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Abstract

Reagentless biosensors rely on the interaction of a binding partner and its target to generate a

change in fluorescent signal using an environment sensitive fluorophore or Förster Resonance

Energy Transfer. Binding affinity can exert a significant influence on both the equilibrium and the

dynamic response characteristics of such a biosensor. We here develop a kinetic model for the

dynamic performance of a reagentless biosensor. Using a sinusoidal signal for ligand

concentration, our findings suggest that it is optimal to use a binding moiety whose equilibrium

dissociation constant matches that of the average predicted input signal, while maximizing both

the association rate constant and the dissociation rate constant at the necessary ratio to create the

desired equilibrium constant. Although practical limitations constrain the attainment of these

objectives, the derivation of these design principles provides guidance for improved reagentless

biosensor performance and metrics for quality standards in the development of biosensors. These

concepts are broadly relevant to reagentless biosensor modalities.
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1. Introduction

The field of biosensors has seen in the last decade a multitude of new approaches for the

application of reagentless sensors. The overall strategy is the combination of a recognition

unit and a signal-transducing unit into one molecular entity. The most commonly-used

signal is change in sensor fluorescence, arising either from Fluorescence Resonance Energy

Transfer (FRET) or from solvatochromism. FRET was first described over half a century

ago, and its application in biology has grown with design and implementation of myriad

biosensors (reviewed in [1]). Solvatochromism is a more recent development, but is

becoming more widely used as new scaffolds (affinity molecules) and dyes

(environmentally-sensitive fluorophores) are developed and become available (reviewed in

[2]). Several groups have successfully developed solvatochromic-based biosensors using

DNA aptamers [3–5], native protein receptors[6,7], peptides[8,9] or engineered binders

using protein scaffolds[10–15]. However, to our knowledge, none of these groups have

purposely engineered binders with affinities specified for optimal performance as a sensor,

relying instead on previously-described proteins. Selecting an existing binder with an

affinity above the detection threshold is likely an adequate approach for categorical

detection of the presence or absence of an analyte. However in a complex biological system,

analyte concentrations may vary rapidly on the timescale of seconds to minutes. For

dynamic measurement of time-varying analyte levels, the biophysical characteristics of the

binding event can significantly impact biosensor accuracy and sensitivity. Given the

availability of directed evolution protein engineering methodology to create binding

molecules of almost arbitrary affinity and widely varying association and dissociation

rates[16,17], these variables are available degrees of freedom for improvement of biosensor

performance. Recently Haugh developed a reaction-diffusion model to investigate biosensor

signal interpretation in live cell imaging, with an emphasis on capturing intracellular and

membrane-localized phenomena[18]. This analysis resulted in the identification of an

important trade-off between robust signal and perturbation of the biological system or signal

saturation. Here, we perform a theoretical analysis of biosensor dynamics, delineating time

and length scales important in observation of intracellular as well as extracellular

phenomena (e.g. detecting autocrine loops). Using a sinusoidal signal as an input ligand

concentration, as biological signal do vary, we present new important considerations for the

appropriate implementation of a biosensor. Further, we propose metrics for quality standards

in the development of biosensors by direct comparison between the input signal and

measured signal and, thereby derive design criteria for improved performance.

2. Model formulation

The system consists of three state variables: the concentrations of ligand (L), unbound

sensor (SF) and bound sensor (SB). By virtue of mass balance, the sum of the concentration

of unbound and bound sensor is always equal to the total sensor concentration constant

(STot). A linear correlation between bound sensor and the output signal intensity is assumed.

The two rate constants governing this process are the association (kon) and the dissociation

(koff) rate constant.
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The mathematical description of this interaction, a reversible bimolecular reaction, is well

documented from the perspective of dynamic steady state equilibrium; however, it has

generally been investigated in an environment of constant ligand concentration[19–21]. To

determine the optimal design criteria in a dynamic system where the input (i.e., L) is time-

varying, we apply a frequency response approach by sinusoidally varying the analyte input,

L, and characterizing the dynamic fluorescence intensity response of the sensor, which is

proportional to the concentration of bound sensor SB. A range of physiological behaviors

can be modeled by systematic variation of the mean (L0), amplitude (AL) and period (T) of

the time-variant ligand concentration. With these parameter definitions, the input function L

is defined as:

(1)

To score a given set of design parameters of a sensor, we choose three signal properties:

mean signal intensity (M), normalized amplitude (A) and phase delay (Φ), as defined in

equations 2–4.

(2)

(3)

(4)

We assume that the system is reaction limited. Indeed the Damkohler number, defined as the

ratio between the characteristic time for diffusion and that of reaction (complex formation in

this context, see equation 5), will be much smaller than 1 for all relevant kon, koff, ligand

concentration ([L]), diffusion coefficient (D) so long as the distance (rb) over which the

measurement must be spatially resolved is less than 1 micron (see Figure S1).

(5)

The described system is now fully governed by the three differential equations:

(6)

(7)

(8)

To simplify this system further, we assume that the ligand is in excess. Of course, as shown

in the analysis by Haugh[18], this is a constraint that must be calculated for any real system
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since this assumption can often break down. Systematic use of a sensor concentration of one

twentieth that of the minimum ligand signal guarantees excess ligand concentration. By

substituting equation 1 into 8, and using conservation of mass for the sensor species, we

obtain the 1-D governing equation:

(9)

A convenient analytical solution to this system is not available. Therefore, we solved this

equation for a variety of parameter conditions by numerical Euler integration (performed in

MatLab). The results are shown in the next section.

3. Results

Dynamic consideration reveals the crucial importance of kinetic rates optimization

Intuitively, a sensor that has a very high affinity for its ligand might be expected to perform

as a weak dynamic sensor since the characteristic time for complex dissociation would likely

be much greater than the period of the signal. Relevant input signal conditions depend

greatly on the system under study. In Figure 1 we show approximate concentrations and

time scales for concentration variation for various classes of biological events. Many

physiological processes result in great variation of analyte concentration such as cell-cycle

related proteins, signaling cascades, immune response activation among many others.

Mathematically, the sinusoidal function is a benchmark for representing time-variant

signals. For example the well-known Bode plot uses a sinusoidal signal to characterize a

system’s frequency response[22]. We first investigated how output signal differs with

varying the dissociation rate constant (koff). As an initial input signal, we chose a mean

ligand concentration of 3 nM with sinusoidal oscillation between 1 and 5 nM with a period

of 100 minutes. This signal is shown as a solid gray curve on Figure 2A. In black are shown

four different sensors with varying koff but identical association rate constant (kon = 105

M−1s−1). In this first approach, we show the signal for the first 4 periods (400 minutes). An

initial condition corresponding to SB = 0 was chosen for the analysis depicted in Figure 2A,

hence an initial transient in signal response is observed. The signals progress toward their

dynamic steady state, where higher signal intensities are reached with decreasing koff as

expected given the equation for complex concentration under the pseudo-first order

approximation (see equation 10).

(10)

This transient behavior is followed by a dynamic steady state characterized by a constant

value of the mean signal. The equilibrium half time (t1/2) is defined as:

(11)

The periodic signal is assumed stable for t > 100*τ1/2, when the transient conditions would

have decayed substantially. In the subsequent analysis, we report signals when t > 100*τ1/2.
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We therefore plotted the amplitude and mean signal value for the signals in Figure 2B as a

function of koff. In both the transient and dynamic steady state regimes, the mean signal

value increases with decreasing koff. The oscillation amplitude appears very small for both

extreme koff values. However, there is an optimum at intermediate values as seen when the

amplitude and mean signal value are plotted as a function of koff (Fig 2B). Interestingly, the

optimum koff value for this particular example is a physically realistic rate of 2*10−4 s−1.

Varying input characteristics

We next investigated how this optimum region behaves with different input signal

characteristics across 3 orders of magnitude of mean ligand concentration for various sensor

properties (kon and koff values) and a constant oscillation period of T = 100 min (Figure 3).

The amplitude was also held constant at AL = 2/3*L0 (see Eq. 1). Recognizing that any

particular sensor will be most sensitive over about a 10-fold concentration range, we divided

the analysis into 3 concentration regimes representing anticipated physiological values of

interest for oscillation (0.1–0.5 nM; 1–5 nM; 10–50 nM). Within each regime, we created

heat maps to reflect normalized values of mean signal, mean amplitude, and phase shift for

combinations of koff and kon spanning 6 orders of magnitude (Figure 3).

The general features of the heat map are illustrated by Figure 3a, which depicts the mean

output signal intensity (% max signal) for oscillation of L in the low concentration regime

(0.1–0.5 nM). Regions in white at the bottom left indicate a high mean signal and are

associated with the regime of tightest equilibrium binding affinity (KD = koff/kon); i.e., the

regime where the receptor is saturated so that it is insensitive to variations in kon and koff.

The diagonal at which the normalized mean signal intensity is 50% of the maximum

corresponds to values where KD = L0. The position of this diagonal is naturally shifted

upward as the mean ligand concentration is increased 10-fold to 3 nM (Figure 3e) and 100-

fold to 30 nM (Figure 3i). By this criterion alone, the desire for robust signal detection

would favor biosensors that have KD < L0, with greatest sensitivity for concentration

discrimination (versus just threshold concentration detection) in the range KD ~ L0.

However, consideration of dynamic response introduces additional constraints as discussed

below.

Despite strong mean signal intensity, the highest affinity binders, with kon and koff

represented on the bottom right of each panel of Figure 3a, e, and i, are insensitive to time

varying concentrations of the ligand. This phenomenon can be appreciated by examining the

amplitude of the output signal as defined in Equation (3) and plotted as heat maps in Figure

3b (L variation of 0.1–0.5 nM), f (L variation of 1–5 nM), and j (L variation of 10–50 nM).

The region of greatest output signal amplitude is shown in white and is obtained for fast

kinetic rate constants. Fast association rate constants mean that the biosensor is quickly able

to capture ligand and therefore rapidly report the signal, while fast dissociation is crucial to

adapt the variations in ligand concentration. This optimum area lines up again with an

equilibrium dissociation constant KD = L0, however, fast kinetic rates are crucial to prevent

the binding dynamics from obscuring the input (ligand oscillation) dynamics. As the mean

ligand concentration rises from values in Figure 3b, to those in 3f and j the abundance of
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ligand makes it easier for the sensor to capture and report the signal. This is illustrated by

the shift to the left of the optimal region.

Figure 3c shows the phase shift, which is a measure of the delay in signal reporting. Here the

favored regions are those of low shift, shown in white. It can be seen that again faster kinetic

rates are beneficial in reporting accurately the input signal. This optimal region expands to

slower kinetics as L0 increases from Figure 3c, 3g to 3k.

In order to evaluate these three criteria simultaneously, we first define for illustrative

purposes an arbitrary design threshold for each: M > 20%, A > 10% and Φ < 0.1. We then

plotted on the 4th column of Figure 3 the region of kon and koff where all criteria are

satisfied. We observe that the criteria are easier to meet for conditions of high mean ligand

concentration. For the example with the lowest ligand concentration (oscillating between 0.1

and 0.5nM), only a narrow range of rate constant combinations results in adequate

performance by the chosen criteria. Therefore, depending on the ligand conditions, it may be

necessary to sacrifice some characteristic of the output.

In Figure 3 we have shown the dependency of the kinetic rate constants on the location of

optimal regions for the three different biosensor design criteria and investigated how the

sensors characteristics are affected for different mean ligand concentrations. The same

approach can be undertaken by varying the other two parameters – in ranges that are

biologically relevant – of the input signal (period and amplitude); we have summarized the

effects on the position of optimal <kon, koff> region in Table 1. The output mean signal is

insensitive to changes in input frequency or amplitude. However, for extreme conditions the

changes in concentration occur very rapidly and the effective mean concentration rises. This

phenomenon is present only for dynamics that are orders of magnitude faster than any

biological process. Finally, it is interesting to note that increase in the input amplitude has no

effect on the position of the optimum.

Single sensor analysis

So far we have been exploring how a variety of sensors perform for a circumscribed set of

input signal conditions. We next analyzed how a set of 3 individual sensors, with

combinations of properties that span the spectrum of physically possible values, performs in

a variety of different input conditions. To do so, we use a Bode diagram representation since

it is the canonical approach for representing dynamic systems responses. Oscillation cycle

times spanning the range 10 min – 40 hr (frequencies of 3 x 10−6 to 3 x 10−3 Hz) were

examined as it encompasses a great range of physiologically relevant systems (Figure 1).

For a signal oscillating between 1 and 5 nM and a sensor concentration of 0.05nM, we have

represented the normalized amplitude, phase shift and mean signal in Figure 4 for three

different sensors over this: In solid black we have represented a tight binder (kon =106

M−1s−1, koff = 10−6 s−1), in dashed black a utopian binder (kon =108 M−1s−1, koff = 10−1 s−1)

with ideal characteristics but physically non feasible, and in dotted black a feasible binder

(kon =106 M− 1s−1, koff = 3*10−3 s−1).

Without a dynamic analysis of this system, the tight binder would likely be chosen as the

most adequate sensor because of its high mean signal (fractional saturation). However, the
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normalized amplitude of this sensor is null for the relevant input system frequencies. The

utopian sensor performs well in a variety of conditions, the phase shift is less than 10% for

signal frequencies < 0.01 s−1. However, the kon of this sensor, 108 M−1s−1, is physically not

achievable in general; a more typical protein/protein kon =105–106 M−1s−1. In the dotted

black line is represented a feasible sensor, named so because it performs well in wide range

of frequencies and it is technically feasible. The normalized mean signal for the feasible

sensor increases with faster frequencies as the biosensor inaccurately reflects a higher signal.

4. Discussion

We have shown that there exists an optimal combination of the design parameters kon and

koff for a reagentless biosensor and that these vary depending on the nature of the signal.

What our results indicate is that the careful determination of binding kinetics is crucial for

successful application of biosensors. As a general rule, the KD of the interaction must match

that of the expected mean ligand concentration to ensure greatest sensitivity. Biosensors

with a KD lower that the mean ligand concentration will yield a binary output. Faster

association and dissociation rate constants combinations provide greater correlation to the

input signal. Therefore, efforts to increase both kon and koff while maintain a KD near the

expected ligand concentration will generally improve dynamic response time while

maintaining sensitivity.

While the presence of an optimal koff, kon combination may exist for a given input signal,

these rate constants may not be either physically relevant or in the range of what can be

engineered. The dissociation rate constant is very amenable to changes and most library

selection strategies rely on optimizing this parameter. For the association rate constant, the

scenario is quite different: two molecules come together by diffusion which is governed by

Brownian motion. Smoluchowski calculated that if proteins were smooth spheres and they

formed a complex every time they would collide, the association rate dictated by Brownian

motion would thus be 7*109 M−1s−1. However, complex formation requires stringent

orientation constraints and the observed rate of protein-protein complex formation is 105–

106 M−1s−1 [23,24]. Nevertheless, some outliers for protein-protein and DNA-protein have

been identified with association rates up to 109 M−1s−1 [25–28] due to favorable

electrostatic interactions, and very slow association rates (103 M−1s−1) due to high energy

barriers to complex formation[29]. Within the gray box of Figure 3a are the regions

considered generally accessible to protein engineering. A large range of kon, koff couples

with high performance are well outside the range of physical possibilities.

While the optimum set of constants cannot always be achieved, there are some alternatives

that can be used. Renard & Bedouelle successfully demonstrated the use of three sensors

with various affinities against lysozyme in combination in order to titrate lysozyme

concentration over a three log range[30]. Another group also demonstrated the possibility of

narrowing the titration range using a depletion strategy[31]. Moreover a combination of

sensors with different output signal characteristic can be beneficial also for dynamic

scenarios. We exemplify here the possibility of using a combination of different sensors at

equimolar concentrations each with different dissociation rate constants to form a more

robust sensing system as illustrated in Figure 5. The three sensors have an association rate
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constant of 105 M−1s−1 and equilibrium dissociation constants of 100, 10 and 1 nM.

Suppose for a given application that the tightest binder offers a more than satisfactory mean

signal intensity but suffers from profound signal delays, not acceptable for that application.

The intensity of the signal can only be correlated to a concentration of target antigen if

appropriate calibrations controls have been established. While, in general, greater signal

intensities are preferred as they are facilitate detection and have lower signal to noise ratios.

In some cases, it is possible to sacrifice some of the signal intensity in order to improve

other characteristics of the signal. Indeed, the weaker binders do offer better signal

correlation as indicated by the lower phase shift, but the signal intensity may be too weak.

By combining these sensors together, one obtains a signal profile that now offers improved

time correlation and satisfactory mean signal intensity. The ratios and properties of these

sensors can be fine tuned to obtain the desired output signal properties. This approach is

advantageous as it allows manipulation of the sensor signal properties without any

additional engineering, given the condition of having at least two sensors. The Matlab code

provided online allows the reader to quickly assess any desired combinations.

While this model can be applied to any particular ligand concentration and variation

dynamics, we have here often focused on the low nanomolar concentration range. This

concentration range was motivated by the ErbB extracellular signaling network. The ErbB

receptor family is activated by growth factor shedding in an autocrine or paracrine manner.

Previous mathematical modeling based on experimental evidence by the Lauffenburger and

Wiley groups has allowed the determination of the effective ligand concentration at the cell

surface[32–34]. By controlling ligand production, shedding and receptor levels, Dewitt et al.

were able to determine a direct relationship between ligand shedding rate and effective

concentration, shown to be in the 1–10 nM range[32]. Hence, we have chosen the range of

1–5 nM for most of our demonstration. As shown in Figure 1, there is a great variety in the

concentration and dynamics of physiologically relevant molecules. Our model strongly

indicates that careful optimization of a biosensor is critical for its appropriate deployment to

investigate the biological system of interest.

Previous biosensor modeling efforts have ranged from finite element methods for

microelectromechanical systems[35], to partial differential equation systems of enzymatic

reactions[36]. In the field of reagentless biosensors, Haugh developed a reaction-diffusion

model and showed the importance of binding parameter optimization to prevent signal

saturation or system perturbation[18]. Our analysis distinguishes itself by revealing that

kinetic rate constants are crucial to the proper identification of signal fluctuations. We have

provided guidelines for the optimization of these parameters for a desired application.

Furthermore, from this dynamic analysis, we derived metrics which we suggest should

become standard for the characterization of biosensors.

Often biosensors detection mechanisms rely on tethering receptor onto microchips. In these

systems, convection and diffusion are essential properties that were not investigated in our

model since they were assumed negligible. Squires et al., investigated design constraints

imposed by transport in surface-based biosensors[37]. Through finite element methods, they

discussed the time scales and collection rates for these systems as a function of the channel

dimensions, flow rate, ligand diffusion and binding kinetics. Although not discussed in their
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publication, faster kinetics for the ligand-receptor interaction would likely improve the

correlation between the input and output signal in these systems as well. Furthermore, they

highlight the importance of tethered receptor density as higher density would allow lower

detection limits and also increased signal to noise ratio. Thus, we suggest that reagentless

biosensors could be clustered on the surface of beads. This would greatly improve the signal

to noise ratio in fluorescent microscopy read-out. But as underlined in the model published

by Squires et al., increased binder density correlates with greater depletion effects which

ultimately could have adverse local effect on the physiology of the system.

To our knowledge, we present here the first analysis of a sensor system for kinetic rate

constants optimization under dynamic conditions. Furthermore we have specifically

identified three criteria for scoring the applicability of reagentless biosensors: mean,

amplitude and phase shift. Based on the analysis of these criteria, we have presented here the

limitations and trade-offs in the design of biosensors. While several reviews have been

published for the design principles of reagentless sensors[1,38], they fail to acknowledge the

importance of sensor-ligand kinetic binding parameters optimization for their particular

application. Only through a dynamic analysis, as presented here, can the importance of the

kinetic constants be highlighted.

The results described here hold true if the sensor concentration is appropriate to guarantee

no ligand depletion. Ligand depletion would not only affect the founding assumption of this

model but also severely perturb the biological sample to be studied. In this context, this

model can significantly help scientists in choosing the adequate binding parameters of their

sensor and the biological system to be studied to maximize their efficacy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Various biologically relevant molecules and processes are depicted in this Figure. Typical

mean concentration is shown on the horizontal axis ranging from picomolar (pM) to

millimolar (mM) against expected time scales for variation in the ligand concentrations.
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Figure 2.
A) Output profiles generated from an input varying from 1–5 nM with time period of 100

minutes. The output signals are read on the left vertical axis, the input signal is read on the

right vertical axis shown in gray. B) Once the output oscillations are stabilized, the mean

concentration and normalized amplitude are given as a function of koff.
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Figure 3.
Input signal of period of T = 100 minutes varying from 0.1–0.5 nM (top row), 1–5 nM

(middle row), 10–50 nM (bottom row). The first column represents the mean signal as a

percentage of the total sensor, the second column shows the normalized amplitude, the third

column the phase delay and finally the last column is an overlap of the optimal regions for

all three criteria. The areas accessible to engineering are shown in the gray box.
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Figure 4.
Bode Diagram for three different sensors: In solid black we have represented a tight binder

(kon =106 M−1s−1, koff = 10−6 s−1), in dashed black a utopian binder given our model (kon

=108 M−1s−1, koff = 3*10−1s−1) and in dotted black a feasible binder (kon =106 M−1s−1, koff

= 3*10−3 s−1). The input signal varies between 1–5 nM and the sensor concentration is

0.05nM for all cases.
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Figure 5.
Bode Diagram for individual and combinatorial sensor deployment. The input signal varies

from 1–5nM, in all cases the total concentration of sensor(s) is equal to 0.05nM. All sensors

have a kon of 105M−1s−1.
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Table 1

Optimum Location

Summary of the effect of input modification on optimum <kon, koff> couples. NE = No Effect

Input Property Output Mean Signal Output Normalized Amplitude Output Phase Shift

Increasing Frequency NE kon↗ and/or koff↗ kon↗ and koff↗

Increasing Amplitude NE NE NE

Increasing Mean kon↗ and/or koff↘ kon↘ and koff↗ kon↘ and koff↗
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