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Abstract The algorithm proposed in Mitsos (Optimization 60(10–11):1291–1308, 2011)
for the global optimization of semi-infinite programs is extended to the global optimization
of generalized semi-infinite programs. No convexity or concavity assumptions are made.
The algorithm employs convergent lower and upper bounds which are based on regular (in
general nonconvex) nonlinear programs (NLP) solved by a (black-box) deterministic global
NLP solver. The lower bounding procedure is based on a discretization of the lower-level host
set; the set is populated with Slater points of the lower-level program that result in constraint
violations of prior upper-level points visited by the lower bounding procedure. The purpose
of the lower bounding procedure is only to generate a certificate of optimality; in trivial
cases it can also generate a global solution point. The upper bounding procedure generates
candidate optimal points; it is based on an approximation of the feasible set using a discrete
restriction of the lower-level feasible set and a restriction of the right-hand side constraints
(both lower and upper level). Under relatively mild assumptions, the algorithm is shown to
converge finitely to a truly feasible point which is approximately optimal as established from
the lower bound. Test cases from the literature are solved and the algorithm is shown to be
computationally efficient.

Keywords SIP · NLP · Slater point · Nonconvex · Global optimization

1 Introduction

Many engineering problems result in nonconvex optimization problems for which global
optimization is desired or required and this has resulted in the development of deterministic
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global optimization solvers [1–5]. An additional challenge is parametric uncertainty [6,7].
One of the formulations proposed to deal with uncertainty are semi-infinite programs (SIP),
i.e., optimization problems with a finite number of variables but an infinite number of con-
straints, or more precisely a finite number of upper-level constraints that are parametrized
and have to be satisfied simultaneously by all possible parameter values within an uncount-
able set. Generalized SIP (GSIPs) are an extension where the parameters are restricted by
lower-level constraints, i.e., the upper-level constraint is only imposed for those parameter
values that satisfy the lower-level constraints.

SIPs find many applications, e.g., kinetic model reduction [8], but are extremely chal-
lenging to solve. In particular, a major challenge is that to examine the feasibility of a
candidate point, the lower-level program needs to be solved to (approximate) global optimal-
ity, which in the presence of nonconvexity is challenging. For surveys of classical methods
the reader is referred to [9,10]. Particularly relevant for the proposal herein is the approach
in [11]; they generate a series of candidate upper-level points by solving a relaxation of the
SIP in which the constraint is imposed on a finite subset of the parameter set; the lower-
level problem is then solved for the candidate upper-level point giving an additional lower-
level point. By construction, this is an outer approximation and in general does not result
in truly feasible points. The focus herein is on deterministic global optimization solvers
without any convexity assumptions that can provide such points in finitely many itera-
tions. Over the last decade a series of algorithms have been proposed [12–19] that tackle
SIPs. Some of these can guarantee global solution of the SIP while others focus on local
solution. The main idea behind all these algorithms is that the restriction/relaxation of the
lower-level program results in relaxation/restriction of the SIP. Relaxation of the lower-level
program can be achieved by relaxation of the defining functions (via interval arithmetic
and/or convex relaxations). Restriction of the lower-level program can be achieved by dis-
cretization of the feasible set, as in the classical algorithms. The most relevant article for
the proposed algorithm is [17] which employs the aforementioned procedure by [11] as a
lower bound, and an upper bound by a restriction of the right hand side of the constraint.
Recently [20,21] also considered the case that the functions defining the SIP are not known
analytically.

GSIPs allow for substantially more modeling freedom than SIPs, but are also substan-
tially harder to solve [22]. Applications of GSIP are found in many areas, e.g., kinetic model
reduction [23], robust optimization [6,24], gemstone cutting [25] and Chebyshev approxima-
tion [26]. Among the challenges is that a minimum may not even exist. In addition to classical
methods requiring convexity, there have been recently proposals for the solution based on
global optimization techniques. In particular [27,28] employ interval extensions to relax the
lower level program and thus restrict the GSIP; by embedding this in a branch-and-bound
procedure, the global solution can be achieved. Similarly [29] employ convex relaxations of
the defining functions. Another approach is presented in [30] wherein the GSIP is reformu-
lated as a min-max program and then solved via a regularization technique. Note also that
GSIP is closely related to bilevel programs [31]; however, some of the algorithms specifically
designed for bilevel programs [32,33] are not suitable for GSIPs since they allow for (small)
violation of the constraint. Note also that [34] proposes a method with feasible iterates for
the case of convex lower-level program.

The goal of this article is to develop an algorithm that is efficient yet simple to imple-
ment; to achieve this the algorithm makes use of sophisticated global NLP solvers. The
basic idea is similar to existing SIP algorithms [11,17]. Convergence to a global solution
point is shown based on GSIP-Slater points [28], whereas the convergence of the lower
bounding procedure requires an assumption on the closure of the feasible set. Herein, we
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consider a single constraint and do not allow for integer variables but similarly to [17] it
is relatively easy to extend the algorithm to multiple constraints and integer variables. In
Sect. 2 the algorithm is stated along with assumptions made and some illustrative exam-
ples. Section 3 describes a prototype implementation while Sect. 4 gives numerical results
for a literature test-set collection [28]. Section 5 gives conclusions and an outlook to future
work.

2 Algorithm

2.1 Definitions and assumptions

The GSIP considered is

f U,∗ = inf
x∈X

f U (x) (GSIP)

s.t. gU (x, y) ≤ 0, ∀y ∈ Y : gL(x, y) ≤ 0,

where X ⊂ R
nx , Y ⊂ R

ny , f U : X → R, gU : X × Y → R, gL : X × Y → R
ng .

Throughout the article no assumptions are made for existence of a minimum.
A point is feasible if it is upper-level feasible, i.e., gU (x, y) ≤ 0, for all those y ∈ Y that

are lower-level feasible, i.e., for those y satisfying gL(x, y) ≤ 0. The lower-level problem
(LLP) is defined for arbitrary but fixed x̄

gU,∗(x̄) = max
y∈Y

gU (x̄, y) (LLP)

s.t. gL(x̄, y) ≤ 0,

where for infeasible problems the optimal objective value is taken by convention as −∞.
The convergence proof is based on three assumptions. The first is easy to verify and

standard in global optimization. The latter two are more technical and not always easy to
verify. However, they are at most as strong as assumptions shown in [35,36] to be generically
valid, i.e., hold for all but degenerate GSIPs.

A typical assumption in global optimization is compactness of host sets and continuity of
functions.

Assumption 1 The host sets X and Y are assumed to be compact. The defining functions
f U , gU , gL are assumed to be continuous on these host sets.

The assumptions are used both for the convergence of the proposed algorithm and to be
able to solve the subproblems with standard solvers. The assumptions are weaker than the
ones made in [27,28] that also required differentiability. The algorithm proposed by [30] in
principle does not require differentiability; however, therein the Langevin equation is used
for the solution and this method requires differentiability.

The formulation (GSIP) can be equivalently reformulated to

inf
x∈X

f U (x) (GSIP-REF)

s.t.
[
gU (x, y) ≤ 0 ∨ ∃ j : gL

j (x, y) > 0
]
, ∀y ∈ Y.

This reformulation also clearly demonstrates that the feasible set of an GSIP is not always
closed, see also [37].
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The lower bounding procedure is based on relaxing the feasible set. The equivalent for-
mulations (GSIP) and (GSIP-REF) can be relaxed to [35]

f U,c = min
x∈X

f U (x) (GSIP-REL)

s.t.
[
gU (x, y) ≤ 0 ∨ ∃ j : gL

j (x, y) ≥ 0
]
, ∀y ∈ Y

which corresponds to a restriction of the lower-level problem from gL(x, y) ≤ 0 to
gL(x, y) < 0. The relaxation (GSIP-REL) is a standard SIP [35] since it is equivalent to

f U,c = min
x∈X

f U (x) (GSIP-REL-SIP)

s.t. min

{
gU (x, y), min

j
−gL

j (x, y)

}
≤ 0, ∀y ∈ Y

The constraint is nonsmooth, can be reformulated via binary variables, and is equivalent to a
disjunction; for disjunctions the reader is referred to [38]. Note that most SIP algorithms do
not allow for this nonsmooth constraint.

Recalling the assumptions of compact host sets and continuous functions, the feasible set
is closed and there exists an optimal solution point. Since GSIPs do not have this desired
property [24], it becomes clear that the relaxation is in general inexact. However, under
relatively mild assumptions, generically (i.e., for all but degenerate cases), the feasible set
of (GSIP-REL) is the closure of the feasible set of (GSIP) and the optimization over the
closure of GSIP gives the same objective value as the infimum of (GSIP) [35,36]. For
convergence of the lower bounding procedure, we require this latter, weaker and generically
valid, property:

Assumption 2 The infimum of (GSIP) is equal to the optimal objective value of (GSIP-REL),
i.e., f U,∗ = f U,c.

In Appendix B.1 it is shown that this Assumption is somewhat weaker than the one made
in [27,28].

The upper bounding procedure is based on constructing an approximation and obtain-
ing GSIP-Slater points as defined in [27,28]. In the case of feasible problems existence of
an approximately optimal GSIP-Slater point is required for the upper bounding procedure,
whereas infeasible problems are recognized by the lower bounding procedure.

Assumption 3 The GSIP is infeasible or a feasible, ε f -optimal GSIP-Slater point xS exists,
i.e., for given ε f > 0 there exists for some εS > 0 a point xS ∈ X :

f (xS) ≤ f U,∗ + ε f ∧
[
gU

(
xS, y

)
≤ −εS ∨ ∃ j : gL

j

(
xS, y

)
> εS

]
∀y ∈ Y.

Assumption 3 is weaker than assuming that the feasible set is the closure of its inte-
rior, which is generically valid [35,36]. Also, Assumption 3 is somewhat weaker than the
requirement in [27,28] for existence of GSIP Slater points close to the minimizers. In the
Appendix B.2 we prove that this (stronger) assumption is in essence equivalent with the
assumptions made in [18] for SIP and in [39,40] for pessimistic bilevel programs.

2.2 Lower bound

Since the aim of the article is a deterministic global optimizer for GSIP, a certificate of
(approximate) optimality is required, i.e., a converging lower bound f LBD ≤ f U,∗. As in
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essentially all deterministic global solvers, the lower bound is obtained via a relaxation, i.e.,
a program with a feasible set encompassing the feasible set of the GSIP. The relaxation
generated here is a finite yet nonconvex NLP with the same objective function as the GSIP.
To obtain a valid lower bound this NLP must be solved (approximately) to global optimality,
or more specifically a lower bound to it must be obtained. In each iteration the lower bound
is tightened by the introduction of further constraints, based on the strategy in [11].

A further relaxation of (GSIP-REL-SIP) and the basis for the lower bounding procedure
is to consider a finite Y LBD ⊂ Y

min
x∈X

f U (x) (GSIP-LBD)

s.t. min

{
gU (x, y), min

j
−gL

j (x, y)

}
≤ 0, ∀y ∈ Y LBD

Similarly to [17,32] the lower bounding procedure also needs to solve (LLP) for fixed
upper-level variables. Similarly to [32] an auxiliary problem needs to be solved to obtain a
lower-level Slater point

min
y∈Y

max
j

gL
j (x̄, y) (LLP-aux)

s.t. gU (x̄, y) ≥ αgU,∗(x̄)

for some α < 1. Note that we can assume gU,∗(x̄) > 0, for otherwise the lower bounding
procedure has furnished a global optimal solution point.

2.3 Upper bound

In general, upper bounds are obtained by feasible (or locally optimal) points, e.g., furnished by
approximately solving a restriction of the original optimization problem. A major challenge
of (G)SIPs is that global optimization is required just to check for the feasibility of a point.
While it is possible to generate converging restrictions of the GSIP [27–29], herein a different
strategy is taken, namely the solution of an approximate problem by tightening the right-hand-
side of the semi-infinite constraint and imposing the constraint for a finite number of points.

The approximation of the original program (GSIP) used is

min
x∈X

f U (x) (GSIP-UBD)

s.t.
[
gU (x, y) ≤ −εU ∨ ∃ j : gL

j (x, y) ≥ εL
j

]
, ∀y ∈ Y UBD,

where Y UBD ⊂ Y is a finite set. The approximation is based on the SIP algorithm presented
in [17] and by analogy it is in general neither a relaxation nor a restriction of (GSIP-REF)
or (GSIP). Rather, the restriction of the right hand sides and the population of the sets
approximating Y must be coordinated for (GSIP-UBD) to quickly obtain an approximately
optimal solution point. To solve the approximation (GSIP-UBD), a disjunctive nonlinear
program is solved to global optimality similar to the lower bounding problem.

2.4 Main algorithm

The basic version of the proposed algorithm is given in the following. The lower and upper
bound are initialized with infinite values, while any discrete approximation (including the
empty set) can be selected for the approximation of Y . Finally, finite values for the restriction
parameters εU , εL

j are selected and for the parameters rU > 1, r j > 1 controlling the
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tightening of these parameters. Note that in the algorithm “final lower bound”, “final upper
bound” and “best point found” all refer to the underlying global optimization solver used for
the corresponding problems.

Algorithm 1 Set f LBD = −∞, f UBD = +∞, Y LBD = Y LBD,0, Y UBD = Y UBD,0,

εU = εU
0 , εL

j = εL
j,0 for each j .

WHILE ( f UBD − f LBD > ε f ) DO

• Solve (GSIP-LBD) to global optimality.
IF the problem is infeasible THEN set f U,∗ = f LBD = ∞ and TERMINATE END
Set f LBD equal to the optimal objective value (final lower bound).
Set x̄ equal to the optimal solution (best point found).

• Solve (LLP) to global optimality to obtain optimal objective value gU,∗(x̄) (final upper
bound) and optimal solution point y∗ (best point found).
IF gU,∗(x̄) ≤ 0 THEN

– Set f UBD = f (x̄), x∗ = x̄.

– TERMINATE.

ELSE IF gL(x̄, y∗) < 0

– Add y∗ to Y LBD.

ELSE

– Solve auxiliary problem(LLP-AUX).
– Add the optimal solution point (best point found) to Y LBD.

END
• Solve (GSIP-UBD) to global optimality.

IF feasible THEN

– Set x̄ equal to the optimal solution (best point found).
– Solve (LLP) to global optimality.

Set v equal to the optimal objective value (final upper bound).
Set ȳ equal to the optimal solution (best point found).

IF v < 0 THEN
* IF f (x̄) ≤ f UBD THEN set f UBD = f (x̄), x∗ = x̄ END.
* Set εU = εU /rU , εL

j = εL
j /r j .

ELSE
* Add ȳ to Y UBD.

END

ELSE

– Set εU = εU /rU , εL
j = εL

j /r j .

END

END

There are many alternatives for this basic variant. For instance, herein the restriction
parameters are reduced by a constant factor; it may be beneficial to use a non-constant
reduction. Moreover, when the lower-level problem gives a negative optimal objective value,
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it may be beneficial to examine which of the restriction parameter is the most restricting
by solving auxiliary problems; for (GSIP-UBD) if for instance maxy∈Y gU (x̄, y) < 0 then
εU needs to be reduced; in contrast if miny∈Y gL

j (x̄, y) > 0 then εL
j needs to be reduced.

The disjunction in the upper and lower bounding problem could be made more explicit, by
identifying sets in X for which each point y remains lower-level feasible. Other variants
include local solutions of the upper bounding procedure, further relaxing the lower bounding
procedure and embedding this algorithm in a branch-and-bound procedure.

Theorem 1 Consider Algorithm 1 and take any Y LBD,0 ⊂ Y, Y UBD,0 ⊂ Y and any εU >

0, εL
j > 0, rU > 1, r j > 1 and ε f and α ∈ (0, 1). Under Assumptions 1, 3 and 2, it

converges in a finite number of steps and either demonstrates infeasibility or furnishes a
lower bound to the optimal solution f LBD ≤ f ∗ and an ε f -optimal, feasible point x∗ with
f UBD = f (x∗) ≤ f LBD + 2ε f .

The proof of Theorem 1 is split into convergence of the lower and upper bounding proce-
dure. The former is similar to the corresponding proof for SIPs [11], wherein the procedure
furnishes an SIP-feasible point in the limit and thus the lower bound converges to the optimal
objective value f LBD → f U,∗. The complications arising from GSIPs warrant a new proof.
Similarly the proof of the upper bounding procedure shows that feasible points are obtained
after finite number of iterations and that the upper bound converges to the optimal objective
value f UBD → f U,∗.

Proof Convergence of lower bounding procedure Note first that since each subsequent
iteration is a restriction of the previous one, we always have f LBD,k2 ≥ f LBD,k1 for k2 > k1.
Since we solve the lower bound globally and it is a relaxation of the GSIP, we immediately
have f LBD,k ≤ f U,∗ for all iterations k. For the same reasons, if at some iteration the lower
bounding problem is infeasible, infeasibility of (GSIP) is proven ( f LBD = +∞). Thus,
either at some finite iteration k we obtain f LBD,k = f U,∗ or we have an infinite sequence
of superoptimal iterates f LBD,k < f U,∗. Consider such a sequence of solutions and denote
the corresponding solutions xk and yk . Note that yk is a global maximizer of the lower-level
program. The host set X is compact and thus we can select an infinite subsequence with the
limit point x̂ ∈ X . If at a given iteration k1 the pair xk1 and yk1 satisfies

gU (xk1 , yk1) ≤ 0 ∨ ∃ j : gL
j (xk1 , yk1) > 0

this implies that the upper level point xk1 is GSIP-feasible, a global optimal solution is found
and we obtain f LBD,k = f U,∗. Moreover, if the pair gives

gU (xk1 , yk1) > 0 ∨ ∃ j : gL
j (xk1 , yk1) = 0

the point xk1 is feasible in (GSIP-REL) and thus by Assumption 2 we have again f LBD,k1 =
f U,∗. Thus, the only case of interest is that at each iteration k1 we obtain a lower-level Slater
point yk1 which proves the upper-level infeasibility of xk1 , i.e.,

gU (xk1 , yk1) > 0 ∧ gL(xk1 , yk1) < 0, ∀k1. (1)

Convergence of xk → x̂ implies ∀δ > 0 ∃K > 0 : ||xk2 − xk1 || ≤ δ for all k2 ≥ k1 > K .
The host sets are compact and thus continuity of gL implies uniform continuity. Therefore,
for any ε > 0

∃δ > 0 : gL
j (x, yk1) < 0, ∀x ∈ X : ||x − xk1 || ≤ δ
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which together with the convergence of xk implies

∃K : gL
j (xk2 , yk1) < 0, ∀k2, k1 : k2 ≥ k1 ≥ K .

This inequality and the fact that the point yk1 found in iteration k1 is considered in subsequent
iterations k2 directly gives

gU (xk2 , yk1) ≤ 0, ∀k2 > k1 ≥ K

for otherwise the lower bounding problem would be infeasible. The host sets are compact
and thus continuity of gU implies uniform continuity and thus for any ε > 0

∃δ > 0 : gU (x, yk1) ≤ ε, ∀x ∈ X : ||x − xk2 || ≤ δ, ∀k2 > k1

which together with the convergence of xk implies

∃K : gU (xk2 , yk1) ≤ ε, ∀k2, k1 : k2 > k1 ≥ K .

Together with (1) we obtain

gU (xk, yk) → 0.

Recalling that yk is a global minimizer of the lower-level program, the limit point x̄ is GSIP-
feasible. Therefore f (x̄) ≥ f U,∗ and together with f LBD,k ≤ f U,∗ we obtain f LBD → f U,∗.
Thus, after a finite number of iterations we will obtain f LBD ≥ f U,∗ − ε f .

Convergence of upper bounding procedure The case of infeasible (GSIP) is trivial since
in this case we have f U,∗ = +∞, the initial value of the upper bounding problem is already
converged and the upper bounding problem generates only infeasible iterates. Each step of
the upper bounding procedure has three distinct outcomes, namely infeasible (GSIP-UBD),
feasible (GSIP-UBD) with GSIP-feasible candidate x̄ and feasible (GSIP-UBD) with GSIP-
infeasible candidate x̄. The set Y UBD is populated in the latter case, whereas otherwise the
restriction parameters are reduced.

By Assumption 3 for given ε f > 0 there exist εS > 0 and a feasible, ε f -optimal GSIP-
Slater point xS ∈ X :

f (xS) ≤ f U,∗ + ε f ∧
[
gU

(
xS, y

)
≤ −εS ∨ ∃ j : gL

j

(
xS, y

)
> εS

]
∀y ∈ Y

After a finite number of updates ([logrU
εU,0/εU ] or [logr j

ε
L ,0
j /εL

j ]) of the restriction para-
meters, this point is feasible in (GSIP-UBD). Consequently, because of the global solution,
after this finite number of updates, the candidate solutions x̄ furnished by (GSIP-UBD) satisfy
f (x̄) ≤ f U,∗+ε f . If a point is GSIP-feasible, the upper bounding procedure converged. Oth-
erwise, the restriction parameters are not updated. Consequently, the restriction parameters
remain finite, i.e., there exists εmin > 0, such that εU ≥ εmin, εL

j ≥ εmin,∀ j .
We now must exclude the case of an infinite sequence of points furnished by (GSIP-UBD)

that are GSIP-infeasible. Consider a sequence of furnished points xk and yk . The host set X
is compact and thus we can select an infinite subsequence with the limit point x̂ ∈ X . By
construction of the upper bounding procedure we have

[
gU (xk2 , yk1) ≤ −εmin < 0 ∨ ∃ j : gL

j (xk2 , yk1) ≥ εmin > 0
]
, ∀k2, k1 : k2 > k1.

The functions gU , gL are continuous and the host sets X, Y are compact and thus uniform
continuity implies
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∃δ > 0 :
[
gU (x, yk1) < −εmin/2 < 0, ∨ ∃ j : gL

j (x, yk1) > εmin/2 > 0
]
,

∀x : ||x − xk2 || < δ,∀k2, k1 : k2 > k1.

By the convergence of xk we have also

∃K : ||xk1 − xk2 || < δ, ∀k2, k1 : k2 > k1 ≥ K

and thus[
gU (xk1 , yk1) < −εmin/2 < 0, ∨ ∃ j : gL

j (xk1 , yk1) > εmin/2 > 0
]
, ∀k1 ≥ K

or in other words after a finite number of iterations, the upper bounding procedure produces
feasible, ε f -optimal points.

Combination As a direct consequence of the convergence of upper and lower bounding
procedure we obtain the desired inequality f UBD = f (x∗) ≤ f LBD + 2ε f . 
�

3 Implementation

By construction, the algorithm is simple to implement and relies on the global solution
of regular nonlinear programs (NLPs) using any (black-box) solver. We provide a prototype
implementation in GAMS [41] in the Supplementary Material. Note that herein, for simplicity,
we always solve the auxiliary problem, even when it is not needed because the solution to
the lower level program is a lower-level Slater point.

The lower-level program is indeed a regular NLP. In contrast, the approximation of the
GSIP used in the lower and upper bounding procedures includes disjunctions or min oper-
ators. While there are dedicated algorithms for disjunctive programs [38], they are not as
widely available as for NLPs. In particular, in the GAMS language no global solver for
disjunctive programs exists. Similarly, not all global solvers can handle the min operator:
BARON and ANTIGONE cannot whereas LINDO-GLOBAL can via the “discontinuous
nonlinear program DNLP” option. We thus have to either solve the problems as a DNLP
or reformulate it using auxiliary integer variables. In principle introducing auxiliary vari-
ables seems overcomplicated, but note that only recently [42] convex relaxations for the min
operator were proposed.

Note that there is no need to identify which of the arguments of the min operator is
indeed the minimum. Rather it suffices to reformulate the disjunction using integer variables.
For both the lower and upper bounding procedure we have a disjunction of the form g1 ≤
0 ∨ g2 ≤ 0 ∨ · · · ∨ g j ≤ 0 ∨ . . . gng+1 ≤ 0, where for simplicity the arguments are omitted.
To reformulate this to an MINLP we introduce auxiliary variables z ∈ {0, 1}ng+1, where
z j = 1 signifies g j ≤ 0 (clause satisfied) and z j = 0 signifies g j > 0 (clause violated). Only
the constraint violation needs to be imposed, i.e., we need to ensure that if the clause g j is
violated, the auxiliary variable takes the value z j = 0. This is achieved by the constraint

z j ≤ 1 − g j

gmax
j

,

where gmax
j is (an overestimate of) the maximal positive value g j can take. For g j > 0 we

obtain z j ≤ 1 − M1, where M1 ∈ (0, 1] and this imposes z j = 0. In contrast, for g j ≤ 0 the
constraint takes the form z j ≤ 1 + M2 and is redundant since M2 ≥ 0. The disjunction is

then imposed as an additional inequality
∑ng+1

j=1 z j ≥ 1, which ensures that at least one of
the auxiliary variables has the value of 1.
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4 Numerical examples

The test-set introduced in [28] is used, which in turn is partially based on [43–49]. In Appen-
dix A the problem formulations are given along with the analytically obtained solution, while
the results are summarized in Table 1. In all cases the initial approximation of Y is taken as
the empty set, which in general is not the most efficient method; the problems were solved
with an optimality tolerance of ε f = 10−2 using εU

0 = 1, εL
j,0 = 1, rU = 2, r L

j = 2 and
α = 0.5.

Two solvers are used, namely LINDO-GLOBAL and BARON in GAMS24.1.1 running on
a Linux 3.8.0.26 laptop computer with Intel Core i7-620M (2.66GHz, 4M cache) processor
(4 cores total, but only one core is used). Default values for the solvers are used with the
exception of the optimality tolerances (“OPTCR” and “OPTCA”) which are set to 10−4.
BARON (using auxiliary variables) is found to perform substantially better than the other
solver; this demonstrates one inherent advantage of the proposed algorithm, i.e., that it can use
different global solvers and rely on their sophisticated procedures. Conversely, it also shows
that if the subproblems are not solved efficiently, the total CPU time (but not the number of
iterations) of the algorithm are negatively affected. Thus, the results from BARON are shown,
with the exception of problems 11, 15 and 16 which include trigonometric functions that are
not handled by BARON. For these problems the findings of LINDO-GLOBAL solved as

Table 1 Numerical results for test-set

Prob # iter CPU in seconds Solution

Tot LBD LBDLL UBD UBDLL LBD UBD x∗

1 9 0.77 0.24 0.21 0.22 0.10 0.06191 0.06642 (2.6 ×10−7, −0.0626)

2 23 1.91 0.42 0.67 0.51 0.31 −0.00199 0.00391 (0,3.9 ×10−3)

3 40 9.75 4.72 1.03 3.56 0.44 −0.50969 −0.49976 (0.984,0.969)

4 9 0.58 0.12 0.20 0.17 0.09 −0.00010 0.00781 −0.088

5 2 0.11 0.03 0.04 0.02 0.02 −5.00000 −5.00000 (5,−5)

6 2 0.15 0.05 0.04 0.04 0.02 −6.00000 −6.00000 (0,−3)

7 10 0.63 0.15 0.22 0.15 0.11 −0.50149 −0.49213 (0.492,0)

8 1 0.07 0.02 0.02 0.01 0.02 −1.00010 −1.00000 (1,0)

9 8 0.57 0.15 0.19 0.14 0.09 0.04374 0.05170 −0.227

10 8 0.60 0.15 0.19 0.16 0.10 −1.00791 −1.00000 (−1,0)

11 9 18.98 0.10 13.82 0.04 5.01 0.50000 0.50784 (−0.504, −0.504,0)

12 9 0.72 0.21 0.24 0.15 0.12 0.50000 0.50781 −0.713

13 8 0.79 0.32 0.16 0.23 0.08 2.93593 2.95607 (−1, 0.258, 0.258)

14 12 0.83 0.22 0.29 0.19 0.13 0.38196 0.38457 (−0.620,0,0)

15 12 23.46 0.03 16.42 0.04 6.97 −3.74106 −3.70420 (2,1.456)

16 1 2.86 0.00 2.12 0.00 0.75 −10.66667 −10.66667 (2,0,0,2,0,0)

The first column contains the problem number and the second column the number of iterations required.
Columns 3 through 7 contain the CPU time: “tot” refers to the total time, “LBD” refers to the time spent
for the lower bounding formulation (GSIP-LBD), “LBDLL” refers to the time for solving the lower-level
problem (LLP) and the auxiliary lower-level problem (LLP-aux) in the lower bounding procedure, “UBD”
refers to the time spent for solving the upper bounding problem (GSIP-UBD), “UBLL” for solving the lower-
level problem (LLP) in the upper bounding procedure. Columns 8 through 10 contain the final lower bound
(certificate of optimality), the final upper bound (optimal objective value) and the optimal solution point found
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are reported, also using auxiliary binary variables. No significant numerical difficulties are
faced.

Note that in [30] no CPU timings are given. Comparing the number of iterations with
either [30] or [28] would not be meaningful since the complexity of the subproblems is
substantially different. Thus, we compare with [28] on a CPU time basis; note that this is
done for different computers, but with comparable speed (in [28] a 3.4GHz machine is used).
The CPU times comparison shows that for the simple problems the implementation herein
results in higher CPU times; this is due to overhead of calling GAMS and the preprocessors of
the solvers. The algorithm in [28] also performs better than LINDO-GLOBAL for the three
problems with trigonometric functions. However, for all other problems with significant
computational challenge (3, 5, 7, 10, 13, 14) the proposed algorithm outperforms the one
in [28] by a factor of 4…20. The comparison with the relaxations-based approach in [29] is
similar.

5 Conclusions

An algorithm for the global solution of GSIP is proposed. The algorithm is an extension of
the SIP proposal in [17] which in turn is a feasible-point adaptation of the algorithms by
Blankenship and Falk [11,50]. Compared to the approaches relying on relaxations of the
defining functions [27–29] it is much simpler to implement. Another advantage is that it
can make use of existing sophisticated global NLP solvers. A potential disadvantage is the
repeated global solution of nonconvex problems; however, all existing algorithms also use a
nested approach which in essence requires global solution of the lower-level problem.

The algorithm has similarities with the proposal in [18,30] as well as approaches for
bilevel programs [32,33,39,40]. It would be beneficial to devise a framework that combines
these algorithms in one overarching algorithm. Moreover, it could be combined with the
approaches relying on relaxations of the defining functions [13,15,16,27–29]. Another task
for future work is the application of the proposed algorithm to case studies from engineering.

Acknowledgments We would like to thank Vladimir Shikhman and Oliver Stein for a helpful discussion
that prompted us to rethink and refine our assumptions. We would also like to acknowledge an anonymous
reviewer for constructive comments.

Appendix A: Statement of examples

Recall that herein, the test-set from [28] is used, which is in part based on [43–49]; some of
the statements are corrected to correspond to the original source and the solution reported
in [28]. The examples are defined herein by the host sets X, Y , the functions f U , gU , gL .
Moreover, the analytically obtained optimal solution point(s) x∗ and infima f U,∗ are given;
in cases where the minimum is not attained, the notation → is utilized.

1.

f (x) = (x1 − 0.25)2 + x2
2

gU (x, y) = y + x2

gL(x, y) = y2 − x1

X = [−1, 1]2, Y = [−1, 1]
x∗ = (0, 0), f U,∗ = 0.0625
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2.

f (x) = x2

gU (x, y) = −y3 + x2

gL(x, y) = 2 · x2 − y3 + x2
1

X = [−1, 1]2, Y = [−1, 0]
x∗ = (0, 0), f U,∗ = 0

3.

f (x) = −0.5 · x4
1 + 2 · x1 · x2 − 2 · x2

1

gU (x, y) = y2
1 + y2

2 − x1 + x2
1 − x2

gL(x, y) = y2
1 + y2

2 + y2
3 − x1

X = [0, 1]2, Y = [0, 1]3

x∗ = (1, 1), f U,∗ = −0.5

4.

f (x) = x2

gU (x, y) = x − y

gL(x, y) = (y + 1)2 + x2

X = [−1, 1], Y = [−2, 2]
x∗ → (0), f U,∗ → 0

5.

f (x) = −x1

gU (x, y) = y2

gL
1 (x, y) = y2 − x1 − x2 · y1

gL
2 (x, y) = y2 − y2

1 − x2

X = [−5, 5]2, Y = [−2, 2] × [−4, 4]
x∗ ∈ {X |x2 ≤ −4, x1 = 5}, f U,∗ = −5

6.

f (x) = 4 · x2
1 − x2 − x2

2

gU (x, y) = x2 − y3

gL
1 (x, y) = y1 − x1

gL
2 (x, y) = y2 − x1

gL
3 (x, y) = (y1 + y2)

2 − y3

X = [−3, 2]2, Y = [−4, 4] × [−4, 4] × [0, 16]
x∗ = (0,−3), f U,∗ = −6

7.

f (x) = −x1

gU (x, y) = 3 · x2
2 − y5
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gL(x, y) = −y5 − 4 · x2
1 − x2

2 + 1

X = [0, 1]2, Y = [−2, 0]
x∗ = (0.5, 0), f U,∗ = −0.5

8.

f (x) = −x1

gU (x, y) = −y · x2

gL(x, y) = x1 − y2

X = [−1, 1]2, Y = [−1.0, 1]
x∗ = (1, 0), f U,∗ = −1

9.

f (x) = x2

gU (x, y) = exp(x) · y2 − x2 ·
gL(x, y) = y2 · x3 − x − 0.2

X = [−1, 1], Y = [0.0, 1]
x∗ → (−0.208), f U,∗ → 0.043264

10.

f (x) = x1 + x2

gU (x, y) = −y

gL
1 (x, y) = x1 − y

gL
2 (x, y) = x2 − y

X = [−1, 1]2, Y = [−1, 1]
x∗ ∈ {(−1, 0), (0,−1)}, f U,∗ = −1

11.

f (x) = x2
1 + x2

2 + x2
3

gU (x, y) = x1 + x2 · exp(x3 · y) + exp(2 · y) − 2 · sin(4 · y)

gL(x, y) = 2 · y − x2 − 1

X = [−5, 5]3, Y = [0, 1]
x∗ = (−0.5,−0.5, 0), f U,∗ = 0.5

12.

f (x) = x2

gU (x, y) = 0.5 · y3 − x2

gL(x, y) = x2 − y2

X = [−1, 1], Y = [0, 1]
x∗ ∈ {0.7071,−0.7071}, f U,∗ = 0.5
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13.

f (x) = exp(x1) + exp(x2) + exp(x3)

gU (x, y) = 1/(1 + y2) − x1 − x2 · y − x3 · y2

gL(x, y) = x2 + x3 − 0.5 · y

X = [−1, 1]3, Y = [0, 1]
x∗ → (−1, 0.25, 0.25), f U,∗ → 2.935930275

14.

f (x) = x2
1 + x2

2 + x2
3

gU (x, y) = x1 · (y1 + y2
2 + 1) + x2 · (y1 · y2 − y2

2 ) + x3 · (y1 · y2 + y2
2 + y2) + 1

gL(x, y) = x2
1 − y2

1

X = [−1, 0.0]3, Y = [0, 1]2

x∗ = (−0.618, 0, 0), f U,∗ = 0.381924

15.

f (x) = x2
2 − 4 · x2

gU (x, y) = x1 · cos(y) + x2 · sin(y) − 1

gL(x, y) = −y2 − 1.75 · x2 + 5.75

X = [0, 2]2, Y = [0, 3.14159]
x∗ = (2, 1.4619), f U,∗ = −3.710448

16.

f (x) = −4 · x1 − 2/3 · (x4 + x6)

gU (x, y) = x1 + x2 · y1 + x3 · y2 + x4 · y2
1 + x5 · y1 · y2 + x6 · y2

2 − 1.

gL(x, y) = x1 · cos(y1) − x2 · sin(y1)

X = [0.0, 2.0]6, Y = [−1, 1]2

x∗ ∈ {X |x1 = x4 = x6 = 2, x2 < 1.2841}, f U,∗ = −10.666

Appendix B: Relation of assumptions with literature assumptions

Appendix B.1: Closure versus lower-level Slater point

For convergence of the lower bounding procedure, [28] introduced an assumption which
is similar to the one made in [32] for bilevel programs, i.e., that so-called superoptimal
(infeasible) points can be excluded by a lower-level point which is a Slater point in the lower
level program.

Assumption 4 For (infeasible) points x̄ ∈ X that satisfy f U (x̄) < f U,∗ there exists ȳ ∈ Y ,
s.t., gU (x̄, ȳ) > 0 and gL(x̄, ȳ) < 0.

Assumption 4 directly implies that the infimum of the original problem (GSIP) is equal
to the optimal objective value of the relaxation (GSIP-REL). The following (trivial) example
shows that Assumption 4 is stronger than requiring the same objective value for the two
problems, i.e., Assumption 2 required herein.
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Example 1 Consider

min
x∈[−1,1] x

s.t. y − x ≤ 0, ∀y ∈ [0, 1] : y ≤ 0 .

The point y = 0 is the only lower-level feasible point, thus imposing the constraint x ≥ 0.
Therefore, the GSIP is feasible for x ≥ 0 and thus has the optimal solution point x = 0 with
an optimal objective value of 0. The feasible set is closed. The relaxation (GSIP-REL-SIP)
is given by

min
x∈[0,1] x

s.t. [y − x ≤ 0 ∨ y ≥ 0] , ∀y ∈ [0, 1]
which also gives x ≥ 0 and thus has the same optimal objective value, satisfying Assump-
tion 2. In contrast, there are superoptimal infeasible points x < 0 violating the upper level
constraint but there is no lower-level Slater point to demonstrate this, thus violating Assump-
tion 4.

Appendix B.2: GSIP Slater point versus local minimum

Herein, we prove that the assumption on existence of GSIP Slater points in [27,28] is in
essence equivalent with the assumptions made in [18] for SIP and in [39,40] for pessimistic
bilevel programs. Thus, both are stronger than Assumption 3 made herein.

The proofs in [27,28] require the following assumption:

Assumption 5 There exist GSIP Slater points close to the minimizers x∗, i.e., for any δ > 0
there exists point xS , s.t.

||xS − x∗|| < δ,
[
gU

(
xS, y

)
≤ −εS ∨ ∃ j : gL

j

(
xS, y

)
> εS

]
∀y ∈ Y (SC)

For a GSIP the assumption made in [18,39,40] would read:

Assumption 6 There exists an optimal solution x∗ of the closure of (GSIP) that is not a local
minimum of value 0 of the function

x → max
y∈Y

{
gU (x, y) : gL(x, y) ≤ 0

}
. (AC)

These assumptions are equivalent, i.e.,

Proposition 1 If (GSIP) is feasible, Assumptions 5 and 6 are equivalent.

Note that feasibility of (GSIP) is equivalent with a nonempty closure of the feasible set.

Proof First we prove by contraposition that if (SC) holds, so does (AC). Assume that Con-
dition (AC) does not hold, i.e., let x∗ be an optimal point of the closure of (GSIP) which
is a local minimum of value 0 of (AC). Then, there exists a δ > 0, such that for all x with
||x − x∗|| < δ

max
y∈Y

{
gU (x, y) : gL(x, y) ≤ 0

}
≥ 0.

Then, there exists a y ∈ Y with gL(xS, y) ≤ 0 and gU (xS, y) ≥ 0, contradicting Assump-
tion 3.
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Now assume (AC) holds. Then, for every δ > 0, there exists an xS with ||xS − x∗|| < δ

such that

max
y∈Y

{
gU

(
xS, y

)
: gL

(
xS, y

)
≤ 0

}
< 0.

That is, for every y ∈ Y, ∃ j, gL
j (xS, y) > 0 or gU (xS, y) < 0 proving (SC). 
�
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