
selfishness) through its α parameter, the experimental evaluation was performed only for
α = 0.5. This assumes that all negotiating agents have the same attitude, and also that this
attitude is neutral (i.e. agents give the same weight to utility and deal probability). In a real,
competitive scenario, these assumptions do not necessarily hold. The parameter α allows an
agent to take a given strategy (a given attitude), and so the possibility arises that different
agents may choose different strategies for a given negotiation.

Since our aim is to design mechanisms which facilitate social welfare optimizing out-
comes, we have to pay attention to the consequences of having agents playing different
strategies in the negotiation. It could be the case that the proposed approach favored a spe-
cific strategy (or set of strategies) against the others. Assuming the agents are individually
rational, they would have the incentive to play these favored strategies. If they are different
from the assumption above, the outcomes of a real negotiation among rational agents could
differ from the ones obtained in our previous experiments in terms of social welfare. There-
fore, a strategy analysis is needed to evaluate the mechanisms in situations where agents with
different attitudes interact.

4 Strategy analysis of the auction-based negotiation protocol

As we stated in Sect. 2.1.3, one of the main challenges when designing decision mechanisms
for automated negotiations is strategic stability, and this problem is closely related to the
notions of equilibrium described above. For heuristic approaches such as those described
above, game theory concepts and analyses cannot be directly applied, due to the high var-
iability of the bid generation mechanisms and the total uncertainty about the preferences
of the different agents. There are some successful works for finding equilibrium conditions
under incomplete information [24,81], and even with infinite games [68]. However, all these
works assume a certain degree of determination about the outcome of the negotiation once
the agents (each one having a private type) have chosen their strategies. With pure strategies,
this determination is perfect, that is, negotiation outcome is known as soon as agents have
chosen their strategies. For mixed strategies, agents have a probability distribution over their
set of possible actions, and thus the outcome of the negotiation is not perfectly determined
until all agents have chosen their actions.

In the heuristic approach we are dealing with, there are many levels of uncertainty. Agent
strategies may be modeled by varying the value of the α parameter used to compute quality
factor. This can be seen as a pure strategy, since the choice of an agent is to use one value
of α or another. However, a negotiating agent final action (i.e. the bids which are actually
sent to the mediator) does not depend only on that choice. It also depends, of course, on the
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agent’s preference model, which may be identified with the agent “type”. However, since
agents do not know or fully explore their utility spaces (we assume that such exploration
is computationally intractable), the final agent action also depends on the heuristic search
method used to generate the bids. Since this method is, in the cases outlined in the previous
section, non-deterministic, this adds an additional layer of uncertainty, which we could in
some way identify with the use of mixed strategies (although very complex ones). In addi-
tion, once all negotiating agents have performed their actions (i.e. bids), the mediator initiates
the deal identification step of the protocol, which is also non-deterministic. These multiple
layers of uncertainty make very difficult to directly apply game-theoretic concepts such as
equilibrium conditions or best-response strategies, since different trials of the same “game”
(same agents, same strategy combinations, same preference sets) may yield drastically dif-
ferent results depending on the specific outcomes of the heuristics involved. Therefore, part
of our study would be necessarily empirical, which is a usual approach when dealing when
heuristic strategies [1].

Some of the game theory concepts, however, can still be useful with some nuances. In
particular, strategic properties analogous to the equilibrium conditions in game theory may
be studied for heuristic mechanisms. This section is dedicated to assess the strategic behavior
of the described auction-based negotiation model, determining the existence of individually
optimal strategies and social optimal strategies, and verifying if the auction-based negotiation
mechanisms are prone to situations involving high values for the price of anarchy (PoA). To
this end, a probabilistic analysis and an empirical evaluation have been performed.

4.1 Probabilistic analysis

Intuitively, it can be seen that the quality factor defined above allows an agent to balance bid
utility (to maximize its own benefit) and bid volume (to maximize deal probability). More
formally, we may find mathematic expressions for the deal probability and the expected utility
in a negotiation using the auction-based protocol. The deduction of these expressions can be
found in Appendix A. For the purpose of this section, the final expressions will suffice. In par-
ticular, deal probability for a single run of the auction-based negotiation protocol is given by

Pdeal =
∏

nk
bp∑

j=1

(−1) j+1
(∏

nk
bp

j

)(
1

|D|n(na−1)

) j

, (1)

where na is the number of negotiating agents, n is the number of issues, |D| is the domain
size for the issues (assuming all issues have the same domain size), and nk

bp is the number of
bidden contracts for agent k, that is, an indication of the portion of the solution space which

is covered by agent k bids. This is given by nk
bp = ∑nk

b
l=1 v

k
l , where nk

b is the number of bids

issued by agent k and vk
l is the volume of each l-th bid.

In a similar way, we can see that the expected utility for agent k is given by
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where uk
l is the utility for the l-th bid of agent k. According to this expression, to maximize

expected utility, an agent should reveal as much information as possible. If information dis-

closure is limited, an agent should try to maximize
∑nk

b
l=1 uk

l · vk
l , balancing in this way bid
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utility and bid volume. This is coherent to the choice of α = 0.5 in [55]. Of course, this
strategy does not model the attitude of, for instance, a risk willing agent, who would prefer
to risk the success of the negotiation to have the chance of a higher utility gain. To model
this, we can use an expected deal utility, that is, the expected utility for an agent provided
that a deal has been reached. This expected deal utility is given by:

E[uk |deal ] =
∑nk

b
l=1 uk

l · vk
l

nk
bp

(3)

According to this, a risk willing or a selfish agent could give preference to bid utility
against bid volume, trying to reduce nk

bp to maximize expected deal utility, but reducing also
deal probability.

These expressions are coherent with the intuitive notion of agent attitude introduced in
the quality factor in the previous sections. We can also use them to infer some of the strategic
properties of the protocol. Since deal probability increases with deal volume, low values of α
are expected to increase deal probability too. As we have seen, when there is total uncertainty
about the utility spaces of the agents, the expected utility is maximized for α = 0.5. If the
utility spaces of the agents are specially complex, or it is known that the utility spaces of the
different agents are strongly different, it is reasonable to think that the deal probability will
be lower, and thus agents should use lower values of α (that is, they should take less risks,
or be more cooperative, or less selfish) in order to keep expected utility at an acceptable
value. Similarly, if the agent’s utility spaces are highly correlated, agents could use higher α
values (that is, be more utility oriented), trying to maximize the expected deal utility, since
deal probability will be higher. Furthermore, since lower α values increase deal probability,
a single agent could benefit from a selfish strategy if the other agents are more cooperative
(their lower α values would compensate the decrement in deal probability). However, should
all agents decide to use selfish strategies, deal probability would reduce drastically, leading
to low expected individual and social welfares. If there is a tendency or incentive for this
condition to occur, we would have a high price of anarchy situation, and we should design
and establish mechanisms to stabilize the protocol.

4.2 Experimental analysis

In this section the strategic properties of the protocol inferred from the statistical analysis
are empirically verified. To this end, a set of experiments has been devised to analyze the
main strategic properties of the model. As stated in Sect. 2.1.3, these properties are related to
the different notions of equilibrium. However, as we discussed above, determining rigorous
equilibrium conditions in our negotiation model is very difficult, due to the different layers
of uncertainty introduced by the heuristics used. Therefore, the experiments performed and
the conclusions drawn from them will be based on statistical observations, in a similar way
to the notions of equilibrium considered for Bayesian players in Harsanyi [24] and Reeves
and Wellman [68]. In particular, best-response strategies will be determined according to the
maximization of the expected payoff.

To conduct the experiments, negotiating agents will generate their offers using contract
sampling with Q-based simulated annealing (SA-Q) or maximum weight independent sets
with a Q-based tournament selection (MWIS-Q). The experiments have been designed to
study the dynamics of the negotiation process when agents with different strategies interact.
In this context, agent strategic behavior is defined by the value of the α parameter each agent
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uses to compute constraint and bid quality factor. Preliminary versions of some of the results
included in this section have been previously published in Marsa-Maestre et al. [56].

4.2.1 Individually optimal strategy analysis

First of all, the existence of an individually optimal strategy is studied. This is closely related
to the concept of dominant strategy defined in game theory. A dominant strategy would be
one which, regardless of the strategies the other agents choose, ensures that a given agent
would not have achieved a higher payoff using any other possible strategy. However, in a
model with such degree of variability in bid generation and deal identification as the one we
are dealing with, and with infinite strategies for the different agents (the possible values for
the α parameter), it is not possible to achieve this certainty. In particular, it is not possible to
state that a given strategy would have given an agent a better payoff than another strategies,
since the same strategies may yield drastically different payoffs in different trials. We can,
however, evaluate statistically which strategies tend to give the agents the best payoffs, trying
to determine whether there is a tendency in the model to favor a given strategy. This would
be an individually optimal strategy in the context of our heuristic model.

Though the idea of an individually optimal strategy is conceptually simple, evaluating
its existence is not straightforward. At a first glance, we need to be able to compare the
utilities or payoffs obtained by an agent in different trials of the experiment. However, to
see if there is an individually optimal strategy regardless of the agent’s specific preferences,
payoffs obtained by agents with different preference spaces need to be evaluated too. The
problem is not only that maximum potential payoffs for different agents may vary, but also
that such potential payoffs for a given negotiation encounter also depends on the preference
spaces of the other agents participation in the negotiation, since only those regions of the
solution space whose utility is above the reservation values of all agents are actual potential
solutions. Taking this into account, we measure the payoff obtained by a given agent j on
a given encounter as its individual optimality rate defined as the ratio between the payoff
obtained by the agent in the encounter, and the highest possible payoff for that agent in
that encounter. This highest possible payoff is computed by giving all information about the
agents preferences to a nonlinear optimizer, which then computes an approximate optimal
contract for j with complete information.

In a first set of experiments, we have tried to determine if there is a strategy, determined
by a certain α value, which yields maximum utility to an agent given the strategies of the
other agents. To evaluate this, we have performed a set of experiments comparing the utility
obtained by an individualist agent, which plays an individual strategy determined by αi , with
the utility obtained by the other agents. To model the joint effect of the behavior of the rest of
the agents, we have used a common strategy αs for them. Experiments have been performed
varying αi and αs within the interval [0, 1] in 0.1 steps.

Figures 6 a and b show the box plots of the results for 100 runs of the experiments for
SA-Q and MWIS-Q, respectively, for six agents and six issues. We have represented the ratio
between the optimality rates obtained by the individualist agent and the utility obtained by
the rest of the agents. In this case we consider only successful negotiations, since in failed
negotiations all agents get zero utilities, and the ratio cannot be computed. We can see the
same trend for both approaches studied. Generally, the individualist agent obtains a higher
utility when using higher αi values. We can also see that, for any αs , the maximum utility
value for the individualist agent is obtained for αi = 1, which suggests that this could be
the individually optimal strategy. For αs > 0.8 negotiations failed, and thus no values are
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Fig. 6 Individual optimal strategy analysis against symmetric strategy combinations. a SA-Q, b MWIS-Q

shown in the figures. This result is directly related to social strategy analysis, and thus we
will discuss it in more detail in the following section.

Though the results suggest that αi = 1 is the individually optimal strategy for the agents,
the previous experiment only tests agent individual strategies against symmetric strategy
combinations (i.e. all the other agents play the same strategy). In a more realistic setting, we
may expect agents to play non-symmetric strategy combinations. To determine the expected
payoffs of the different individual strategies for the individualist agent against arbitrary stra-
tegic combinations of its opponents, we have repeated the previous experiment randomizing
the strategy choice of the other agents. In this way, the individualist agent played its indi-
vidual strategy αi , while the other agents’ strategies were randomly drawn from a discrete
uniform distribution within the interval [0, 1] in 0.1 steps. Since the use of non-symmetric
strategy profiles for the opponents increased the variability of the experiment, 1000 runs of
each experiment were performed.

Figures 7 a and b show the box plots of the results for SA-Q and MWIS-Q, respectively,
for six agents and six issues. We have again represented the ratio between the optimality
rates obtained by the individualist agent and the utility obtained by the rest of the agents.
In this case, the columns in the horizontal axis represent the different values for αi = 1,
while in the vertical axis we have represented the ratio between optimality rates as notched
box and whisker plots. The box and whisker plots are represented as follows. Each column
corresponds to a set of samples of the gain for individualist agents in 100 negotiations. The
two boxes in each column contain 50% of the samples, corresponding to the 25th and 75th
percentiles, and the red line in the separation of the two boxes represents the median. The
small notches around the median display the variability of the median between samples as
95% confidence intervals, computed using the method described in [85]. This means that
two medians are significantly different at the 5% significance level if their notches do not
overlap. The whiskers (dashed lines) extend to the most extreme data points not considered
outliers, and outliers are plotted individually with a plus (+) sign. We can observe similar
results than in the previous experiment. The individualist agent obtains a higher expected
relative payoff when using higher αi values, being αi = 1 the strategy maximizing expected
payoff, so we can conclude that this is the individually optimal strategy for the agents.

4.2.2 Social strategy analysis

Once individual strategies have been analyzed, we have studied social strategies, trying
to determine the existence of a set of strategies for the different agents which maximizes
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Fig. 7 Individual optimal strategy analysis against random strategy combinations. a. SA-Q. b. MWIS-Q

expected social welfare. Since both the negotiation model and the measure we have taken for
social welfare (Nash product) are symmetric, we expect this strategy set to be symmetric as
well. Taking this into account, we have performed a set of experiments using for all agents
the same social strategy, determined by αs . Experiments have been conducted varying αs

within the interval [0, 1] in 0.1 steps. Furthermore, to study the variation of the results with
the complexity of the utility spaces, the experiments have been repeated for utility spaces of
different complexity. Utility space complexity have been measured using correlation length
ψ , as introduced in Sect. 2.2.
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Table 1 Social strategy analysis for SA-Q

ψ αs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.8 0.327 0 0 0 0 0 0 0 0 0 0

3.1 0.529 0 0 0 0 0 0 0 0 0 0

4.0 0.772 0 0 0 0 0 0 0 0 0 0

4.3 0.864 0.884 0.897 0.830 0.867 0.907 0.919 0.935 0.948 0 0

4.6 0.935 0.955 0.959 0.961 0.963 1.000 1.000 1.000 1.000 1.000 1.000

5.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2 Social strategy analysis for MWIS-Q

ψ αs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.8 0.334 0.379 0.384 0.377 0.434 0.480 0.552 0.486 0 0 0

3.1 0.460 0.528 0.495 0.504 0.554 0.555 0.596 0.682 0 0 0

4.0 0.795 0.785 0.798 0.814 0.821 0.838 0.828 0.827 0.814 0 0

4.3 0.967 0.963 0.976 0.961 0.973 0.969 0.971 0.970 0.977 0 0

4.6 1.000 1.000 0.975 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Experiment results for six agents and six issues for SA-Q and MWIS-Q are presented,
respectively, in Tables 1 and 2. Each table shows the median social optimality rates for
the negotiation as the value of αs varies, for different values of ψ . Social optimality rate
is defined as the ratio between the social welfare obtained with the protocol and the social
welfare obtained using an optimizer with complete information. For SA-Q, in the most
uncorrelated utility spaces, only the most risk-averse strategy (αs = 0) achieves success-
ful negotiations. For medium or low-complexity scenarios, maximum social welfare values
are obtained for αs values around 0.7. MWIS-Q approach performs better than SA-Q for
uncorrelated utility spaces, and the α values which maximize social optimality are around
0.6 and 0.8. This is higher than the theoretical optimum (α = 0.5), which is reasonable if
we think that calculations were made assuming total uncertainty about the utility space (that
is, ψ = 0).

Once optimal social strategies have been identified, a desirable property would be that
these strategies were a Nash equilibrium or a Bayes-Nash equilibrium for the system as we
saw in Sect. 2.1.3, that is, that there was no incentive (no potential increase in expected
payoff) for any agent to deviate from this strategy. Unfortunately, as we saw above, there is
an individually optimal strategy, given by αi = 1. Therefore, an individually rational agent
may decide to take this strategy to maximize its own benefit (as seen in Fig. 6 a and b). All
agents have the same incentive, so the trend would be for all agents to choose αi = 1. As we
can see in Tables 1 and 2, this makes negotiations fail in medium and highly complex scenar-
ios. The fact that individual rationality may lead the system to situations far from the social
optimum makes the model prone to situations analogous to those of high price of anarchy
(PoA) described in Sect. 2.1.3. Rigorously speaking, we cannot use Price of Anarchy directly,
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since it is related to the notion of Nash Equilibrium, which has no sense in our setting due
to the great variability and uncertainty about negotiation outcomes. However, other authors
have recently defined analogous concepts to PoA for games under uncertainty conditions,
like Bayes-Nash PoA in Leme and Tardos [46]. We can take a similar approach under the
assumption that agent types are not known and there are no specific a priori beliefs about
the strategies played by other agents, which means that from the point of view of the agents,
opponents’ strategies/types are equiprobable. Taking this into acount, we analogously define
an Expected Price of Anarchy as follows:

Definition 12 Expected Price of Anarchy (EPoA) The Expected Price of Anarchy in a non-
deterministic game is the ratio between the maximum expected social welfare achievable by
means of a feasible agent strategy combination and the minimum expected social welfare
achievable by means of an individually rational agent strategy combination.

E PoA = maxs∈S E [sw(s)]

mins∈Si.r. E [sw(s)]
,

where S is the set of all feasible strategy combinations of the game, Si.r. ⊆ S is the set
of all strategic combinations which are individually-rational for the negotiating agents, and
E [sw(s)] is the expected social welfare for a given strategy combination s.

According to this definition and to the results of the experiments above, our negotiation
model could be prone to high EPoA situations in medium and highly complex scenarios. If
confirmed, this would be a situation which would negative impact model stability. Stability
issues in the model, along with techniques to improve stability, are discussed in detail in the
following section.

5 Addressing infinite expected price of anarchy in the auction-based negotiation
protocol

In this section, stability problems of the auction-based negotiation protocol are addressed.
A set of different mechanisms intended to address situations of high price of anarchy in the
negotiation process are proposed, and their effectiveness is empirically evaluated.

5.1 Enforcing socially-oriented strategies at the mediator

The final element in the deal identification mechanism is the social welfare function sw (s,U ).
Once a set of viable solutions has been found, the mediator chooses as the solution the one
which maximizes social welfare. Therefore, a metric which allows the mediator to compare
the different solutions in terms of social welfare is needed. One of the most widely used is
usually called social welfare, which is defined as the sum of the utilities that solution gives
to every agent [67]. Maximizing this metric, solutions near to the Pareto-optimal region are
found. However, sometimes the solutions found may have excessive low utility for some
of the agents. This is specially true if the agents’ reservation value is zero, since there may
be solutions maximizing the sum of utilities even when the utility values for some of the
agents tend to zero. To avoid this, an alternative metric could be the minimum utility, that
is, the minimum of the utilities that solution gives to each agent. Though maximizing this
metric guarantees a certain satisfaction level for all agents participating in the negotiation, it
has an important drawback, since it makes no difference between solutions which give the
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same minimum utility even when they give different utility values for the rest of the agents.
Therefore, solutions obtained using this criterion may be far apart from the Pareto front.

A metric which allows to achieve more egalitarian solutions which are closer to the Pa-
reto-optimal region is the Nash product [60], which is the product of the utilities that solution
gives to every agent. This metric for the quality of a solution is widely used in the literature,
since it allows to achieve solutions close to the Nash solution, which is widely used in the
literature as a reference for optimality in negotiation processes. The ratio between the Nash
product of a given solution to a negotiation problem and the Nash solution associated to that
problem is usually referred as the Nash optimality of the solution.

Given the different social welfare metrics, it is clear that an agent’s attitude greatly influ-
ences the final utility value for this agent if an agreement is reached. Once all valid inter-
sections have been found, the final outcome is selected using a function which depends on
the utility values the outcome gives to the agents. Selfish, risk-willing or highly competitive
agents, which have given more importance to utility against volume in the bid generation
process, will have, on average, higher utility bids, and thus their expected deal utility (Eq. 3)
will be higher. Taking this into account, the preferred strategy of an agent may be to take
a selfish attitude, as we inferred in the previous section. The problem is that, in complex
utility spaces, having all agents taking such attitudes could lead to very narrow offers at the
mediator, which would make deal probability (given by Eq. 1) decrease drastically. This may
lead the protocol to negotiation failures, with zero social welfare, thus resulting in situations
of infinite Expected Price of Anarchy, turning the negotiation model unstable.

To improve the strategic stability of the negotiation, the mechanisms should be modified
to incentivize the adoption of socially optimal strategies. The logical step in the protocol to
make any modification is the deal identification at the mediator. Since negotiating agents are
supposed to be individually rational, it seems reasonable to entitle the mediator with the task
of pursuing social welfare. In the deal identification mechanism described in Sect. 3.5, the
mediator chooses as the final solution the one maximizing social welfare. The metric used
to compute social welfare in this case is the Nash product of the individual agent utilities.
Since the Nash product is symmetric, those agents whose bids have higher average utility
would, on average, obtain higher utilities in the final deal, which incentivizes the use of the
dominant strategy. To mitigate this effect, a reasonable measure could be to reward in the
selection of the final solution to those agents which have made wider bids. This can be done
by using a generalized or asymmetrical version of the Nash product, similar to the ones used
in [35] to model agents power of commitment. In particular, we propose a modification of
the Nash product which we have called weighted product by average volume:

Definition 13 Weighted product by average volume The weighted product by average vol-
ume of a solution to a negotiation problem among na agents is the product of the utilities the
solution gives to every agent i , weighting each utility ui (s) by an adjustment factor equal to
the ratio between the average volume of the bids issued by the agent v̄i and the maximum
average volume of the bids of one of the agents:

swV̄ (s,U ) =
na∏

i=1

(
ui (s)

) v̄i

max1≤ j≤na v̄
j
, (4)

where ui (s) is the utility of the solution s for agent i , and v̄i is the average volume of the
bids issued by agent i .

In this way, the utility for those agents who have issued widest bids (which, on average,
will be the ones using more socially oriented strategies) will be given more weight in the
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selection of the final solution than those of the more selfish agents. An interesting effect
of this metric is that a rational agent could issue some high volume, low utility bids to try
to compensate for its high-utility, low volume bids. To counter this effect, we propose to
consider bid utility and bid volume jointly, using a product weighted by average quality
factor:

Definition 14 Weighted product by average quality factor The weighted product by average
quality factor of a solution to a negotiation problem among na agents is the product of the
utilities that solution gives to every agent i , weighting each utility ui (s) by an adjustment
factor equal to the ratio between the average quality factor of the bids issued by the agent Q̄i

and the maximum average quality factor of the bids of one of the agents:

swQ̄(s,U ) =
na∏

i=1

(
ui (s)

) Q̄i

max1≤ j≤na Q̄ j
, (5)

where Q̄i is the average quality factor of the bids issued by agent i .

When this last metric is applied, quality factor is not only used to compute social welfare
at the mediator. As we have seen in Sect. 3.5, bid selection for deal identification at the
mediator is performed using the quality factor of the bids as declared by the agent issuing the
bids. This makes the assessment of the bids made by the mediator strongly dependent on the
risk attitudes of the agents, thus favoring those agents with more selfish strategies. Taking
this into account, we propose that the mediator uses its own αm parameter for Q calculation.
In this way, we expect to decouple deal identification from the negotiating agent strategies,
improving the stability of the protocol. Possible choices for αm are the socially optimal strat-
egy for a given correlation length, or αm = 0.5, which is the theoretical optimal value if there
is total uncertainty about the agents’ utility spaces. However, there is a problem with using
such αm values. Any αm ≥ 0.5 would give at least the same weight to bid utility than to bid
volume. Because of this, it would not be possible for the mediator to discriminate whether a
given bid has a high quality factor due to its high volume (thus being probably a bid issued by
a socially oriented agent) or due to its high utility (thus being probably generated by a selfish
agent). It seems reasonable to use αm < 0.5, giving more weight to higher volume bids,
and thus enforcing social behavior among agents. The limit would be to use αm = 0, which
would make the mediator to select bids according only to their volume, regardless of their
utility. Our hypothesis is that this would totally decouple the deal identification mechanism
from the strategic behavior of the negotiating agents, thus improving protocol stability.

Finally, we shall consider that the use of such asymmetrical social welfare metrics, though
may contribute to improve model stability, may have its drawbacks as well. The rationale
behind the metrics is to “reward” those agents which are playing more cooperative strategies,
but the metrics are based on observations about agents’ final actions, since their strategies
are unknown to the mediator. More specifically, the mediator cannot distinguish whether an
agent is issuing low volume or low quality bids because it is playing a selfish strategy or
because its utility space does not contain better feasible regions. In this way, the mediator
may seem to be giving an undue advantage to agents with wider constraints. This kind of
asymmetric models have, however, been used successfully in other negotiation scenarios.
The Clarke tax method [11], which was briefly discussed in Sect. 2.1.3 imposes a tax to
each agent once the negotiation has ended, making each agent “pay” for the impact that its
participation had over other agents’ utilities. The approach we have taken here is similar in
the sense that we apply the asymmetrical social welfare metrics at the final steps of the deal
identification, to select the final deal among al potential deals found, and this final selection
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is biased to reward those agents which had issued “better” bids (according to the mediator’s
criteria). Though it is not possible to know, with a one-shot negotiation, whether agents are
issuing “better” bids due to a socially-oriented strategy or to a more correlated utility space,
the expected effect is that agents will have an incentive to select the bids they send not only
according to their own utility, but also to the mediator’s criteria, which would be set to favor
social welfare.

5.2 Stability analysis

Stability analysis is oriented to determine the possibility of an agent manipulating the nego-
tiation to its own benefit. In the model we are dealing with, this manipulation may occur
when an agent deviates from the socially optimal strategy taking a more selfish approach.
To evaluate this empirically, we have performed experiments comparing the utility obtained
by an individualist agent (or, more appropriately, a selfish agent, since it seeks to maximize
its own payoff), using its individually optimal strategy αi = 1, against the utility obtained
by the agent when using the corresponding socially optimal strategy αs , assuming the rest
of the agents are using αs . Experiments have been made for utility spaces with different
correlation lengths. Furthermore, since the model is designed for multi agent negotiations,
experiments have been performed for different number of selfish agents, thus studying the
effect of possible coalitions or coincidences.

Figures 8 and 9 show the experiment results for SA-Q and MWIS-Q, respectively, for
six agents and six issues. Since the aim of the experiment is to study the stability of the
proposed protocol, none of the weighted metrics proposed in the previous section has been
used, and social welfare is computed at the mediator using Nash product. In addition, the
mediator performs deal identification using the bid quality factors declared by the agents
(i.e. there is no αm). The figures show the ratio between the utilities obtained by selfish
agents and the utilities obtained when there are no selfish agents for different correlation
lengths and different number of selfish agents, for scenarios of different complexity. The
horizontal axis represents the number of individualist or selfish agents, while in the verti-
cal axis we have represented the ratio between utilities as notched box and whisker plots.
In each figure, column labelled as “0” represents the dispersion of utility gains when there
are no selfish agents. We can see that there are only significative gains for selfish agents in
medium complexity scenarios. In high-complexity scenarios (Figs. 8a and 9a), the presence
of selfish agents makes the negotiations fail, and thus there is no incentive to deviate from
the socially optimal strategy. When utility space complexity decreases (Figs. 8b and 9b), we
can see that a selfish agent may obtain gains over 40% for SA-Q and 200% for MWIS-Q.
Increasing the number of selfish agents makes negotiations fail, thus making unlikely that
coalitions will happen. For medium-low complexity scenarios (Figs. 8c and 9c) there is still
a significant gain for selfish agents, and this gain increases with the number of selfish agents
up to a number of three (coalitions between more agents make negotiations fail). Finally, for
the less-complex scenarios (Figs. 8d and 9d), a selfish attitude does not imply a significant
gain in utility, since all agents achieve high utility values using the socially optimal strategy.
Tables 3 and 4 summarize the results for SA-Q and MWIS-Q, respectively, showing the medi-
ans and the 95% confidence intervals for 100 runs of each experiment. From these results
we can conclude that the model is stable in low complexity and high complexity scenarios,
and that the scenarios of medium complexity make stability problems arise, because of the
existing incentive for agents to deviate from the social optimal strategy to their individually
optimal one (α = 1.0). As we have seen in Sect. 4.2.2, having all agents deviating to their
individually optimal strategy makes the negotiations fail, and thus this situation is the worst
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Fig. 8 Stability analysis of the protocol using SA-Q for scenarios with different correlation lengths. aψ = 2.8,
b ψ = 4, c ψ = 4.3, d ψ = 5.9

scenario induced by individually rational combinations of strategies, yielding zero utility for
all agents, which imply an infinite expected price of anarchy (EPoA). This is an undesirable
property of the model, and requires the application of additional mechanisms.

In the previous section, a set of alternative mechanisms for deal identification at the
mediator were proposed. Those mechanisms were intended to incentivize agents to social
behavior, and thus solve the stability problems of the model. To evaluate the effect of the
proposed mechanisms on the stability of the protocol, we have repeated the experiments for
the different approaches discussed in Sect. 5.1:

– Nash: Reference approach, using Nash product.
– Average_V : Product weighted by average bid volume (Eq. 4).
– Average_Q0.5: Product weighted by average quality factor (Eq. 5), with αm = 0.5, cor-

responding to the theoretical socially optimal strategy. This αm is also used for deal
identification at the mediator, as described in Sect. 5.1.

– Average_Q0: Product weighted by average quality factor, with αm = 0, corresponding
to a deal identification strategy totally decoupled from agent utility (the mediator only
considers bid volume). This αm is also used for deal identification at the mediator.

Figures 10 and 11 present the results of the experiments for SA-Q and MWIS-Q, respec-
tively. The figures show the results for 6 agents and 6 issues with utility spaces of correlation
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Fig. 9 Stability analysis of the protocol using MWIS-Q for scenarios with different correlation lengths.
a ψ = 2.8, b ψ = 4, c ψ = 4.3, d ψ = 5.9

Table 3 Stability analysis for SA-Q with six agents and six issues: gain for individualist agents against social
agents

ψ Number of individualist agents

1 2 3

median conf. interval median conf. interval median conf. interval

2.8 – – – – – –

3.1 – – – – –

4.0 1.5440 [1.4170, 1.6710] – – – –

4.3 1.0861 [1.0436, 1.1286] 1.1203 [1.0902, 1.1503] 1.1648 [1.1207, 1.2090]

4.6 0.9993 [0.9663, 1.0322] 1.0208 [0.9981, 1.0435] 1.001 [0.9796, 1.0224]

5.9 0.9693 [0.9438, 0.9949] 0.9976 [0.9775, 1.0177] 0.9907 [0.9715, 1.0100]

lengths ψ = 4 and ψ = 4.3, which were identified in the previous experiment as the most
critical scenarios regarding stability. Each graphic presents a box-plot for the final outcomes
of 100 runs of the experiment. The horizontal axis represents the approach under evalua-
tion, while in the vertical axis we have represented the gain for individualist agents in each
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Table 4 Stability analysis for MWIS-Q with six agents and six issues: gain for individualist agents against
social agents

ψ Number of individualist agents

1 2 3

median conf. interval median conf. interval median conf. interval

2.8 – – – – – –

3.1 – – – – –

4.0 2.0086 [1.8574, 2.1598] – – – –

4.3 1.1066 [1.0610, 1.1522] 1.1986 [1.1431, 1.2541] – –

4.6 0.9795 [0.9567, 1.0024] 1.0081 [0.9870, 1.0292] 0.9785 [0.9567, 1.0003]

5.9 1.0336 [1.0081, 1.0591] 1.0243 [1.0043, 1.0443] 0.9811 [0.9598, 1.0024]
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Fig. 10 Effect of the different mechanisms on the stability of the protocol for SA-Q in the most critical
scenarios. a ψ = 4.0, b ψ = 4.3

negotiation. We can see that the mechanism based on average volume provides not enough
improvement in stability, since for all cases median utility results are higher for selfish agents,
thus maintaining the incentive for agents to deviate from the socially optimal strategy. The
mechanism based on average quality factor, however, significantly mitigates the gain for
selfish agents, removing the incentive to choose the previously individually optimal strategy
(α = 1). Due to the effect of this mechanism, the situation where all agents take selfish
strategies is no longer induced by individually rationality, thus avoiding the infinite Expected
Price of Anarchy values. This adequately improves the stability of the protocol, and this
improvement is greater for αm = 0. From these results we can conclude that decoupling deal
identification from the attitudes of the negotiating agents by making the mediator calculate
its own quality factor improves the strategic stability of the negotiation process, significantly
decreasing Expected Price of Anarchy.

Since the techniques give preference to socially oriented offers against higher utility offers,
this may make final deals to be further from the theoretical optimum. To evaluate this, as
discussed in Sect. 2.1.3, we can consider the Price of Stability (PoS) imposed by the proposed
mechanisms. As it occurred with PoA, we cannot use Price of Stability definition directly,
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Reference Average_V Average_Q_0.5 Average_Q_0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
G

ai
n 

fo
r 

in
di

vi
du

al
is

t a
ge

nt
s

Mechanism

(a)

Reference Average_V Average_Q_0.5 Average_Q_0

1

1.5

2

2.5

3

G
ai

n 
fo

r 
in

di
vi

du
al

is
t a

ge
nt

s

Mechanism

(b)

Fig. 11 Effect of the different mechanisms on the stability of the protocol for MWIS-Q in the most critical
scenarios. a ψ = 4.0, b ψ = 4.3

Table 5 Effect of the different mechanisms over social optimality rate (and thus, over expected price of
stability) for SA-Q

ψ Mechanism

Reference Average_V Average_Q_0.5 Average_Q_0

Med. Conf. interval Med. Conf. interval Med. Conf. interval Med. Conf. interval

2.8 0.326 [0.305, 0.347] 0.633 [0.608, 0.658] 0.614 [0.587, 0.641] 0.632 [0.609, 0.655]

3.1 0.530 [0.511, 0.549] 0.588 [0.562, 0.614] 0.572 [0.546, 0.598] 0.571 [0.545, 0.597]

4.0 0.769 [0.740, 0.798] 0.620 [0.583, 0.657] 0.600 [0.566, 0.634] 0.625 [0.594, 0.656]

4.3 0.960 [0.951, 0.969] 0.734 [0.696, 0.771] 0.756 [0.715, 0.797] 0.727 [0.688, 0.767]

4.6 1.000 [1.000, 1.000] 0.836 [0.811, 0.860] 0.856 [0.831, 0.881] 0.847 [0.826, 0.869]

5.9 1.000 [1.000, 1.000] 0.939 [0.922, 0.956] 0.953 [0.938, 0.967] 0.967 [0.953, 0.981]

since it relies on Nash equilibrium conditions. We can, however, define Expected Price of
Stability (EPoS) in an analogous way as we defined EPoA in the previous section:

Definition 15 Expected Price of Stability (EPoS) The Expected Price of Stability in a non-
deterministic game is the ratio between the maximum expected social welfare achievable by
means of a feasible agent strategy combination and the maximum expected social welfare
achievable by means of an individually rational agent strategy combination.

E PoS = maxs∈S E [sw(s)]

maxs∈Si.r. E [sw(s)]
,

where S is the set of all feasible strategy combinations of the game, Si.r. ⊆ S is the set
of all strategic combinations which are individually-rational for the negotiating agents, and
E [sw(s)] is the expected social welfare for a given strategy combination s.

Tables 5 and 6 present the median social optimality rates for SA-Q and MWIS-Q, respec-
tively, using the different mechanisms proposed, when all negotiating agents choose the
socially optimal strategy. The statistic on this ratio is analogous the inverse of the Expected
Price of Stability defined above. As a reference, the results obtained when no asymmetrical
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Table 6 Effect of the different mechanisms over Social Optimality Rate (and thus, over Expected Price of
Stability) for MWIS-Q

ψ Mechanism

Reference Average_V Average_Q_0.5 Average_Q_0

Med. Conf. interval Med. Conf. interval Med. Conf. interval Med. Conf. interval

2.8 0.553 [0.521, 0.585] 0.503 [0.470, 0.536] 0.536 [0.504, 0.567] 0.520 [0.489, 0.550]

3.1 0.681 [0.652, 0.710] 0.583 [0.555, 0.611] 0.606 [0.578, 0.634] 0.596 [0.573, 0.620]

4.0 0.949 [0.925, 0.973] 0.838 [0.809, 0.867] 0.773 [0.751, 0.795] 0.814 [0.790, 0.838]

4.3 0.975 [0.952, 0.981] 0.964 [0.958, 0.970] 0.962 [0.954, 0.969] 0.973 [0.966, 0.981]

4.6 1.000 [1.000, 1.000] 1.000 [0.995, 1.000] 1.000 [0.995, 1.000] 1.000 [0.994, 1.000]

5.9 1.000 [1.000, 1.000] 1.000 [1.000, 1.000] 1.000 [1.000, 1.000] 1.000 [1.000, 1.000]

social welfare metric is used have been included. Results show that, for SA-Q, the approaches
which improve stability suffer a significant decrement in optimality for the most correlated
scenarios, and an increment in optimality for the most uncorrelated ones (due to the decre-
ment in failure rate). For MWIS-Q a similar trend is observed, though the optimality loss is
lower. We can conclude that, though it is possible to stabilize the model to a great extent by
having the mediator compute its own quality factor Q, this stability has a price, which is the
loss of social optimality.

6 Incentive compatibility analysis

As we have seen in Sect. 2.1.3, incentive-compatibility is defined as the property of a nego-
tiation mechanism which makes telling the truth the best strategy for any agent, assuming
the rest of the agents also tell the truth. Though there are negotiation models where incentive
compatibility can be proved analytically [11], these proofs are difficult to derive in the nonlin-
ear domain. This is specially true for heuristics approaches with a great degree of variability,
such as the model we are dealing with. In these cases, experimental evaluations may be con-
ducted to assess the possible influence of insincere revelation of information over the stability
of the negotiations. This is the approach we have taken to study incentive-compatibility in
our model.

6.1 Experimental settings

Incentive compatibility analysis is oriented to evaluate the possibility for negotiating agents
to manipulate the negotiation to their own benefit by means of revealing insincere informa-
tion. In the negotiation model we are dealing with, information revealed to the mediator is the
set of agents’ bids. These bids represent regions within the solution space. Each offer has an
associated utility value, a volume, and an associated quality factor value. Since bid volume is
directly related to the region represented by the bid, it does not seem feasible to fake it, since it
can be easily checked by the mediator. Quality factor may be faked, but since the mediator is
very likely to recompute it using its own α parameter, this strategy is also harmless. Finally,
agents may fake bid utility. Insincere information revelation about bid utility may gener-
ally occur in two ways: exaggerating upward or downward the utility values of all bids, or
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exaggerating the utility values of some bids with respect to the others. Exaggerating all bids
is not profitable with the proposed deal identification mechanisms, since bid selection at the
mediator is performed independently for each agent. This means that the bids from different
agents do not compete among each other to be selected as part of a solution. In contrast,
the different bids of a single agent compete among themselves. Taking this into account, an
agent could try to exaggerate the utility value of its preferred bids, thus trying to increase
the probability of the mediator choosing those preferred bids to form deals. As far as social
welfare is concerned, this is a problem if the set of exaggerated bids is small with respect to
the total set of bids, since that would reduce the number of effective bids considered by the
mediator, thus reducing deal probability.

To study the effect of utility exaggerations over the negotiations, we have conducted exper-
iments comparing the utility obtained by an insincere agent with the utility obtained being
sincere, assuming the rest of the agents are sincere. The behavior of the insincere agent is
modeled by exaggerating the utility of a portion of the agent’s highest utility bids. We have
considered different degrees of exaggeration for the insincere agent.

– Reference: There are no insincere agents.
– 75%: The insincere agent exaggerates 75% of its bids.
– 50%: The insincere agent exaggerates half of its bids.
– 25%: The insincere agent exaggerates one quarter of its bids.
– 12.5%: The insincere agent exaggerates one eigth of its bids.

In all cases, exaggerated bids are the ones which yield better utility for the agents before
exaggeration. Bid exaggeration is performed by multiplying the affected bids by a constant.
The constant has been chosen to be higher than the average utility for agent bids, in order to
make more likely that exaggeration could significantly impact the mediator’s choice. In these
experiments, the value for this constant is 10000. Again, experiments have been repeated for
utility spaces with different values for the correlation length ψ .

6.2 Experimental results

Experiment results for SA-Q y MWIS-Q for six agents and six issues are shown, respectively,
in Tables 7 and 8. Each table represents the median ratios between the utilities obtained by
insincere and truthful agents. The results are statistically significant for P < 0.05. We can
see that there are only significative gains for the insincere agents in medium complexity
scenarios. In high-complexity scenarios, the presence of the insincere agent makes the nego-
tiations fail, and thus there is no incentive to deviate from the socially optimal strategy. When
utility space complexity decreases, we can see that an insincere agent may obtain gains over
40% for both SA-Q and MWIS-Q depending on the degree of exaggeration. Finally, for the
less-complex scenarios, insincere revelation of information does not imply a significant gain
in utility, since all agents achieve high utility values by being sincere.

Figure 12a and b show the box plots of the results for 100 runs of the experiments for
SA-Q and MWIS-Q, in the most critical scenarios identified above (i.e. ψ = 4.0 for SA-Q
and ψ = 4.3 for MWIS-Q). We can see a different evolution in the gain for the insincere
agent as the degree of exaggeration varies. For SA-Q, this gain increases as the proportion of
exaggerated bids decreases, which is reasonable taking into account that, if the mediator is
successfully tricked into choosing bids only from the exaggerated set, the average utility of
the bids in the set is higher (they are its better n bids). Exaggerating too much, however, can
excessively reduce the selected bid set, thus impacting deal probability and making negoti-
ations fail, which happens for a 12.5% degree of exaggeration. For MWIS-Q the maximum
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Table 7 Incentive-compatibility analysis for SA-Q

ψ Degree of exaggeration

Reference 75% 50% 25% 12.5%
2.8 0.9875 1.0061 – – –

3.1 0.9903 1.0107 – – –

4.0 0.9904 1.2708 1.4464 1.5071 –

4.3 0.9882 0.9662 1.0042 0.9727 0.9981

4.6 1.0015 1.0037 0.9858 0.9866 0.9974

5.9 1.0042 1.0107 1.0010 0.9840 1.0040

Table 8 Incentive-compatibility analysis for MWIS-Q

ψ Degree of exaggeration

Reference 75% 50% 25% 12.5%
2.8 1.0022 0.9656 – – –

3.1 0.9783 0.9777 – – –

4.0 1.0035 1.0051 – – –

4.3 0.9763 1.1459 1.4785 1.3523 1.1614

4.6 0.9882 0.9463 0.9991 0.9672 0.9968

5.9 1.0091 1.0145 1.0054 0.9544 1.0139

gain is achieved for 50% degree of exaggeration, and further narrowing of the exaggerated
bid set makes the gain for the insincere agent decrease, but it does not make negotiations fail.
This is an effect of the higher correlation in the MWIS-Q selected scenario (ψ = 4.3), which
makes deal probability higher. Finally, we can observe that exaggeration of the 75% of the
bids has no significant effect, since most agent bids are included in the exaggerated set in this
case. From these results we can conclude that there are incentives for the agents to behave
insincerely in those scenarios, and therefore additional mechanisms should be introduced in
the model to make it incentive-compatible.

6.3 Incentivizing sincere behavior in the auction-based negotiation protocol

As we have seen, the proposed model is prone to manipulations by means of exaggerations
made by the agents, and there is an incentive for agents to behave insincerely. This is an
undesirable property in a negotiation model, and may lead to further stability problems.
Therefore, we seek for mechanisms which counter this effect, incentivizing sincere revela-
tion of information. A possibility to achieve this is to normalize the utility values assigned
by the agents to their bids, thus lowering the absolute differences in utility. We propose three
different possibilities regarding utility normalization:

– Normalization to maximum utility : obtained by dividing each agent’s bid utility by the
maximum utility value issued by that agent:

un (bi ) = u (bi )

maxb j ∈B u
(
b j
) . (6)

Using this normalization mechanism we can avoid the manipulation of the final deal
by exaggerating upwards the utility values of the preferred offers. It does not prevent,
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Fig. 12 Detail of the incentive-compatibility analysis for the most critical scenarios. a SA-Q ψ = 4.0,
b MWIS-Q ψ = 4.3

however, downward exaggerations, that is, to assign an extremely low value to the bids
which are less profitable for the agent.

– Bounded maximum-minimum normalization: Attempts to prevent the manipulation of
the negotiation model through upwards or backwards exaggerations. It is given by the
expression

un (bi ) = u′
min + u (bi )− umin

umax − umin

(
u′

max − u′
min

)
, (7)
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where umax = maxb j ∈B u
(
b j
)

, umin = minb j ∈B u
(
b j
)

and u′
min and u′

max are parame-
ters chosen by the mediator. In this way, a utility mapping from the interval [umin, umax]

to the interval
[
u′

min, u′
max

]
is performed for all bids, putting an upper bound u′

max
u′

min
to the

ratio between the utilities of an agent’s bids.
– Ordinal normalization: obtained by ordering the different bids of an agent according

to their utility or quality factor, and mapping this order to a monotonically increasing
succession of utility values, regardless of the original utility values. For instance, if B
is the set of bids for an agent, in ascendent order of utility, and taking the arithmetic
succession s = {1, 2, . . . , nB} as the mapping function, the normalized bid utility values
would be of the form

un (bi ) = si = i.

Our hypothesis is that using these normalization methods may positively contribute to
the incentive-compatibility of the model. To evaluate the effect of the proposed mechanisms
over the incentive-compatibility of the model we have repeated the experiments performed
above for the different normalization mechanisms proposed:

1. Reference: Utility values are not normalized.
2. Umax: Mediator uses normalization to maximum utility (Eq. 6).
3. Bounded: Mediator uses bounded maximum-minimum normalization (Eq. 7).
4. Ordinal: Mediator uses ordinal normalization.

Figure 13 a and b show the box plots of the results for 100 runs of the experiments for
SA-Q and MWIS-Q in the most critical scenarios identified above, that is, ψ = 4.0 with
a 25% degree of exaggeration for SA-Q and ψ = 4.0 with a 50% degree of exaggeration
for SA-Q. We can see similar trends for both cases. Though all proposed normalization
techniques reduce the incentive for the insincere agent to exaggerate, only bounded max-
imum-minimum normalization makes the expected gain for the insincere agent negligible,
thus effectively removing the incentive to exaggerate, improving incentive-compatibility of
the model.

7 Concluding remarks

Situations of high price of anarchy, which imply that individual rationality drives the agents
towards strategies which yield low individual and social welfares, should be avoided when
designing negotiation mechanisms. This is specially important when dealing with complex
negotiations involving highly rugged utility spaces, since in these cases “low individual and
social welfare” often means that the negotiations fail. Therefore, an strategic analysis is para-
mount for any model intended to work for highly rugged utility spaces, in order to determine
the strategic properties of the model and to allow to establish additional mechanisms for
stability if needed.

In this paper we have performed a strategy analysis for the auction based negotiation
protocol for highly rugged utility spaces we proposed in refs. [31,55]. This strategy analysis
has started studying the existence of individual and social optimal strategy profiles. This has
revealed the existence of an individual optimal strategy, which is different from the socially
optimal strategy. A more in-depth stability analysis has shown that, for highly correlated or
lowly correlated scenarios, there is no incentive for negotiating agents to deviate from the
socially optimal strategy. However, for medium complexity scenarios a selfish agent may
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Fig. 13 Effect of the proposed normalization mechanisms for the most critical scenarios. a SA-Q, ψ =
4.0, 25% degree of exaggeration. b MWIS-Q, ψ = 4.3, 50% degree of exaggeration

benefit from using its individually optimal strategy, which raises stability concerns, leading
the model to high expected price of anarchy values. To solve this, we have proposed a set of
mechanisms intended to incentivize social behavior among negotiating agents. These mech-
anisms are based on biasing deal identification at the mediator towards those bids which
are more socially oriented, thus decoupling the search for social welfare from the individual
agents’ goals. Experiments show that the proposed mechanisms successfully stabilize the
protocol, avoiding the situations of infinite expected price of anarchy.
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Finally, incentive compatibility issues in the protocol have been analyzed, showing that the
model may be manipulated by agents which exaggerate the utility values of a subset of their
bids, achieving significant gains for the insincere agents in medium correlated scenarios.
To solve this, a set of normalization techniques have been proposed in order to incentiv-
ize sincere behavior. Experiments have shown that, though all proposed techniques reduce
the incentive for an agent to exaggerate its bids, only the proposed bounded maximum-
minimum normalization mechanism effectively removes the expected gain for being insin-
cere, thus making the model incentive-compatible.

Though the experimental analysis performed has proven the effectiveness of the stability
and incentive-compatibility mechanisms proposed, there is still plenty of research to be done
in this area. We are interested on extending the strategy analysis presented in this work to an
iterative version of the studied negotiation protocol, which would allow the agents to refine
their bids in successive iterations of the protocol. This would raise very interesting additional
considerations regarding agent and mediator strategies, since it would allow to develop adap-
tive measures. For the negotiation agents, this would mean, for instance, to be able to acquire
a reasonable belief about the other agents’ strategies during the negotiation, and to adapt its
own strategy accordingly. This would drastically change the strategy analysis, since it would
have to be conducted in a similar manner to a Bayes-Nash problem. The different results of
the strategy analysis would probably impact the mechanisms needed at the mediator, and even
more taking into account that the mediator could also take advantage of adaptive measures,
trying to deduce agent strategies during the negotiation process, and to apply the different
mechanisms as needed. In addition, the effect of the correlation between the utility functions
of different agents (as opposed to the correlation length within each agent’s utility function)
should be analyzed. Finally, we are working on the generalization of these approaches for
other negotiation protocols and utility function types.
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tion and Science grant TIN2008-06739-C04-04, “T2C2”.

A Appendix: Deduction of the expressions used in the probabilistic analysis

This section deduces these expression used in Sect. 4.1 for the probabilistic analysis of the
auction based negotiation model. For ease of understanding, the deduction of the expres-
sions is presented in a progressive manner. First of all, deal probability is calculated for an
exchange between two agents of an elemental bid (a single unitary bid for each agent, for
a single issue), and then it is shown how the expression varies when the number of issues
and agents increase. Then, the resulting expression is generalized for an arbitrary number of
bids per agent. Finally, given the expression for deal probability, expressions for expected
utility and expected deal utility (defined as the expected utility conditioned to the event of a
successful deal) are determined.

A.1 Deal probability

Considering the negotiation protocol described in Sect. 3.2, the probability of finding a deal
is given by the probability of finding a common intersection of at least one bid of each agent.
The simplest scenario we can devise is a bilateral, single issue negotiation where each agent
makes a single, elemental bid, that is, a bid that represents a single point in the solution space.
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Let a y b be the negotiating agents, and let xa, xb ∈ D be their respective offers in a
finite domain D with cardinality |D|. The probability Psolution of a deal or solution to the
negotiation problem in this case is given by the probability of the coincidence of both bids.
In this way,

Psolution =
⋃

x∈D

p
[(

xa = x
) ∩

(
xb = x

)]
=
∑

x∈D

p
[(

xa = x
) ∩

(
xb = x

)]

︸ ︷︷ ︸
x j =xevents are disjoint

=
∑

x∈D

p
(
xa = x

)
p
(

xb = x
)

︸ ︷︷ ︸
xa and xb are independent

=
∑

x∈D

1

|D|
1

|D| = |D|
|D|2 = 1

|D| , (8)

where we have assumed as the probability that a bid has a given value p (xa = x) = 1
|D| ,

which corresponds to a uniform bid distribution, for a maximum uncertainty scenario.
Extending the previous expression to a bilateral negotiation about n issues is straightfor-

ward. Again, let us consider the simplest case of a single elemental bid per agent. In this case,
each bid will represent a point in an n-dimensional solution space, and the deal probability
will be given by the probability of all issue values corresponding to one agent’s bid matching
the respective values of the issues corresponding to the other agent’s bid.

Let a y b be the negotiating agents, and let xa, xb ∈ D be their respective offers, such that

the bid issued by agent j is given by x̄ j =
{

x j
i |i ∈ 1, . . . , n

}
, and such that x j

i ∈ D ∀i, j .

The probability of a deal or solution to the negotiation problem in this case is given by the
expression

Psolution =
⋂

1≤i≤n

{
⋃

x∈D

p
[(

xa
i = x

) ∩
(

xb
i = x

)]}

=
∏

1≤i≤n

{
⋃

x∈D

p
[(

xa
i = x

) ∩
(

xb
i = x

)]}

︸ ︷︷ ︸
issue matches are independent events

=
∏

1≤i≤n

1

|D| = 1

|D|n . (9)

In a similar way, this expression may be generalized to the case of na agents, taking into
account that deal probability in this case is given by the probability of a match between the
respective values for all issues of all agents’ bids, and that each agent bid is independent
from the others’. In this way, the expression for the probability of finding a solution or deal
in this case will be the following:

Psolution =
⋂

1≤i≤n

⎧
⎨

⎩
⋃

x∈D

p

⎡

⎣
⋂

1≤ j≤na

(
x j

i = x
)
⎤

⎦

⎫
⎬

⎭

=
⋂

1≤i≤n

⎧
⎨

⎩
⋃

x∈D

⎡

⎣
∏

1≤ j≤na

p
(

x j
i = x

)
⎤

⎦

⎫
⎬

⎭

=
⋂

1≤i≤n

⎧
⎨

⎩
∑

x∈D

⎡

⎣
∏

1≤ j≤na

p
(

x j
i = x

)
⎤

⎦

⎫
⎬

⎭
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=
⋂

1≤i≤n

⎧
⎨

⎩
∑

x∈D

⎡

⎣
∏

1≤ j≤na

1

|D|

⎤

⎦

⎫
⎬

⎭

=
⋂

1≤i≤n

{ |D|
|D|na

}
=

∏

1≤i≤n

{
1

|D|na−1

}

= 1

|D|n(na−1)
. (10)

So far we have considered only single, elemental bids, that is, each agent issued a sin-
gle bid representing a single point in the solution space. This assumption allowed us to
ensure deal events were disjoint (there was only a possible deal), which allowed to compute
probabilistic unions as sums of probabilities. Generalizing to the case of multiple bids makes
multiple points of agreement possible, and thus makes necessary to take into account possible
intersection among deal events to compute probabilistic unions.

Given a set of N events E1, . . . , EN , with known probabilities p (Ei ), and not necessarily
disjoint, the probability of the union

⋃N
i=1 Ei is given by

p

(
N⋃

i=1

Ei

)
= 1 − p

⎛

⎝
N⋂

j=1

Ei

⎞

⎠ .

If the events are independent and equiprobable, we have that p (Ei ) = p, p
(
Ei
) = 1 − p,

and the probability of the intersection above is given by p
(⋂

N Ei
) = (1 − p)N . In this

case, we can see that the above expression leads to the following:

p

(
N⋃

i=1

Ei

)
= 1 − (1 − p)N

= 1 −
N∑

j=0

(
N
j

)
1N− j (−p) j

= 1 −
N∑

j=0

(
N
j

)
(−1) j p j

=
N∑

j=1

(−1) j+1
(

N
j

)
p j . (11)

This result can be used to generalize the expression for deal probability obtained in the
previous section to the case of multiple offers. Let us consider again a set of na agents nego-
tiating about n issues. In this case we will consider that each agent k sends nk

bp elemental
bids. We consider elemental bids without loss of generality, since any other kind of bids (e.g.
hyper-rectangles) can be decomposed to elemental bids. There may be overlaps between the
different bids of an agent (i.e. they may or may not be disjoint). The probability Psolution that
there is a solution or deal to the negotiation problem will be given by the probability that at
least one of the possible combinations of bids from the different agents results in a deal. If
each agent k issues nk

bp bids there are
∏

nk
bp possible combinations of one offer of each agent.

The event Cl denotes the fact that the combination l results in a deal. The different events Cl
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are equiprobable, and their probability is given by Eq. 10, reproduced here for convenience:

p (Cl) = 1

|D|n(na−1)
.

Taking this into account, and using Eq. 11 for the computation of the probability of a
union of equiprobable events, deal probability for the set of bids is given by the expression

Psolution = p

⎛

⎜⎝

∏
nk

bp⋃

l=1

Cl

⎞

⎟⎠ =
∏

nk
bp∑

j=1

(−1) j+1
(∏

nk
bp

j

)
p (Cl)

j

=
∏

nk
bp∑

j=1

(−1) j+1
(∏

nk
bp

j

)(
1

|D|n(na−1)

) j

. (12)

A.2 Expected utility and expected deal utility

Once deal probability has been determined, it is easy to compute expected utility. By defi-
nition, the expected value of a random variable X which takes values from a domain D is
computed as the sum

∑
x∈D x · p (X = x) of the products of each possible value for the

variable and the respective probability that the variable takes each value. For the case of
the expected utility for an agent, the possible values of the variable are the utility values
associated to the different bids, and the probability that the variable takes each value is the
probability that each bid results in a deal. To compute this probability, we have to take into

account that each elemental bid x̄ j
i of an agent j may be part of

∏
k �= j nk

bp events C
(

x̄ j
i

)

l
,

representing the fact that the different combinations of this bid with the different elemental
bids of the rest of the agents may result in a deal. In this way, the deal probability for a given
elemental bid x̄ j

i is given by

p
(

x̄ j
i

)
= p

⎛

⎜⎝

∏
k �= j nk

bp⋃

l=1

C
(

x̄ j
i

)

l

⎞

⎟⎠ =
∏

k �= j nk
bp∑

j=1

(−1) j+1
(∏

k �= j nk
bp

j

)(
1

|D|n(na−1)

) j

.

From this expression, the expected utility for an agent j is computed as follows:

E
[
u j
]

=
n j

bp∑

i=1

u
(

x̄ j
i

)
p
(

x̄ j
i

)

=
n j

bp∑

i=1

⎡

⎢⎣u
(

x̄ j
i

)
∏

k �= j nk
bp∑

j=1

(−1) j+1
(∏

k �= j nk
bp

j

)(
1

|D|n(na−1)

) j

⎤

⎥⎦

=
⎡

⎢⎣
n j

bp∑

i=1

u
(

x̄ j
i

)
⎤

⎥⎦

⎡

⎢⎣

∏
k �= j nk

bp∑

j=1

(−1) j+1
(∏

k �= j nk
bp

j

)(
1

|D|n(na−1)

) j

⎤

⎥⎦ , (13)

where
∑n j

bp
i=1 u

(
x̄ j

i

)
is the sum of the utilities of all points issued as bids by the agent. For

the case of non-elemental bids, we consider each agent j issues n j
b bids. Each bid m of the
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agent represents an iso-surface of the agent’s preference space (e.g, an hyperrectangle), and
thus may be decomposed in v j

m elemental bids of the same utility u j
m , where v j

m is the volume
of the iso-surface represented by the bid m. In this case, we can establish the equivalence
∑n j

bp
i=1 u

(
x̄ j

i

)
= ∑nk

b
m=1 uk

m · vk
m , and the expression for the expected utility results as follows

E
[
u j
]

=
⎡

⎣
nk

b∑

m=1

uk
m · vk

m

⎤

⎦

⎡

⎢⎣

∏
k �= j nk

bp∑

j=1

(−1) j+1
(∏

k �= j nk
bp

j

)(
1

|D|n(na−1)

) j

⎤

⎥⎦ ,

which is the expression we saw for Eq. 2.
Finally, expected deal utility for an agent may be obtained easily, since it only depends on

the utility distribution within the set of bids issued by the agent. Assuming a deal have been

reached, the probability for each elemental bid to be part of the deal will be p
(

x̄ j
i |deal

)
=

1
n j

bp

, assuming the different elemental bids are equiprobable (maximum uncertainty scenario).

Taking this into account, expected deal utility is given by

E[u j |deal ] =
n j

bp∑

i=1

u
(

x̄ j
i

)
p
(

x̄ j
i |deal

)
= 1

n j
bp

n j
bp∑

i=1

u
(

x̄ j
i

)
,

which, for hyperrectangular bids, takes the form we saw in Eq. 3:

E[u j |deal ] =
∑n j

b
m=1 u j

m · v j
m

n j
bp

. (14)
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