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Abstract. We considerk-Facility Location games, whene strategic agents report their locations on the
real line and a mechanism maps themktdacilities. Each agent seeks to minimize his connection cost,
given by a nonnegative increasing function of his distance to the ndaoéty. Departing from previous
work, that mostly considers the identity cost function, we are interestecc@hamisms without payments
that are (group) strategyproof for any given cost function, ardeze a good approximation ratio for the
social cost and/or the maximum cost of the agents.

We present a randomized mechanism, calledy&E. CosT, which is group strategyproof and achieves a
bounded approximation ratio for alandn, for any given concave cost function. The approximation ratio
is at most2 for MAXx CosTand at most: for SocIiAL COsT. To the best of our knowledge, this is the first
mechanism with a bounded approximation ratio for instancesivith3 facilities and any number of agents.
Our result implies an interesting separation between deterministic meclsambiose approximation ratio
for MAx CosT jumps from2 to unbounded whek increases fron2 to 3, and randomized mechanisms,
whose approximation ratio remains at mastor all k. On the negative side, we exclude the possibility
of a mechanism with the properties ofgEAL CoOST for strictly convex cost functions. We also present
a randomized mechanism, calledcR THE LOSER which applies to instances with facilities and only

n = k + 1 agents. For any given concave cost functiolgPTHE L OSERIs strongly group strategyproof
and achieves an approximation ratio2afor SocIAL COST.
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1 Introduction

We considerk-Facility Location gameswherek facilities are placed on the real line based on the
preferences of strategic agents. Such problems are motivated by natural scenariosah@uuice,
where the government plans to build a fixed number of public facilities in an(aee e.g., [13]). The
choice of the locations is based on the preferences of local peomggeots Each agent reports his
ideal location, and the government applies a (deterministic or randomizechanisnthat maps the
agents’ preferences tofacility locations.

The agents evaluate the outcome of the mechanism according t@dheiection costgiven by
a nonnegative increasing functiefy) of the distancel of their ideal location to the nearest facility.
Agents seek to minimize their connection cost, and may misreport their ideal lneatian attempt of
manipulating the mechanism. Therefore, the mechanism shoudttdiegyproofi.e., should ensure
that no agent can benefit from misreporting his location, or eyrenp strategyprogfi.e., should
ensure that for any coalition of agents misreporting their locations, at ¢e@sbf them does not
benefit. The government’s goal is to minimize an objective function of thetslgesnnection cost.
Most prominent among them are the objective afcsaL COST, which considers the total cost of
the agents, and the objective ofAaM CosT, which considers the maximum cost of an agent. So, in
addition to (group) strategyproofness, the mechanism should either optimémhieve a reasonable
approximation to the designated objective function, thus ensuring thattib@oeis socially efficient.

Previous Work. The numerous applications and the elegance of the model have attractexdfia sig
cant volume of research on the problem. In Social Choice, the emphasizeba on characterizing
the class of (group) strategyproof mechanisms for locating a single facitig igents’ preferences
aresingle-peakedRoughly speaking, an agent has single-peaked preferencesaklanhdeal loca-
tion (or pealk), and consistently prefers less the locations farther from it. Howewesttlngth of his
preference for locations closer to his peak is not explicitly quantified pyarction of the distance.
For general single-peaked preferences, a classical result difMa4] shows that the class of deter-
ministic strategyproof mechanisms for locating a single facility on the line coineiitbsthe class
of generalized median mechanisms (see also the surveys of BgBpand Sprumont [19], and [15,
Chapter 10]). Schummer and Vohra [18] extended this characterizatiwaetanetrics, and proved
that for non-tree metrics, any onto strategyproof mechanism must be oditia. More recently,
Dokow et al. [4] obtained similar characterizations for locating a single faalityhe discrete line
and on the discrete circle.

Adopting an optimization viewpoint to Facility Location games, Procaccia anderéroltz [17]
introduced the framework cipproximate mechanism design without monBye basic idea is to
consider game-theoretic versions of optimization problems, suéhFasility Location, where effi-
ciency is quantified by an objective function (instead of efficiency relategerties, such as onto,
non-dictatorship, and Pareto-efficiency, typically studied in Social @)oithen, any reasonable ap-
proximation to the optimal solution can be regarded as a socially desirablenmjtemd one seeks
to determine the best approximation ratio achievable by strategyproof mscisais for the prefer-
ences of the agents, with respect to which strategyproofness is ddfireline of research adopted
the standard definition of Facility Location problems from Operations Relsésee e.g., [12]). Thus,
it implicitly abandoned the setting of general single-peaked prefereindespr of the more restricted
(and technically easier to handle) case where the agents’ cost is gielinear function:(d) = ad
of their distancel to the nearest facility. Translated into this framework, the results of []4ni@y
a deterministic strategyproof mechanism that minimizes theis. CosT for 1-Facility Location



Max CosT

k=1 k=2 2<k<n-—1 k=n-—1
Deterministic 2 [17] 2 [17] oo [7] oo [7]
Randomized 1.5[17] [1.5,5/3] [17] [1.5, 2] [here] 1.5 [5]
SoclAL CosT
k=1 k=2 2<k<n-1 k=n-1
Deterministic 1[14] n —2[7], [17] oo [7] oo [7]
Randomized 1[14] [1.045,4] [11], [10] [1.045, n] [here] [1.045, 2] [here]

Fig. 1. Summary of known results on the approximabilitykeFacility Location on the line (with linear cost functions) for
the objectives of Mx CosTand ScIAL CosT. In each cell, we have either the precise approximation ratio (if known)
or the interval determined by the best known lower and upper bound=ells with two references, the first is for the
lower bound and the second for the upper bound. We note that the lowedlon the approximation ratio of deterministic
mechanisms fok > 3 is only shown for anonymous mechanisms. The randomized uppedbguroven in this work are
shown in bold and hold for any concave cost function.

on the line and in tree metrics. On the negative side, the impossibility result pinip8es that the
best approximation ratio achievable for the objective ot&L CosTby deterministic strategyproof
mechanisms for 1-Facility Location in general metrica is 1. However, the explicit quantification
of agents’ preferences now allows for randomized mechanisms tharategyproof with respect to
the agents’ expected cost (a.k.a. incentive compatible in expectationgsgé® Section 9.5.6]) and
may achieve better approximation ratios.

Since [17], there has been a considerable interest in quantifying theappsoximation ratio
achievable by strategyproof mechanisms feffacility Location on the line and in general metric
spaces. As a result, the approximability/eFacility Location (with linear cost functions) by deter-
ministic and randomized strategyproof mechanisms has become well understoany interesting
cases (see also Fig. 1). The main message is that deterministic strategye@nisms can only
achieve a bounded approximation ratio if we have at moficilities [17,7]. On the other hand,
randomized mechanisms are known to achieve better approximation ratisE#aility Location and
also a bounded approximation ratio if we have 2 facilities and onlyn = &£+ 1 agents [5]. Notably,
such instances are known to be hard for deterministic mechanisms. In [zartiba inapproximabil-
ity of k-Facility Location by anonymous deterministic strategyproof mechanismsl| fbra 3, was
proved in [7] for instances with only = k 4 1 agents (see also [5] for some concrete examples that
motivate the special case where all agents but one get a facility).

Motivation and Contribution. Our work is motivated by two natural questions related to approximate
mechanism design without money fetFacility Location. The first question is about the approxima-
bility of k-Facility Location by randomized strategyproof mechanisms for instancesamnjthumber

of facilities and any number of agents. Prior to this work, we have only kn@mdomized mecha-
nisms with a boundeédapproximation ratio if we have either at most 3 facilitieskofacilities and
only n = k + 1 agents. Most importantly, all the randomized upper bounds in Fig. 1 aievach

by mechanisms that balance strategyproofness against efficiencydifééngnt approaches (see e.g.,
[17,10,5]).

% The approximation ratio of a mechanism feFacility Location is bounded if it is a function of and k. We highlight
that this property is essentially objective-independent, since any misohaith a bounded approximation ratio for e.g.,
MAx CosT also has a bounded approximation fan@SAL CosT and for the objective of minimizing thé, norm of
the agents’ costs, for any> 1, and vice versa.



The second question is whether the restriction to linear cost functions seasay price to pay
for adopting the elegant optimization framework of Procaccia and Tewttzrli7] and aiming at
a reasonable approximation ratio. In fact, we can imagine a few naturzrsce where the agents’
cost is best described by a convex or a concave non-decreasinfyisotionc(d) of their distancel
to the nearest facility. For example, a convex cost function capturestihéhat the growth rate of
the people’s disutility from commuting increases with the distance (e.g., in additorstand time
considerations, people get more and more tired if they commute over longadisja®n the other
hand, a concave cost function captures the fact that the growth réte tfaveling time decreases
with the distance (e.g., people walk over short distances, bike over medatamecks, drive over
long distances, and take a plane over really long ones) and the facteéhaakling cost per unit of
distance decreases with the distance (if we take the cost of food intoradoowshorter distances).
To a certain extent, a setting where the agents’ cost function is not fikeds biven as part of the
input, would be closer to the setting of general single-peaked prefesencocial Choice. Then, a
mechanism should be strategyproof, or even group strategyproafnjogiven cost functiom, just
as generalized median mechanisms are strategyproof for any collectimglefgeaked preferences,
while the approximation ratio may also depend on some quantitative propertiestie derivative)
of ¢. Notably, this holds for the class of percentile mechanisms [20], which eeamidthe facility
locations based on the ordering of the agents on the line, are group wra@gy and include the
optimal (wrt. the approximation ratio for linear cost functions) deterministic meisims forl and
2-Facility Location on the line. However, percentile mechanisms have an ndbdwpproximation
ratio for all & > 3. In contrast, the strategyproofness of known randomized mechanismiglkyr
depends on the linearity of the cost function (see e.g., [17, Mechanisvhith is not strategyproof
e.g., fore(d) = V).

In this work, we make significant progress in both research directiomgal®ur main technical
contribution consists of two simple and natural randomized mechanisms, cajled.BCosT and
Pick THE LOSER that are group strategyproof and achieve a bounded approximatioriaiaany
number of facilities and any given concave cost function.

EQuAL CosT, presented in Section 3, applies to instances with any number of facilitied any
number of agents, and is the first (group) strategyproof mechanism with a bounded @ppaton
ratio for all k andn. Its approximation ratio is at mo&tfor MAX CosTand at mosk for SOCIAL
Cost, for all concave cost functions Combined with the lower bound of [17] for the objective of
Max CosrT, this implies that the best approximation ratio achievable by randomized meisanis
for k-Facility Location on the line is at leadt5 and at mose, for all £ and for all concave cost
functions. Moreover, we obtain an interesting separation between deigimimechanisms, whose
approximation ratio for Mx CosT jumps from2 to unbounded wheh increases fron2 to 3, and
randomized mechanisms, whose approximation ratio remains a small constahtfo

From a technical viewpoint, &AL CosTworks by equalizing the expected cost of all agents.
The mechanism first covers the agents’ locations Wwilisjoint intervals of lengtlf, wherel is chosen
so thatc(¢) is at most twice the optimal maximum cost of an agent. Then, taking the cogidiunc
¢ into account, it computes a random variab{ein [0, /], so that all locations: € [0, ¢] have the
same expected cost, undeif 2 is connected to a facility distributed |, /] according taX . Finally,
EQuAL CosT places a facility in each interval according to the random variabko that all agents
have an expected cost equal to the expectatiati.bf.

The key technical claim in the analysis 06BAL CosTis that if the cost functiom is concave
and piecewise linear, a random variatewith the desired properties exists and can be computed
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efficiently as the solution to a homogeneous system of linear equations (Ler@malds claim can

be generalized to any continuous concave function, but the techntedsdeve to do with techniques
for the solution of integral equations and are beyond the scope of thls W show that BUAL
CosrTis (resp. strongly) group strategyproof for any given (resp. stjictycave cost function, and

that the agents’ expected cost is at most the maximum cost of an agent iptitmalcsolution for

the objective of M\x CosT(Lemma 3.5). In addition to implying the approximation guarantees, the
upper bound on the expected cost of the agents indicates that the facildgtaioof EQUAL CoST

is fair in expectation, and does not unnecessarily increase the agsntsitgl.

To demonstrate the natural behavior aplaL CosT for typical cost functions, we derive the
exact form of the random variabl€ for three important cases: linear cost functions, piecewise linear
cost functions with two pieces, and exponential cost functions of tmefai) = 1—e~*? (Section 4).
Moreover, we show how to implementQEAL CosST if the agents and the facilities should lie in a
bounded interval (Section 5). This implies thapEaL CosT can be applied to instances where the
agents lie on a circle metric, with the same approximation guarantees, but satbesingly, with
group strategyproofness carrying over only if the number of facilitieses e

On the negative side, we exclude the possibility of a mechanism with the fisspef EQUAL
Cosrtfor strictly convex cost functions (Section 5.2). Specifically, we showtti@expected cost of
the agents in the same interval cannot be equalized if the cost furdsatrictly convex. Moreover,
employing an exponential cost function, we show (Lemma 5.2) that theserdexist a randomized
strategyproof mechanism with a bounded approximation ratio for any gimerex cost function (note
that the approximation ratio here may also depend on the cost function).

In Section 6, we focus on the simpler and elegant setting where wekhéaalities and only
n = k + 1 agents. This setting was motivated and studied in [5], and deserves|spémion
not only because such instances are among the hardest ones faridistear mechanisms (see e.g.,
[7, Theorem 7.1]), but also because they makeEkL CosT perform poorly for the objective of
SoclAL CosT. We present thelek THE Losermechanism that allocates facilities to all but a single
agent, designated as the loser. The probability distribution according tt wigdoser is chosen is
motivated by the probability distribution used by [9] for scheduling on seliistelated machines.
Our key technical contribution here is to show that®® THE LOSERIs strongly group strategyproof
for any given concave cost function (Lemma 6.1). We also show that PHE LOSER achieves
an approximation ratio o2 for the objective of ®ciaL CosT. Thus, we significantly improve on
the previously best known approximation ratiorgf2 achieved by theNVERSELY PROPORTIONAL
mechanism of [5] for this class of instances. Moreover, the small appadion ratio of RCK THE
L oseRrnicely complements the poor performance afaL CosT for such instances.

Other Related Work. For the objective of Mx CosT, Alon et al. [1] almost completely character-
ized the approximation ratios achievable by randomized and deterministic nisolsdor 1-Facility
Location in general metrics and rings. For the objective oE&\L CosT, Nissim et al. [16] and Fo-
takis and Tzamos [8] considered imposing randomized mechanisms thateaghiadditive approx-
imation of o(n) and an approximation ratio dft for k-Facility Location on the line and in general
metric spaces, respectively. In fact, the approximation ratio can be inthtov@(ln K), using the
analysis of [2]. Fon -Facility Location on the line and the objective of minimizing the sum of squares
of the agents’ distances to the facility, Feldman and Wilf [6] proved that teedmoroximation ratio

is 1.5 for randomized an@ for deterministic mechanisms. Moreover, they presented a class of ran-
domized mechanisms that includes all known strategyproof mechanismg-feility Location on

the line.



2 Notation, Definitions, and Preliminaries

For a random variabl&’, we letIE[ X| denote thexpectatiorof X . For an evenf’ in a sample space,
we letIPr[E] denote the probability thaf occurs.

Instances.We considelk-Facility Location withk > 1 facilities andn > k + 1 agents on the real
line. We letN = {1,...,n} be the set of agents. Each agérg N resides at a location; € IR,
which isi’s privateinformation (i.e., each location; is a piece of information only known by agent
i). An instanceis a tuple(x, ¢), wherex = (z1,...,z,) € IR" is the agents’ locations profile and
c: IR>o — IR>¢ is a cost function that gives the connection cost of each agent. Théucasionc
is public knowledgeand the same for all agents. Normalizingve assume that0) = 0. If the cost
functionc is clear from the context, we let an instance simply consist.of

For ann-tuplex = (z1,...,z,) € R", welete_; = (21,...,2i-1,Zit1,...,2T,) bex without
z;. For a non-empty sef of indices, we letcs = (z;);cs andx_g = (z;);¢s. We write (z_;, a) to
denote the tuple: with a in place ofz;, (x_y; ;1, a, b) to denote the tuple with « in place ofz; and
bin place ofz;, and so on.

Mechanisms.A deterministic mechanisih for k-Facility Location maps an instan¢e, ¢) to a k-

tuple (y1,...,yx) € RF, y; < --- < y, of facility locations. We letF(z, ¢) (or simply F(zx),

wheneverc is clear from the context) denote the outcomefofor instance(x, c), and letF(x, c)

denotey;, i.e., thej-th smallest coordinate if'(x, c). We writey € F'(x, c¢) to denote that’(x, c)

has a facility at locatiory. A randomized mechanisti maps an instancéz, c¢) to a probability
distribution overk-tuples(yi, . . ., yx.) € IR¥.

Connection Cost, Social Cost, Maximum CostGiven ak-tupley = (y1,...,yx), 11 < -+ <

yi, Of facility locations, the connection cost of agentith respect toy, denotedcost(z;,y), is
cost(z;,y) = c(mini<;<k |z; — y;]). Given a deterministic mechanismand an instancér, c), we

let cost(z;, F(x, ¢)) (or simply,cost(x;, F(x)), if ¢is clear from the context) denote the connection
cost of agent with respect to the outcome éf(x, ¢). If F'is a randomized mechanism, the expected
connection cost of agenis

cost(z;, F(x,c)) = Ey r(a,c) [cost(z;, y)]
The Max CosT of a deterministic mechanisii for an instancéx, c) is
MCIF(x,c)] = max;en cost(x;, F(x,c))
The expected Mx CosTof a randomized mechanisffor an instancéx, c) is
MCI[F(z, c)] = IEy. p(a,c)[max;en cost(z;, y)]

The optimal Max CosT, denotedM C*(, ¢), is MC*(z, ¢) = min, cpr max;en cost(z;, y).

The (resp. expected)d®IAL COST of a deterministic (resp. randomized) mechanigirfor

an instancgx, ¢) is SC[F(z,c)] = Y., cost(z;, F(z,c)). The optimal ®cIAL CosT, denoted
SC*(z, ), is SC*(w, ¢) = min,cr D i cost(z;, y).
Approximation Ratio. A (randomized) mechanism' for k-Facility Location achieves aapproxi-
mation ratioof p > 1 for a class of cost function$ and the objective of Mx COST (resp. X CIAL
Cos), if for all cost functionse € C and all location profilexz, MC[F(x, ¢)] < p MC*(x, ¢) (resp.
SC[F(z,c)] < pSC*(x,c)).



Strategyproofness and Group StrategyproofnessA mechanismF’ is strategyprooffor a class of
cost functiong’ if no agent can benefit from misreporting his location. Formdllys strategyproof
if for all cost functionsc € C, all location profilese, any agent, and all locationg,

cost(z;, F(x,c)) < cost(z;, F((x_;,y),c)).

A mechanism¥ is (weakly)group strategyproofor a class of cost functiorGif for any coalition
of agents misreporting their locations, at least one of them does notth&weially, F' is (weakly)
group strategyprooff for all cost functionse € C, all location profilese, any non-empty coalitiory,
and all location profileg s for S, there exists some agent S such that

cost(z;, F(x,c)) < cost(z;, F((x_s,Ys),¢)) .

A mechanismF is strongly group strategyproofor a class of cost function§ if there is no
coalition S of agents misreporting their locations where at least one agehbemnefits and the other
agents inS do not lose from the deviation. Formalll, is strongly group strategyproof if for all cost
functionsc € C and all location profileg:, there do not exist a non-empty coalitinand a location
profileyg for S, such that for ali € S,

cost(z;, F(x,c)) > cost(z;, F((x_s,Ys),¢)),
and there exists some agegnt S with

cost(z;, F(x,c)) > cost(zj, F((x—s5,¥s),¢)) -

3 TheEQUAL-CosTMechanism

In this section, we present and analyze tligyEL CosTmechanism. At the conceptual level BAL
CosrT, or EC, in short, works by equalizing the expected cost of all agents. Givensance(x, c)
of k-Facility Location on the linel2C works as follows:

Step 1 It computes an optimal covering of all agent locations wkittiisjoint intervalg o, «; + ¢] that
minimizes the interval length(wlog., we assume that; < a;1).

Step 2 It constructs a random variablé(¢) € [0, ¢] such that all locations € [0, /] have the same
expected connection colit[c(|z — X])].

Step 3 For every intervalo;, «; + ¢], EC places a facility aty; + X, if 7 is odd, or aty; + ¢ — X, if
11s even.

We proceed to establish the main propertieB0f summarized by the following theorem. For the
proof, we examine, in the following sections, each step of the mechanisaresely.

Theorem 3.1. For the class of all concave cost functiof&QuUAL CoSTis group strategyproof and
achieves an approximation ratio @ffor the objective oMax CosT, and an approximation ratio of
n for the objective oBociAL CosT. Moreover, for every instancex(c), with ¢ concave, and every
agenti, cost(z;, EC(x, ¢)) < MC*(x, ¢).



3.1 Step 1: Partitioning the Instance in Intervals

We can compute the minimum feasible interval lengtiy checking all possible candidate values.
The value of? is equal to the distance; — x; for some agent locations; > z;. So, there are at
mostn? /2 candidate values faf. For each candidate val#g we can check feasibility and compute
a covering of all locations i with intervals of length?’ as follows:

While there are uncovered agents, find the leftmost uncovered agart create a new inter-
val [l‘i, T+ f’]

The above algorithm computes the minimum number of intervals of lefigthcoverz. If this
number is at mosk, we set! = ¢/. We can also speed up the algorithm by binary search over the
space of candidate values.

We observe that the partitioning into intervals of lengtis closely related to the optimal maxi-
mum costMC*(x, ¢). In fact, an optimal solution can be obtained by placing a facility at the midpoint
of each interval. Thus, the cost of the optimal solutioNMi§™(x, ¢) = ¢(¢/2).

3.2 Step 2: Constructing the Random Variable

We next show that for any given cost functienwe can construct a family of random variables
X (¢) € [0,4] such the expected cost of every poin{@n/] is the same. For convenience, we denote
this cost ag” (¢). We note thatC'(¢) = IE[c(| X (¢) — z|)], for all z € [0, £]. In particular, forz = 0,
we getC'(¢) = E[c¢(X ()]

We assume that the cost functions piecewise-linear with pieces of lengthand growth rates
A0y AL, - -+, Aiy - .., Where),; is the growth rate in the interval, i +1). For alli, \; > 0 and\; > A\i41,
because is strictly increasing and concave. Our result applies to general cetfigagtions either by
discretizing appropriately, or by solving a continuous analog of the honsages linear system below
through an integral equation. The technical details are related to the saditidegral equations and
are beyond the scope of this work.

The supportS of the random variabl& (¢) is every point; and? — ¢, for integeri = 0, ..., [¢].
We note that if¢ is an integer, we have only5| = ¢ + 1 points in the support, instead ¢§| =
2(|4] +1) points in general. The crucial observation is that the derivative of thead cost function
in every interval between consecutive points in the support mugt 8e, to compute the probability
p; assigned to each pointin the support ofX (¢), we write a set ofS| — 1 linear equations and
|S| unknowns (the probability; of each pointj in the support) requiring that the derivative of the
expected cost function in each intervabisSo, we get the homogeneous linear systgm= 0. If ¢
is an integer, the matriA is:

Ao —Ao —A1...—Aeq
Al Ao Ao - —A
a=|

A1 A2 A3 — Ao

Namely, the elements of the matrikare A; ; = A\;,_;, if i > j, andA; ; = —X;_;_1, if i < j, for
alli=0,...,£—1andj =0,...,¢, where), denotes the growth rate of the piecewise-linear cost
functionc at the support point.



If £ is not an integer, the elements of the matdare 4; ; = Al(i—5)/2] if i > j,and4A;; =
Al(j—i-1)/2), If i < j,foralli =0,...,2[¢] andj = 0,...,2[¢] + 1. Thus,

)\0 —)\0 —)\0 —)\1 —)\1 —)\2 —)\2 R —)\w_l —)\LgJ_l —)\w
B T T e R
AOAG AN oo e e A A Ao Ao Ao

We now show that in both cases there is a unique symmetric probability distritthtibsatisfies
the system of equations. For this purpose, we use the two lemmas belowrsthenfima is about a
class of diagonally dominant matrices. It shows that we can bring anyreattix into a triangular
form by performing Gaussian elimination, such that all diagonal elementgasigve and all off-
diagonal elements are less than or equal.to

Lemma 3.1. Let A be ag x n, ¢ < n matrix so that4,;; > 0,foralli =1,...,¢q, A4;; <0, for
alli #j,and) 7 | A;; >0, forall j =1,...,q. Then, by performing elementary row operations
(Gaussian elimination) o, we can get a row-echelon foraf whereAgvi >0, foralli=1,...,q,
A;,j =0, foralli > j, andAg,j <0, foralli < j.

Proof. We use induction og. The base case, whege= 1, is already in the desired form. Assuming
that the lemma holds far > 1, we show that it holds fog + 1.

T
We have thatd = <a “

v B > with ¢ > 0 and all elements ofi andv non-positive. With a single

T

tOB— vxul

a

. . . a . .
step of Gaussian elimination, we gé ) . To conclude the induction step, we show that

the submatrixB’ = B — # satisfies the properties of the lemma. Since all elementsofu”
are non-negative, we still hav; ; < 0, for all i # j. So, we need to show thaty_, B;, > 0
for all columns;j = 1, ..., ¢, which also implies thaBg’i > 0, foralli =1,...,q. For any column
j=1,...,q, we have that:
q q q q

Y Bli=D (Biyy—viug/a) = Bij— %> 0> —u;— 2(—a) =0.

=1 =1 =1 =1
For the last inequality, we use that < 0, and the hypothesis thit:gjll A; ; > 0, which implies that
a+ Z;‘Zzl v; > 0 and thatu; + quzl B; ; > 0. O

The next lemma shows that for the special class of matriaassing in our case, there is a solution

to the homogeneous linear systeip = 0 that defines a probability distribution.

Lemma 3.2. Let A be an x (n+1) matrix defined asl; ; = a;—;, wherea_,,, ..., a,—1 is a sequence
of numbers, withug,...,a,_1 > 0, such thata,,_1 = —a_,,, forall m > —n, anda,,_1 > am
for all m > 1. Then, the systemp = 0 has a symmetric solution withy = p,,—;, > - p; = 1, and
pj > 0. Moreover, there is a unique symmetric solutthat satisfies these conditions.

Proof. By the hypothesis of the lemma, the matdxhas the following form:

apg —apg —ajg ... —Qap—1
aj apg —ag ... —Qp—9
A=
Ap—1 oo vve onn —a



We letd,, = am,_1 — am > 0, for anym > 1. Then, taking the difference of every pair dfs
consecutive rows, we obtain tite — 1) x (n + 1) matrix

—dl 2(10 —dl . _dn—l
—dg —d1 2a0 co —dn_g
A = : : : : :
—dpo —dp_g ... —dy —ds

_dn—l —dn_g 2&0 —d1

To establish the lemma, we first use Lemma 3.1 and show that (i) the nullspateamftains a unique
symmetric probability vectap, and then show that (ii) the particular veciors also in the nullspace
of A.

As for claim (i), we first show that each coordinate of any vectorp in the nullspace ofd’
can be expressed as a non-negative linear combination of the coosdipated p,,. Formally, we
show that for any coordinatg; of any solutionp of A’p = 0, there existr;, p; > 0, such that
p; = mjpo + p;jpn. TO this end, we consider the: — 1) x (n + 1) matrix A”, which is obtained
from A’ by moving the first column ofd’ to the end. We observe thdt’ satisfies the conditions of
Lemma 3.1, sincg’fn‘:1 dpm = ag—an_1 < ag, and thukag — 2 an‘:ll d,, > 0. Hence, by applying
Gaussian elimination td”, we get an—1) x (n+ 1) matrix G in a row-echelon form witlt; ; > 0,
forall i, G;; = 0, foralli > j, andG; ; < 0, for all i < j. Moreover, the nullspace of’ essentially
consists of the solutions to the homogenous linear syste&x: = 0. More precisely, any solution
of Gz = 0 corresponds to a solutigmof A’p = 0, wherepy = x,,, p1 = 0, ..., pn = Tn_1, and
vice versa.

Due to the special form aff, we can find all solutions: of G = 0 by assigning values to the
free variables,,_1 andzx,, and performing backwards substitution so that we uniquely determine the
values of the variablesy, . . ., z,,_o. Furthermore, due to the special form@fthis procedure results
in expressing each variablg as a non-negative linear combinatiorugf_; andx,,. Specifically, we
can calculater;, forall j =n —2,...,0, from the equatiory ;" , G;;x; = 0. Solving forz;, we get
xj = — > Giawi/Gjj, sinceGy; > 0 andGj; = 0, for all j > 4. Moreover, all coefficients
—Gj/Gj,; are non-negative becaugg; < 0, for all j < ¢, andG; ; > 0. By induction, if everyz;,

J' > j, is a non-negative linear combinationof_; andz,, the same holds far;. Therefore, any
coordinater; of any solutionz to G = 0 can be expressed as a non-negative linear combination of
the free variables,, | andz,,. Due to the aforementioned correspondence between the solptions
of A’p = 0 and the solutiong: of Gz = 0, we obtain that for any coordinate of any solutionp to

A'p = 0, there existrj, p; > 0, such thap; = m;po + pjpn.

Hence, the nullspace of’ is spanned by the vectogs andp? determined by setting the free
variablespy andp,, to (1,0) and to(0, 1), respectively. By the discussion above, all the coordinates of
p' andp? are non-negative. To conclude the proof of claim (i), we observedibato the symmetry
of the homogeneous linear systetfp = 0, we have thap} = pifj, forall j = 0,...,n. More
specifically, by the definition oft’, for alli = 0,...,n — 2, the dot product ofd”’s i-th row and a
vector(ap, a1, . .., an—1, a,) isidentical to the dot product of”’s (n—2—1)-th row and the symmetric
vector (ay,, an—1,--.,a1,a9). Hence,A'(ap, .. .,a,) = 0 if and only if A’(a,,...,ap) = 0 for all
vectors(ag, . . ., ay). SinceA’p! = 0, with p! = (m,...,7,), we have thatd(r,, ..., m) = 0.
Using thatp' andp? are linearly independent and comprise a basis of the nullspate we conclude
thatp? = (m,, ..., m). Therefore, there is a unique symmetric vector in the nullspact wifith L,
norm equal td, namely the vectop = (p' + p?)/|p' + p?|:.
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We proceed to show claim (i), namely that the unique symmetric probability vectarthe
nullspace ofd’ is also in the nullspace of. To this end, we define the x n matrix

1 0 0 1
-1 1 0 ...0
M = oonon
0...—.110
0...0 —11

We observe that the determinant/af is equal ta2, and thus\M/ is non-singular. Therefore, the linear
systemAp = 0 is equivalent to the linear system Ap = 0. So, we letd; and A,, be the first and
the last row ofA, and further observe that/ A is an x (n + 1) matrix with its first row equal to
A1+ A, and its remaining rows in one-to-one correspondence to the rows 8incep is the unique
symmetric probability vector satisfying’p = 0, we only need to show th&td; + A,,)p = 0, which
follows immediately from the symmetry @f. This completes the proof of claim (ii) and the proof of
the lemma. a

For every/, the homogeneous linear systeip = 0 satisfies the conditions of Lemma 3.2. Hence,
there exists a unique symmetric probability distributiosuch that the expected cdBfe(| X (¢) —x|)]
is the same for every locatian € [0, /]. Next, we think of this uniqgue symmetric solutignas a
function of¢, and establish a nice continuity property of it.

To this end, we fix an integef. > 0, and show that the random variab}&(¢) converges in
probability to the random variabl& (m), as¢ — m™. We observe that the linear system determining
p is the same for alf € (m,m + 1). So, we letp]” be the probability assigned to each integer point
i, 0 < i < m. By symmetry, the probability assigned to each pdinti, 0 < i < m, is alsop}".
The limitlim,_,,,+ X (¢) = X is a random variable distributed according to a probability distribution
that assigns probability!* + p"_. to each integer point, 0 < ¢ < m. Since the distribution is
symmetric and achieves the same expected cost for all peirts|0, m], it is, by Lemma 3.2, the
unique distribution with these properties. Therefore, we haveXtiat) = X . By the same argument,
we can show that the random varial{¢/) converges in probability to the random variaiém+1),
as{ — (m+1)".

By the continuity property above, the expected agét) = IE [c (X (¢))] at each location: €
[0, ¢] is a continuous function af Moreover, the discussion above implies that foradl [m, m + 1),
C(t) = 37" pi™(c(i) + e(€ — 1)). Using these properties, we now show théY) is an increasing
function of/.

Lemma 3.3. The expected cost(¢) is an increasing function of the interval length

Proof. SinceC'(¢) is continuous, we only need to show tldais increasing in each intervah, m+1),
wherem > 0 is any integer. To this end, we léte [m,m + 1), and consider any € (¢,m + 1).
Then, we have that:

m m

C(6) = E[e(X(0)] =Y p"(c(i) + (£ =) < D pf*(cli) + et — i) = C(¢),
i=0 i=0
where the inequality holds becaude> ¢ and the cost functionis increasing. O
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3.3 Step 3: Establishing Group Strategyproofness

We next prove that the random facility placement, in Step 3@ COST, is group strategyproof.
The correlation of the facility placement, in Step 3, ensures that if an dgetdcated ay, his closest
facility is always the one assigned to his closest interval. To justify this, lebasider any sample
of the random variabl&’. We recall that the facilities are placedat+ =, as + ¢ —x, a3+, . . .. Let
us assume that; + ¢ — x < y < a;+1 + . Then, the distance @fto o; + £ — zisy — (a; + ¢ — ),
while the distance of to o; 11 + x is ;11 + x — y. Hence, agent prefers the facility at interval if
and only ify — (o + ¢) < a;41 — v, 1.€., the right endpoint of intervalis closer toy than the left
endpoint of intervat + 1.

To show that BUAL CoSTis group strategyproof, we consider a coalition of agéritsat deviate
to improve their cost. Let the original interval length, with respect to the tgaeats’ locations, bé,
and let the new interval length, after the deviation/b&Ve now consider the two possible outcomes
when the agents misreport their locations:

Case wher¢” > /. Leti be any agent. If’s true location is covered by some interval of the new
covering,i incurs an expected cost 6f(¢') > C(¢). Otherwise, agentincurs an expected cost no
less tharC'(¢'), which is greater thaf'(¢).

Case wherd’ < (. We consider the distance of any agent to the nearest midpoint of an infEinea
locations of the truthful agents iN'\ S are covered by some interval of the new covering. Hence, their
distance to the nearest midpoint of some interval is at ig&t On the other hand, if we consider
the true locations of all agents and any feasible covering of them Avititervals, there is some
agent whose distance to the midpoint of the interval covering him is atd¢astTherefore, there is

an agent whose distancd to the nearest midpoint of some interval in the new covering (after the
deviation) is at least/2. Hence, agent must be in the deviating coalitiofi, and his true location
must not be covered by the intervals of the new covering. In this casemlae3.4 below implies that
the expected cost of agerafter the deviation, which i[c(d — ¢ /2 + X (¢'))], is at least as large as
E[c(X(2d))] = C(2d) > C(¢). This implies that BUAL CosTis group strategyproof.

Lemma 3.4. For all a, a’, b, with0 < a < o’ < b, it holds that
Elc(b—a+ X (2a))] > E[c(b — a' + X (2d"))]
Moreover, the inequality is strict, if the functiens strictly concave.

Proof. Let m > 0 be any integer. We observe that, similarly@/¢), IE[c(b — a + X (2a))] is a
continuous decreasing function @f Therefore, we only need to show that the lemma holds for all
a,a’ € [%, ™) with0 < a < a’ < b. For all suchy, o/, b, we have that:

Ele(b—a+ X(2a)] =Y _pi"(c(b—a+i)+c(b+a—1i))
=0
>N g (e(b—d + i) + e(b+d — i) = Ele(b - a’ + X(2d))]
=0

where the inequality holds because< o’ andc is concave. In fact, the inequality is strictdfis
strictly concave. O
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3.4 Approximation Ratio

In this section, we analyze the approximation ratio QAL COST.

Lemma 3.5. For any concave cost functian any locations profilec, and any agent, it holds that
cost(z;, EC(x, ¢)) < MC*(z, ¢).

Proof. We let¢ be the minimum interval length in Step 1 oQEAL CosT, and letm = |/]. We
recall thatMC*(x, ¢) = ¢(¢/2). Moreover, we have that:

C0) =Y pl(eli) + et —i)) <> 2pe(t/2) = e(¢/2)
i=0 i=0
where the inequality follows from the concavity of the cost function O

Lemma 3.6. For every concave cost functienEQUAL CosThas an approximation ratio of at most
2 for the objective oMAx CosST.

Proof. Let (x,c) be any instance with a concave cost functipand let/ be the minimum interval
length in Step 1 of BuAL CosT. In EC(z, ¢), every agent has a facility at distance at mosto x;.
On the other hand\IC*(x, ¢) = ¢(¢/2). Therefore, the approximation ratio is at most:

c(l)  c(f)+c(0)  2c(£/2)

2~ ety =) T

where we use that(0) = 0, by normalization, and the concavity af O

Lemma 3.7. For every concave cost functienEQUAL CoSThas an approximation ratio of at most
n for the objective oBocIAL COST.

Proof. For every locations profile, MC*(x, ¢) < SC*(x, ¢). Then,

SC(z,c) = > cost(z;, EC(z,c)) < nMC*(,¢) < nSC*(z,¢),
iEN

where the inequality follows from Lemma 3.5. O

4 Applications

In this section, we consider three typical examples of concave cogtdaoacand derive closed form
solutions for the corresponding random variabled).

Linear FunctionsThe literature mostly focuses on linear cost functiefi§ = \d, where the agents’
cost is proportional to their distance to the nearest facility. In this c&$é), has a nice closed form:

it is either0 with probability 1,/2 or ¢ with probability 1/2. Then, the expected connection cost of any
locationz € [0, /] is:

c(x))24+cl—x)/2=Xx/2+ Nl —2x)/2=2\)2,

which does not depend an
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Two-Piece Piecewise Linear Functiof®r some\; > Ay > 0, let the cost functiomr be:

o(d) = Ad ford <1
- Aod + ()\1 —)\2) ford > 1

To achieve the same expected cost at all locations, we/fihet m = |/], and compute the
probability distribution ofX (¢) by solving the following linear system:

Py’

m

A=A =ML =X —do —As —Xa .. =X —Ag —Ay P

YYD VS VI VRS VS VA VNS VRN vty Ve I
.. P [ =0
R T I R R VAl
o’

Taking the difference between every two consecutive rows, as in Lenna8 find that:

m A1~ A2
pZ - 2)\1

(pi*1 +pit,) forallintegers 0 <i <m,

where we defing]” = 0, for all integers: ¢ [0, m]. Then, the solution of the recurrence is:

m+1—q m+1—1
mo_ pl +p2

D; 1 ;
257" (ol + d)

A 2 _ _ 2 _ 2 _ _ 2
1+ \/)‘1 (/\1 )\2) and py = \/)‘1 ()\1 )\2)

)\1 — )\2 >\1 - /\2
Exponential FunctionsA concave cost function that results in a continuous probability distribution
X () is the exponential function(d) = 1 — e=*9. Then X(E) is 0, with probability 71, ¢, with
probability £A+2’ and uniform |n(0 6) with probability £ £>\+2 Then, the expected connection cost of
any locationz € [0, £] is equal to;{25, which does not depend an

where p; =

5 Extensions and Limitations

5.1 EQUAL CosTin Bounded Intervals

Our results about the properties ohEAL CosT apply to the real lind—oco, co) and to the half-line
[0,00). If the metric space is a bounded intery@l L], it could be that in the construction of the
covering, in Step 1, the last interval does not fit entireljyOnZ]. The following lemma shows that
even in this case, we can adjust the covering with disjoint intervals of the lsargth, computed in
Step 1, so that all intervals fit i, L].

Lemma 5.1. Given a locations profilec in [0, L], there is an optimal covering af with & disjoint
intervals of the same (minimum) length that all lie entirelyGinZ].
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Proof. We consider a covering af with k disjoint intervals of the same minimum lengthcomputed
as in Section 3.1. As in Step 1 ofdpAL COST, we number the intervals from left to right, and let the
i-th interval bglay;, ov; +¢]. Since all the locations af lie in [0, L], we obtain that < L/k. Moreover,
by construction, we have that > 0, for all 1 < i < k. However, it could bey; + ¢ > L for some
intervali. In this case, we construct a new covering using the intefuéls, +¢],i = 1, ..., k, where

a; = min{ey, L — (k+ 1 —4)¢}. To show that this is indeed an admissible covering oive observe
that:

(i) All intervals lie entirely in[0, L]: For everyi, o > 0, sincec;; > 0, andL — (k +1 — )¢ > 0,
becausé < L/k. Furthermoreq, + { < L — (k+1—i){+ ¢ <L — (k—14)¢{ < L.

(ii) All intervals are disjoint: For any two consecutive intervaknd: + 1, we have that:

o —of =min{a;11, L — (k+1—i— 1)} —min{oy, L — (k+1— )¢}
>min{a; + ¢, L — (k+1—i—1){} —min{o;, L — (k+1—1i)¢}
={+min{a;, L — (k+1— )} —min{ey, L — (k+ 1 —14)¢}
=/

(iii) The intervals cover all locations af: Let us consider a location € [a;, o + £]. If o) = o, @
is covered since the interval does not change. Otherwise; L — (k + 1 — 4)¢. Thus, the interval
[}, L] has alength of. — o/, = (k + 1 — i)¢, and consists of + 1 — 4 disjoint intervals of lengtH.
Therefore, the intervalgy;, o; + (], for j > i, entirely cover the intervghy, L] O [a, L], and thus,
they also cover the location a

Lemma 5.1 implies that if the agents lie on a circle, we can also cover their locatitngigjoint
intervals of the same minimum lengthThen, we can apply Steps 2 and 3 to the resulting intervals
on the circle. But rather surprisingly, AL COST is guaranteed to be strategyproof fefacility
Location on the circle only it is even. Otherwise, some agents in the first interval may prefer the
facility placed in the last interval, which violates the property that each adways prefers the facility
in his own interval.

5.2 Convex Cost Functions

The approach of BuAL CosTdoes not apply to strictly convex functionsbecause it is no longer
possible to equalize the expected cost of all agents. To see this, letsidexahe intervalo, ¢], and

the expected cost of two agents, one locatetlatd the other at. SincelE[c(X)] + E[c( — X)] >
IE[2¢(¢/2)] = 2¢(¢/2), by the strict convexity o, at least one of them incurs an expected cost greater
thanc(¢/2). However, a third agent located@® incurs an expected cost no greater theii2), since

his distance to the facility is at moét2. Moreover, we can show that:

Lemma 5.2. There is no randomized strategyproof mechanism that achieves abéd@approxima-
tion ratio for the class of all convex functions.

Proof. We recall that the property of a bounded approximation ratio is objectiependent. So,

we next focus on the objective of Ak CosT. For the proof, we consider the convex cost function
c(d) = e? and instances with agents and a single facility. For sake of contradiction, we assume that
there exists a randomized strategyproof mechanism that achieves ariaggtion ratio ofr for such
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instances. Next, we leX denote the random variable that determines where the mechanism places
the facility.

We first consider an instance = (x1,x2), with zo > x4, If the facility is placed at location
t < (w1 +x2)/2, agent incurs the maximum cost equald& . If the facility is placed at > (1 +
12)/2, agentl incurs the maximum cost equal ¢! In both cases, the maximum cost is equal to
elr2=1)/2+|t=(21422)/2| 'and the expectation of the maximum coslif:(¥2—#1)/2+X —(z1422)/2]] <
re(#2=21)/2 'which implies thafE[el ¥ —(*1+22)/2] < .,

Let us now consider the probabilitigs = IPr[X < £14%2] andp, = IPr[X > 211£2]. Since
p1 + pr > 1, one of them is at leadt/2. Wlog., let us assume that > 1/2, which implies that agent
2 incurs an expected cost of at legst™2—=1)/2,

Next, we consider an instanag = (2, z5), with 2} = 2 andz}, = 2z9 — z;. By the choice
of &/, E[e/X~(#11+22)/2]] = [E[elX~(e1+222-21)/2]) — [E[elX—22]), Working as before, we obtain that
E[elX—(@1+22)/2l] — [E[elX—22I] < r, due to the approximation ratio of the mechanism. Moreover,
IE[elX—72]] is the expected cost of an agent located.atand due to strategyproofness, is no less than
the expected cost of agedtin instancex. Otherwise ager would have an incentive to repart,,
instead ofx,. Therefore [E[elX—22/] > Lle(@2=21)/2_ Combining the upper and the lower bound on
IE[elX—2I], we obtain that(*2~1)/2 < 2r, This leads to a contradiction if we consider an instance
x with 2z — z1 > 21In(2r). O

5.3 Other Cost Functions

EQuAL CosTcan also apply to some other (non-convex) cost functions, for whicbxpected cost

of all agents can be equalized. A notable such example is a cost furgtidrwhich is0, if d < r,
and1 otherwise. Thusg;, correspond to agents that only care about getting a facility within a radius
from their location. In this case, one could applg®EaL CosT as follows: First, we find a covering
of the agent locations with intervals of lengthas in Step 1. Then # < 2r, we place a facility at the
midpoint of each interval. Otherwise, we do not place any facilities (anclgt egent incur a cost of
1). This clearly satisfies the equal cost property since the cost inchyretl agents is eithed or 1.
The mechanism is optimal for the objective ofaM CosT because every agent incurs a cosd off

the optimal solution satisfies all agents, and a codt otherwise. On the other hand, the mechanism
is n approximate for the objective ofcd® 1AL COST, since in case where the optimal solution satisfies
all but one agents, resulting in a social costlpthe mechanism does not place any facilities, and
incurs a social cost of.

6 ThePick THE LOSERMechanism

EQuAL CosTperforms well for the objective of kx CosT, but may perform poorly for the objective
of SociAL CosT. An extreme case is when we hakvdacilities and onlyn = k£ + 1 agents. Then,
there are many facilities, and one could easily satisfy all but one agenisrtNeless, BuAL COST
causes all agents to incur a high cost (equal to the min-max cost for liosiuactions).

In certain cases, this might not be acceptable, and one needs to find affieeat mechanism.
In this section, we present a mechanism that, for instances withvoelyk + 1 agents, selects the
loser, i.e., the agent not allocated a facility at his location, in a group strategfyway. We also show
that this mechanism is quite efficient for the &AL CosT objective, which for such instances, is
equal to the cost of the loser.
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Given an instancéx, ¢) of k-Facility Location on the line with only: = k£ + 1 agents, the
Pick-THE-LosERmechanism, oPtL in short, works as follows:

Step 1 It numbers the agents according to their reported locations suck thatz; 1, and letsk
andO be the sets of even and odd numbered agents, respectively. Foioeldenumbered agent
i € O, PtL places a facility at:;.

Step 2 For each even numbered ageniPtL. samples a numbet;, uniformly in (0, 1), and computes
i’s current cosk; = min,x; ¢(|x; — x;|) andi’s scaled cosk; = r;/s;.

Step 3 PtL finds the agent with the smallest scaled cost, and declares hiosgeThen,PtL places
facilities at the locations of all other agents.

In the following, we first show that IBK THE LOSERIis strategyproof (Lemma 6.1). Then, in
Section 6.2, we use strategyproofness, and deal with the case wloalitiar of agents may deviate,
thus establishing that the mechanism is strongly group strategyproof. FFinddlgction 6.3, we prove
the mechanism’s approximation guarantee. Thus, we obtain:

Theorem 6.1. For the class of all concave cost functiofscKk THE LOSERIS strongly group strate-
gyproof and achieves an approximation ratio2dor the SociAL COST objective.

For the proof, we assume wlog. that the agent locations are all distinctviddbewe allocate a
facility to all distinct locations, thus being trivially both optimal and group strgpegof. We lety; (x)
denote the probability that ageiis designated as a loser. We have that) = 0 for all odd numbered
agents inz. For an even numbered agentve can compute this probability by the following thought
experiment: With all the samples < (0, 1) fixed, agent is selected if for allj € E, &; > &;,
or equivalently ifs; < s;x;/k;. This happens with probabilitﬂjeE\{i} min{1, s;x;/K;}. Setting
t = s;/k; and taking the expectation over all different values,afe have that

1/kq
gi(x) = H,‘/ H min{1, x;t}dt
0

jeBE\{i}

6.1 Strategyproofness

The following lemma implies thatiBk THE LOSERIs strategyproof for the class of all concave cost
functions. Next, in Section 6.2, we use this property, to establish titat PHE LOSERIs strongly
group strategyproof for the class of all concave cost functions.

Lemma 6.1. Let(x, ¢) be any instance with a concave cost functt@md onlyn = k+1 agents occu-
pyingn distinct locations. Then, for every agerand every location, # x;, cost(x;, PtL(z,c)) <
cost(z;, PtL((z_;, x}), ¢)).
Proof. For convenience, we lat' = (x_;, z;). We also recall that by normalizing we assume that
¢(0) = 0. If agenti is an odd numbered agent, he strictly pretersverz’, because i, there is a
facility at z; and agent incurs0 cost, while inz], there is no facility at:;, and thus agentincurs a
positive cost.

If i is an even numbered agent, wedet min;.;{|z; — x;|} andd’ = min;.;{|z; — z;|} denote
the minimum distance of the reported location &6 the location of another agent. In the instange
if agenti is not allocated a facility at;, he incurs a cost of(¢d). Otherwise, agent incurs( cost.
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Sinced > 0 and the cost function is increasingdnwe have that(d) > 0. We next consider three
different cases, and show that in each case, agenatfersx to =’.

Case wherer, & (z; — d,z; + 0). Then, ina’, agenti incurs an expected cost of at leagt), while
in x, he incurs an expected cost less thé#), since he is allocated a facility at with positive
probability.

Case wherer, € (z; — d,x; + ¢) andd’ < 4. In this case, the probability; (') that agent is not
allocated a facility at}, in instancex’, is greater than or equal tg(x). This holds becausés cost
in ', which isx] = ¢(¢'), is less than or equal tds cost inxz, which isk; = ¢(d). Therefore, for
any sampled numbey;, agenti has a smaller scaled cos} in instancex’ than his corresponding
scaled cosk; in instancex, which in turn, implies a greater probability thats designated as the
loser. Moreover, if in instance’, agent is allocated a facility ai}, he incurs a positive cost, sineé
is different from his true locatiom;. Thus, putting everything together, we obtain that agesttictly
prefersx to z':

(1= ai(a") e(af — @i]) + qi(x)e(0) > gi(a")e(6) > gi(x)c(0)

Case where’, € (x; —d,x;+0) andd’ > 4. The probabilityg; (x’) is now greater than the probability
¢qi(x). However, if agent is allocated a facility at, in instancex’, he incurs an additional cost of
c(|z; —z;|) > ¢(¢6' —0), due to the distance af, to i's true locationz;. Thus, we obtain the following
lower bound on the expected cost of ageintinstancer’:

(1= (") e(; — @i]) + qi(2)e(0) = (1 — qi(@)) (e(0') — e(9)) + qi(x')e(d)

where the inequality follows from(d") < ¢(d) + ¢(6" — §), which in turn, follows from the concavity
of c. Hence, to conclude that agemtrictly preferse to =/, we need to show that:

(1= ai@)) (e(&') — e(8)) + gi(a')e(d) > gi(x)c(d) 1)

To this end, for each even numbered aggmwe letr; andn; denote the cost of computed by
the mechanism for the instancesandx’, respectively. By the definition of the mechanism, we have
thatr; = «}, for any agengj € £\ {i}, and thats; = c(d) andx; = c(d’). Hence, the probability
¢gi(x') can be calculated as follows:

1/K
a(@) = A /0 I1

min{1, x;t}dt (2
JEE\{i}

To prove (1), we show that expected cost is increasing wittj. To prove this, we show that the
partial derivative of’s cost with respect ta’, is positive. Formally, we show that:

0
Ok,

[(1 = qi(a))) (K] — 53) + qi(a')i] > 0 3

We first substitutey; ('), with the use of (2), and the left-hand-side of (3) becomes:

1/k; 1/K!

P 1— k&, | | min{l, k;t}dt | (k) — K;) + K | K | I min{1, k;t}dt
K.
! 0 JEB\{i} 0 JEE\{i}
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Next, we calculate the partial derivative with respecttoand the quantity above becomes:

1—Hm1n{1 }er Hmln{l }—n/ [ min{1, s;t}dt

JEE\{i} ‘ JEE\{i} JEE\{i}

Using that] ] ;¢ g\ 1y min{1, &t} < [[;cp\ g5y min{l, s;/x;}, which holds for allt € [0,1/x;], and
with strict inequality fort < 1/x,, we obtain that the quantity above is greater than:

1/k!

1—Hm1n{1 }JFQ(H//-;H) Hmln{l }—/{ Hmm{l }0/1dt

JeE\{i} ! jeBE\{i} jeBE\{i}

Simplifying the quantity above and returning back to (3), we conclude that:

)
W[(l — qi(@)) (k) — ki) + qi(x)ki) > 1= [ min{1, ;/x}} >0
! JEE\{i}

Therefore, the expected cost of agéi# increasing with:,. Hence, we obtain that
(1= ai(®") (k= wi) + qi(x")ri > qi(@)ki

which is identical to (1). This proves that in the third case, agesttictly prefersz to =/, and con-
cludes the proof of the lemma. O

6.2 Strong Group Strategyproofness

Proving that Fck THE LOSERIs strong group strategyproof requires some additional arguments and
case analysis, where we use that the mechanism is strategyproof (Lemma 6.1

Throughout this section, we consider an instamcith » distinct locations, where the agents
are numbered as they appear on the line, from left to right. Hence, wethatxz; < x;.1, for
alli = 1,...,n — 1. We prove that there is no coalition of agents that can benefit by misregortin
their location. For sake of contradiction, let us assume that such a coaliigis.dr particular, we
let S be such coalition of minimum size, and let = (25, z_g) be the new instance, where the
agents inS misreport their location. By the definition of strong group strategyprasiier alli € S,
cost(z;, PtL(2/, ¢)) < cost(z;, PtL(x, ¢)), and the inequality is strict for at least one agen§in

We observe that for every odd numbered agent; € x’. Otherwise, agent would incur a
positive cost inz’, and would prefere to =’. We recall that oK THE LOSERis anonymous, i.e.,
does not take the agent identities into account. Thereforé, 4 z;, since some other agepthas
reported the location; in «’, we can change the identities of agentnd; without changing how
the mechanism works. Hence, in all cases, we can assume wlog; that;, which implies that the
deviating coalitionS doesn’t contain any odd numbered agents.

Furthermore, we observe that for every even numbered agédre is a location i’ lying in
the interval(z;_1, z;11), wherez,, is defined to bex. Otherwise agentwould incur an expected
cost ofcost(z;, PtL(2', ¢)) > min{c(x; — x;—1), c(x;+1 — x;)}, which is greater than his expected
cost for instancer, wherez; is allocated a facility with positive probability. Again, sinceciR THE
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LosERis anonymous, we can assume wlog. that (z;—1, z;4+1), which implies that the relative
order of the agents i®’ is the same as im.

Let us now consider an agefite S, and letx; and <, denote the cost of computed by the
mechanism for the instancasand«’, respectively. Next, we exclude the possibility théat> ;.
Specifically, we show that ik, > «;, the instancer” = (x’,, ;) is strictly preferable tax’ for
all agents inS. That holds because, i, agent: has costs; < «., and therefore, the probability
that he is designated as the loserft is greater than the corresponding probabilityxh Hence,
for every ageng € E \ {i}, the probability that agentis designated as the loser:tf is less than
the corresponding probability #a’, which implies that agent strictly prefers the instance” to the
instancer’. Also by Lemma 6.1, RK THE LOSERIs strategyproof, and thus, agertrictly prefers
the instancer” to the instance:’. However, since the number of agents misreporting their locations
in £’ is one less than the corresponding numbez/inthis contradicts the hypothesis thitis the
smallest coalition of agents that can benefit from misreporting their location.

So, let us now assume thaf < «;, for all agentsi € S, and letp = min{x;/x,} > 1. We
consider an instance’” where the cost!’ computed by the mechanism for all agents S is equal
to pxl. Such an instance” can be obtained if we let all agents S report locations closer to their
original location. We next show that for every agemt S, the probabilityg; (x”) thati is designated
as the loser imz” is less than the probability; (') thati is designated as the loserati. To this end,
we consider below the probability thahas the smallest scaled cast in ", andz!, in 2/, among
all even numbered agenisZ S, given that; has the smallest scaled cost among all agents 6o,
for clarity, the notatiory ¢ S refers, in the calculation below, to all even numbered agents that do not
belong to the coalitiory. We have that:

Since for every agent € S, (i) the probability that is designated as the loser is smalleerih
than ina’, i.e.,q;(x") < ¢;(2'), (ii) the reported location of in = is closer to his true location;
than his reported location i/, i.e., |z — x;| < |2} — x;|, and (iii) there are no odd numbered agents
in S, all agents € S strictly preferz” to «'.

Therefore, we can assume that in the instarGehere is an agenite S with x] = ;. We now
consider the instance” = («’_,, z;), where the agentis removed from the deviating coalitiof\

We note that for every agetlite .S, the probability that agentis designated as the loserarf is the
same as the corresponding probabilityxf i.e., g;(x”) = ¢;(«’). Therefore, the expected cost of
every ageny € S\ {i} in 2" is the same as his expected cos&inMoreover, by Lemma 6.1,IBK
THE LOSERIs strategyproof, and thus, the expected cost of agent” is less than his expected cost
in «’. Therefore, if the agents in the coalitishcan benefit by misreporting their locations, the same
holds for theS'\ {i}. However, this contradicts the hypothesis tHas the smallest coalition of agents
that can benefit from misreporting their location. Hence, we have shastrstich a coalitior does
not exist, and thus, the mechanisntR THE L OSERIs strongly group strategyproof.
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6.3 Approximation Ratio

Lemma 6.2. For all concave cost function®)CcK THE LOSERachieves an approximation ratio of at
most2 for the objective oSociAL CosT, and an approximation ratio of at mogtfor the objective
of MAX CoOST.

Proof. Let (x, c) be any instance with concaveand letq be an agent with, = min;{x;}. Then,
SC*(x, c) = kg, While the ScIAL CosTof the mechanism is equal to:

1/kq

/i
Z Ki /1 Ki H min{l, k;t}dt < kg + Zm/ Ki H min{1, x;t}dt
i 0 0

JEE\{i} i#q JEE\{i}

I/Hi
= Kyq —I-Zm/o Kikql H min{1, ;t}dt

i#q JEE\{i,q}

1/kq
S/ﬁq—FZ/ﬂ/ Kq H min{1, x;t}dt
0

i#q jeE\{i,q}

l/ni
< Kg+ ’4«12/ & H min{1, r;t}t
itq V0 JE€E\{i,q}
= kg + kg Y Pr[R; < iy, V5 & {i,q}]
i#£q
:qu+/</q'1:2’{q

Moreover, since is concaveMC* (x, ¢) > k,/2 = 2r,/4 > MC(PtL(x, ¢)) /4. O

7 Open Problems

There are a few interesting open problems arising from our work. Fingte €§QUAL COST crucially
depends on the linear structure of the instances, it would be interestingeg@tmaechanism that can
be applied to more general metric spaces, and retains the nice properessf CosT. Another
intriguing open problem has to do with the approximability @fcSAL CosT by randomized strate-
gyproof mechanisms. Despite the considerable interest in the problem, ma# Kloow whether there
exists a randomized mechanism fofFacility Location that achieves an approximation ratio@f)
for all £ > 3. Another, more general, direction for further research may concerrotk of the cost
function¢, which we assume here to be the same for all players. It would be interésimgestigate
the approximability ofk-Facility Location on the line if each agehitmay have a different concave
cost functiore; (d). A good starting point in this direction may be a simple setting where each agent
is associated with a tuple;, r; ), with possibly bothz; andr; being private information, and there is
some fixed small cost incurred by agenif there is a facility within a distance of; to z;, and some
fixed large cost incurred by agentotherwise.
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