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Abstract We present a cooperative bathymetry-based
localization approach for a team of low-cost autonomous
underwater vehicles (AUVs), each equipped only with
a single-beam altimeter, a depth sensor and an acoustic
modem. The localization of the individual AUV is achieved
via fully decentralized particle filtering, with the local fil-
ter’s measurement model driven by the AUV’s altimeter
measurements and ranging information obtained through
inter-vehicle communication.We perform empirical analysis
on the factors that affect the filter performance. Simulation
studies using randomly generated trajectories as well as tra-
jectories executed by the AUVs during field experiments
successfully demonstrate the feasibility of the technique. The
proposed cooperative localization technique has the poten-
tial to prolong AUVmission time, and thus open the door for
long-term autonomy underwater.
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1 Introduction

Bathymetry-based localization and navigation, also known
as terrain relative navigation (TRN) (Meduna et al. 2010),
terrain based navigation (TBN), terrain-aided navigation
(TAN) (Carreno et al. 2010), and bathymetric-aided nav-
igation (BAN) (Kalyan and Chitre 2013) has been used
on autonomous underwater vehicles (AUVs) for underwater
navigation.Given a bathymetricmap, the idea of bathymetry-
based localization is essentially to match water depth mea-
surements with the map, in order to estimate the vehicle’s
position. However, for the localization to perform well, the
AUVs are usually equipped with information rich sensors
like the side-scan sonar or multi-beam sonar, assisted by
high accuracy navigational sensors like the Doppler velocity
log (DVL) and/or the inertial navigation system (INS). These
hardware configurations make the AUV very expensive and
not cost-effective, especially for multi-vehicle operations.

In this work, we focus on cooperative bathymetry-based
localization involving a team of low-cost AUVs, equipped
only with a single-beam altimeter, a depth sensor and an
acoustic modem. An AUV that is capable of measuring only
a single altitude measurement at every sampling time step
cannot localize itself effectively within a given bathymetry
map, due to the multiple occurrences of similar terrain infor-
mation in the map (Nygren and Jansson 2004). However, a
team of these AUVs that is also capable of estimating the
inter-vehicle ranges may use this information to impose geo-
metrical constraints on the vehicles’ altitude measurements.
The set of geometry constrained measurements reduces, if
not eliminates, the likelihood of multiple occurrences of sim-
ilar terrain information in the map and allows each of the
vehicles to estimate their individual positions. This is the
main idea behind the cooperative bathymetry-based local-
ization. The localization of the individual AUV is based on
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bathymetry information measured along their trajectories,
complemented with the ranging information obtained by the
inter-vehicle communication among the vehicles in the team.
This approach ismotivated by the fact that given the vehicles’
estimated locations, the relative geometry among the vehicles
needs to be consistent with the bathymetry information mea-
sured at those locations. In contrast to the statically-deployed
underwater positioning systems, the bathymetry map acts as
the source of geo-referenced position information, replacing
the need for the vehicles to access a beacon signal.

Each of the vehicles in the team runs (locally) a decen-
tralized particle filter to estimate their respective positions.
The filter’s process model is driven using only the AUV’s
control inputs and a model that predicts the AUV velocity
based on the thruster control input and an onboard com-
pass. The corresponding measurement model is updated
by comparing the vehicle’s water depth (altitude + depth)
measurements against the bathymetry information. At every
pre-scheduled period of time, the AUVs broadcast their
filters’ local sufficient statistics (belief) sequentially, via
acoustic communication. Once received by other vehicles
in the team, the information and the estimated inter-vehicle
ranges are fused into their respective measurement models
to influence the filter’s particle distribution. Figure 1 further
illustrates the concept of the cooperative localization.

The proposed decentralized filter has the potential to allow
a team of low-cost AUVs to perform long-term navigation,
alleviating the need to surface for a GPS fix. This is impor-
tant for underwatermissions over a large spatial and temporal
duration (Smith et al. 2010),where the vehicles need to have a
good estimate of their positions throughout the mission. Fur-
thermore, good underwater localization is the fundamental
requirement for implementing effective, long-termautonomy
since the vehicles’ capability for autonomous decision mak-
ing relies heavily on their knowledge of the surrounding.

In Sect. 2, we discuss the related research and present our
rationale in applying the proposed approach for underwater

Fig. 1 Multi-AUV cooperative localization using altimeter measure-
ments and inter-vehicle acoustic communication

localization. In Sect. 3, we present the formulation of the
multi-vehicle localization problem using a particle filtering
technique, and followed by the extension of the filter’s mea-
surement model to incorporate the inter-vehicle ranging and
filter information broadcast from other vehicles (Sect. 4). In
Sect. 5, we present simulation results based on 3-vehicles
localization, using random lawn-mowing paths generated
within a bathymetry map that consists of different levels of
terrain information. Using the same set of paths, we also
investigate the factors that affect the performance of the pro-
posed approach. We report on two field tests and evaluate
their results in Sect. 6. In Sect. 7, we discuss the shortcomings
of the proposed approach and finally, present our conclusions
in Sect. 8.

2 Related work

The proposed cooperative bathymetry-based localization
approach reported in this paper is informed by several related
research: acoustic navigation and bathymetry-based localiza-
tion.

2.1 Acoustic navigation

Underwater positioning systems using acoustic beacons have
been used for AUVnavigation for decades. Bymeasuring the
time-of-flight of acoustic signals transmitted from beacons
deployed at known locations, an AUV is able to estimate its
position with respect to these beacons. The most commonly
used systems are long baseline (LBL), short baseline (SBL)
and ultra short baseline (USBL) (Vickery 1998; Jakuba et al.
2008). Although these systems act as good navigational aids
for AUVs, they are generally expensive and the deployment
and retrieval of these positioning systems require consider-
able operational effort.

Recent advances in the development of AUVs and under-
water communications have made inter-vehicle acoustic
ranging a viable option for underwater cooperative posi-
tioning and localization. The idea of AUV cooperative
positioning is to have a vehicle with good quality position-
ing information (beacon vehicle), to transmit its position and
range information acoustically to supported AUVs within its
communication range during navigation. The range infor-
mation between the vehicles can then be fused with the data
obtained from proprioceptive sensors to reduce the position-
ing error during underwater navigation (Rui and Chitre 2010;
Bahr et al. 2009a). Since acoustic ranging only contains infor-
mation in the direction of ranging, the performance of the
approach relies on the ability of the beacon vehicle to per-
form ranging from different directions with respect to the
supported vehicles (Song 1999; Gadre and Stilwell 2005).
The observability requirement was also studied in a different
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context in Arrichiello et al. (2011) where the performance
of the range-based multi-vehicle localization depends on the
relative velocity and position vectors of the vehicles. Our pre-
vious work (Tan and Chitre 2012; Tan et al. 2014) took into
account this requirement and explored control strategies for
the beacon vehicle that would drive down the uncertainties
in the supported vehicles. However, the approach requires
the beacon vehicle to be equipped with high accuracy nav-
igational sensors that are able to estimate its position with
minimum errors, or to operate at the surface where GPS
signal is available for position estimation. Nevertheless, the
ability of AUVs to perform acoustic ranging is utilized in the
work to impose geometrical constraints on the consistency
of the bathymetry information measured by the vehicles at
their estimated locations.

2.2 Bathymetry-based localization

Bathymetry-based localization generally employs sequential
Bayesian filtering to estimate the probability of a vehicle
being at a particular location in the map, using process and
measurement models (Meduna et al. 2010; Carreno et al.
2010; Kalyan and Chitre 2013). Themeasurement model can
be updated using two different approaches: batch or recur-
sive. The batch approach is based on matching all the terrain
profile measurements periodically with a prior bathymetry
map, while in recursive approach, the profile measurements
are processed sequentially as they arrive, to estimate the
vehicle’s position. Typically, the type of sensor used for mea-
suring the terrain profile determines the approach employed:
single-beam echo-sounder or altimeter calls for sequential
approach, while multi-beam sonar or the DVL which con-
sists of four acoustic beams to measure velocity as well as
altitude of the device, can be used in batch approach.

Since there is no closed-form solution for the posterior
probability density, due to the highly non-linear bathymetric
measurement model, sequential Monte Carlo filtering meth-
ods are used as an approximation of the density (Anonsen and
Hallingstad 2006; Karlsson and Gustafsson 2003). In Anon-
sen andHallingstad (2006), the authors applied both the Point
Mass Filter (PMF) and the Particle Filter (PF) for under-
water navigation using multi-beam echo-sounder. Offline
filtering with field data showed that the PMF slightly outper-
formed the PF, though it is more computationally expensive.
In Karlsson and Gustafsson (2003), the authors adopted the
PF for underwater navigation and compared the estimation
results to that of those computed by the Cramer Rao Lower
Bound (CRLB) along the experimental trajectories to illus-
trate the efficiency of the filter. Although the CRLB provides
a good indicator of the performance of the localization filter,
it is not the focus of our paper.

Often a particle filter is designed to estimate and track
a large number of system variables which requires a large

number of particles for the filter to converge. This poses
a challenge for the AUVs’ limited computational power
onboard. In order to alleviate this, a number of researchers
have adopted an approach called the Marginalized Parti-
cle Filter (MPF), also referred to as Rao-Blackwellization
(Doucet et al. 2000; Nordlund and Gustafsson 2001; Schon
et al. 2005; Fairfield et al. 2006; Barkby et al. 2011; Teixeira
et al. 2012a). The idea behind the MPF is to marginalize the
system states that exhibit linear dynamics, and to estimate
the marginalized states using a Kalman Filter. The remain-
ing states with reduced dimension can then be estimated by
the PF, thus lowering the number of particles required to
produce comparable results. The MPF has been employed
in Nordlund and Gustafsson (2001), in an integrated nav-
igation system of an aircraft with a state vector of more
than 15 dimensions, and simulation results showed good
performance with a much lower computational load. In the
domain of underwater navigation, the authors in Teixeira
et al. (2012a) have shown the feasibility of applying the
MPF for an AUV with the number of particles as low as
500 and manage to achieve good localization. The results
have encouraged the application of MPF-based localization
techniques in low-cost, limited computational-power AUVs.
Thework presented in this paper adopts theMPF localization
technique for its advantages.

In most marine applications, the data for the vehicle’s
measurement model are provided by on-board multi-beam
echo sounders (Nygren and Jansson 2004; Fairfield and
Wettergreen 2008; Meduna et al. 2010). This enables multi-
ple simultaneous altimeter measurement at every time step
and improves the filter’s performance. Furthermore, if the
vehicle is fitted with a DVL, like the research reported
in Donovan (2012), velocity information is available for
more accurate propagation of the process model. In fact,
the combination of these information rich and high accu-
racy navigational sensors also make underwater bathymetry
simultaneous localization and mapping (SLAM) possible.
For example, the research reported in Roman and Singh
(2005), Barkby et al. (2011), Fairfield et al. (2006) made use
of multi-beam sonar, DVL, INS and/or IMU to localize the
vehicle’s position while building 3-D maps along the vehi-
cle’s trajectories. However, these techniques are not suitable
for a low-cost AUV, which is capable of carrying only low
accuracy sensors and possibly perform dead-reckoning using
its own thruster model to estimate its position. An example
is shown in Nygren and Jansson (2004) where the localiza-
tion filter may diverge easily due to multiple occurrences of
similar terrain information within the bathymetry map, if the
vehicle is assumed to have only a single-beammeasurement.

In recent years, researchers have complemented
bathymetry-based localization with information obtained
from other sources of sensor measurements, to better esti-
mate the position of the vehicles. This approach also has
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the potential to overcome the problem that arises with
bathymetry-based localization when the vehicle is over a
terrain that contains insufficient information for the filter
to converge. The authors in Fallon et al. (2011) fused both
acoustic ranging (obtained from a surface beacon) and posi-
tion information of underwater targets (obtained by side-scan
sonar) to better estimate a vehicle’s position and demon-
strated the filter’s performance via offline filtering with data
collected from the field. Another related research is reported
in Teixeira et al. (2012b), where the DVL measurements are
fusedwith TAN for position estimates. Again, the reliance on
these information rich and high accuracy sensors make these
techniques unsuitable for localization of low-cost AUVs.

The research presented in this paper is closely related with
Maurya et al. (2012) where range measurements are fused
within the bathymetry-based localization filter to estimate a
vehicle’s position. However, our work does not consider a
fixed beacon on the sea floor where an absolute position-
ing reference can be obtained. Instead, we employ a team of
low-cost AUVs where the localization of an individual vehi-
cle is based on the collective filters’ information, fused with
the range measurements derived from the communicating
vehicles. Even though the cooperative localization approach
does not depend on a beacon, it requires the individual filter’s
information to be broadcast via acoustic communication.

3 Problem formulation

In this section, we describe the formulation of the particle
filtering technique used for the vehicles’ localization. Each
vehicle runs a copy of the filter, which adopts the same for-
mulation presented here. Details of how the local estimate
is communicated, and ranging information is integrated, are
discussed in a later section.

3.1 Process and measurement models

The vehicle’smovement ismodeled as a discrete-time, linear,
state model with the state dynamics driven by the vehicle’s
control input and ocean current estimates. Let x, y be the
easting and northing position of the vehicle, and cx , cy be
the ocean current in the easting and northing direction. Fur-
thermore, let t be the time step and the elapsed time between
step t and t +1 be Δt . The discrete-time process model used
for the vehicle is described by:

xt+1 = Fxt + Gut + ζt (1)

where x = [x, y, cx , cy]� is the state vector, F and G are
the state transition and control-input matrices respectively,
and ut = [ux , uy]�t is the control input that determines the
AUV’s motion. The control input (derived from commanded

heading and thrust) is the commanded velocity at which the
AUV should move in the easting and northing direction for
the time step. ζt is the process noise, modeled as an additive
zero-mean Gaussian (ζt ∼ N (0, σ 2

ζ )).
The corresponding discrete-time measurement model is

yt = h(xt ) + ξt (2)

where ξt is the measurement noise, modeled as an addi-
tive zero-mean Gaussian (ξt ∼ N (0, σ 2

ξ )). yt represents
the vehicle’s water depth measurement at time t while h(xt )
is the non-linear function that relates the bathymetric infor-
mation at state xt to the measurement.

3.2 Marginalized particle filter

Due to the multiple occurrences of similar elevation typi-
cally present in natural terrain, there is no unique mapping
from the AUV’s measured water depth to its position. Conse-
quently, the vehicle’s position estimate producesmulti-modal
likelihood surfaces. In such a scenario, particle filtering is a
popular technique used to track the multi-modal hypotheses
while estimating the vehicle’s position (Carreno et al. 2010).
In this work, we adopt the marginalized particle filter (MPF)
described in Teixeira (2007) for the vehicle’s position esti-
mation. Let N represent the number of particles used for the
particle filter, xit be the i th particle at time t . The state vector
is decomposed into two parts:

x =
[
xpf

xkf

]
(3)

where xpf = [x, y]� represents the position of the vehicle
estimated by Particle Filter (PF) and xkf = [cx , cy]� repre-
sents the ocean current estimated by a Kalman Filter (KF).
The resulting state-space model becomes:

[
xpft+1
xkft+1

]
=

[
I2×2 Fpf

02×2 Fkf

]
︸ ︷︷ ︸

F

[
xpft
xkft

]
+

[
Gpf 02×2

02×2 02×2

]
︸ ︷︷ ︸

G

[
ut

02×1

]

+
[

ζ pf

ζ kf

]

(4)

where Fpf = Gpf =
[

Δt 0
0 Δt

]
and Fkf =

[
1 0
0 1

]
. Tracking

the ocean current will improve the accuracy of the vehicle’s
position propagation.
Prediction
The decomposed state vectors are propagated from time t to
time t + 1 with:
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xpf,it+1 = xpf,it + Fpfxkf,it + Gpfut + ζ
pf
t (5)

where ζ
pf
t = N (0,FpfPkf

t |t−1(F
pf)� + Qpf) with Qpf being

the process noise intensity matrix and Pkf
t |t−1 denotes the

covariance prediction of the ocean current estimate from time
t − 1 to t .

The ocean current is estimated through the following
process and measurement equations:

xkft+1 = Fkfxkft + ζ kf
t .

Zt = Fpfxkft + Gpfut + ζ
pf
t .

(6)

LetZi
t be the Euclidean distance between the i th particle’s

position, xpf,it and its immediate successor, xpf,it+1, as predicted

in (5). The innovation Zi
t − (Fpfx̂kf,it |t−1 +Gpfut ) is computed

as the difference between the distance measured, Zi
t and the

predicted distance traveled by the vehicle due to ocean cur-
rent, Fpfx̂kf,it |t−1 and vehicle’s control input, Gpfut . Within a
KF’s formulation, the ocean current state vector of each par-
ticle is propagated with:

xkf,it+1 = x̂kf,it+1|t
= Fkfx̂kf,it |t

(7)

where the KF’s update expression of the ocean current esti-
mate and the corresponding covariancematrices are (Teixeira
2007):

x̂kf,it |t = x̂kf,it |t−1 + KtVt .

Vt = Zi
t − (Fpfx̂kf,it |t−1 + Gpfut ).

Kt = Pt |t−1(Fpf)�
[
FpfPt |t−1(Fpf)� + Qpf

]−1
.

Pt |t = (I − KtFpf)Pt |t−1.

Pt+1|t = FkfPt |t (Fkf)� + Qkf.

(8)

Update
The update step consists of updating the particle’s relative
weight (importance) based on its observation. Let wi

t be the
relative weight associated with i th particle at time t , the
weight of a particle is updated according to Teixeira (2007)
as:

wi
t = wi

t−1.p(yt | xit ) (9)

where p(.) is the likelihood function of the observation yt
given the particles’ predicted states xit and wi

0 is initialized
to 1/N . With the updated weights, a point estimate (PEst.)
of the current state x̂t can be estimated through:

x̂PEst.t �
N∑
i

wi
tx

i
t (10)

while the PF’s covariance is approximated by:

Ppf
t =

N∑
i

wi
t

(
xpf,it − x̂pf,PEst.t

)
·
(
xpf,it − x̂pf,PEst.t

)�
(11)

and the corresponding Kalman part of the state vector has a
covariance estimated by:

Pkf
t = Pkf

t |t +
N∑
i

wi
t

(
x̂kf,it |t − x̂kf,PEst.t

)
·
(
x̂kf,it |t − x̂kf,PEst.t

)�
.

(12)

3.2.1 Sampling importance resampling

One of the problems with particle filters is degeneracy of
particles where only a small percentage of the particles con-
tribute to the estimation. This happens due to the fact that
as the filter propagates, most of the particles will have small
weights as they drift apart. One way to detect the degener-
acy problem is to estimate the number of effective samples
(N eff) that are currently in the particle set (Nordlund 2002).
The N eff indicates howwell the current particle set represents
the target distribution and is computed with:

N eff = 1∑N
i=1(w

i
t )
2
. (13)

Whenever N eff is lower than the resampling thresh-
old (N th), resampling should be performed to generate a new
set of particles. In this work, we adopt the sampling threshold
value in Nordlund (2002):

N th = 2N

3
. (14)

The resampling steps are generally referred to as the sam-
pling importance resampling (SIR) (Karlsson andGustafsson
2003;Teixeira 2007;Grisetti et al. 2007), and are summarized
in Algorithm 1. The type of resampling method used affects
the overall computational complexity of a particle filter, and
is one of the important considerations because of the limited
computational power that a low-cost AUV has onboard. We
employed the residual resampling reported in Liu and Chen
(1998) for its efficiency in terms of computation time and
quality of variance reduction.

However, due to the discrete nature of the particle set,
resampling over time leads to another problem called sam-
pling impoverishment (Fearnhead 1998), where the newly
generated particle set consists of only the offspring of a
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small number of particles and does not reflect the true den-
sity. To reduce the effect of this, we add randomly generated
Gaussian noise (with variance equal to two times the map
resolution) to every sample that is chosen more than once
during the resampling step.

4 Measurement model for cooperative localization

The evaluation of the likelihood function in (9) is according
to the vehicle’s measurement model. For the case of single
vehicle localization, the measurement consists of the water
depth estimate (AUV altitude measurement + AUV depth
measurement) at the location of the AUV. For the case of
multi-vehicle localization where acoustic communication is
available among the vehicles, the measurement model also
incorporates the localization information broadcast by other
vehicles for the evaluation of the likelihood function.

4.1 Localization in the case of single vehicle

At every time step, the vehicle performs altitude and depth
measurement to obtain the vehicle’s water depth informa-
tion along its trajectory. The vehicle keeps a history of the
previous � (where � ≥ 1) time step measurements and the
segment of trajectory where these measurements were made.
The differences in water depth within this trajectory can then
be computed by subtracting each of the measurements from
its previous time step’s measurement. Figure 2 shows an
example of the altitude measurements along a vehicle’s tra-
jectory. This approach has the advantage of eliminating the
tidal offsets between the time when the bathymetric map was
generated and time of mission deployment.

The weights of the particles are updated based on the
likelihood function p(.) of themeasurement yt given the pre-
dicted states xit at every time step. In our case, the segment

Fig. 2 Altitudes measured along the vehicle’s trajectory. The differ-
ences in water depth can be calculated by subtracting each of the
measurements from its previous time step’s measurement

of trajectory history kept by the vehicle is appended to each
of the particles. The corresponding water depth information
of the appended particles is obtained from the bathymetric
map, using the same measurement interval. As a result, each
of the particles has an array of � measurements. An example
is shown in Fig. 3a. Themeasurementmodel of the filter takes
into account the variation between the differences in water
depth measured at the particles’ predicted locations (black
diamonds) and the true differences in water depth measured
by the vehicle along the trajectory segment (red circle). The
smaller the variation, the higher the weight that is assigned to
the particular particle. An example ofwater depth differences
(after subtracted from the water depth differences measure
by the vehicle) of the particles is shown in Fig. 3b. Thus, the
likelihood function of the i th particle is:

p
(
yt | xit

)
= p

(
yt−�:t − h

(
xpf,it−�:t

))
(15)

where the subscript t − � : t denotes an array of the dif-
ferences in water depths measured from time t − � to the
current time t . In contrast to localization using a single-beam
altimeter, this approach provides more than one water depth
measurements along the vehicle’s trajectory and reduces the
probability of multiple occurrences of similar terrain infor-
mation within the bathymetry map. According to the study in
Nygren and Jansson (2004), the higher the number of beams
used, the lower the number of likely positions. However, in
contrast to themulti-beam sonarwhere the distances between
the locations of depth measurements are known (due to the
fixed sonar beams), appending individual depth measure-
ments made along a vehicle’s trajectory introduces errors
in the estimated distances between measurement locations.

In general, Δt is influenced by the combination of three
different factors: the maximum sampling rate of the sensor,
the vehicle’s cruising speed and the horizontal resolution of
the bathymetry map used. Considering a bathymetry map
with a resolution of 1 m, with an AUV cruising at 1 m/s,
setting Δt < 1 s (thus the sampling rate <1 s, assuming the
echo-sounder is capable of operating at more than 1 Hz) may
not be beneficial for the filter, as there is no terrain variation
within the cell of 1 × 1 m. On the contrary, setting Δt to
a large value (Δt � 1 s) can be counterproductive as the
filter could potentially miss the terrain variation along the
vehicle’s path.

4.2 Localization in the case of multiple vehicles

The vehicles in the team are assumed to be fitted with an
acoustic modem and are capable of measuring the time-
of-flight of acoustic signals. Therefore, the vehicles can
estimate their range from the broadcasting vehicle using
either the one-way-travel-time (OWTT) or the two-way-
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Fig. 3 a Examples of the vehicle’s position (red circle) and its trajec-
tory of length � = 14 (blue cross). The trajectory is appended to all the
particles (black diamonds) forming the particles’ trajectories (magenta
asterisks). b The corresponding absolute water depth differences of the
particles (after subtracted from the differences measured by the vehi-
cle). In this example, the 4th particle would have the highest weight
(Color figure online)

travel-time (TWTT) of the acoustic signal (Webster et al.
2012), using an assumed constant sound speed profile. In this
work, we assume the system clock is synchronized across all
the vehicles and adopt the OWTT in estimating the inter-
vehicle range. A simple round-robin scheduling is adopted
such that each vehicle, termed as peer vehicle (PV), in the
teambroadcasts its local state information, sequentially using
acoustic communication. Round-robin scheduling for rang-
ing among the vehicles has the advantage of eliminating the
probability of collision, thus increasing the throughput of the
network.

Despite advances in underwater communications, conven-
tional methods of sharing a subset of particles (Rosencrantz
et al. 2003) in the implementation of a distributed particle
filter simply cannot be applied in the underwater domain
due to extremely limited bandwidth and reliability. Vari-
ous particle distribution aggregations have been developed
as alternatives for alleviating communication limits (Jiang
and Ravindran 2011; Sheng et al. 2005), but none of them
have been applied in the underwater domain. To the authors

knowledge, the approach proposed in this paper is the first
attempt in applying the aggregation technique in the under-
water domain. Thus, the vehicle’s state information broadcast
includes its current position point estimate, x̂PVt and its filter’s
estimated covariance matrix, PPV

t , as in Eqs. (10) and (11).
When the acoustic signal is received by another vehicle,

termed as receiving vehicle (RV), the range, R̂t , between the
two vehicles can be estimated. Since the range is part of the
measurements, we model its measurement error as a zero-
mean Gaussian random variable with variance σ 2

R :

R̂t ∼ N
(
| xPVt − xRVt |, σ 2

R

)
(16)

where xPVt and xRVt are PV and RV’s positions, respectively.
The range information received is commonly used directly

to influence the filter’s measurement model for beacon-based
underwater navigation (Rui and Chitre 2010; Bahr et al.
2009a; Tan et al. 2014; Maurya et al. 2012; Webster et al.
2013). However, our approach cannot fuse the range infor-
mation directly because none of the vehicles in the team is
equipped with high accuracy navigational sensors, and the
PV may have accumulated significant error by the time the
information is broadcast. Instead, the PV’s information is
used to influence the RV’s particle distribution and affect the
corresponding likelihood computation.

Given R̂t , PPV
t and x̂PVt , we assume that the probabil-

ity of RV’s particle representing the vehicle’s true position
is directly proportional to the difference between the dis-
tance measured from the particle’s location to x̂PVt against
R̂t , taking into account the x̂PVt ’s uncertainty covariance,
PPV
t . The likelihood evaluation for each of the RV particles

(xpf,it , i ∈ 1 . . . N ) is as follows:

1. Whenever the PV’s information is received via acoustic
ranging, a set of N particles (� PV

j , j = 1 . . . N ) are

normally distributed around x̂PVt with covariance PPV
t .

2. TheEuclidean distances fromxpf,it to all the particles gen-
erated in step 1 are computed, resulting in N distances.

3. The likelihood of xpf,it is evaluated by taking the sum of
the differences between the N distances against the esti-
mated range, R̂t . The smaller the differences, the higher
the likelihood of xpf,it . For simplicity, we adopt the fol-
lowing:

p
(
xpf,it , R̂t ,PPVt , x̂PVt

)
∝ 1

/ ⎛
⎝ N∑

j=1

|‖xpf,it − �PV
j ‖ − R̂t |

⎞
⎠ .

(17)

The probability computation makes use of the PV’s esti-
mated state information as well as ranging information to
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further influence the RV particle’s distribution. An example
of state information approximation and sharing among the
vehicles is illustrated in Fig. 4. As a result, the RV particles’
likelihood evaluation consists of an extra likelihood function,
fusing the information received via acoustic communication:

p(yt | xit ) = p
(
yt :t−�−h

(
xpf,it :t−�

))×p
(
xpf,it , R̂t ,PPV

t , x̂PVt
)
.

(18)

The detailed implementation of the proposed coopera-
tive bathymetry-based localization is showed inAlgorithm 1.
The decentralized-MPF (D-MPF for simplicity) formulation
allows the approach to be scaled up with the number of
vehicles without increasing the computational complexity.
Besides, it is also robust against lossy communication link
underwater since the state information of the PV is incor-
porated in the measurement update step only when it is
available.

5 Simualtions and results

A series of simulation studies were carried out to assess the
feasibility of the proposed D-MPF, and to evaluate its perfor-
mance by varying different parameters used in the filter. The

Algorithm 1Marginalized Particle Filtering for cooperative
localization
1: t ← 0 (time steps) # 1. Initialization
2: Vm = number of vehicles.
3: Draw N particles: xi, j0 ∼ px0 ; i = 1 : N and j = 1 : Vm .
4: Pkf, j

0|−1 ← Pkf
0 ; w

i, j
0 ← 1

N .
# 2. Time update

5: Compute xpf,i, jt+1 according to (5) and xkf,i, jt+1 according to (7)
# 3. Measurement update

6: if PV’s information received then
7: Evaluate p(yt | xpf,i, jt ) according to (18)
8: else
9: Evaluate p(yt | xpf,i, jt ) according to (15)
10: end if
11: Compute the weights: wi, j

t ← w
i, j
t−1 p(yt | xpf,i, jt ); i = 1 : N

12: Normalize the weights: wi, j
t = w

i, j
t∑N

i=1 w
i, j
t
# 4. State estimation

13: x̂PEst., jt ← ∑N
i=1 w

i, j
t xi, jt

# 5. Resampling
14: Let N eff = 1∑N

i=1(w
i, j
t )2

15: if N eff ≤ N th then
16: xi, jt = Resample({w j

t }, {x j
t }); i = 1 : N

17: w
i, j
t ← 1

N ; i = 1 : N
18: end if

# 6. Iterate
19: t ← t + 1
20: Goto Step # 2.

Table 1 Simulation parameters

Parameter Value

No. of vehicles 3

No. of particles 600

Filter sampling time 1 s

Vehicles velocity 1.5 m/s

Ranging period per vehicle 9 s

Ranging scheduling Round robin

Process noise, (σζ )

⎡
⎢⎢⎣
0.05 0 0 0
0 0.05 0 0
0 0 0.01 0
0 0 0 0.01

⎤
⎥⎥⎦ m

Altimeter measurement noise, (σξ ) 0.05 m

Ranging measurement noise, (σR) 1 m

parameters shown in Table 1 were kept the same throughout
the simulation runs, except for studies that involved vary-
ing the specified parameters. The process and measurement
noises were assumed independent and drawn randomly at
every propagation andmeasurement step, fromGaussian dis-
tribution characterized by the noise matrices. We assumed
that all the vehicles have a GPS fix before submerging. Thus,
each of their local filters was initialized within a circular
search area with a radius of 10 m centering at the individual
fixes to simulate the GPS’s uncertainty.
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The bathymetry mapwas obtained from the water near the
St. John Island, Singapore in year 2012 using a Reson 8125
multi-beam echo-sounder. The equipment was operated with
240 beams at 455 kHz with a combined swathe width of
120◦. The vertical resolution of the data is 0.01 m while
the horizontal resolution is down-sampled to 1 m grid cells.
The water depth is from a few meters to around 30 m
depth.

The feasibility of bathymetry-based localization depends
on the amount of information contained within a bathym-
etry map. Besides varying different parameters for the filter
in the simulation runs, we also investigate, in general, if a
given bathymetry map contains a sufficient amount of infor-
mation for multi-vehicle localization. Thus, 300 different
lawn-mowing paths (100 paths for each of the vehicles) were
randomly generated within the map. This allows us to con-
duct 100 different simulated runs using those paths. The
results of the simulations are shown in the form of posi-
tion estimation errors of each vehicle at the end of all the
simulated runs. If a high percentage of the simulated runs
achieve good localization performance (low position estima-
tion errors), we conclude that the map indeed has sufficient
terrain information. Using the results from the simulation, we
perform analysis on the best and worst performing cases to
further investigate the influence various parameter settings
have on the performance of the filter. Figure 5 shows the
bathymetry map used in the simulation studies and examples
of randomly generated lawn-mowing paths for the simulation
studies.

Fig. 5 a Bathymetry map of St. John Island, Singapore obtained in
year 2012. Terrain variation ranging from a few meters to 30 m depth.
b Examples of randomly generated paths within the bathymetry map

5.1 Influence of communication bandwidth

Due to the limited underwater communication bandwidth,
it is impractical to share all the PV’s particle information
with the RV during underwater cooperative localization.
Nevertheless, the simulation can be used as a good bench-
mark to compare the performance of the decentralized filters,
when it is performed offline. In this section, we undertake
a simulation study whereby all the vehicles have unlim-
ited communication bandwidth during the filter information
broadcast step. As in the decentralized version, each vehicle
still runs a local filter. However, instead of approximating the
PV’s particle distribution, as shown in Fig. 4, it is assumed
that all the vehicles have access to all the other vehicles’ par-
ticle sets. Thus, during the filter’s measurement update step,
the exact locations of PV’s particles are used. This approach
makes sure the filters use same process and measurement
models, and provides a fair comparison that the only factor
which affects the performance of the filter is the amount of
information being exchanged among the vehicles in the team.

The first boxplot on the left of Fig. 6 shows the distribution
of position estimation errorswhere thefilters informationwas
broadcast assuming unlimited communication bandwidth.
By allowing full access to other filter’s information during the
measurement update step, the decentralized filters achieve
the best performance. More importantly, the performance
achievable by the D-MPF is comparable (middle boxplot in
Fig. 6), even though the filter’s information sharing is based
on distribution aggregation. The results demonstrate the fea-
sibility of the proposed D-MPF to be used for underwater
multi-vehicle cooperative localization, where only the suffi-
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cient statistic of the particle distribution need to be shared
via the bandwidth limited acoustic communication.

The ability of a particle filter in estimating a vehicle’s
position depends on how accurate the position’s probability
distribution is represented by a set of particles. Apart from
the issue of sample impoverishmentmentioned in Sect. 3.2.1,
the number of particles used also plays an important role.
A higher number of particles may increase the accuracy,
but also incurs higher computational cost, while an insuf-
ficient number of particles may result in the true density
not being encompassed by the sample set. We repeated the
simulations and increased the number of particles in the
filter from 600 to 2000, while keeping the other parame-
ters mentioned in Table 1. The result showed only a slight
improvement (right-most boxplot in Fig. 6) over the case
of 600 particles. Since the paths were randomly generated,
the result suggests that on average, a set of 600 particles
appeared to be sufficient for representing the particle’s dis-
tribution within the bathymetry map of St. John Island, and
is used for subsequent studies.

5.2 Importance of acoustic communication and
bathymetry information

As mentioned in Sect. 4.2, multi-vehicle cooperative local-
ization is achieved by incorporating both the vehicle’s water
depth and inter-vehicle range measurements into the D-
MPF’smeasurementmodel to estimate the vehicle’s position.
In this section, we perform simulation studies to investigate
the importance of having both pieces of information (terrain
& ranging) on the filter’s performance, as against having only
a single piece of information: either using the terrain informa-
tion (terrain-only) or the ranging information (ranging-only).
The results were compared with the position errors accumu-
lated by the dead-reckoningmethod, to illustrate the potential
benefit, if any, of having terrain and/or ranging information
(Fig. 7).

The position estimation errors of the D-MPF with both
the terrain and ranging information were the same as the pre-
vious case shown in Fig. 6. However, the estimation errors
increase significantly in the absence of acoustic communi-
cations among the vehicles, as shown by the terrain-only
boxplot in Fig. 7. Since the filter’s performance in this case
depends solely on the terrain information within the area
where the paths were generated, the wider spread of posi-
tion errors showed there was a good mixture of areas, each
containing different amount of terrain information, that was
randomly selected within the bathymetry map for planning
the vehicles’ paths. The mixture provides a suitable scenario
to illustrate the benefits of incorporating acoustic communi-
cation, as can be seen in terrain & ranging boxplot (left-most
boxplot in Fig. 7). Nevertheless, the resulting terrain-only
filter still outperformed the dead-reckoning method in most
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Fig. 7 Distribution of position estimation errors of various D-MPFs
against dead-reckoning. The results show the importance of having both
the terrain and ranging information in the filter’s performance

cases, except some outlier cases where the filter diverged due
to insufficient terrain information. On the other hand, coop-
erative localization with ranging-only performed poorly and
in most cases, worse than the dead-reckoning method. This
is due to the problem of overconfidence of the filter’s esti-
mations mentioned in Webster et al. (2013), Maczka et al.
(2007), Bahr et al. (2009b), where the common informa-
tion (cross-correlation) among thevehicleswas ignoredwhen
the ranging information is fused into the filter’s measurement
model. This is made worse especially when none of the vehi-
cles have a geo-referenced position information.

5.2.1 Influence of inter-vehicle acoustic communication

In this section, we turn to the concept of information gain to
illustrate the benefits of having acoustic communication in
cooperative bathymetry-based localization. As described in
Cover and Thomas (2006), the mutual information I(X;Y)

is the reduction in the uncertainty of the random variable,
X, due to the knowledge of random variable, Y . In the case
of cooperative localization, this translates to the reduction of
uncertainty in the vehicle’s position estimate, due to the infor-
mation gained from the terrain and/or ranging information.
This measure can be treated as an indicator for the effec-
tiveness of the D-MPF in estimating the vehicle’s position:
if the filter is effective and converges to the correct esti-
mate, large information gain should yield lower position
error.

Mutual information is defined as:

I (X; Y ) = H(p(X)) − H(p(X) | p(Y )) (19)

where H(X) is the entropy of the prior distribution and
H(X | Y) is the posterior distribution.We adopt the approach
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in Lanz (2007) to approximate the entropy of a probability
distribution, p, using:

H(p) ≈
∑
i

wi ln
∑
j

w jK
(
xpf,i | xpf, j

)
(20)

where K(xpf,i | xpf, j ) is a Gaussian radial kernel approxi-
mated by:

K(xpf,i | xpf, j ) ≈ e− 1
2 ‖xpf,i−xpf, j‖2/σ 2

. (21)

For comparison, the best performing case of the terrain
& ranging, and the terrain-only simulation results shown
in Fig. 7 were used to investigate the benefits of having inter-
vehicle ranging during cooperative localization. The results
from the first study is shown in Fig. 8a where the simula-
tion using terrain & ranging (circle-dashed line) was rerun
without the ranging information (plus-solid line). The results
from the second study are shown in Fig. 8b where the simu-
lation using terrain-only (plus-solid line) was rerun with the
addition of inter-vehicle ranging information (circle-dashed
line). The large differences in the average position errors,
across all levels of mutual information, clearly show that the
D-MPF is more effective when the ranging information is
incorporated in the measurement model.

5.2.2 Influence of bathymetry information

Without geo-referenced position information broadcast by a
beacon, the vehicles rely only on inter-vehicle range mea-
surements to estimate their positions. Over time, this causes
the uncertainty of the vehicles’ position to increase, due to
the accumulation of the process and measurement noises.
Furthermore, as shown in Tan et al. (2014), Webster et al.
(2013), an acoustic signal broadcast by a PV, at position
xPV, only contains ranging information in the radial direc-
tion of the ranging circle centered at xPV. Consequently, if
the ranging is performed consecutively from about the same
absolute bearing between the PV and RV’s positions, the
position uncertainty of the RV in the tangential direction will
grow.

In this section, we analyze one of the cases from the
ranging-only simulation results shown in Fig. 7. The simula-
tion is repeated with the addition of bathymetry information
in the filter’s measurement model to investigate the benefit of
fusing the extra bathymetry information for the localization
of the vehicle. We compute the Estimated Error Covari-
ance (ECC) of the filter’s particle distribution to illustrate
the difference in the filter performance. The vehicles’ paths
used for the simulation, as well as the ECC at different way-
points are shown in Fig. 9. Ranging from about the same
absolute bearings among the vehicles causes the EEC of the
ranging-only case to grow at the same tangential direction.
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Fig. 8 Mutual information against the average position estimation
erros of the best performing cases. The D-MPF is more effective when-
ever both the ranging and bathymetry information are incorporated in
the filter’s measurements. a Comparison using the best performing case
of terrain & ranging (circle-dashed line). The simulation was re-ran
without ranging information (plus-solid line). b Comparison using the
best performing case of terrain-only (plus-solid line). The simulation
was re-ranwith the addition of inter-vehicle ranging information (circle-
dashed line)

In contrast, complementing the ranging information with
bathymetry information collected along the vehicles’ paths
results in much smaller EEC as shown in the case of bathym-
etry & ranging.

Figure 10a shows the aspect ratio of the error ellipsoid
described by the EEC for all the three vehicles (V1,V2 and
V3), while Fig. 10b shows the trace (sum of diagonal ele-
ments) of the ECC matrix throughout the mission time. The
aspect ratio denotes the skewness of the error uncertainty,
while the trace denotes themagnitude of the error uncertainty.
An effective filter typically has an aspect ratio as close to 1 as
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possible, and keeps the trace small. The results in Fig. 10a,
b clearly show that by incorporating bathymetry and rang-
ing information in the measurement model, the filter is able
to achieve lower trace and keep the aspect ratio closer to 1
throughout mission time.

The position estimation errors in some ranging-only cases
can be worse than the dead-reckoning method (see Fig. 7).
The issue of overconfidencemay results in filter divergence in
the vehicles’ filters, exacerbated by the wrong estimate feed-
backwithin the vehicle network, causing error reinforcement.
However, when cooperative localization is aided by bathym-
etry information, this issue can be alleviated, if not avoided,
as the individual vehicles’ positions and error covariances are
estimated solely from their own bathymetry measurements
between acoustic communication.

5.3 Influence of simulated ocean current

Without an exteroceptive sensor, like theDVL, tomeasure the
vehicle’s ground speed, it is crucial for the filter to track the
existence of an ocean current for more accurate propagation
of the process model. In this section, we repeat the simula-
tions with a southward simulated ocean current to investigate
its influence on the performance of the filter. We also com-
pare the results with the dead-reckoning method to further
illustrate the benefits of employing the proposed D-MPF.
The parameters shown in Table. 1 remain the same for this
simulation.

Figure 11 shows the results from the simulations with dif-
ferent magnitudes of simulated ocean current. With ocean
current being one of the states tracked by the filter, the
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Fig. 10 a The ratio between the major and minor axes of the EEC
throughout the mission time. b The trace of the EEC throughout the
mission time. By incorporating both the bathymetry and ranging infor-
mation in the measurement model, the vehicle’s individual filter was
able to achieve lower trace and keep the aspect ratio closer to 1 through-
out mission time
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Fig. 11 Position estimation errors of the decentralized (De) MPF and
dead-reckoning (Dr) under the influence of simulated ocean currents
with different magnitude

D-MPF is able to retain its performance under the influence
of a southward ocean current with a magnitude of 0.25 m/s,
and degrades slightly when the magnitude was increased to
0.50 m/s. On the other hand, the position estimation errors
which resulted from dead-reckoning were much higher even
without the presence of ocean current, and grew substantially
as the magnitude of the simulated ocean current increased.
Although it is expected that dead-reckoning would perform
poorly under the influence of an ocean current, the results
suggest that given sufficient terrain information, in addition
to the geometrical constraints imposed by the inter-vehicle
acoustic ranging, the D-MPF is robust against ocean current
offset.

5.4 Influence of compass and thruster biases

Often a vehicle’s sensors or actuators produce readings with
a constant offset (also known as bias) if left uncalibrated.
Although the biases can bemodeled as part of the system state
and tracked by the D-MPF, it increases the dimensionality of
the search space, thus requiring a higher number of particles
for the filter to converge. Since we do not model any bias in
the system state, it is worthwhile to investigate the robustness
of the filter when there are indeed biases that exist in either
the sensors or actuators of the vehicle.

In this simulation study, we repeated the simulation runs
with a compass bias of 0.1◦, and a thruster model bias
of 0.1 m/s. The results of the simulation runs are shown
in Fig. 12. As can be seen, the position estimation errors
increased significantly due to the existence of the biases.
Since the biases were not taken into account in the process
model, they were treated as the ocean current by the filters
and misled the propagation process. However, depending on
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Fig. 12 Position estimation errors of the D-MPFs under the influence
of compass bias of 1◦ and thrust bias of 0.1 m/s. The filter shows some
level of robustness against the biases and simulated ocean current

the geometry of the planned paths, if the biases affect the
resultant trajectories in a way that mimics the existence of
ocean current, the cooperative filter could still achieve a good
tracking results. This can be observed from the cases of low
position estimation errors at the lower whisker of the box-
plots. The filters exhibited a position error of approximately
50 % of the cases below 26 m even under a simulated ocean
current of 0.25 m/s.

6 Field experiments

In this section,we report the results obtained fromfield exper-
iments using bathymetric maps from two areas with distinct
terrains. The first map is from waters Charles River Basin,
Boston (Fig. 13) where the terrain is flat and patchy in places.
The second map is from the water near St. John Island, Sin-
gapore, as shown in Fig. 5a. In the following experiments, we
collected necessary data using surface and underwater vehi-
cles, and ran the D-MPF in post-processing to evaluate the
localization performance. The parameters shown in Table 1
were used throughout all the runs, unless stated otherwise.

6.1 Charles river basin, Boston

The first set of tests were performed at the Charles River
Basin, with a bathymetry map generated using depth data
collected by an autonomous surface vehicle (ASV). TheASV
was fittedwith a Tritech-PA500 single-beam altimeter (pro-
viding one-millimeter resolution when it operates in digital
mode) and instructed to perform a lawn-mower mission cov-
ering an area of about 500 × 300 m2 in the middle of the
river basin. The collected depth data were post-processed to
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Fig. 13 Bathymetry map of Charles River, paths executed (solid-
line) by the autonomous surface vehicle (inset) and the trajectories
tracked (dotted-line) by theD-MPF. The vehiclewas fittedwith a single-
beam altimeter

generate the bathymetry map (rectangular water depth map
showed in Fig.13).

For the cooperative localization mission, a total of three
lawnmowing-like paths were planned within the area where
the bathymetry information is available. The ASV was com-
manded to follow these three paths using high-precisionRTK
GPS as a ground truth, while collecting depth data. The resul-
tant paths are shown in Fig. 13. The oscillating patterns on
the trajectories were due to the surface waves, which were
not modeled in the filter. Since the control input to the filter’s
process model is derived from the planned paths, the depth
data collected along the resultant oscillating paths allow us to
test the effectiveness of the D-MPF in localizing the vehicles.

We carried out cooperative localization using the depth
data as if it has been obtained by three separate vehicles.
Acoustic communication was simulated between the vehi-
cles with a ranging period of 15 s per vehicle. The range
between the vehicles was computed from the vehicle’s GPS
ground truth during acoustic communication, corrupted with
measurement noise in (16). Figure 13 shows the trajectories
tracked (dotted-lines) by the D-MPF of each vehicle, while
Fig. 14 shows the corresponding position errors accumulated
by the filters. Throughout the mission execution, the D-MPF
maintained the position errors within 20 m (under 10 m for
most of the time). In comparison, the position errors are
higherwhen there is no filter and ranging information sharing
among the vehicles, and gets even higher when the vehicles
depend solely on dead-reckoning for navigation.

Due to the layout of the vehicles’ path, individual vehicles
receives the ranging broadcasts from other vehicles at about
the same absolute bearings (or 180◦ successively from each
of the vehicles in the case of V3) throughout the mission,
as shown in Fig. 15b. Such inter-vehicle ranging does not
contain information in the tangential direction (with respect
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Fig. 14 The average position estimation errors for all three vehi-
cles (V1…V3) over 10 localization runs using the same paths. The
position errors of the vehicles are lower when both the ranging and
bathymetry information are incooperated in the D-MPF for cooperative
localization

to the direction of ranging) and causes the estimated error
covariances (EEC) to grow unbounded in that direction. This
can be clearly seen in Fig. 15a where the EEC of the individ-
ual vehicle evolved from circular shape at beginning of the
mission, t = 1 s, to elongated ellipses with their major axes
almost parallel to each other, at time t = 200 s. Such cases of
inter-vehicle ranging, coupled with the patchy terrain (lack
of terrain information) around the mission area, resulted in
poor localization performance especially around 200 s mark
into the mission for V1 and 260 s mark for V2 (see Fig. 14).

6.2 St. John Island, Singapore

In a separate experiment, we performed offline cooper-
ative localization with field data collected using a team
autonomous marine vehicles that consisted of a STARFISH
AUV (Koay et al. 2011) and a SCOUT ASV (Curcio
et al. 2005) (Fig. 16a). The AUV was equipped with a
Tritec Micron single-beam altimeter, providing 1 mm
digital resolution, to measure the bathymetry information
along its pre-planned path. The ASV was equipped with a
BlueV iew P900-45 multi-beam sonar with a range resolu-
tion of 2.54 cm and a total of 256 beams. For the purpose
of this experiment, only the range measurement of a single
beam (128th beam) was used as the input to the localization
filter.

Both the vehicles were also equipped with an acoustic
modem, capable of performing OWTT measurement for
acoustic ranging, and broadcast the filter information at a
pre-scheduled period. The schedule was defined by a fixed,
16-s time-divisionmultiple access (TDMA) scheduling, con-
sisting of 8 s per acoustic broadcast, per vehicle. Whenever
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an acoustic transmission is successful, the RV incorporates
the received ranging and filter information into its D-MPF’s
measurement update. Otherwise, the filter is updated solely
by the vehicle’s water depth measurements (see line 6–10 of
Algorithm 1).

The experiment was conducted at St. John Island, Sin-
gapore, where we had access to the detailed bathymetry
map (see Fig. 5a). During the experiment, the vehicles were
deployed from a jetty and programmed to follow two lawn-
moving paths, oriented approximately 90◦ to each other, as
shown in Fig. 16b. All the tests were conducted as surface
missions so that the GPS logs could be used as ground truth.
We compare the performance of the filters in post-processing,
so that the acoustic ranging could be selectively ignored for
the case where the localization of the vehicles solely rely

Fig. 16 a The ASV and AUV used for the field experiment. Both the
vehicles are equipped with an acoustic modem for acoustic ranging
and filter information broadcast. The Kayak uses only a single beam
of the multi-beam sonar as its altitude measurement. b The trajectories
excuted by the AUV (V1) and the ASV (V2) within the bathymetry map
of the St. John Island, Singapore

on the bathymetry information collected along their planned
paths.

The blue-vertical arrows below each of the subfigures
inFig. 17 indicatewhen thevehicles successfully received the
acoustic transmissions from another vehicle. Due to the close
proximity of the acoustic modems to the vehicles’ thruster,
the acoustic transmissions were corrupted by the thruster
noise whenever either of the thrusters was in between the
line-of-sight of the modems. This can be seen from both the
200–300 s mark and 500–600 s mark when the ASV was
heading away (north) from the AUV (Fig. 18). Furthermore,
the surfacemission alsomade the acoustic transmission unre-
liable towards the end of the mission when the distances
between the vehicles increased.Nevertheless,we evaluate the
performance of the filters using the available ranging infor-
mation and their corresponding filter information broadcast.

Apart from acoustic communication, Fig. 17 also shows
the position errors of the D-MPF in each of the vehicles,
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with and without incorporating the ranging information in
the filters’ measurement update. As expected, the position
errors grow unbounded when dead-reckoning is used for
the vehicles’ navigation. The D-MPF that relies solely on
the terrain information reduces the position error of each
individual vehicle only when they navigate through regions
with sufficient terrain information. However, when both the
acoustic ranging and the PV’s filter information are available
and incorporated into the D-MPF for localization, the posi-
tion errors of the vehicles are significantly lower. This can
be clearly seen in Fig. 17 at around 400–500 and 600–700 s
marks for V1 and at around 100–200 s mark for V2. Again,
the results demonstrated the benefit of sharing the vehicles’

filter information as well as utilizing the ranging information
for cooperative localization.

Even though the acoustic transmissions between the vehi-
cles were stable at the beginning of the mission (0–100 s
mark in Fig. 17), the position errors of both the vehicles still
increases at about the same rate as the dead-reckoning. This is
due to the prevailing ocean current in the north-west direction
in that region, as shown in the insert of Fig. 18where themod-
eled velocities along the vehicles’s trajectories (computed
using both the thruster model and the compass readings) are
pointing in the south-east direction in order for the vehi-
cles to follow the planned trajectories. The results from
applying the D-MPF without ranging (blue-square line in
Fig. 17) show that the bathymetry information alone around
that region is insufficient for both of the vehicles to localize
themselves. In a situation where there are only 2 vehicles
involved in cooperative localization, the individual vehicles
would either depend on their own collected terrain infor-
mation for localization, or ranging information from a PV
that has good position information. Since both the vehicles
exhibited poor localization based on the terrain information,
the acoustic ranging provided little benefit in reducing their
position errors.

To further illustrate the benefit of increasing the num-
ber of vehicles to the proposed D-MPF, we reran the offline
localization with an additional trajectory that was executed
by another vehicle in a separate experiment, to simulate a
three vehicles cooperative localization mission. The same
TDMA scheduling mentioned in the previous two-vehicle
case was adopted. The resultant trajectories of the vehicles
are showed in Fig. 19a. The results in Fig. 19b show the esti-
mated position errors of both the V1 and V2 are relatively
low as compared to the two-vehicle case (Fig. 17). With the
additional constraint provided by the ranging information of
V3, the vehicles were able to achieve better performance.

It is worth pointing out that, even with the relatively fea-
tureless terrain off the St. John Island, while using only a
single beam echo-sounder and inter-vehicle acoustic rang-
ing, the D-MPF managed to keep position error at around
20∼30 m for the case of two vehicles, and lower to within
20 m when the number of vehicles was increased to three.

7 Discussion

As mentioned in Sect. 5.2, when the vehicles’ state informa-
tion are shared among the teammembers, their state estimates
become correlated. The cross-correlation, if not taken into
account, can cause the issue of overconfidence on the posi-
tion estimation and result in filter divergence. Although the
proposed D-MPF does not take into account the cross covari-
ance of the estimation, the issue of overconfidence is not
serious enough to cause the filter to diverge, as shown in
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Fig. 19 With extra ranging and bahtymetry information provided by
the third vehicle, the D-MPF performed better compared to the two-
vehicle case showed in Fig. 17. a The trajectory of the third vehicle (V3)
overlaying on top of the existing two trajectories. b The estimated posi-
tion errors of the vehicles for the case of 3 vehicles

Fig. 6 where the position errors for the D-MPF remained
low for most of the simulation runs. Besides, since the indi-
vidual vehicles’ position estimations are solely based on
their own bathymetry measurements in between the times
of acoustic communication, the effect of correlation has also
been alleviated, even if the filters’ belief broadcasts within
the vehicle network are cyclic. Tracking the correlation may
further improve the performance of the D-MPF. However,
doing so would also increase the requirement of communi-
cation bandwidth for the vehicles to share the correlation
information.

During the filter information broadcast, some informa-
tion of the vehicle’s particle distribution is lost because
only a single mode is estimated (via Eqs. (10) and (11))
and shared with other vehicles. Even though it is imprac-
tical to transmit all the particles’ location information

via the bandwidth-limited underwater communication link,
it may be beneficial to estimate and transmit multiple
modes of the distribution, if they exist. This will allow the
RV to better approximate the PV’s true particle distribu-
tion during the measurement update step, and potentially
improve the filter’s performance. However, the approach
comes with a cost of longer packet size for the informa-
tion broadcast, and may potentially decrease the transmis-
sion success rate and cause the channel throughput to be
lower.

The simulation and field trial results suggest that both the
ranging and bathymetry information are equally important
for the proposed D-MPF to perform well. Given the bathym-
etry map of a mission area, together with the requirement
of the inter-vehicle range observation, a multi-vehicle con-
trol strategy can be designed to take these into account so
that the trajectories planned would allow all the vehicles
to navigate through information-rich regions and maintain
the range observability throughout a mission. The combina-
tion of the control strategy and the proposed D-MPF has the
potential to be used for long-term underwater cooperative
localization, without relying on an underwater positioning
system.

8 Conclusion

We showed that it is feasible for a team of low-cost AUVs to
perform cooperative localization. In particular, we employed
the marginalized particle filtering technique in a distributed
manner in each of the vehicles and extended the filter’s mea-
surement model to incorporate the information broadcast by
other vehicles in the team. The decentralized formulation
is scalable to as many vehicles as can operate within the
communication range, without increasing the computational
complexity.

We showed that both the bathymetry information and
inter-vehicle acoustic communication among the vehicles are
crucial for the proposed cooperative localization approach
to perform well. Empirical studies using simulated data
demonstrated the benefits of the decentralized filter against
dead-reckoning navigation, as well as showcased its ability
in estimating the vehicles’ position under the influence of
ocean current and sensor biases. Finally, offline localization
using data from field experiments conducted in areas with
different terrain variabilities also validated the effectiveness
of the cooperative localization algorithm.
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