
MIT Open Access Articles

Fast maximum likelihood estimation using
continuous-time neural point process models

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lepage, Kyle Q., and Christopher J. MacDonald. “Fast Maximum Likelihood Estimation
Using Continuous-Time Neural Point Process Models.” J Comput Neurosci 38, no. 3 (March 20,
2015): 499–519.

As Published: http://dx.doi.org/10.1007/s10827-015-0551-y

Publisher: Springer Science+Business Media

Persistent URL: http://hdl.handle.net/1721.1/105330

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/105330

J Comput Neurosci () 38:499–519
DOI 10.1007/s10827-015-0551-y

Fast maximum likelihood estimation using continuous-time
neural point process models

Kyle Q. Lepage ·Christopher J. MacDonald

Received: 30 May 2014 / Revised: 5 January 2015 / Accepted: 2 March 2015 / Published online: 20 March 2015
© Springer Science+Business Media New York 2015

Abstract A recent report estimates that the number of
simultaneously recorded neurons is growing exponentially.
A commonly employed statistical paradigm using discrete-
time point process models of neural activity involves the
computation of a maximum-likelihood estimate. The time
to computate this estimate, per neuron, is proportional to
the number of bins in a finely spaced discretization of time.
By using continuous-time models of neural activity and the
optimally efficient Gaussian quadrature, memory require-
ments and computation times are dramatically decreased in
the commonly encountered situation where the number of
parameters p is much less than the number of time-bins
n. In this regime, with q equal to the quadrature order,
memory requirements are decreased from O(np) to O(qp),
and the number of floating-point operations are decreased
from O(np2) to O(qp2). Accuracy of the proposed esti-
mates is assessed based upon physiological consideration,
error bounds, and mathematical results describing the rela-
tion between numerical integration error and numerical
error affecting both parameter estimates and the observed
Fisher information. A check is provided which is used to
adapt the order of numerical integration. The procedure is
verified in simulation and for hippocampal recordings. It is
found that in 95 % of hippocampal recordings a q of 60
yields numerical error negligible with respect to parameter

Action Editor: Liam Paninski

K. Q. Lepage (�)
Department of Mathematics & Statistics, Boston University,
Boston, MA 02215, USA
e-mail: lepage@math.bu.edu

C. J. MacDonald
Picower Institute for Learning andMemory, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA

estimate standard error. Statistical inference using the pro-
posed methodology is a fast and convenient alternative to
statistical inference performed using a discrete-time point
process model of neural activity. It enables the employment
of the statistical methodology available with discrete-time
inference, but is faster, uses less memory, and avoids any
error due to discretization.

Keywords Neural spiking · Statistical analysis · Fast ·
Point process · Estimation · Continuous-time · Gaussian
quadrature

1 Introduction

A recent report estimates the number of recorded neurons
to be growing exponentially (Stevenson and Kording 2011).
Exponential growth of data presents an increasingly impor-
tant challenge to the effective application of contemporary
statistical methods in the neurosciences, where computation
times are beginning to exceed acceptable limits. The gro-
wing challenge is being met by recent developments within
the neuroscience community. In Paninski et al. (2010) state-
space models, Markov-chain Monte Carlo methods of neu-
ral decoding, and spatially varying firing rates are estimated
in O(n) time, enabled by the banded structure of relevant
matrices. Here n is the number of time-steps in the observa-
tion duration. In Citi et al. (2014), computational efficiency
is gained be replacing a Riemann approximation with an
improved, but discrete, approximation to an integral appro-
priate for restricted but often realistic models of neural
spiking activity.

In Ramirez and Paninski (2013) maximum likelihood
estimates (MLE) computed for generalized linear models
are hastened by replacing estimation with the log-likelihood

2015

mailto:lepage@math.bu.edu

500 J Comput Neurosci (2015) 38:499–519

with estimation using the expectation with respect to
stochastic covariates of a stochastic log-likelihood. Here
focus is placed upon the computational cost arising from the
log-likelihood term that is nonlinear in the model parameters.

Similar to this latter work, in the proposed methodology
focus is placed upon a computationally efficient approxi-
mation to an analagous nonlinear term in the log-likelihood
of continuous-time point processes possessing an expo-
nential conditional intensity model. This procedure uses
a non-stochastic log-likelihood, consequently requiring no
assumptions regarding a probabilistic description of model
covariates. The analagous nonlinear term in the proposed
methodology requires the integration of the rate, or condi-
tional intensity, over the observation interval. By employing
the optimal Gaussian quadrature rule to approximate this
integral the number of evaluations of the conditional inten-
sity when computing this integral reduces from n in the
standard discrete-time situation (Truccolo et al. 2005), to
q where q � n, ultimately reducing an O(np2) compu-
tational cost to O(qp2).1 This computational complexity
compares favorably with that of the discrete-time MLE
counterparts studied in, for e.g. (Truccolo et al. 2005;
Paninski 2004) which have a computational complexity of
O(np2).

Gaussian quadrature is known to be much faster than
competitive methods in low-dimensional settings.2 It has
been known to the statistics community for a very long
time, but has recently been largely ignored; possibly for
three main reasons: (i) there is a community focus upon
Markov Chain Monte-Carlo techniques in favor of classical
quadrature, (ii) there is a current focus upon numerical inte-
gration in higher dimensions, and (iii) the standard Gaussian
quadrature scheme is not adaptive – it is difficult to assess
accuracy despite an expression for the numerical integration
error (Kuonen 2003).

In Genz and Kass (1991),Genz and Kass (1997) meth-
ods based upon comparing successive Gaussian quadrature
approximations of increasing orders are discussed. These
methods are found to be promising but conservative, in the
sense that the quadrature order in this scheme is often spec-
ified to be unnecessarily large. In Genz and Kass (1997)
a method of adaptively determining the error as a linear
combination of a theoretical error term with the difference
between successively increasing orders of approximation
is presented. In this scheme, the order of integration is
increased until the error falls below a user defined threshold.

1Gaussian quadrature is a method of numerical integration first devel-
oped by Gauss. It is optimal for integrating polynomials (Davis and
Rabinowitz 1967).
2Except for Clenshaw-Curtis quadrature. This quadrature scheme is a
factor of 2 less computationally efficient at low quadrature orders q,
and becomes computationally as efficient as q increases (Trefethen
2008).

In the preparation of this manuscript, other work using
Gaussian quadrature for the estimation of refractory neural
point-process models was made known to the authors (Mena
and Paninski 2014).

In this work, based upon a physiological consideration
bounding quadrature error, an empirical approximate error
bound, and a theoretical expression linking quadrature error
to parameter estimate error, quadrature order is increased
until the parameter estimate error is small relative to either
a physiologically meaningful scale or to parameter standard
error. Despite often over-estimating the order of integration,
up to an order of magnitude improvement in computation
time can be realized for the setting n � p.

The paper begins in Section 2.1 with a review of
maximum-likelihood estimation (MLE) for a continuous-
time point process with an exponential model of the con-
ditional intensity. In Section 2.2 background material on
Gaussian quadrature is presented and in Section 2.3 the pro-
posed approximate MLE for continuous-time point process
models with exponential conditional intensities is presented.
The computational and memory requirments needed to
compute discrete-time and continuous-time MLEs is pro-
vided in Sections 2.4, 2.5 and 3. The effect of quadrature
inaccuracy is quantified in Section 4, while the accuracy of
Gaussian quadrature for computing the integral of a phys-
iologically plausible conditional intensity is discussed in
Section 5. The full proposed adaptive procedure is presented
in Section 6. The proposedMLE is simulated in Section 7 on
a synthetic time-cell, and the proposed procedure is applied
to recordings of actual hippocampal time-cells in Section 8.
The paper concludes with a discussion in Section 9.

2 Background

2.1 Continuous-time point process MLE

Let N(t) be an ordered, continuous-time counting pro-
cess with a conditional intensity, λ, conditioned on time-
dependent covariates xt , the process history Ht , the vector-
valued parameter β, and history kernel, γ :

λ(t | β, γ, xt , Ht) =
lim
δ→0

P (N(t + δ) − N(t) > 0 | β, γ, xt ,Ht)
/
δ , (1)

with

log (λ(t |β, γ, xt ,Ht))=
p∑

k=1

βkxk(t)+
∫ t

−∞
γ (t ′) dN(t−t ′) .

(2)

Here dN(t) = N(t + δ) − N(t) is an infinitesimal incre-
ment of the counting process N(t) and p is the number
of parameters. Thus, the conditional intensities considered

J Comput Neurosci (2015) 38:499–519 501

in this work possess two multiplicatively separable compo-
nents. The first component, λp is Poisson in the sense that
it does not depend upon past neural spiking, and the second
component, λr , captures history effects. Specifically,

log (λ(t | β, γ, xt , Ht)) = log
(
λp(t |β, xt)

)

+log (λr(t |γ, Ht)) . (3)

For the case where λr is equal to zero, the increment process
dN is Poisson. In the general case, λr, λp �= 0, dN is a
point process (Daley and Vere-Jones 2003; Snyder 1975).

The parameterization of λ based upon β, γ , xt and
history effects Ht possesses as special cases the class of
generalized linear models, and generalized additive mod-
els. Common models of log(λp) include polynomials and
splines as a function of, for e.g., space and/or time, and with
parameters that depend upon binary variables represent-
ing experimental condition. Similarly, history dependence
captured by log(λr), is often an integral or sum over past
spiking activity, which can be usefully parameterized in a
multitude of ways. For notational convenience it is useful to
represent, λ(t |β, γ, xt , Ht) as λ(t |β).

Given the observation of a time-series of event occur-
rences, the log-likelihood with respect to β is Daley and
Vere-Jones (2003),Snyder (1975)

�(β) =
∑

t∈Ts

log (λ(t |β)) −
∫ T

0
λ(t ′|β) dt ′ , (4)

for Ts equal to the set of times at which the neuron acti-
vated. The duration of observation is T . The maximization
of � with respect to the unknown parameter β requires, for
typical scenarios, the numerical computation of an approxi-
mation to the integral J :

J (β) =
∫ T

0
λ(t ′|β) dt ′ . (5)

One such approximation is computed with Riemann quadra-
ture:

J (β) ≈ �

n∑

j=0

λ (j � | β) ,

= J (r)
n (β) . (6)

Here � is the step size in seconds and n =
T
/
��. This

approximation leads to an expression for the log-likelihood
that is identical to those used in the discrete-time case, as in
Truccolo et al. (2005). In this case,
∣
∣∣
∣

∫ T

0
λ(t ′|β)dt ′ − J (r)

n (β)

∣
∣∣
∣ ≤ sup

ζ∈(0,T)

n�2

2

∣
∣
∣λ(1)(ζ |β)

∣
∣
∣ ,

(7)

for λ differentiable on (0, T). Because λ(t |β) can vary
rapidly in time due to, for example, refractory effects, it is

often necessary to work with � � T . A popular choice
of � in standard neuroscience applications is 1 ms, a value
specified to capture the refractory period exhibited by a neu-
ron immediately following an action potential. Because T

can be large relative to �, n can be large, and the computa-
tional cost of Eq. 6 is the n + 1 evaluations of the integrand
λ. This cost propagates through the commonly employed
algorithms used to compute maximum-likelihood estimates
and results in a O(np2) computational cost. In this paper,
by reducing n to q with q near 50, a substantial reduction in
computational cost results.

2.2 Gaussian quadrature

Gaussian quadrature is a classical quadrature rule due to
Gauss, and there are many treatments of the topic. Books
covering Gaussian quadrature rules are listed in the begin-
ning of Trefethen (2008). Briefly, the Gaussian quadrature
rule Jq approximates the integral J as

Jq(β) =
q∑

j=1

wj λ(tj |β) . (8)

Here tj is chosen as the roots of the qth order Legendre
polynomial, Lq(t). The weights wj satisfy orthogonality
properties described in Appendix A. A basic derivation,
ignoring questions of existence and uniqueness discussed
in, for e.g., (Stoer and Bulirsch 2002), is see also provided
in Appendix A. Gaussian quadrature integrates order 2q −1
polynomials exactly and has an error:

∫ T

0
λ(t |β) dt −

q∑

j=1

wjλ(tj |β) = λ(2q)(ζ |β)

(2q)! k2q
, (9)

for 2q-differentiable λ on the interval (0, T) and for some
ζ ∈ (0, T) (Davis and Rabinowitz 1967, p. 75). Here kq is
the lead coefficient in the qth order Legendre polynomial:

Lq(t) = kq

q∏

i=1

(t − ti) , (10)

with ti the ith root of Lq .
While appealing, the quadrature accuracy and hence

the order of integration q required for accurate inference
are apriori unknown. Further, while classically known to
be computationally more efficient than competing quadra-
ture rules, Gaussian quadrature does not permit the re-use
of quantities computed from the lower quadrature order
computations, discussed for e.g. in Stoer and Bulirsch
(2002). This reduces the appeal of adaptive strategies
employing successively higher quadrature orders until result
stabilization.

502

In the current setting of continuous-time maximum like-
lihood estimation of a parameterized conditional intensity
another adaptive strategy is proposed. This strategy provides
estimates in computation times up to an order of magni-
tude faster than current algorithms. This decreased com-
putation time is accompanied by the increase in accuracy
afforded by continuous-time point process models of neural
activity.

The time-discretization used to compute the integral in
Eq. (4) using Gaussian quadrature suggests a novel discrete-
time model of neural activity based upon the Gaussian
quadrature nodes, tj , j = 1, . . . , q. This discretization
leads to a non-orderly random process model with a log-
likelihood that may differ from Eq. (4) (see Appendix B). In
this work, focus is placed upon continuous-time point pro-
cess models of neural spiking. For clarity, in the following
a discrete-time model refers to the discrete-time point pro-
cess model of neural activity described in Section 2.1 and in
Truccolo et al. (2005). For this model, � is a constant value
independent of time.

2.3 Approximate MLE β̂q (using gaussian quadrature)

Associated with the qth order Gaussian quadrature, Jq , is
the qth order approximation �q of the log-likelihood �:

�q(β) =
∑

t∈Ts

log (λ(t |β)) −
q∑

j=1

wjλ(tj |β) , (11)

the qth order approximation, sq , to the score equations s:

sq(β) = ∇β�q(β) ,

=
∑

t∈Ts

∇βλ (t |β)

λ (t |β)
−

q∑

j=1

wj∇βλ(tj |β) ,

(12)

and the qth order approximation, Iq , to the Hessian, I:

Iq(β) = ∇2
β�q(β) ,

= −
q∑

j=1

wj∇2
βλ(tj |β) . (13)

Note that Iq evaluated at row r and column c is

[
Iq(β)

]
r,c

= −
q∑

j=1

wj xtj ,a xtj ,b e

p∑

j ′=1
xtj ,j ′βj ′

. (14)

Due to the concavity of �q (established in Appendix E), the
approximate MLE β̂q uniquely satisfies:

sq(β̂q) = 0 . (15)

2.4 Computation of β̂q

In this work Newton-Raphson iteration is used to compute
β̂q , the approximate maximum likelihood estimate of β for
the continuous-time model of neural activity specified in
Eq. (2).

Newton-Raphson iteration begins with an initial guess
β̂(0) of the approximate maximum likelihood estimate β̂q .
Subsequent estimates are computed according to:

β̂(i) = β̂(i−1) −
[
Iq
(
β̂(i−1)

)]−1
sq
(
β̂(i−1)

)
.

(16)

The number of floating point operations (FLOPs) required
to evaluate a single Newton-Raphson iteration, along with
related quantities, is provided in Table 1. The update speci-
fied in Eq. (16) can be computed using QR decomposition,
and for standard neural firing rates requires O(qp2) floating

Table 1 Key Quantities:
Required Floating Point
Operations (FLOPs)

Quantity FLOPs Equation

λ(t |β) p multiplications, p − 1 additions, 1 exp(). Eq. (2)

∇βλ(t |β) As for λ(t |β) plus p multiplications. Term 2 of Eq. (12)

∇βλ(t |β) / λ(t |β) Zero due to cancellation. Term 1 of Eq. (12)
∑

t∈Ts

log λ(t |β) |Ts | evaluations of log λ(t |β),

plus |Ts | additions. Term 1 of Eq. (12)
q∑

j=1
wjλ(tj |β) q evaluations of λ(t |β), plus q multiplications,

plus q − 1 additions. Term 2 of Eq. (12)

sq(β) Term 1 FLOPS plus Term 2 FLOPS (of Eq. (12)) Eq. (12)

Iq(β) q
p2+p

2 × (an evaluation of λ(t |β)plus3multiplications) Eq. (14)

I−1
q (β) O(p3) in general. Eq. (16)

β̂(i) O(qp2) using QR decomposition. Eq. (16)

J Comput Neurosci (2015) 38:499–519

503

Fig. 1 Time to compute
least-squares via the fast
QR-decomposition is O(np2).
Each point corresponds to a
single time-to-compute, n, p

triplet. These triplets are plotted
with respect to varying n (the
number of rows), with each
black curve corresponding to a
different value of p (the number
of parameters)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

No. of Matrix Rows (n)

T
im

e
(s

)

Time to Compute Least−Squares with QR Decomposition

p = 5
p = 10
p = 20
p = 50
p = 100
p = 200
p = 300
p = 500
p = 1000

point operations to compute Fig. 1.3,4 The required num-
ber of FLOPs required for a discrete-time Newton-Raphson
update is obtained by replacing q with n. In this case the
number of FLOPs is O(np2).

2.5 Iterated re-weighted least squares (IRLS)

IRLS is an alternative iterative algorithm for computing the
maximum likelihood estimate for a discrete-time point pro-
cess model of neural activity. It commonly involves a QR
decomposition that requires O(np2) floating point opera-
tions (see Fig. 1). Thus in the discrete-time case, whether
using Newton-Raphson iteration or IRLS, the computational
cost is O(np2), for n > p. The analagous IRLS algorithm
to compute continuous-time MLEs has not been reported.

3This is assuming that the Hessian has no special structure. When the
Hessian has special structure the required FLOPS to compute β̂(i) can,
depending on the specific nature of the structure, be reduced from
O(qp2). The structure of the Hessian depends upon the model of
the conditional intensity and cannot, in general, be guaranteed. Thus,
while there may exist interesting circumstances where the required
O(qp2) FLOPS is reduced, emphasis in this work is on the more
general setting.
4Other fast methods of iteratively updating β̂(i) exist that can be
effective (Shewchuk 1994). For e.g. in Shewchuk (1994), conjugate
gradient iteration is reported to requireO(m

√
κ) operations for solving

the problem, Ax = b. Here the matrix A possesses m non-zero entries
and has a condition number κ . Note that m in the context considered in
this work, is equal to qp for the continuous-time case, and np for the
discrete-time case. Thus, without extra assumptions conjugate gradient
also requires either O(qp2) or O(qn2) FLOPS.

In this work maximum likelihood estimates of discrete-time
point process model parameters are computed using IRLS,
using the MATLAB function glmfit().

3 Memory requirements

Time is required to form and manipulate large matrices.
The type of memory available for storage while performing
computations can influence the speed of computation. Typ-
ically fast memory, such as central-processing unit (CPU)
cache and CPU registers are more limited than slower types
of memory such as more standard random access memory
(RAM) and non-volatile hard-disk storage. When design-
ing algorithms that efficiently use parallel processing units,
communication latencies between processors is an issue.
The less numbers that must be communicated the better, and
typically algorithms that use less memory need to commu-
nicate fewer numbers. The proposed methodology makes
more efficient use of memory.

Standard implementations of the Newton-Raphson algo-
rithm and the iterative re-weighted least squares algorithm
make use of an intermediary model matrix. This model
matrix is n x p when using Riemann quadrature and it is q x
p when using Guassian quadrature. For 100 units, 10 para-
meters (p is 10) and a ten second recording discretized
to 1 ms time-bins so that n is 10000, requiring approx-
imately 108 megabytes when using double floating point
precision. For the same data, a q equal to 60 may suffice
(see Section 8), reducing this memory requirement by more
than a factor of one hundred.

J Comput Neurosci (2015) 38:499–519

504

4 Accuracy of β̂q

The accuracy of Jq is discussed in Section 5, a computa-
tional check for the accuracy of β̂q is provided in Steps 2-8
of the complete algorithm presented in Section 6. Here focus
is placed upon the accuracy of the approximate MLE β̂q as
Jq nears the actual integral of the conditional intensity J .

As Jq approaches J , one expects the approximate MLE
β̂q to approach the actual MLE β̂. This intuitive result
is proven in a short sequence of lemmas provided in
Appendices E and F. The main result, Eq. (89), is repro-
duced here:

∣∣
∣β̂ − β̂q

∣∣
∣ ≤ 2

√√√
√
√√

∣
∣∣λ(2q)(ζ | β̂q)

∣
∣∣

(2q)! k2q

∣∣
∣
∣
d2�q (β̂q)

dβ2

∣∣
∣
∣

. (17)

When the quadrature error |�q(β̂q) − �(β̂)| is small, and
the approximate observed Fisher information, −�′′

q(β̂q) is

large, the separation between β̂q – the MLE computed from
�q(β) – and the actual MLE β̂ is small. The approximate
observed Fisher information, −�′′

q(β̂q), is large for posi-
tive rate and sufficiently large observation intervals. These
conditions are typically encountered when analyzing data
collected in common neuroscience experiments.

For the purposes of performing inference with the stan-
dard maximum-likelihood methodology presented in Truc-
colo et al. (2005), it is required that β̂q possess the sampling
properties of the actual maximum likelihood estimates com-
puted from the exact log-likelihood, �. These asymptotic
properties – valid under mild conditions when the dura-
tion of observation grows large – are often used for the
purposes of assessing statistical significance and perfor-
ming statistical inference. In Appendix G these properties
are established.

5 Accuracy of Jq

In Section 4 and Appendix F the accuracy of the approx-
imate MLE β̂q is established when Jq is an accurate
approximation of J . The accuracy of Jq depends only on
the higher-order derivatives of the statistical model of the
conditional intensity. In the application of the methodology
presented in this work, the accuracy of Jq for a specified
conditional intensity model is implicitly established using
an algorithm presented in Section 6 to estimate the effect of
quadrature error upon the maximum likelihood parameter
estimate, β̂.

The utility of the algorithm presented in Section 6
depends upon the existence of a reasonable q such that Jq

is close to J . The existence of such a reasonable order is

discussed in Section 5.1 for exponentiated polynomial mo-
dels of the conditional intensity, and in Section 5.2 for the
exponentiated spline models. It is found that these models
include models with infinite order polynomials and do not
provide a guarantee for the existence of a useable quadra-
ture order q. The models discussed in Sections 5.1 & 5.2
ignore history effects; however, they can be multiplicatively
augmented to incorporate history effects.

In Section 5.3 it is found that for a plausible model of the
neural refractory event a quadrature order of 20 is sufficient.
This result implies (i) that a 39th order polynomial is suffi-
cient to accurately model what is arguably the most dramatic
change in the probability of an action potential that a neuron
will undergo and (ii) that 39th order polynomials can cap-
ture very dramatic changes in conditional intensity. Results
(i) and (ii) suggest that Guassian quadrature will accu-
rately integrate adequately complicated intensity models for
q � n.

5.1 Exponential models & polynomials

Commonly exponentiated polynomials are used to model
the conditional intensity, in this case the rate of an inho-
mogeneous Poisson process, often as splines, for e.g.
(MacDonald et al. 2011; Barbieri et al. 2004; Kass et al.
2003). Thus,

λ(t |β) = exp

⎛

⎝
p∑

j=1

βj zj (t)

⎞

⎠ , (18)

in a standard model. Here zj is a polynomial of order j . The
example model Eq. (18) can be written as

λ(t |β) =
∞∑

k=0

(
p∑

j=1
βjzj (t)

)k

k! . (19)

Thus the exponential model is an infinite order polynomial.
This polynomial may be approximated by a reduced-order
polynomial with an accuracy that depends upon βj , j =
1, . . . , p.

5.2 Spline models

Spline models are piecewise-connected polynomials that
satisfy continuity constraints across times of connection
(knots). At the knots the higher-order derivatives of the
exponentiated spline may not exist, and the assumptions
leading to the error Eq. (9) do not hold. Since the
spline model is continuous, these difficulties are avoided
by noting that there exists a polynomial that uniformly

J Comput Neurosci (2015) 38:499–519

505

approximates the spline (Weirstrass representation theorem,
for β restricted to a plausible, closed interval). With this
connection, the discussion in Section 5.1 applies to the
spline model without modification.

5.3 The neural refractory effect

The neural refractory effect is the process where a neuron
undergoing an action potential ceases for a duration to be
able to initiate a subsequent action potential. Its onset is
arguably the most rapid change in the probability of spiking
that can occur. For a continuous-time point process model of
neural activity, this imposes an upper-bound on the absolute
rate-of-change of the conditional intensity.

Note that the absolute difference between J and Jq can
be upper-bounded:

∣∣
∣
∣∣
∣

∫ b

a

λ(t |β) dt −
q∑

j=1

wjλ(tj |β)

∣∣
∣
∣∣
∣
=

∣
∣
∣∣
∣
λ(2q)(ζ | β)

(2q)! k2q

∣
∣
∣∣
∣

, ζ ∈ (a, b)

≤ sup
η′∈(a,b)

∣∣
∣
∣∣
λ(2q)(η′|β)

(2q)! k2q

∣∣
∣
∣∣

,

= GQB . (20)

Thus the largest value of GQB for physically realistic con-
ditional intensities bounds the absolute difference between
Jq and J , and hence between the approximated log-
likelihood �̂q and the actual log-likelihood �.

In the following a model of the conditional intensity
describing a neural refractory event is specified in order
to (i) specify the 2qth derivative of a realistic model of
arguably the most dramatic physiological neural event that
exists, and (ii) establish that the bound, GQB, for this
model is small for a modest quadrature order q Fig. 3.

The argument is as follows. Conjecture the existence of
a moment in time (the action potential threshold) when the
physical system governing the dynamics of a neuron has
entered into an effectively irreversible process generating an
action potential. This threshold for action potential initia-
tion depends on the intrinsic state of the neuron which may
vary prior to the initiation of each spike (Henze and Buzsaki
2001). Thus, the probability of neural firing immediately
after the reported time of a neural action potential is not zero
and is better modeled as a continuous function rather than
as a discontinuity. This consideration motivates the follow-
ing sigmoidal function of the conditional intensity following
an action potential. It is specified to capture an exceed-
ingly rapid but continuous transition of the conditional
intensity into the refractory epoch. Specifically, model the

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ms)

Transition to Refractory Period

0.1 ms
0.2 ms
0.3 ms

Fig. 2 The refractory model specified in Eq. 21 depicted for three
choices of α. Here λ0 is set equal to 1

conditional intensity λr , t seconds following an action
potential as,

λr(t) = 2λo

1 + eαt
. (21)

Then the conditional intensity decays from a maximal value
of λo immediately following an action potential. Figure 2
depicts λr for suitable α.5

With the specification (21), the quadrature error bound
GQB can be computed analytically. Let

gq(t) = (
1 + eαt

)−q
. (22)

In Appendix A, the j th derivative, Dj(t) of λr(t |β) is
shown to be:

Dj(t) = 2λoα
j eαt

j+1∑

k=2

αj,k e(k−2)αt gk(t) , j > 0 , (23)

where

αj,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k − 1)αj−1,k − (k − 1)αj−1,k−1 , k > 2,
k − j < 1

−(k − 1)αj−1,k−1 , k > 2,
k − j = 1

−1 , k = 2
0 , k − j > 1

.

(24)

5The parameter α is specified such that the time for the conditional
intensity to be near zero following an action potential is .1 ms, .2 ms,
and .3 ms.

J Comput Neurosci (2015) 38:499–519

506

0 2 4 6 8 10 12 14 16 18 20
10−40

10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

105

Gaussian Quadrature Order, q

G
Q

B

Gaussian Quadrature Error Bound
for a Sigmoidal Transition to Refractory Period

0.1 ms
0.2 ms
0.3 ms

Fig. 3 Quadrature error due to a single refractory event becomes
negligible with increasing order. Each curve is associated with the
corresponding gray-scale curve depicted in Fig. 3

Then the Gaussian quadrature error is less than or equal to

GQB = sup
η′∈(a,b)

∣
∣∣
∣
∣
D2q(η′)
(2q)! k2q

∣
∣∣
∣
∣

. (25)

Figure 3 depicts GQB as a function of quadrature order.
For a refractory event in isolation, the analytic error

bound (25) suggests that a quadrature order of 20 will
yield �q within 10−20 of �, the desired log-likelihood. Since
Gaussian quadrature integrates order 2q − 1 polynomi-
als exactly, a 39th order polynomial accurately models the
refractory effect. When λr is used as a factor in a multi-
plicative model of the conditional intensity, see Eq. (3), and
used in Section 8, the full model is a polynomial of order
≥ 39.6 This full model is an example member of the class
of models discussed in Section 5.1. Thus, there is no extra
difficulty using the proposed algorithm (Section 6) with
accurate models of neural refractoriness.

6 Adaptive strategy for selecting quadrature order

The proposed maximum-likelihood estimate is computed
iteratively. The steps are as follows:

1. Pick an initial quadrature order q.
2. Compute β̂q and the corresponding conditional inten-

sity estimate λ̂q(t |β̂q), for a single trial.

6The multiplication of a polynomial of order x with a polynomial of
order y results in a polynomial of order x + y.

3. Compute σ q , the vector of approximate standard errors.
This vector is equal to the element-by-element square
root of the diagonal of

Cq(β̂q) = −
[
Iq
(
β̂q

)]−1
. (26)

4. Using Eqs. (58) and (59) specified in Appendix C, com-
pute the polynomial coefficients, gj , j = 0, . . . , x.7

5. Compute the largest absolute local extremum of the
approximation, λ̂(2q), by computing the roots, tk , k =
1, . . . , x − 1 of the order x − 1 polynomial,

λ̂(2q+1)(t |β̂q) ≈
x−1∑

j=0

(j + 1) gj+1 tj . (27)

Discard complex-valued roots, and roots lying outside
the interval (−1, 1) to obtain tk′ , k′ = 1, . . . , x′.

6. By evaluating Eq. (59) at tk′ , k′ = 1, . . . , x′, compute
the approximate local extremum, ek′ , scaled by (2q)!,
and k2q :8

ek′ ≈
∣
∣∣λ̂(2q)(tk′ |β̂q)

∣
∣∣
/

(2q)! k2q . (28)

7. Compute,

es = max
k

2

√
ek(

σ q

)
k

. (29)

Based upon Eq. 88, es approximates the worst-case

absolute error
∣
∣∣β − β̂q

∣
∣∣ with respect to parameter stan-

dard deviation.9

8. Compare es to a stopping threshold. For example, a
stopping threshold of .1 indicates that the worst-case
quadrature error across parameters is one-tenth of the
standard error associated with the worst-case parameter.

9. Augment the quadrature order, q and repeat steps 2-8.

To assess the accuracy of es , it is useful to compute a
related, quantity eq , that does not involve scaling by the
standard errors, (σ)k′ , k′ = 1, . . . , x′:

eq = max
k

2
√

ek . (30)

The quantity, eq , is equal to GQB Eq. (20), in the case that
λ̂q is equal to the actual integrand and the extremum does

7The results in this paper are computed using x equal to 7. When
x is increased there are three effects. The first is that deviations of
λ̂

(2q)
q from zero are more accurately approximated by the expansion,

Eq. (48). Second, the computation time of the expansion increases
(though slightly when using a single trial). And third, Eq. (59) becomes
more numerically unstable involving, in a sum, more terms over larger
scales.
8This scaling is included to reduce rounding errors incurred when
adding quantities of greatly differing scales.
9As mentioned in the introduction, in the situation where a minimum
physiologically meaningful scale is known,

(
σ q

)
k
can be replaced by

this value.

J Comput Neurosci (2015) 38:499–519

507

Table 2 For − ∫ 1
−1 y2

/
a2 + y2dy: Absolute quadrature error |I − Iq |, and absolute quadrature error approximate upper bound, eq

a q = 10 q = 30 q = 50 q = 70 q = 150

log10(|I -Iq |) log10(eq) log10(|I -Iq |) log10(eq) log10(|I -Iq |) log10(eq) log10(|I -Iq |) log10(eq) log10(|I -Iq |) log10(eq)

0.025 −1.2 0.4 −1.6 0.5 −1.9 0.3 −2.3 −0.02 −4.1 −1.4

.05 −1.1 0.7 −1.8 0.4 −2.7 −0.3 −3.6 −1.0 −7.0 −4.1

0.25 −2.1 −0.1 −6.4 −3.9 −10.7 −5.7 −14.7 −7.1 −14.7 −6.4

0.5 −3.9 −1.9 −12.3 −7.0 −16.0 −7.8 −15.1 −6.2 −14.8 −6.3

2.5 −13.8 −8.1 −15.8 −7.4 −16.3 −8.8 −15.7 −6.0 −15.4 −8.3

For this integral, the upper-bound eq is always greater than the actual absolute quadrature error. As eq tends to zero, eq

/|I − Iq | increases.
This trend is exhibited in Fig. 10 when applied to actual data. Together, the results suggest that the use of eq in the computation of the stopping
condition, Step 8, Section 6, does not result in iterations stopping early, but rather tends to increase the quadrature order q beyond that which is
required

not lie on the boundary. In Table 2 the tightness of eq is
compared against the actual quadrature error for the integral,

I = −
∫ 1

−1

y2

a2 + y2
dy , (31)

= a

[
tan−1

(
1

a

)
− tan−1

(−1

a

)]
− 2 , (32)

for various a and quadrature orders, q. Here λ̂q is replaced
by the actual integrand, −y2

/
a2 + y2 to test the accuracy

of eq for a difficult integral. As a approaches zero the first
derivative of the integrand tends to −∞. For this integral,
and for various a, and quadrature orders q, the Gaussian
quadrature approximate upper bound eq is always greater
than the actual quadrature error, but is not tight, in that it
over-estimates the actual quadrature error, see Table 2.

Steps 3-8 for a single iteration of the proposed algo-
rithm is a computationally fast operation, owing to the use
of only a single trial of the estimated conditional intensity,
and because computation of the local extrema of the roots
of an x-order polynomial (x < 10) is also fast. Note that in
the situation where the initial q is chosen sufficiently large,
this adaptive algorithm stops after a single iteration.

In the computation of eq associated with Table 2 and the
integral Eq. (32), eq is computed using the actual integrand.
In Step 6, es is computed from the estimate of the con-
ditional intensity, λ̂q . This estimate adds extra uncertainty
to the approximate upper-bound on the quadrature error. In
Section 8, the accuracy of es is explored with actual neural
data where the actual integrand (in this case, the conditional
intensity) is not known.

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35
Rate

H
z

Time (s)
0 2 4 6 8 10 12 14

0

5

10

15

20

25

30

35

40

45

50

T
ria

l

Time (s)

Raster

Fig. 4 Left: Simulated neuron activation times are drawn from an
inhomogeneous Poisson process with the specified rate. Right: Exam-
ple realization of the inhomogeneous Poisson process (rate specified

on left). These simulated data are used to compare the proposed esti-
mates using a continuous-time point process model to those computed
using a discrete-time model

J Comput Neurosci (2015) 38:499–519

508

7 Simulation

To demonstrate the efficacy of the proposed fast continuous-
time MLE, a time-cell with a rate of spiking depicted in
Fig. 4 is simulated to obtain neuron activation times for fifty
trials undergoing Poisson spiking. This neuron is observed
for four durations of observation, ranging from 2.5 seconds
to 25 seconds. For each duration of observation, recordings
for fifty trials are taken, and from the recorded spike times
the proposed approximate continuous time MLE is com-
puted, β̂q with q = 20, 40, as well as the more standard
MLE computed using a discrete-time point process model.
These estimates are computed for polynomial models of the
neural spiking rate, with orders ranging from 3 to 10. Rep-
resentative fits are shown in Fig. 5. Table 3 gives the time to
compute for the various simulation scenarios.

The proposed continuous-time MLEs are computed
much more quickly than their more standard discrete-time
counter-parts, with, in this example, a maximal compu-
tation time advantage achieved for an observation of 25
seconds modeled with a 10th order polynomial. In this
case 1.6 seconds are required to compute the continuous-
time estimate while the discrete-time version requires 10.1
seconds to form the model-matrix and 24.1 seconds to
compute the discrete-time estimate for a total computation
time of 34 seconds.10 The dependence upon the number of
model parameters (p), the number of discretized bins (n,
discrete-time model) and the Gaussian quadrature order (q,
continuous-time model) is further demonstrated in Figs. 6
and 7.

8 Hippocampal time-cells

The fast continous-time point process estimation introduced
in this work is applied to tetrode recordings from single
neuron activity in the rodent hippocampus (MacDonald
et al. 2011). In this experiment, rats were trained to distin-
guish sequences of two events separated in time by a delay.
For each trial, one of two objects is first presented. Follow-
ing an empty ten second gap (a delay), one of two odours is
presented (see Fig. 1 in Kesner et al. (2005)). Electrophysio-
logical data was collected over many trials and on each trial
the rat had to remember the first event in the event sequence
in order to respond appropriately to the second event in the
event sequence. Upon appropriately performing the trial, the
rat received a reward. This experimental paradigm provides
an opportunity to explore how neurons encode a sequence of

10Using the MathWorks MATLAB glmfit() command to compute the
discrete-time parameter estimates. This function uses a version of
iterated re-weighted least squares. All computations in this work are
performed using a laptop equipped with an Intel P8600 Core2-Duo
processor running at 2.4 GHz.

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

Time (s)

R
at

e
E

st
im

at
e

(H
z)

Standard and Proposed Rate Estimates

Discrete−Time
Continuous−Time

Fig. 5 Proposed (continuous-time) and more standard point-process
rate estimates (discrete-time). Despite the modeling difference
between continuous and discrete-time point process models, the rate
estimates are similar. Though the estimates are similar the computation
times vary markedly (Table 3)

events and how their activity bridges an identical temporal
gap shared by distinct event sequences. One of the striking
findings of this study is that individual neurons become
active at different times during the delay between events
and that they activate sequentially to bridge this delay (Mac-
Donald et al. 2011). In this study the long delay sequence
required the use of n ≈ 104 time-bins to perform inference
with a discrete-time point process model of neural activity.

To probe the effectiveness of the proposed methodolo-
gy MLE estimates are computed from this data using both
continuous-time and discrete-time point process models of
neural activity. In these models of the conditional intensity,
a tenth-order polynomial is used to account for tempo-
ral changes in the probability of firing, as well as history
dependence in the form of a refractory period. When using
the continous-time point process model, the multiplica-
tive component, λr , of the conditional intensity model, λ

immediately following a neural spiking event is modeled
according to Eq. (2), and is specified by the history kernel
γ . Here γ is specified to be refractory:

γ (t) = β [s(t)r(t) + (1 − s(t)) e(t)] , (33)

where

s(t) =
[
1 + eαs(t−s0)

]−1
, (34)

r(t) =
[
1 + eαr (−t+r0)

]−1
, (35)

e(t) =
[
1 + eαe(t−e0)

]−1
, (36)

J Comput Neurosci (2015) 38:499–519

509

Table 3 Simulated data: computation times

Poly. Model Order (in Seconds)

2.5 Second Observation 6.0 Second Observation 12.5 Second Observation 25.0 Second Observation

(p − 1) β̂
(20)
q β̂

(40)
q β̂r Setup β̂

(20)
q β̂

(40)
q β̂r Setup β̂

(20)
q β̂

(40)
q β̂r Setup β̂

(20)
q β̂

(40)
q β̂r Setup

3 0.6 0.6 1.4 0.8 0.6 0.6 1.6 1.9 0.9 0.8 3.3 4.3 0.7 0.7 6.9 8.7

7 1.0 1.1 1.4 0.8 1.2 1.2 3.7 2.2 1.2 1.3 7.4 4.8 1.0 1.1 15.0 9.7

10 1.2 1.3 2.4 0.9 1.5 1.6 5.8 2.2 1.7 1.8 12.5 5.0 1.5 1.6 24.1 10.1

0 5 10 15 20 25
0

5

10

15

20

25

Duration (s)

M
LE

 C
om

pu
ta

tio
n

T
im

e
(s

)

Computation Time vs. Duration (n)

Riemann (q = n)
q = 20
q = 40

0 2 4 6 8 10 12
0

5

10

15

20

25

Number of Model Parameters (p)

M
LE

 C
om

pu
ta

tio
n

T
im

e
(s

)

Computation Time vs. No. of Parameters (p)

Riemann (q = n)
q = 20
q = 40

Fig. 6 The proposed methodology is much faster. The time to com-
pute the MLE of the discrete-time model parameters (+) depends
strongly on both n and p and is up to an order of magnitude larger

than the time to compute the continous-time model parameter MLEs
(triangles). The computation times are listed in Table 3

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Duration (s)

M
LE

 C
om

pu
ta

tio
n

T
im

e
(s

)

Computation Time vs. Duration (n)
(Gaussian Quadrature Only)

q = 20
q = 40

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Model Parameters (p)

M
LE

 C
om

pu
ta

tio
n

T
im

e
(s

)

Computation Time vs. No. of Parameters (p)
(Gaussian Quadrature Only)

q = 20
q = 40

Fig. 7 The computation time for the continuous-time model parameters depends weakly on duration. Plotted quantities are as in Fig. 6 but
excluding the computation times for the discrete-time model parameters

J Comput Neurosci (2015) 38:499–519

510

with s0 equal to 1 ms, r0 equal to 0.05 ms, and e0 equal to
1.8 ms. Thus specified, γ is a logistic function approxima-
tion to the box function that is one on the interval (0, 2) ms

and zero otherwise. The parameters are chosen consistent
with Fig. 2, where the plot of a realistic entry into a refrac-
tory epoch is plotted (see Section 5.3). Here the parameter
β controls the size of the refractory effect and is estimated
from data. Because γ does not depend linearly upon the
alphas, they are not parameters in a model belonging to the
class of models considered in this work (see Eq. (2)). The
discrete-time counter-part, λr,t , is

log λr,t (β) = β1yt−1 + β2yt−2 . (37)

Here β1 and β2 are parameters weighting the lagged counts
yt−1, and yt−2. Using a 1 ms discretization, a 2 ms refrac-
tory period is modeled.

Raster plots of example hippocampal cell activity are
provided in Fig. 8 (top). The temporally localized nature
of the firing activity for these cells is evident. The asso-
ciated conditional intensity estimates are depicted (Fig. 8,
bottom) for the first trial. The difference between the esti-
mates computed with the fast continous-time model, and
the slower discrete-time model is difficult to discern on the
scale plotted.

The effect of discretization on estimates of the history
effect is shown in Fig. 9. The continuous-time model avoids

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

T
ria

l

Time (s)

Cell A

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

T
ria

l

Time (s)

Cell B

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

Time (ms)

H
z

A: Discrete & Continous−Time Rate Estimates

Discrete−Time
Continuous−Time

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

Time (ms)

H
z

B: Discrete & Continuous−Time Rate Estimates

Discrete−Time
Continuous−Time

Fig. 8 Top: Time-cells exhibit temporally localized firing activity.
Black vertical streaks demark putative single-cell action potentials.
For these example cells, firing activity occurs preferentially at the
beginning of the delay epoch. Bottom: Associated conditional intensity

estimates for the first trial. Black vertical lines indicate cell spike
times. The difference between the discrete-time and continuous-time
estimates is difficult to see

J Comput Neurosci (2015) 38:499–519

511

5677 5678 5679 5680 5681 5682 5683
0

1

2

3

4

5

6

7

8

Time (ms)

H
z

Discrete
Continuous

Fig. 9 Increased accuracy via continuous-time modeling of the refrac-
tory effect. The continuous-time model allows for a more accurate
characterization of the time immediately following a spiking event.
Here the discrete-time model lags the actual spike time due to the use
of 1 ms binning. In this case, the difference in history effect mani-
fests in a slight offset of the conditional intensity, before and after the
neural spiking event. Note that for a finer time discretization the differ-
ence between the models will be reduced. This improvement incurs an
increased computational cost associated with the discrete-time model

a latency exhibited by the MLE computed using a discrete-
time point process model.

In Fig. 10 the utility of the approximate upper-bound on
parameter estimate error es , specified in Eq. (29), is com-
pared to a proxy. This proxy is a worse-case quadrature
error approximation computed assuming parameter esti-
mates computed using a quadrature order of 100 are exact.
Specifically, the proxy (the horizontal axis in Fig. 10) is
the maximum absolute scaled difference between parame-
ters estimated using a quadrature order equal to 100 with
the parameter estimates computed using a smaller quadra-
ture order. The per-parameter scaling is the per-parameter
standard error. Thus the proxy represents the worse-case
actual quadrature error with respect to the associated estima-
tor standard deviation. It is the adaptive quadrature stopping
condition (see Section 6), that results in the situation where
there is little quadrature error.11 Similarly, the vertical axis
in Fig. 10 is es . Thus, the iterations in the adaptive strategy
(Section 6) are stopped whenever a mark in Fig. 10 is
less than a user defined stopping threshold (for e.g., a
value of 0.1). Each mark in Fig. 10 corresponds to a sin-
gle hippocampal-cell analyzed with a specific quadrature
order. Figure 10 suggests that the adaptive stopping con-
dition based upon es (Section 6) is conservative. See the
caption for details.

11No quadrature error in the case where q equal to 100 is sufficient to
exactly integrate the conditional intensity.

10
−10

10
−5

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Adaptive Quadrature: Stopping Condition

Absolute Value of Actual Parameter Estimate Error
(normalized by σβ)

A
bs

ol
ut

e
V

al
ue

 o
f P

ar
am

et
er

 E
st

im
at

e
E

rr
or

 A
pp

ro
x.

(n
or

m
al

iz
ed

 b
y

σ β)

q = 20
q = 30
q = 40
q = 50
q = 60
q = 70
q = 80

Fig. 10 The adaptive stopping condition es is conservative. Each mark
corresponds to a single cell and quadrature order, and plots es against
a proxy for the quadrature-error-free stopping condition. See text for
details. Marks on the red line correspond to the situation where there
is no quadrature-error (see text – assuming a q = 100 results in no
quadrature error). For all hippocampal cells, es is greater than the
actual stopping condition associated with no quadrature error. For a
stopping threshold equal to 0.1, the black lines (horizontal and ver-
tical) demark decision boundaries separating correct decisions from
mistakes. Marks in the upper right quadrant correspond to not stopping
adaptive iteration when the iterations should not be stopped. Marks in
the upper-left quadrant correspond to not stopping when the iterations
should be stopped. Marks in the lower-left quadrant indicate correctly
stopping adaptive iteration, and marks in the lower-right quadrant indi-
cate stopping adaptive iteration when it should not be stopped. This
latter condition is the most serious. In this situation, parameter esti-
mate error due to quadrature will contribute to more than one-tenth of a
standard deviation to the value of the parameter estimate. Note that this
does not occur. This, together with marks in the upper-left quadrant
indicate that the adaptive procedure is conservative. Also see Tables 2
and 4

In Table 4, the quadrature order yielding a stopping
condition of .1 is provided for each of the analyzed hi-
ppocampal cells. The adaptive procedure results in rela-
tively low-order quadrature orders for many cells.

In Fig. 11 the computation time to estimate the MLEs
for the continuous-time model and discrete-time model are
plotted. For these recordings, the continuous-time MLE is
computed with a Gaussian quadrature order of 60, as well as
the approximate quadrature error bound eq , Eq. (30). Here
the quadrature order is chosen roughly from the modeling
considerations presented in Section 5. Note that for q equal
to 60, es , specified in Eq. (29), is less than 0.1 for all but
one cell (see Table 4). Computation typically requires 4-7
times less time to compute the MLE with the continuous-
time model than with the discrete-time counter-part.
Computation times are given for the MLE of 19 rodent hip-
pocampal cells recorded and analyzed in MacDonald et al.
(2011). The full experiment involves more than 80 of these
cells distributed across four rodents. The full computation

J Comput Neurosci (2015) 38:499–519

512

Table 4 The adaptive algorithm, Section 6, yields low order quadratures for many of the hippocampal cells

Cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Stopping Order (q) 50 30 30 30 30 40 40 40 60 40 40 50 50 50 60 30 50 30 50 100

Here, the initial quadrature order is set to 10, and the quadrature order, q is incremented by 10 after each iteration. See Fig. 10 and Table 2 for the
performance of the iterative stopping condition

time for a single discrete-time model is around one hour, and
with the continuous-time model it is around ten minutes.

The time-rescaled inter-spike intervals (ISIs) can be used
to assess model fit. Following the description of the QQ-
plot detailed in Brown et al. (2002), Truccolo et al. (2005),
in Fig. 12, the quantiles of the time-rescaled and trans-
formed ISIs computed using the discrete-time model (solid
with plus marks), and computed using the continuous-time
model (solid) are plotted against the theoretical quantiles
of the rescaled and transformed ISIs under the hypothesis
that the model is correctly specified. There is no appreciable
difference between the QQ-plots for the two models (see
Fig. 12). In this situation, goodness-of-fit assessment based
upon the QQ-plot is identical when using either the discrete-
time model or when using the continous-time model. Here
the ISI rescaling is performed using Riemann quadrature for

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

Cell Number

C
om

pu
ta

tio
n

T
im

e
(s

)

Hippocampal Time−Cell Analysis: Total Computation Time

Discrete−Time
Continous−Time

Fig. 11 The continuous-time MLE (quadrature order 60) typically
requires 4-7 times less time to compute than the discrete-time counter-
part. Computation times are given for the MLE of 19 rodent hippocam-
pal cells recorded and analyzed in MacDonald et al. (2011). The full
experiment involves more than 80 of these cells distributed across four
rodents. The full computation time for a single discrete-time model
is around one hour, and with the continuous-time model it is around
ten minutes. Both the discrete-time and continuous-time conditional
intensities are modeled as tenth-order polynomials, with history effects
specified by Eq. (37) (discrete-time model) and Eq. (33) (continuous-
time model). The time to compute includes the time to form the model
matrices. Note that cell number 15 exhibits a continuous 23 Hz firing
rate and is likley multi-unit. In this case |Ts | for an average trial is 231
and is about 4 times larger than q. There are 39 trials

the discrete-time model, and is accomplished using Gaus-
sian quadrature (with a q equal to 30), when using the
continuous-time point process model.

9 Discussion

In Section 5 the accuracy of the proposed approximate
MLE is addressed. By studying a plausible model of the
neural refractory effect (Section 5.3), the existence of a
plausible conditional intensity model that can be accurately
integrated using Gaussian quadrature of modest order is
established.

In Appendix C, a cheaply-computed bound on parame-
ter estimate inaccuracy due to quadrature error is provided.
Thus effects due to quadrature error can be monitored, and
the quadrature order can be appropriately adjusted. Because
the quadrature is computationally cheap, large changes in
quadrature order can be employed.

In simulation (Section 7), and when analyzing actual data
(Section 8), the time to compute the maximum likelihood
estimates using Gaussian quadrature and the continuous-
time point process models of neural activity (Section 2),

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
of

 th
e

R
es

ca
le

d
&

 T
ra

ns
fo

rm
ed

 IS
Is

Goodness of Fit: Discrete−Time & Continuous−Time Models

Discrete−Time Model
Continuous−Time Model

Fig. 12 Example QQ-plots constructed using the discrete-time (plus
symbol) and continuous-time (solid) point process models. The curves
are computed using the data recorded from cell 5 in Fig. 11. The two
curves are nearly identical on the scale plotted. The thick red lines
indicate approximate 95 percent confidence bounds

J Comput Neurosci (2015) 38:499–519

513

is much faster than their discrete-time counter-parts. These
results are conservative, in the sense that for all calcu-
lations, the Gaussian quadrature nodes and weights are
re-computed. This time can be reduced, by storing these val-
ues offline, or by employing the methods presented in (Hale
and Townsend 2013). These approaches are left for future
study. They will be most important for the small p and large
q case.

Three limitations to this work are (i) the number of
computations required depends upon the total number of
spikes due to the first term in Eq. (2) (see Fig. 11), (ii)
for non-identifiable log-likelihood functions, the standard
issues arise, and (iii) when considering oscillatory condi-
tional intensities, such as those investigated in Lepage et al.
(2013), limited speed-up may occur due to the fact that the
integral is zero for an integer number of observed oscilla-
tory periods. In case (ii), there exist parameter values that
yield the same log-likleihood value (non-identifiable case),
or similar values (approximately non-identifiable case, and
often a numerically unstable case). These issues have been
well documented in the statistics literature. They are dis-
cussed in books on generalized linear modeling. See for
e.g., (McCullagh and Nelder 1999). In case (iii), a sim-
ple two-step procedure is available: estimate the parameters
assuming the integral in Eq. (2) is zero. Then with this
parameter estimate as a starting guess, compute a few
iterations including the integral.

In this work focus is placed upon significantly reduc-
ing n to q in the quadrature approximation to the integral
of the conditional intensity appearing in the log-likelihood,
Eq. (2), while maintaining sufficient quadrature accuracy.
Emphasis is placed upon determining q such that quadrature
error is acceptable.

In Section 6, a quadrature order selection criterion based
upon a previously unreported approximation to the higher
order derivative of the integrand (Appendix C) is intro-
duced. Its use is motivated mathematically (Appendix C),
its performance is demonstrated on a difficult integral
(Table 2), and its utility is demonstrated when analyzing
actual neural recordings (Fig. 10 and Table 4). It is expected
that when used to analyze future neural recordings, this
algorithm will be usefully employed to reduce the risk of
unacceptable error due to Gaussian quadrature.

The statistical analysis of neural spiking is central to
neuroscience. As experiments increase in size and com-
plexity the speed at which these analyses can be conducted
becomes increasingly important. In this work, by replac-
ing discrete-time conditional intensity models with their
continuous-time counter-parts and employing the incredi-
bly efficient Gaussian quadrature, the computational com-
plexity is reduced from O(np2) to O(qp2), memory
requirements are reduced from O(np) to O(qp), and any
discretization-error is eliminated. This is accomplished

without reducing the available statistical methodology. The
statistical methodology used to perform data analysis with
discrete-time point process models of neural activity estab-
lished in, for e.g., (Truccolo et al. 2005; Lepage et al. 2012)
is applicable to the exponential family of continuous-time
point process models used in this work.

A typical statistical analysis is an iterative exercise. By
reducing the time to compute by even a factor of two, two
weeks of model fitting becomes one. This contribution is
expected to be a welcome addition to those performing
statistical inference with point process models of neural
activity.

Conflict of interests The authors declare that they have no conflict
of interest.

Appendix A: higher-order derivatives of the refractory
model

Assume Dj(t) specified in Eq. (23) is valid. Then, for j >

0,

D′
j (t) = d

dt

⎧
⎨

⎩
2λ0α

j eαt

j+1∑

k=2

αj,ke
(k−2)αtgk(t)

⎫
⎬

⎭
,

= 2λ0α
j+1eαt

j+1∑

k=2

αj,ke
(k−2)αtgk(t)

+2λ0α
j eαt

j+1∑

k=2

αj,k(k − 2)αe(k−2)αtgk(t)

+αj,ke
(k−2)αt (−k)αeαtgk+1(t) , (38)

since g′
k(t) = −kαeαtgk+1(t). Collecting terms,

D′
j (t) = 2λ0α

j+1eαt

j+1∑

k=2

(k − 1)αj,ke
(k−2)αtgk(t)

−kαj,ke
(k−1)αtgk+1(t) ,

= 2λ0α
j+1eαt

⎡

⎣
j+1∑

k=2

(k − 1)αj,ke
(k−2)αtgk(t)

−
j+2∑

k′=3

(k′ − 1)αj,k′−1e
(k′−2)αtgk′(t)

⎤

⎦ ,

= 2λ0α
j+1eαt

j+2∑

k=2

αj+1,ke
(k−2)αtgk(t) ,

= Dj+1(t) , (j > 0) . (39)

The induction argument is completed by verifying Eq. (23)
for j = 1, 2, 3 by direct calculation.

J Comput Neurosci (2015) 38:499–519

514

Appendix B: Non-orderly discrete-time “Gaussian
quadrature” process

Gaussian quadrature might be used to compute the MLE
associated with a discrete-time process. Based upon the
Gaussian quadrature nodes tj , j = 1, . . . , q, consider the
increment process, Yj = N(tj)−N(tj−1). Unlike in the pre-
vious discussion of a discrete-time point process, here the
duration, �j , of the j th increment is not constant, but rather
equals tj − tj−1. This duration may be relatively large, and
the orderliness property of the process is not guaranteed.
For a given sample path of the process, let the number of
observed counts in the j th increment be yj . The associated
log-likelihood, �y , can be shown to equal,

�y(β) =
q∑

j=1

yj log(�jλ(tj |β)) −
q∑

j=1

�jλ(tj |β)

−
q∑

j=1

log(yj !) . (40)

While Eq. (40) may approach the approximation Eq. (11) to
the continuous-time log-likelihood Eq. (4) in certain situa-
tions, in general these approximations differ. To what extent
and under what conditions equivalent inference can be con-
ducted with either of the spike train models are questions
appropriate for a future study.

Appendix C: Approximate 2qth derivative
of the conditional intensity

An approximation of λ̂
(2q)
q is provided in the following

derivation. Begin by expanding λ̂q(t |β̂q) in terms of the
order q ′ = 2q + x Legendre polynomials, where x is a user
defined quantity specified in Section 6. The choice of x is
discussed in Footnote 5 (Section 6). That is, compute the
coefficients cj , j = 0, . . . , q ′ − 1, using order q ′ Gaussian
quadrature:

cj =
q ′−1∑

j ′=0

wj ′ λ̂q

(
tj ′ |β̂q

)
Lj (tj ′)

/
q ′−1∑

j ′=0

wj ′L2
j (tj ′) ,

≈
∫ T

0
λ̂q

(
t |β̂q

)
Lj (t) dt

/∫ T

0
L2

j (t) dt . (41)

Here j indexes the Legendre polynomials, while j ′
indexes the roots, tj ′ , of the q ′th order Legendre polynomial,
Lq ′ . Then,

λ̂q(t |β̂q) ≈
q ′
∑

j=0

cjLj (t) . (42)

For j > 2q − 1, cjLj (t) is a polynomial that may not be
exactly integrated by Gaussian quadrature of order q.

A direct computation of λ̂
(2q)
q from Eq. (42) is often

inaccurate with standard double-precision floating point
numbers. The sum in Eq. (42) often involves the sum of
terms that span more than sixteen orders of magnitude for
the case where q is equal to 40. When this occurs, numeri-
cal error results, and often leads to unacceptable inaccuracy.
The problem is mitigated by deriving an alternate expres-
sion for λ̂

(2q)
q . Proceed by Taylor expanding λ̂q(t |β̂)q about

t = 0 to order 2q + x:

λ̂q(t |β̂q) =
2q+x∑

u′=0

λ̂
(u′)
q (0|β̂q)

u′! tu
′
. (43)

From Eq. (43) the u′th derivative is

λ̂(u′)
q (t | β̂q) | t=0 ≈

2q+x∑

j ′=u′

j ′!
(j ′ − u′)!

λ̂
(j ′)
q (0|β̂q)

j ′! tj
′−u′

,

= t−u′
2q+x∑

j ′=u′

j ′!
(j ′ − u′)!

λ̂
(j ′)
q (0|β̂q)

j ′! tj
′
,(44)

the fact that λ̂q(t) is a polynomial is used to set the
lower bound in the sum. From Eq. (42) the u′th derivative
evaluated at t = 0, is,

λ̂(u′)
q (0|β̂q) ≈

q ′−1∑

j=u′
cjL

(u′)
j (0) . (45)

Here L
(u′)
j is the u′th derivative of the order j Legen-

dre polynomial. Because it can be shown, beginning with
Rodriguez’s formula, that L(q)

n is equal to,

L
(q)
n (t) = (n + q)!n!

2n

n∑

k=q

k−q∑

�=0

n−k∑

�′=0

−1n−k−�′

× t�+�′

(n + q − k)! k! �! �′! (k − q − �)! (n − k − �′)! , (46)

L
(q)
n (0) can ben determined analytically. At t = 0 in

Eq. (46), only � + �′ = 0 terms contribute:

L
(q)
n (0) = (n + q)!n!

2n

n∑

k=q

k−q∑

�=0

n−k∑

�′=0

δ�,0δ�′,0 − 1n−k−�′

× 1

(n+q − k)!k!�!�′!(k − q − �)!(n − k − �′)! ,

= (n + q)!n!
2n

n∑

k=q

−1n−k

(n + q − k)!k!(k − q)!(n − k)! .

(47)

J Comput Neurosci (2015) 38:499–519

515

Equations (44), (45) and (47) combine to produce,

λ̂
(2q)
q (t |β̂q) = t−2q

2q+x∑

j ′=2q

j ′!
(j ′ − 2q)!

λ̂
(j ′)
q (0|β̂q)

j ′! tj
′
,

= t−2q
x∑

u=0

1

u! λ̂
(u+2q)
q (0|β̂q)tu+2q ,

=
x∑

u=0

tu

u! λ̂
(u+2q)
q (0|β̂q) , (48)

Continuing,

λ̂
(2q)
q (t |β̂q) =

=
x∑

u=0

1

u! t
u

2q+x∑

j ′′=u+2q

cj ′′L(u+2q)

j ′′ (0) ,

=
x∑

u=0

1

u! t
u

x∑

j=u

cj+2qL
(u+2q)

j+2q (0) ,

=
x∑

u=0

1

u! t
u

x∑

j=u

cj+2q
(j + u + 4q)!(j + 2q)!

2j+2q

×
j+2q∑

k=u+2q

−1j+2q−k

(j + u + 2q + 2q − k)!k!(k − 2q − u)!(j + 2q − k)!

=
x∑

u=0

tu

u!
x∑

j=u

cj+2q
(j + u + 4q)!(j + 2q)!

2j+2q

×
j−u∑

k′=0

−1j−u−k′

(j + 2q − k′)! (k′ + u + 2q)! (k′)! (j − u − k′)! (49)

The terms in the last sum in Eq. (49) are symmetrical about
the center index (j − u even), or about the center indices
(j − u odd). For example, the first and the last terms are
equal. When j − u is odd, the signs alternate for terms that
are identical in absolute-value and the sum is equal to zero.
When j −u is even, there are an odd number of terms in the
sum. Consider the case, j − u equal to four:

4∑

k′=0

−1j−u−k′

(j + 2q − k′)! (k′ + u + 2q)! (k′)! (j − u − k′)!

= 1

(j + 2q)! (u + 2q)! 0! 4!
− 1

(j + 2q − 1)! (u + 2q + 1)! 1! 3!
+ 1

(j + 2q − 2)! (u + 2q + 2)! 2! 2!
− 1

(j + 2q − 3)! (u + 2q + 3)! 3! 1!
+ 1

(j + 2q − 4)! (u + 2q + 4)! 4! 0! . (50)

Because j − u equals 4, the last term in Eq. (50) is,

1

(u + 2q)! (j + 2q)! 4! 0! ,

which is identical to the first term in the sum. The terms in
the sum are similar in absolute value (and are very small).
The maximum-absolute contributing term is the center term.
This term is equal to

(−1)
j−u
2

[(
j+u
2 + 2q

)
!
]2 [(

j−u
2

)
!
]2 . (51)

Due to cancellation, it is useful to consider the approxima-
tion:

j−u∑

k′=0

−1j−u−k′

(j + 2q − k′)! (k′ + u + 2q)! (k′)! (j − u − k′)! =

−1
j−u
2

⎧
⎪⎨

⎪⎩

0 , j − u odd

[(
j+u
2 + 2q

)
!
(

j−u
2

)
!
]−2

, j − u even

. (52)

Substituting Eq. (52) into Eq. (49) results in

λ̂
(2q)
q (t |β̂q) ≈

x∑

u=0

tu

u!
x∑

j=u

cj+2q

× (j + u + 4q)!(j + 2q)!
2j+2q

−1
j−u
2 χj−u even

[(
j+u
2 + 2q

)
!
]2 [(

j−u
2

)
!
]2

(53)

where χj−u even is zero if j − u is an odd integer and is 1 if
j−u is an even-valued integer. Using Stirling’s approximate
formula for ln x!:

ln x! ≈ x ln x − x , (54)

some cancellations in Eq. (53) can be made. Specifically,

ln

⎧
⎪⎨

⎪⎩

(j + u + 4q)!
2j+2q

1
[(

j+u
2 + 2q

)
!
]2 [(

j−u
2

)
!
]2

⎫
⎪⎬

⎪⎭
≈

(j + u + 4q) ln(j + u + 4q) − (j + u + 4q) +
−(j + 2q) ln 2 +

−2

[(
j + u

2
+ 2q

)
ln

(
j + u

2
+ 2q

)
−
(

j + u

2
+ 2q

)]
+

−2

[(
j − u

2

)
ln

(
j − u

2

)
−
(

j − u

2

)]
.

(55)

J Comput Neurosci (2015) 38:499–519

516

After cancellations, Equation (55) results in,

(j + u + 4q)!
2j+2q

1
[(

j+u
2 + 2q

)
!
]2 [(

j−u
2

)
!
]2 ≈

2j+u+4q

2j+2q

1

2u−j (j − u)! ,

= 2j+2q

(j − u)! . (56)

Substituting Eq. (56) into Eq. (53) yields another approxi-
mation for λ̂

(2q)
q ,

λ̂
(2q)
q (t |β̂q) ≈

x∑

u=0

tu

u!
x∑

j=u

cj+2q
2j+2q(j + 2q)! (−1)

j−u
2 χj−u even

(j − u)! .(57)

The sums in Eq. (57) can be rearranged such that j pro-
gresses from 0 to x, and u progresses from 0 to j . Let u′
equal j − u. Then,

λ̂
(2q)
q (t |β̂q) ≈

x∑

j=0

cj+2q2
j+2q(j + 2q)!

j∑

u′=0

tj−u′

(j − u′)! u′! (−1)
u′
2 χu′ even ,

= 22q
x∑

j=0

cj+2q
(j + 2q)! (2t)j

j !
j∑

u′=0

(
j

u′

)
t−u′

(−1)
u′
2 χu′ even ,

(58)

with the binomial coefficient
(
a
b

) = a!
(a−b)! b! . The coeffi-

cients multiplying the powers of t can be collected. This
results in the following representation:

λ̂
(2q)
q (t |β̂q) ≈

x∑

j=0

gj t
j , (59)

for gj specified according to Eq. (58).

Appendix D: Basic derivation of Gaussian quadrature

The polynomial, Lj , satisfies for j ′ �= j ,
∫ T

0
Lj (t

′) Lj ′(t ′) dt ′ = 0 , (60)

and is a Legendre polynomial. Gauss quadrature with the
Legendre polynomials is sometimes referred to as “Gauss-
Legendre” quadrature. The weights, wj , j = 1, . . . , q,

are chosen such that the vector, w = [
w1 . . . wq

]T , is
orthogonal to the q − 1 vectors,

pk = [
Lk(t1) . . . Lk(tq)

]T
, (61)

for k = 1, 2, . . . , q − 1, with the further stipulation that

wT p0 =
∫ T

0
L0(t

′) dt ′ . (62)

Here p0 is a vector with identical entries equal to the con-
stant L0, and tj , j = 1, 2, . . . , q are chosen as the roots
of Lq :

Lq(tj) = 0 , j = 1, . . . , q . (63)

Thus specified, Equation (8) is exact when λ is a polynomial
of order less than or equal to 2q −1. To see this consider the
integral of the order q polynomial z2q−1. Following Stoer
and Bulirsch (2002), this polynomial can be expressed as,

z2q−1(t) = Lq(t) q̃(t) + r(t) , (64)

where q̃(t) and r(t) are linear combinations ofLk(t), k < q.
Then,

∫ T

0
z2q−1(t

′) dt =
∫ T

0
Lq(t ′) q̃(t ′) + r(t ′) dt ′ ,

=
∫ T

0
r(t ′) dt ′ , (A1)

=
q−1∑

k=0

βk

∫ T

0
Lk(t

′) dt ′ , (Def. of r(t))

= β0

∫ T

0
L0(t

′) dt ′ . (⊥ w. L0)

(65)

Similarly,

q∑

j=1

wj z2q−1(tj) =
q∑

j=1

wj

(
Lq(tj) q̃(tj) + r(tj)

)
,

=
q∑

j=1

wj r(tj) , (Lq(tj) = 0)

=
q−1∑

k=0

βk

q∑

j=1

wj Lk(tj) , (⊥)

= β0

∫ T

0
L0(t

′) dt ′ . (66)

Here Lq(tj) is zero due to Eq. (63), and the orthogonality
property of w is exploited. For further details see (Stoer and
Bulirsch 2002) & (Press et al. 1992, §4.5).

Specification of the order of integration, q, the roots tj
and the weights wj , j = 1, . . . , q completely specifies the
Gaussian quadrature rule, Eq. (8). For the integrals approxi-
mated in this work, the tj and weights are computed using
the method specified in Golub and Welsch (1969a) for the
domain of integration (−1, 1). All integrals are transformed
to this domain for approximation. The nodes tj , and the
weights, wj , can be computed in a number of ways. See
(Hale and Townsend 2013) for a fast alternative method

J Comput Neurosci (2015) 38:499–519

517

capable of accurately determining nodes and weights for
Gaussian quadrature orders exceeding 100.

Appendix E: Well-behaved deviation

In the following, a sequence of lemmas are provided estab-
lishing the sense in which small quadrature error leads to
small numerical error in the parameter estimates. Discus-
sion is restricted to the univariate case (p = 1), without
loss of generality. Let �q(β) be the log-likelihood computed
with the qth order Gaussian quadrature and evaluated at the
parameter value β.

Lemma 1 Concavity of �q The second derivative of �q(β)

is negative for all β ∈ R.

Proof The proof follows from calculation:

d2�q(β)

dβ2
= d2

dβ2

⎧
⎨

⎩

∑

t∈Ts

log (λ(t | β))−
q∑

j=1

wjλ(tj | β)

⎫
⎬

⎭
,

= −
q∑

j=1

wj

d2λ(tj | β)

dβ2
,

= −
q∑

j=1

wj

[
f ′(β)

]2
ef (β) ,

(67)

for a linear differentiable function f . The weights wj

are non-negative (they are squared quantities, see for e.g.
(Golub and Welsch 1969b)) guaranteeing the sign of the
second derivative for β ∈ R.

Let β̂q be the approximate maximum-likelihood esti-
mate:

β̂q = argmax
β

�q(β) . (68)

Let ζ, ζ ′ ∈ (a, b) such that (9) evaluated for β̂ and β̂q , is,
respectively, δ

β̂
, and δ

β̂q
:

δ
β̂

=
∣
∣
∣∣
∣
λ(2q)(ζ |β̂)

(2q)! k2q

∣
∣
∣∣
∣

, (69)

δ
β̂q

=
∣∣
∣
∣∣
λ(2q)(ζ ′|β̂q)

(2q)! k2q

∣∣
∣
∣∣

. (70)

Then there exists a δ for any quadrature order q,

δ = max

{
δ
β̂
, δ

β̂q

}
(71)

such that
∣
∣�(β) − �q(β)

∣
∣ < δ , β ∈

{
β̂, β̂q

}
. (72)

The following lemma can be proven.

Lemma 2 Log-Likelihood Approximation
∣
∣
∣�(β̂) − �q(β̂q)

∣
∣
∣ < δ . (73)

Proof Suppose, �q(β̂q) is less than �(β̂q). By Eq. (72)

�(β̂q) < �q(β̂q) + δ . (74)

From Eq. (74) and concavity the smallest that �(β̂) can be
is �(β̂q). Then �q(β̂q) − �(β̂) < δ. Similarly, by concavity,
�q(β̂) + δ is less than �q(βq) + δ. Then by (72) �(β̂) is
upper-bounded:

�(β̂) ≤ �q(β̂) + δ ≤ �q(β̂q) + δ , (75)

again implying �(β̂) − �q(β̂q) ≤ δ.
If instead �q(β̂q) > �(β̂q), then

�q(β̂q) < �(β̂q) + δ . (76)

By concavity we have,

�q(β̂) ≤ �q(β̂q) < �(β̂q) + δ ≤ �(β̂) + δ . (77)

From Eq. (72) |�q(β̂) − �(β̂)| < δ implying |�q(β̂q) −
�(β̂)| < δ, and the proof is complete.

Having established the proximity between the log-
likelihood at β̂ with the approximate log-likelihood at β̂q , it
remains to show that β̂q approximates β̂.

Lemma 3 β̂q approximates β̂

Fix δ > 0. If
∣∣
∣�(β̂) − �q(β̂q)

∣∣
∣ < δ , (78)

then there exists an ε > 0,
∣
∣
∣β̂q − β̂

∣
∣
∣ < ε , (79)

such that
∣∣
∣
∣∣
ε2

d2�q(β̂q)

2 dβ2
+ ε3

d3�q(η)

6 dβ3

∣∣
∣
∣∣
< 2δ . (80)

Proof Taylor expanding �q about β̂q and evaluating at β̂

yields:

�q(β̂) = �q(β̂q) + d2�q(β̂q)

2 dβ2

(
β̂ − β̂q

)2

+d3�q(η)

6 dβ3

(
β̂ − β̂q

)3
(81)

J Comput Neurosci (2015) 38:499–519

518

with η ∈
(
β̂q , β̂

)
. By the triangle inequality,

∣∣
∣�q(β̂) − �q(β̂q)

∣∣
∣ ≤

∣∣
∣�q(β̂) − �(β̂)

∣∣
∣ +

∣∣
∣�(β̂) − �q(β̂q)

∣∣
∣ ,

< δ + δ ,

= 2δ . (82)

Then:
∣
∣∣
∣
∣
ε2

d2�q(β̂q)

2 dβ2
+ ε3

d3�q(η)

6 dβ3

∣
∣∣
∣
∣
< 2δ , (83)

with ε = β̂ − β̂q .

Appendix F: Maximum parameter estimate error

The δ in Lemma 3 is the larger of the two quadrature errors,
δ
β̂q

and δ
β̂
; the former computed for the known β̂q , and

the other for the unknowable β̂. If a bound is placed upon
λ(2q)/k2q , and the limit taken as q tends to infinity, both of
these error bounds tend to zero, and hence become close.
Here, to obtain an estimate of ε it is assumed that δ = δ

β̂q
=

δ
β̂
. With this specification, ε, the parameter estimate devia-

tion from the true MLE can be specified. From Eq. (9), set
∣
∣
∣∣
∣
λ(2q)(ζ | β̂q)

(2q)! k2q

∣
∣
∣∣
∣
= δ . (84)

Then, for η as specified after Eq. (81),
∣∣
∣∣
∣
ε2

d2�q(β̂q)

2dβ2
+ ε3

d3�q(η)

6 dβ3

∣∣
∣∣
∣
< 2

∣∣
∣∣
∣
λ(2q)(ζ | β̂q)

(2q)! k2q

∣∣
∣∣
∣

. (85)

With this specification,

ε2 < −4

(
d2�q(β̂q)

dβ2

)−1 ∣∣∣
∣
∣
λ(2q)(ζ | β̂q)

(2q)! k2q

∣
∣∣
∣
∣
+ O(ε3) .

(86)

It is useful to set ε2 equal to the bound in Eq. (86). Let

σβ =
∣
∣∣
∣
∣
d2�q(β̂q)

dβ2

∣
∣∣
∣
∣

−1/2

, (87)

and

x = 2σβ

√√
√
√

∣
∣∣λ(2q)(ζ | β̂q)

∣
∣∣

(2q)! k2q
. (88)

Then,

ε = x + O
(
ε3
)

. (89)

Appendix G: Accuracy of observed fisher information

Lemma 4 ε-Equivalence of Observed Fisher Information

Let ε be as specified in Eq. (89). Introduce the unbiased
estimators β̃, β̃q , whose realizations are the estimates β̂ and
β̂q of the parameters β and βq . Further, let the realization
of the random variable X be the quadrature error for any
given data set, and specify X to be independent of the true

MLE estimator β̃. Then the variance, var
{
β̃q

}
satisfies:

∣
∣
∣var

{
β̃q

}
− var

{
β̃
}∣∣
∣ ≤ 4ε2 . (90)

Proof The proof follows from direct calculation. Consider

var
{
β̃q

}
= E

{(
β̃q − βq

)2}
,

= E

{[(
β̃ + X

)
− βq

]2}
,

= var
{
β̃
}

+
[
β2 + β2

q − 2βqβ
]

+2 E
{
Xβ̃

}
− 2βqE {X} + E

{
X2

}
. (91)

For some realized quadrature error η, |η| < ε, the term,

β2 + β2
q − 2βqβ = β2 + (β + η)2 − 2 (β + η) β , (92)

= η2 . (93)

Then
β2 + β2

q − 2βqβ ≤ ε2 . (94)

Similarly the contribution to Eq. (91) from the terms invol-
ving X can be bounded:

E
{
X2

}
+ 2E {X} (β − βq

) = E
{
X2

}
− 2ηE {X} ,

≤ E
{
X2

}
+ 2 |ηE {X}| ,

≤ ε2 + 2ε2 . (95)

Equations (91), (94), and (95) imply Eq. (90).

Acknowledgments The authors thank Howard Eichenbaum for his
support. Thanks goes to Robert E. Kass for a discussion regarding the
content of this paper and on the use of Gaussian quadrature in statistics,
to Mikio Aoi for a useful comment regarding the scope of the paper,
and to Sujith Vijayan for a useful discussion regarding the neural action
potential and refractory effect. KQL is supported by NSF grant DMS-
1042134.

References

Barbieri, R., Frank, L.M., Nguyen, D.P., Quirk, M.C., Solo, V.,
Wilson, M.A., & Brown, E.N. (2004). Dynamic analyses of infor-
mation encoding in neural ensembles. Neural Computation, 16
(2), 277–307.

Brown, E., Barbieri, R., Ventura, V., Kass, R., & Frank, L. (2002).
The time-rescaling theorem and its application to neural spike train
data analysis. Neural computation, 14(2), 325–346.

Citi, L., Ba, D., Brown, E.N., & Barbieri, R. (2014). Likelihood
methods for point processes with refractoriness. Neural Computa-
tion, 26(2), 237–263.

Daley, D.J., & Vere-Jones, D. (2003). An introduction to the theory of
point processes: Springer Series in Statistics.

J Comput Neurosci (2015) 38:499–519

519

Davis, P.J., & Rabinowitz, P. (1967). Numerical integration: Blaisdell
Publishing Company London.

Genz, A., & Kass, R.E. (1991). An application of subregion adaptive
numerical integration to a bayesian inference problem. Computing
Science and Statistics, 23, 441–444.

Genz, A., & Kass, R.E. (1997). Subregion-adaptive integration of
functions having a dominant peak. Journal of Computational and
Graphical Statistics, 6(1), 92–111.

Golub, G.H., & Welsch, J.H. (1969). Calculation of gauss quadrature
rules. Mathematics of Computation, 23(106), 221–230+s1–s10.

Golub, G.H., & Welsch, J.H. (1969). Calculation of gauss quadrature
rules. Mathematics of Computation, 23(106), 221–230.

Hale, N., & Townsend, A. (2013). Fast and accurate computation of
gauss–legendre and gauss–jacobi quadrature nodes and weights.
SIAM Journal on Scientific Computing, 35(2), A652—A674.

Henze, D., & Buzsaki, G. (2001). Action potential threshold of hi-
ppocampal pyramidal cells in vivo is increased by recent spiking
activity. Neuroscience, 105(1), 121–130.

Kass, R.E., Ventura, V., & Cai, C. (2003). Statistical smoothing
of neuronal data. Network-Computation in Neural Systems, 14
(1), 5–16.

Kesner, R.P., Hunsaker, M.R., & Gilbert, P.E. (2005). The role of ca1
in the acquisition of an object-trace-odor paired associate task.
Behavioral Neuroscience, 119(3), 781–786.

Kuonen, D. (2003). Numerical integration in s-plus or r: A survey.
Journal of Statistical Software, 8(13), 1–14.

Lepage, K.Q., Gregoriou, G.G., Kramer, M.A., Aoi, M., Gotts, S.J.,
Eden, U.T., & Desimone, R. (2013). A procedure for testing
across-condition rhythmic spike-field association change. Journal
of neuroscience methods, 213(1), 43–62.

Lepage, K.Q., MacDonald, C.J., Eichenbaum, H., & Eden, U.T.
(2012). The statistical analysis of partially confounded covariates
important to neural spiking. Journal of neuroscience methods,
205(2), 295–304.

MacDonald, C., Lepage, K., Eden, U., & Eichenbaum, H. (2011).
Hippocampal “time cells” bridge the gap in memory for discon-
tiguous events. Neuron, 71(4).

McCullagh, P., & Nelder, J.A. (1999). Generalized Linear Models,
2nd: Chapman & Hall/CRC.

Mena, G., & Paninski, L. (2014). On quadrature methods for refrac-
tory point process likelihoods: Neural Computation. In press.

Paninski, L. (2004). Maximum likelihood estimation of cascade point-
process neural encoding models. Network: Computation in Neural
Systems, 15(4), 243–262.

Paninski, L., Ahmadian, Y., Ferreira, D.G., Koyama, S., Rad, K.R.,
Vidne, M., Vogelstein, J., & Wu, W. (2010). A new look at
state-space models for neural data. Journal of Computational
Neuroscience, 29(1-2), 107–126.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P.
(1992). Numerical recipes in C (2nd ed.): the art of scientific
computing. NY, USA: Cambridge University Press.

Ramirez, A.A., & Paninski, L. (2013). Fast generalized linear model
estimation via expected log-likelihoods: Journal of Computational
Neuroscience, In press.

Shewchuk, J.R. (1994). An introduction to the conjugate gradient
method without the agonizing pain.

Snyder, D.L. (1975). Random point processes.
Stevenson, I.H., & Kording, K.P. (2011). How advances in neural

recording affect data analysis. Nature neuroscience, 14(2), 139–
142.

Stoer, J., & Bulirsch, R. (2002). Introduction to numerical analysis,
3rd, Vol. 12: Springer.

Trefethen, L.N. (2008). Is gauss quadrature better than clenshaw-curtis
SIAM Review, 50(1), 67–87.

Truccolo, W., Eden, U.T., Fellows, M.R., Donoghue, J.P., & Brown,
E.N. (2005). A point process framework for relating neural spiking
activity to spiking history, neural ensemble, and extrinsic covariate
effects. Journal Neurophysiology, 93(2), 1074–1089.

J Comput Neurosci (2015) 38:499–519

	Fast maximum likelihood estimation using continuous-time neural point process models
	Abstract
	Introduction
	Background
	Continuous-time point process MLE
	Gaussian quadrature
	Approximate MLE q (using gaussian quadrature)
	Computation of q
	Iterated re-weighted least squares (IRLS)

	Memory requirements
	Accuracy of q
	Accuracy of Jq
	Exponential models & polynomials
	Spline models
	The neural refractory effect

	Adaptive strategy for selecting quadrature order
	Simulation
	Hippocampal time-cells
	Discussion
	Conflict of interests
	Appendix A A: higher-order derivatives of the refractory model
	Acknowledgments
	References

