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Abstract We study the problem of expanding the product of two Stanley sym-
metric functions Fw · Fu into Stanley symmetric functions in some natural way.
Our approach is to consider a Stanley symmetric function as a stabilized Schu-
bert polynomial Fw = limn→∞ S1n×w, and study the behavior of the expansion of
S1n×w · S1n×u into Schubert polynomials as n increases. We prove that this expan-
sion stabilizes and thus we get a natural expansion for the product of two Stanley
symmetric functions. In the case when one permutation is Grassmannian, we have
a better understanding of this stability. We then study some other related stability
properties, providing a second proof of the main result.

Keywords Schubert polynomials · Stanley symmetric functions · Maximal
transition tree

1 Introduction

1.1 Background and motivation

In [21], Stanley defined a homogeneous power series Fw in infinitely many variables
{x1, x2, . . .} to compute the number of reduced decompositions of a given permuta-
tion w. He proved that Fw is symmetric; Fw is now referred to as a Stanley symmetric
function. Here we use Fw to denote Fw−1 defined in [21]. It is shown in [7] that

Fw = sD(w),

where D(w) is the diagram of w and sD(w) is the generalized Schur function defined
in terms of the column-strict balanced labellings of D(w). We are interested in the
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problem of expanding the product of two Stanley symmetric functions Fw · Fu into
Stanley symmetric functions. The hope is that we can explain the coefficients in terms
of D(w) and D(u), as a generalized Littlewood–Richardson rule for Schur functions.

However, since the Stanley symmetric functions are not linearly independent,
we want to expand them in some natural way. For w ∈ Sm and u ∈ Sn, denote by
w × u the permutation v ∈ Sm+n, with one line notation: w(1) · · ·w(m)(u(1) +
m) · · · (u(n) + m). Also, by 1n, we mean 1 × 1 × · · · × 1 = 123 · · ·n. For exam-
ple, 12 × 2134 = 124356. We consider a Stanley symmetric function as a stabilized
Schubert polynomial [16]:

Fw = lim
n→∞S1n×w. (1.1)

Divided difference operators were first used by Bernstein–Gelfand–Gelfand [4]
and Demazure [6] for the study of the cohomology of flag manifolds. Later, Lascoux
and Shützenberger [12] developed the theory of Schubert polynomials based on di-
vided difference operators. The collection {Sw | w ∈ Sn} of Schubert polynomials
corresponds to an integral basis for the cohomology ring of the flag manifold, and
thus there exist integer structure constants cv

wu such that

Sw ·Su =
∑

v

cv
wuSv.

It is a long standing question to find a combinatorial description of these constants.
Some special cases are known. The simplest but important case is Monk’s rule [18],
which corresponds to the case when one of the Schubert polynomials is indexed
by a simple transposition. A generalized Pieri rule was conjectured by Lascoux and
Shützenberger [12], where they also sketched an algebraic proof. It was conjectured
by Bergeron and Billey [3] in another form, and was proved by Sottile [20] using
geometry, and by Winkel [22] via a combinatorial proof. There are also results about
the case of a Schubert polynomial times a Schur polynomial, for example, see [10],
[15], and [2].

In Sect. 2, we prove the main result Theorem 1.3 using the combinatorial definition
of Schubert polynomials given in [5]. In Sect. 3, we study the case when one of
the permutation is Grassmannian. We prove Theorems 1.3 and 1.4 by an algorithm
described in [10] using maximal transitions (3.1).

For the case when both w,u are Grassmannian, S1n×w · S1n×u is the product
of two Schur polynomials for all n, so (1.2) is described by the usual Littlewood–
Richardson rule. When both w and u are 321-avoiding, by [5], (1.2) gives an ex-
pansion of the product of two skew Schur functions. Compare this with the skew
Littlewood–Richardson rule studied in [1] and [11], where they give a nice formula
for the coefficients (with signs) in the expansion of two skew Schur functions into
skew Schur functions. Here, we get all positive coefficients, but not all permutations
appearing in the expansion are 321-avoiding. Therefore, our expansion is different
from the one studied in [1] and [11].

In Sect. 4, we generalize this stability to the product of double Schubert polynomi-
als. We also give the definition of the weak and strong stable expansions, and prove
some other stable properties, which provide a second proof of Theorem 1.3.
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1.2 Examples and results

In order to study the expansion of Fw · Fu, we study the behavior, as n increases, of
the expansion of S1n×w · S1n×u into Schubert polynomials. To motivate our main
theorem, we will first give a canonical expansion of the product of a Stanley symmet-
ric function Fw with a Stanley symmetric function indexed by a transposition.

The following result is well-known.

Theorem 1.1 (Monk’s rule [18])

Sw ·Stm,m+1 =
∑

j≤m<k
�(wtjk)=�(w)+1

Swtjk
,

where �(w) is the length of the permutation w and wtjk is the permutation obtained
from w by exchanging w(j) and w(k).

Notice that 1 × tm,m+1 = tm+1,m+2. Then for S1×w · S1×tm,m+1 , we will have a
term S1×wtjk

corresponding to each term Swtjk
in the expansion of Sw · Stm,m+1 .

Let the position of 1 in w be s, i.e., w−1(1) = s. If s ≤ m, then there are no more
permutations; otherwise, if s > m, we get one more permutation (1 × w)t1,s+1. This
holds for all S1n×w ·S1n×tm,m+1 . More precisely, we have

S1n×w ·S1n×tm,m+1 =
∑

j≤m<k
�(wtjk)=�(w)+1

S1n×wtjk
(+S1n−1×(1×w)t1,s+1

, if s > m).

Now taking the limit for n → ∞, we get the following canonical expansion:

Fw · Ftm,m+1 =
∑

j≤m<k
�(wtjk)=�(w)+1

Fwtjk
(+F(1×w)t1,s+1, if s > m).

Let us look at another example for w = 3241 and u = 4312.

Example 1.2 Consider S1n×3241 ·S1n×4312 as n increases. For n = 0,1,2, we have

S3241 ·S4312 = S642135,

S1×3241 ·S1×4312 = S1×642135

+S265314 +S2743156 +S356214 +S364215 +S365124

+S462315 +S561324,

S12×3241 ·S12×4312 = S12×642135 +S1×265314 +S1×2743156 +S1×356214

+S1×364215 +S1×365124

+S1×462315 +S1×561324 +S2375416 +S246531 +S256341.
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As n increases, the permutations appearing in the previous case reappear and add
some new permutations (the underlined terms). In this example, the expansion stabi-
lizes after n = 2. One may check that

S1n×3241 ·S1n×4312 = S1n×642135 +S1n−1×265314 +S1n−1×2743156

+S1n−1×356214 +S1n−1×364215

+S1n−1×365124 +S1n−1×462315 +S1n−1×561324

+S1n−2×2375416 +S1n−2×246531

+S1n−2×256341.

Then taking n → ∞, we have

F3241 · F4312 = F642135 + F265314 + F2743156 + F356214 + F364215

+ F365124 + F462315 + F561324

+ F2375416 + F246531 + F256341.

The stability of the expansion S1n×w · S1n×u we observed in the previous two
examples is true in general. Here is the main result of this paper.

Theorem 1.3 Let w,u be two permutations.

1. Suppose Sw ·Su = ∑
v0∈V0

c
v0
w,uSv0 . Then

S1×w ·S1×u =
∑

v0∈V0

cv0
w,uS1×v0 +

∑

v1∈V1

cv1
w,uSv1,

where v1(1) �= 1, for each v1 ∈ V1.
2. Let k = �(w) + �(u). Then for all n ≥ k, we have

S1n×w ·S1n×u =
∑

v0∈V0

cv0
w,uS1n×v0 +

∑

v1∈V1

cv1
w,uS1n−1×v1

+ · · ·

+
∑

vk∈Vk

cvk
w,uS1n−k×vk

,

where Vi (possibly empty) is the set of new permutations appearing in S1i×w ·
S1i×u compared to S1i−1×w · S1i−1×u. Taking n → ∞, we have a canonical ex-
pansion:

Fw · Fu =
∑

v∈V

cv
w,uFv, (1.2)

where V = V0 ∪ · · · ∪ Vk .

For a permutation w ∈ Sn, define the code c(w) to be the sequence c(w) =
(c1, c2, . . .) of nonnegative integers given by ci = #{j ∈ [n] | j > i, w(j) < w(i)}.
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Define the length of c(w) to be i0 = max{i | ci �= 0}, denoted by �(c(w)). We call
a permutation Grassmannian if it has at most one descent. It is known that if w is
Grassmannian, then Sw is a Schur polynomial in �(c(w)) variables.

Theorem 1.4 Using the notations from Theorem 1.3, if one of w,u is Grassmannian,
then:

1. If Vi = ∅ for some i, then Vj = ∅ for all j > i. We call the smallest i such that
Vi = ∅ the stability number for w,u.

2. The stability number is bounded by max{�(c(w)), �(c(u))}. In particular, if w = u

with w(1) �= 1, the stability number equals w−1(1) − 1.

Conjecture 1.5 Theorem 1.4 is true for general w,u.

2 Proof of Theorem 1.3

Let us recall the combinatorial definition of Schubert polynomials introduced in The-
orem 1.1 [5]. Let p = �(w) be the length of w, and R(w) be the set of all the reduced
words of w. For a = (a1, . . . , ap), let K(a) be the set of all a-compatible sequences,
i.e., (i1, . . . , ip) such that:

1. i1 ≤ · · · ≤ ip ;
2. ij ≤ aj , for j = 1, . . . , p;
3. ij < ij+1, if aj < aj+1.

Then we have

Sw =
∑

a∈R(w)

∑

(i1,...,ip)∈K(a)

xi1 · · ·xip . (2.1)

Definition 2.1 For two integer vectors b1 = (b1
1, . . . , b

1
p) and b2 = (b2

1, . . . , b
2
p), con-

sider the following conditions:

1. b1 and b2 are weakly increasing. Namely, b1
1 ≤ · · · ≤ b1

p and b2
1 ≤ · · · ≤ b2

p .

2. b1 is smaller than b2, denoted by b1 < b2, which means b1
i ≤ b2

i for each i =
1, . . . , p;

3. b1 is similar to b2, denoted by b1 ∼ b2, which means b1 and b2 increase at the
same time, i.e., b1

i < b1
i+1 if and only if b2

i < b2
i+1; and

4. b1 and b2 are bounded by n, i.e., b1
i ≤ n and b2

i ≤ n, for all i = 1, . . . , p.

We call (b1, b2) a good pair if it satisfies the first three conditions and a good-n pair
if all four conditions are satisfied.

For example, (b1, b2), with b1 = (2,4,4,5) and b2 = (2,6,6,8), is a good-8 pair.
Denote Xb = xb1xb2 · · ·xbp . For example, Xb1 = x2x

2
4x5, for the previous b1. We use

co(Xb) to denote the coefficient of Xb.
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Lemma 2.2

1. In Sw , co(Xb1) ≥ co(Xb2), for any good pair (b1, b2).
2. In S1n×u, co(Xb1) = co(Xb2), for any good-n pair (b1, b2).
3. In S1n×u, co(Xb1 · g) = co(Xb2 · g), for any good-n pair (b1, b2) and any mono-

mial g with variable indices larger than n. And
4. In S1n×w · S1n×u, co(Xb1 · g) = co(Xb2 · g), for any good-n pair (b1, b2) any

monomial g with indices larger than n.

Proof Parts 1–3 follow from the combinatorial definition (2.1) of Schubert poly-
nomials and Definition 2.1. Now we will prove part 4. In fact, any Xb1 · g is the
product of two monomials, one from S1n×w and one from S1n×u, let us assume
Xb1 = Xb11 ·Xb12 , and the corresponding decomposition for Xb2 is Xb2 = Xb21 ·Xb22 .
Since b1 ∼ b2, we have b11 ∼ b21 and b12 ∼ b22. Applying part 3 to both pairs, we
have co(Xb1 · g) = co(Xb2 · g). �

Example 2.3 For example, consider the previous good-8 pair (b1, b2). If Xb1 =
x2x

2
4x5 = (x2x4)(x4x5) with b11 = (2,4) and b12 = (4,5), then we decompose

Xb2 = x2x
2
6x8 as (x2x6)(x6x8) with b21 = (2,6) and b22 = (6,8).

Write the code of w as c(w) = (c1, c2, . . . , cp) and Xc(w) = x
c1
1 x

c2
2 · · ·xcp

p . For
any composition c, let b(c) be the weakly increasing sequence such that Xb(c) = Xc.
We use reverse lex-order in this section. It is known that the top degree term of Sw

is Xc(w), i.e.,

Sw = Xc(w) +
∑

b

Xb, (2.2)

where each b satisfies b < b(c(w)), as defined in part 2 of Definition 2.1. Now we
consider the process of getting the expansion of Sw · Su. By (2.1), the top degree
term is Xc(w)+c(u). Let v1 be the permutations such that c(v1) = c(w) + c(u). Then

Sw ·Su = Sv1 + · · · ,

so c
v1
wu = 1. Consider the top degree term in Sw · Su − Sv1 . Let it be c2X

c(v2) for
some v2. Then

Sw ·Su −Sv1 = c2Sv2 + · · · .

Next, consider the top degree term in Sw · Su − Sv1 − c2Sv2 , etc. Since there are
finitely many monomials in Sw ·Su, this process terminates, and we get an expansion
Sw ·Su = ∑

v∈V0
cv
wuSv .

Proof of Theorem 1.3 1. By the combinatorial definition of a Schubert polynomial
(2.1) and the above process of expanding Sw ·Su, we have c1×v

1×w,1×u = cv
w,u for all

v ∈ V0. Furthermore, each term in

S1×w ·S1×u −
∑

v0∈V0

cv0
w,uS1×v0
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is divisible by x1. So any Sv with c(v) = (c1, c2, . . .) appearing in the above differ-
ence has c1 �= 0, which is equivalent to v(1) �= 0. This proves part 1.

2. For a fixed n, suppose

S1n×w ·S1n×u =
∑

v∈V

cv
wuSv.

We claim that the code c(v) = (c1, c2, . . . , cp) for v ∈ V has to satisfy the following
property: let c(v)n = (c1, c2, . . . , cn) be the first n elements in c(v). Let i(v) be the
smallest number such that ci �= 0. Then the claim is that if i(v) ≤ n, then for all
i(v) < j ≤ n, we have cj �= 0. Suppose we have proved this claim. Then since c1 +
· · · + cn ≤ k, where k = �(w) + �(u), for each v ∈ V , we have i(v) > n − k. In
other words, the code c(v) starts with at least n − k zeros, and thus v starts with
12 · · · (n − k), which will finish the proof. Now let us prove the claim.

In fact, suppose we have some v0 ∈ V which does not satisfy the claim.
Namely, there exists some j such that i(v) < j ≤ n and cj = 0. Let c′ =
(0, c1, c2, . . . , cj−1, cj+1, . . . , cn). Consider the pair b1 = b(c(v)n) and b2 = b(c′),
i.e., Xb1 = Xc(v)n and Xb2 = Xc′

. For example, let n = 7, and c(v0)n = (0,0,0,2,3,

0,2). Then Xb1 = X2
4X

3
5x

2
7 , c′ = (0,0,0,0,2,3,2) and Xb2 = X2

5X
3
6x

2
7 . Then

(b1, b2) is a good n-pair.
Now let g = X(cn+1,...,cp). Notice that Xb1 · g is the top degree term in Sv0 by

(2.2). Since b2 > b1, co(Xb2 · g) = 0 in Sv0 . Therefore, co(Xb1 · g) > co(Xb2 · g)

in Sv0 . By Lemma 2.2, on the right hand side of the equation in Theorem 1.3, for
each v ∈ V , we have co(Xb1 · g) ≥ co(Xb2 · g). Therefore, on the right hand side,
we have co(Xb1 · g) > co(Xb2 · g). However, on the left hand side, we must have
co(Xb1 · g) = co(Xb2 · g), a contradiction. �

3 Schubert polynomial times a Schur polynomial

In this section, we will prove Theorems 1.3 and 1.4 for the case when one of the
permutations w,u is Grassmannian. We will apply an algorithm for multiplying a
Schubert polynomial by a Schur polynomial based on the following result. This re-
sult was originally proved using Kohnert’s algorithm. So this section is based on the
following theorem.1

Theorem 3.1 (Theorem 3.1 in [10]) Let Su be a Schur polynomial with m variables,
i.e., u is a Grassmannian permutation with �(c(u)) = m. Let Sw be a Schubert poly-
nomial with m variables, i.e., �(c(w)) = m. Then

Sw ·Su = Sw×u ↓ Am,

where f ↓ Am = f (x1, . . . , xm,0, . . . ,0).

1We have heard from a number of experts that there is some question about the validity of the proof of
Theorem 3.1 in [10].
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The algorithm we will apply for multiplying a Schubert polynomial by a Schur
polynomial was studied in [10] and is a modification of the algorithm by Lascoux
and Schützenberger [13] for decomposing the product of two Schur functions into a
sum of Schur functions.

3.1 Maximal transition tree

Recall that wtrs is the permutation obtained from w by switching w(r) and w(s). Let
r be the largest descent of the permutation w, and s be the largest integer such that
w(s) < w(r). The following formula follows from Monk’s rule [18]

Sw = xrSu +
∑

v∈S(w)

Sv, (3.1)

where u = wtrs and S(w) is the set of permutations of the form wtrstjr with j < r

such that �(wtrs tjr ) = �(w). Denote the set of all possible j ’s to be J (w). So each
v ∈ S(w) corresponds to a different j ∈ J (w). We call (3.1) a maximal transition
(MT for short) (see [13]). We call each v ∈ S(w) a descendent of w.

Example 3.2 For example, for w = 321654, we have r(w) = 5, s(w) = 6, J (w) =
{1,2,3} and S(w) = {421635,341625,324615}.

Notice that ci = 0, for all i > r(w) in the code c(w) = (c1, c2, . . .), and Sw is a
polynomial with r(w) variables. So if r(w) ≤ m, then Sw = Sw ↓ Am. If r(w) > m,
we have Sw ↓ Am = ∑

v∈S(w) Sv ↓ Am by (3.1), since we set xr = 0. Notice that for

each permutation v ∈ S(w), r(v) < r(w). We call a permutation v bad if v−1(1) >

m + 1. If v is bad, then xm+1 divides each monomial of Sv , so Sv ↓ Am = 0.
Apply MT successively to w × u, each v ∈ S(w × u) and their descendants as

long as the permutation is not bad, until their largest descents are smaller than m.
This way we get a finite tree with two types of leaves: (i) a permutation with largest
descent ≤ m, we call it a good leaf ; and (ii) a bad permutation as defined above. Then
Sw×u ↓ Am is obtained by summing up all of the good leaves. We call this tree the
MT-tree rooted at w × u; we call the edge between a permutation w and one of its
descendant v ∈ S(w) an MT-move.

Example 3.3 Here is an example of the MT tree rooted at w × u, for w = 321,
u = 2413 and m = 2 (see Fig. 1). The leaves we cross out are the bad leaves, i.e.,
permutations with 1 in position larger than m+1 = 3. The remaining leaves are good
leaves, i.e., they have largest descent ≤ m = 2. So summing up all the good leaves,
we have S321 ·S2413 = S321×2413 ↓ A2 = S53124 +S45123.

Fig. 1 MT-tree rooted at
321 × 2413 for Example 3.3
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Fig. 2 MT-tree rooted at
1 × 321 × 1 × 2413 for
Example 3.5

Remark 3.4 Notice that in Fig. 1, the descendants of 341625 are bad leaves (35214
and 34512). It will be nice if one could simplify the tree so that we can remove
341625 without applying further moves.

Now we want to study the difference between the MT-tree rooted at 1 ×w × 1 ×u

and the one rooted at w × u.

Example 3.5 Continuing Example 3.3. We study S1×321 ·S1×2413 (see Fig. 2). No-
tice that now m = 3 instead of 2 in Example 3.3. Summing up all good leaves,
we have S1×321 · S1×2413 = S1432×13524 ↓ A3 = S164235 + S156234 + S263145 +
S25413 +S246135 +S34512.

Compare the leaves of the above tree and those in Example 3.3. We have the
following observations.

1. The good leaves in Example 3.3 (53124 and 45123) stay good in Example 3.5,
simply with a one added in front (1 × 53124 = 164235 and 1 × 45123 = 156234,
bold in Fig. 2).

2. The remaining good leaves in Example 3.5 are descendants of some bad leaves in
Example 3.3. For example, 263145 (underlined in Fig. 2) is obtained from 52314
which used to be bad in Example 3.3.

3. For the new good leaves in Example 3.5, the position of 1 stays the same as their
ancestor in Example 3.3. For example, both 263145 and 52314 have 1 in the fourth
position.

In general, the first and second observations above are true as a consequence of
Lemma 3.6 (we will prove it in the next subsection), and the third observation is
true by Lemma 3.7.

Lemma 3.6 For the same m as for w,u, the leaves (“good” and “bad”) of w×1×u

are the same as leaves of w × u.

Lemma 3.7 For any reduced permutation w (cannot make more MT-moves), if we
add 1 in the beginning and then apply the MT-moves to 1 ×w, the position of 1 in the
leaves is the same as the position of 1 in w.

Proof Let r0 be the last descent of w, s0 be the largest number such that w(s0) <

w(r0). w is reduced implies that in w, J (w) = ∅. Then since r0 is the last descent,
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we can see that w(r0 + 1) = 1. Then in the first move for 1 × w, we will have j = 1,
r = r0 + 1 thus and move 1 to the position of r0 + 1. After this move, all the rest will
not change the position of 1. So 1 will be in the position r0 + 1, which is the same
as the position of 1 in w. After this move, all the rest will not change the position
of 1. �

Now notice that in Example 3.5, there is still one bad leaf 243615 (see Fig. 2).
So in the next step S12×321 · S12×2413, there will be some more good leaves
with 243615 as ancestor. After that, the expansion S1n×321 · S1n×2413, for n ≥ 2
should have no more new permutations. And in fact, this is the case: S1n×321 ·
S1n×2413 = S1n×53124 +S1n×45123 +S1n−1×263145 +S1n−1×25413 +S1n−1×246135 +
S1n−1×34512 +S1n−2×236415, for all n ≥ 2. So we have

F321 ·F2413 = F53124 +F45123 +F263145 +F25413 +F246135 +F34512 +F236415. (3.2)

So the stability number for S321 ·S2413 is 2, as predicted by Theorem 1.4 part 2 that
it should be bounded by �(c(321)) = �(c(2413)) = 2. Now look at the positions of 1
in each permutation appearing on the right hand side of (3.2): I = {3,4,5}, which is
an interval without any gaps. In general, we have

Lemma 3.8 Let Fw · Fu = ∑
v∈V Fv be the expansion we get by Theorem 1.3. Let

I {v−1(1) | v ∈ V }. Then I = [a, b] an interval without any gaps.

Lemma 3.8 together with Theorem 1.3 will imply Theorem 1.4. For a proof of
Lemma 3.8, we also want to use the diagrams interpretation of the MT-move studied
in the next subsection.

Lemma 3.9 If a permutation is reduced, then there are no descents after 1. In other
words, the length of the code is the number of boxes in the first column.

Proof Suppose there is a descent after 1, then it is not hard to see that this permutation
is not reduced, since there must exist a j for which we can apply MT-move. �

Now assume that Su is a Schur polynomial and Sw is a Schubert polynomial both
in m variables. Use the MT algorithm, we can show the result in both Theorems 1.3
and 1.4.

Proof of Theorem 1.3 1. Consider the expansion of S1×w ×S1×u by looking at the
tree rooted at 1 × w × 1 × u. By definition, all the good leaves for the tree rooted at
v × u satisfy: (i) the last descents are no larger than m, and (ii) positions of the letter
1 are not larger than m + 1. By Lemma 3.6, the leaves of v × 1 × u are the same as
the leaves for v × u, both the good leaves and the bad leaves. So it is not hard to see
that the leaves of 1 × v × 1 × u are just the leaves of v × 1 × u with an 1 added to
the front. Now for n = 1 + �, the good leaves of v × u are still the good leaves for
1 × v × 1 ×u, just with an 1 added to the front. Now for those bad leaves, by Lemma
3.7, after we add 1 to the front, and continue to apply the MT-moves, the position of
1 will not change. But because the number of the variables in S1×w and S1×u is now
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m + 1 instead of m, some of the bad leaves (when the position of 1 is m + 2) will
become good leaves. Moreover, these newly added good leaves will not start with 1.
So the Schubert polynomials appeared in the expansion of X1×v × X1×u are indexed
by the old good leaves, which all start with 1, and possibly some new good leaves,
which all do not start with 1. This proves the first part.

2. When we append more ones in front of u and v, all leaves of the tree will become
good leaves, but there are only finitely many of them. So finally the expansion will
be stable. �

Proof of Theorem 1.4 1. Consider the diagram of a permutation (see the next subsec-
tion for details). By MT algorithm, if we are able to move a portion with length s1 and
s2 to the first column, then we are able to move a portion with any length between
s1 and s2. So there is no gap when new terms showing up in the expansion when
n increases. Applying different choices of j gives us different number of potential
boxes to be added to the first column. But this number should have no gap: if there
are cases when there are one boxes left and four boxes left. Then there must be some
combination of choices of j ’s such that there are two and three boxes left to be added
to the first column.

2. By Lemma 3.9, for all leaves, the length of the code is the length of the first
column. It is clear that the longest possible first column is the sum of the length of
c(w) and c(u). From the diagrams perspective of the MT-moves developed in the
next subsection, it is not hard to see that (refer to Fig. 4 for visualization), the stable
number bounded by the maximal length of the first column minus c(w). Therefore,
we get a bound by the maximal length of c(w) and c(u). In the case w = u, and
both being Grassmannian, we have m = w−1(1) − 1, which is exactly the stable
number. �

3.2 MT-move in terms of diagrams

In order to prove Lemmas 3.6 and 3.8, we want to describe the MT-move in terms of
diagrams.

First, there is a correspondence between the set of inversions of w and the boxes
in the diagram. An inversion in a permutation w is a pair of (i, j) such that i < j and
w−1(i) > w−1(j). We denote a box of the diagram in the ith row and j th column by
Bij . Then the box Bij corresponds to the inversion (j,w(i)) in w. For example, here
is the diagram for w = 3215746 (see Fig. 3(a)). The box B56 (indicated by a bullet)
corresponds to the inversion (6,7) in w.

Now we study the MT-move in terms of diagrams. Let v be a descendant of w via
an MT-move. Then D(v) is obtained from D(w) by moving some part of the diagram

Fig. 3 MT-move
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Fig. 4 MT-moves using different j ’s

up and left. For example, as shown in the first step of Example 3.3, applying an MT-
move to w = 3215746, we get v = 3216547, and the diagram of v is obtained from
D(w) by moving the box with a bullet up and left by one row and one column (see
Fig. 3). Notice that this diagram move is very similar to the move described in [9].

Recall that v = wtrstsj , where r is the largest descent of w, s is the largest number
s > r such that w(s) < w(r), and j is some number j < r such that wtrstsj has the
same length as w. From w to v = wtrstsj , we have the following change of inver-
sions:

1. Change each inversion (w(i),w(s)) to an inversion (w(i),w(j)), for j < i ≤ r .
In terms of diagrams, this corresponds to moving the part of column w(s) left to
column w(j), where the part is from the (j + 1)th row to the r th row.

2. Change each inversion (w(r),w(i)) to (w(j),w(i)), for r < i < s and w(i) >

w(j). In terms of diagrams, this corresponds to moving the part of row r with
column indices in {w(i) | w(i) > w(j), r < i < s} up to row j .

In the diagram of w, consider the right-down corner box B(w), i.e., the box in the
rightmost column of the lowest row. By the definition of r(w) = r and s(w) = s,
we have B(w) = Br,w(s). For each j ∈ J (w), denote the box Bj,w(j) by T (w, j).
Then the above changes of inversions can be seen as moving some blocks with
B(w) as its right-down corner up and left so that T (w, j) becomes its upper-left
corner. For example, consider w = 321654 in the branching part of Example 3.3,
with J (w) = {1,2,3}. See Fig. 4(a) for D(w), where B(w) is marked with a bul-
let and all three possible T (w, j)’s are marked with ×. Now applying MT-moves to
D(w), all three D(v), for v ∈ S(w) are shown in Figs. 4(b), 4(c), and 4(d). Using this
diagram interpretation of the MT-move, we can prove Lemma 3.6 by comparing the
MT-moves of D(w × u) and D(1 × w × 1 × u).

Proof of Lemma 3.6 Compare the diagrams of w × u and w × 1 × u (see Example
3.10). The two diagrams are basically the same, but because of the “1” in the middle
of w × 1 × u, the boxes corresponding to u are down by one row and right by one
column. We call them delayed boxes. Now we apply the maximal transitions to t :=
w × 1 × u and compare the moves to those for w × u. As in the previous discussion,
we start from the rightmost box B (marked with a bullet) in the lowest row, which
is in row r and column w(t). We will move some part of the diagram with B as its
right-down corner of the diagram up and left so that the box T in row j and column
w(t) becomes its up-left corner. Compare each move of s to the moves of w × u.
There are two cases:
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1. The corresponding box for B in w ×u is also the rightmost box in the lowest row.
In Example 3.10, Ai and the last Bij in its row has the same B box (A1 and B12,
A2 and B22, etc.).

2. In the lowest row, some delayed boxes are to the right of the box B for
w × u. In Example 3.10, every Bij not belonging to the previous case is in this
case.

Therefore, as we apply maximal transition to w × 1 × u, if the delayed boxes are
not on the way, we can apply the same move as for w × u; if we are not so lucky,
we need to clear our way by moving all the delayed boxes up and left first. There are
two important things to notice for this case: (i) there is only one possible j to use
(and always j > m), and it is exactly one row up and one column left to the delayed
block that we need to move; (ii) after moving this delayed block up and left by one,
the boxes in this block are no longer delayed. In other words, this cleaning work will
not affect the actually moving work, and this cleaning work is finite. Once we finish
all the cleaning work, we will get the exactly the same permutation in the process of
w × u, as in the example A5 = B52.

Now it is left to show that all the cleaning work can be done before we get to
the leaves of w × u. Consider the condition when we get to a leaf: (i) all boxes are
above the (m + 1)th row (good leaves) or (ii) the first column has more than m boxes
(bad leaves). If there are still some delayed boxes, since in the process of cleaning
j > m, it is not possible that all boxes are above the (m + 1)th row. In the second
case, assume that the first column already has more than m boxes, but we still have
delayed boxes. Since these delayed boxes are not in the first column, we can still do
the cleaning until there are no delayed boxes left. �

Example 3.10 Here is an example for w = 12 × 32154 and u = 698435127 with
m = 6. We start from A1 = w × u and B11 = w × 1 × u. Here are their diagrams (for
simplicity, we ignore the 12 in the front.)

Then we apply MT-moves to both of them. Here is part of the tree.
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Even though the path of the Bi ’s is longer, eventually it gets to the same permuta-
tion B52 = A5. For example, consider A3 and B31. In A3, the corner box is indicated
by a bullet. While in B31, the corresponding box is also indicated by a bullet. But it
is not the corner box in B31 since there are some delayed boxes to its right (indicated
by the dots). So we need to do some cleaning (the move from B31 to B32, and then to
B33) before moving the same block as A3. Finally, in B33, we are ready to move the
same block as A3.

Proof of Lemma 3.8 Notice that v−1(1)−1 is the number of boxes in the first column
of D(v). Consider again w and S(w) shown in Fig. 4. Notice that applying different
j ∈ J (w) may result in different numbers b(j) of potential boxes to be added to the
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first column. For example, for j = 2, there is one box left, and for j = 3, there are
two boxes left (and are already added). The set b = {b(j) | j ∈ J (w)} = [1,2] is an
interval without any gaps. Using the diagram interpretation of the MT-move, we can
show that this holds in general, which implies this lemma. In fact, by the definition
of J (w), each j ∈ J (w) has the following property: there is no element w(i) with
j < i < r such that w(j) < w(i) < w(r). In terms of the diagrams, this means that
all boxes in the block between w(j) and w(r), i.e., the block with w(j) as the upper-
left corner and w(r) as the lower-right corner, are crossed out. Therefore, suppose
j1, j2 are the kth and (k + 1)th largest in J (w), then b(j1) = b(j2) − 1. Therefore,
b = {b(j) | j ∈ J (w)} is an interval without any gaps, thus completing the proof of
this lemma. �

Corollary 3.11 Let w,u be two permutations both with �(c(w)) = �(c(u)) = m (for
the case when �(c(w)) �= �(c(u)), add enough ones to the front of one permutation).
Assume u is Grassmannian. Apply MT-moves successively to D(1m × w × u). Stop
applying MT-moves to a diagram D as soon as all the boxes in its diagram are in the
first 2m rows. Denote the multiset of the diagrams obtained this way by A. Then in
the canonical expansion (1.2) Fw · Fu = ∑

v∈V cv
wuFv , we have

cv
wu = #

{
D ∈ A | D = D(v)

}
.

4 Other stable expansions

In this section, we study some other stable expansions related with Schubert polyno-
mials. Given a unique expansion, we study the behavior of that expansion when we
embed w 
→ 1n × w, as we did for Theorems 1.3 and 1.4. We call the eventually sta-
bilized behavior as described in Theorem 1.3 weak stable property; and if it further
satisfies the property that once there are no new terms, there will be no new terms
ever, as described in Theorem 1.4, we call it strong stable property. First, as a direct
corollary of Theorem 1.3, we have

Corollary 4.1 For the unique expansion of the product of finitely many Schubert
polynomials into Schubert polynomials, we have the weak stable property, i.e.,

1. Suppose Sw1 · · ·Sw�
= ∑

v0∈V0
c
v0
w1,...,w�

Sv0 . Then

S1×w1 · · ·S1×w�
=

∑

v0∈V0

cv0
w1,...,w�

S1×v0 +
∑

v1∈V1

cv1
w1,...,w�

Sv1,

where v1(1) �= 1, for each v1 ∈ V1.
2. Let k = �(w1) + · · · + �(w�). Then for all n ≥ k, we have

S1n×w1 · · ·S1n×w�
=

∑

v0∈V0

cv0
w1,...,w�

S1n×v0 +
∑

v1∈V1

cv1
w1,...,w�

S1n−1×v1
+ · · ·

+
∑

vk∈Vk

cvk
w1,...,w�

S1n−k×vk
,
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where Vi (possibly empty) is the set of new permutations appearing in S1i×w1
· · ·

S1i×w�
compared to S1i−1×w ·S1i−1×u.

4.1 Product of double Schubert polynomials

For the double Schubert polynomials, we have the following connection to Schubert
polynomials (for example, see Proposition 2.4.7 in [17])

Sw(x, y) =
∑

w=v−1u
�(w)=�(u)+�(v)

Su(x)Sv(−y).

Then consider the product of two double Schubert polynomials

S1n×w(x, y)S1n×w′(x, y) =
∑

w=v−1u
�(w)=�(u)+�(v)

w′=v′−1u′
�(w′)=�(u′)+�(v′)

S1n×u(x)S1n×v(−y)S1n×u′(x)

×S1n×v′(−y).

By Corollary 4.1, we have

Corollary 4.2 For the unique expansion of the product of finitely many double Schu-
bert polynomials into Schubert polynomials, we have the weak stable property.

4.2 Stable expansion between Sw and eI

We write (2.1) as

Sw =
∑

a∈N∞
Kw,aX

a,

where each Kw,a is a nonnegative integer, and K = (Kw,a) is known as the Schubert–
Kostka matrix. Let

ek
i =

∑

1≤r1<···<ri≤k

xr1 · · ·xri ,

and for I = (i1, i2, . . . , in), let

eI = e1
i1
e2
i2

· · · en
in
.

Notice that ek
i = 0, if i > k, so we require ik ≤ k in I .

The following result is well known.

Proposition 4.3 (See [12], [14, (2.6)–(2.7)], [8, (4.13)]) We have the following Z-
linear bases for Z[x1, . . . , xn]/In, and each of them spans the same vector space
which is complementary to In:

1. The monomials x
a1
1 · · ·xan−1

n−1 such that 0 ≤ ak ≤ n − k;
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2. The standard elementary monomials ei1i2···in−1 ;
3. The Schubert polynomials Sw for w ∈ Sn.

By Proposition 4.3, we have the unique expansions of eI into Sw and Sw into eI .
In this subsection, we will prove the stable property for these two unique expansions.

Proposition 4.4 For I = (i1, . . . , in), we have the strong stable property for the ex-
pansion

eI =
∑

w∈W

βI
wSw,

i.e., for all k ≥ r = i1 + i2 + · · · + in − n, we have

e(0k,i1,i2,...,in) =
∑

w∈W

βI
wS1k×w +

∑

w1∈W1

βI
w1
S1k−1×w + · · · +

∑

wk∈Wr

βI
wr
S1k−r×w,

where for i = 1, . . . , r , we have Wi �= ∅ and Wr is the single permutation wr =
23 · · · (r +n+ 1)1. Moreover, for 1 ≤ k < r , Wk is the set of new permutations added
in the expansion of e(0k,i1,i2,...,in) from e(0k−1,i1,i2,...,in).

To prove Proposition 4.4, we need a lemma, which uses the Pieri rule.

Proposition 4.5 (Pieri rule) Define the following operator on Schubert polynomials:

Ti,jSw =
{
Swti,j if �(wti,j ) = �(w) + 1,

0 otherwise.

We have

ek
rSw =

∑
Ti1,j1Ti2,j2 · · ·Tir ,jrSw,

summing over i1, . . . , ir ≤ k < j1, . . . , jr , such that i1, . . . , ir are all distinct and j1 ≤
· · · ≤ jr .

Lemma 4.6 The unique expansion of e
j
i Sw = ∑

w∈W βI
wSw into Schubert polyno-

mials has strong stable property, i.e., there exist r such that for all k ≥ r , we have

e
j+k
i S1k×w =

∑

w∈W

βI
wS1k×w +

∑

w1∈W1

βI
w1
S1k−1×w + · · · +

∑

wk∈Wr

βI
wr
S1k−r×w,

where for i = 1, . . . , r , we have Wi �= ∅. Moreover, for 1 ≤ k < r , Wk is the set of
new permutations added to the expansion of e

j+k
i S1k×w compared to the expansion

of e
j+k−1
i S1k−1×w .

Proof Use Proposition 4.5. Let m be the minimal number of simple transformations
we need in order to move the letter 1 to a position after j in w. In the next step, we
consider e

j+1
i S1×w . We will get new terms if we can exchange the letter 1 in 1 × w
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with some other letter. Then we can show that e
j+k
i S1k×w will have new terms in the

expansion for all 0 < k ≤ i − m and there will be no new terms if k > i − m. In step
k = i − m, there is exactly one new permutation. �

Proof of Proposition 4.4 Use Lemma 4.6 from left to right, with e1
i1

= Sw ,

((
e1
i1
e2
i2

)
e3
i3

) · · · en
in
.

For e1
i1
e2
i2

, let Sw1 be the last new term added at step n1 = i2 − 1. Then consider

Sw1e
k+n1
i3

, let Sw2 be the last new term at step n1 + n2, with n2 = i3 − 1, etc. We
have the last new term added at step N = n1 + · · · + nn − n, is S23···(|I |+1)1. Before
this step, there are always new terms being added to the expansion. �

For the expansion of Sw into eI , we have the following stable property:

Proposition 4.7 For the unique expansion Sw = ∑
I∈N∞ aw

I eI , we have weak stable
property, i.e., in the expansion S1×w = ∑

J∈N∞ b1×w
J eJ , we have

b1×w
0I = aw

I .

To prove this stable property, we use the following two lemmas:

Lemma 4.8 ([19, p. 31]) For w = w1 · · ·wn ∈ Sn, we have

Sww0 =
∑

a

K−1
a,wew0(ρn−a),

where w0 = n(n − 1) · · ·1, ρn = (n − 1, n − 2, . . . ,1,0), and K−1 = (K−1
a,w) is the

inverse of K .

Lemma 4.9 ([19, Proposition 17.3]) For any u ∈ Sn and a ∈ N∞, we have

K−1
a,u =

∑

w∈Sn

(−1)�(w)Kw0u,w(ρn)−a,

where w acts on a vector as rearranging the coordinates, e.g., 312(2,1,0) = (0,2,1).

Proof of Proposition 4.7 Consider Lemma 4.8. Notice that w0(ρn −a) = (0−an,1−
an−1, . . . , n − 1 − a1), and w0(ρn+1 − b) = (0 − bn+1,1 − bn, . . . , n − b1). Assume
w0(ρn+1 −b) = (0,w0(ρn −a)). Then b = (a+1,0). Assume 1×ww0 = uw0. Then
u = (n + 1) × w. So to prove the result, it suffices to show that

K−1
(a+1,0),(1+n)×u = K−1

a,u.

Then by Lemma 4.9, we have

K−1
(a+1,0),(1+n)×u =

∑

w∈Sn+1

(−1)�(w)Kw0((1+n)×u),w(ρn+1)−(a+1,0).
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Notice that w0((1 + n) × u) = u and w(ρn+1) − (a + 1,0) = w(ρn) − a if
w(ρn+1)n+1 = 0. But if w(ρn+1)n+1 �= 0, w(ρn+1) − (a + 1,0) /∈ N∞, so
Kw0((1+n)×u),w(ρn+1)−(a+1,0) = 0. Therefore, K−1

(a+1,0),(1+n)×u = K−1
a,u. �

Remark 4.10 Consider the expansion of two Schubert polynomials SwSu into Schu-
bert polynomials again as we studied in Theorem 1.3. By Proposition 4.7, we can get
a stabilized expansion of Sw into the eI ’s. Then, by Lemma 4.6, the expansion of
each term eISu into Schubert polynomials stabilizes. This way, we get a second
proof of Theorem 1.3.
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