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Abstract Much knowledge in chemistry exists at a molecular level, inaccessible to direct

perception. Chemistry instruction should therefore include multiple visual representations,

such as molecular models and symbols. This study describes the implementation and

assessment of a learning unit designed for 12th grade chemistry honors students. The

organic chemistry part of the unit was taught in a Computerized Molecular Modeling

(CMM) learning environment, where students explored daily life organic molecules

through assignments and two CMM software packages. The research objective was to

investigate the effect of the CMM learning unit on students’ modeling skill and sub-skills,

including (a) drawing and transferring between a molecular formula, a structural formula,

and a model, and (b) transferring between symbols/models and microscopic, macroscopic,

and process chemistry understanding levels. About 600 12th grade chemistry students who

studied the CMM unit responded to a reflection questionnaire, and were assessed for their

modeling skill and sub-skills via pre- and post-case-based questionnaires. Students indi-

cated that the CMM environment contributed to their understanding of the four chemistry

understanding levels and the links among them. Students significantly improved their

scores in the five modeling sub-skills. As the complexity of the modeling assignments

increased, the number of students who responded correctly and fully decreased. We present

a hierarchy of modeling sub-skills, starting with understanding symbols and molecular

structures, and ending with mastering the four chemistry understanding levels. We rec-

ommend that chemical educators use case-based tools to assess their students’ modeling

skill and validate the initial hierarchy with a different set of questions.
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Introduction

Symbolic and microscopic representations are frequently used in chemistry textbooks for

applying ideas about particles and explaining observations of phenomena. However, many

high school students find these representations difficult to grasp and use; they are fre-

quently unable to translate between empirical formulae, electron configurations, molecular

structures, and ball-and-stick models (Brosnan and Reynolds 2001; Keig and Rubba 1993).

Chemistry instruction should therefore indicate the close connections between visual and

conceptual entities and include multiple representations of a specific concept (Barak and

Dori 2005; Wu and Shah 2004). Osborne et al. (2003, p. 706) noted: ‘‘Students should be

encouraged to do science, … to engage in activities such as creating models/pictures to

explain ideas… and to consider possible ideas to explain phenomena…’’

Based on Osborne and colleagues’ recommendation (2003), this study applied repre-

sentation tools developed for scientists in high school chemistry classes in a specially

designed learning environment. We first discuss the difficulties of understanding the

chemistry subject matter and the recommended visualization tools that chemical educators

can employ in secondary schools and in higher education. We then discuss our learning

environment and assignments, which enable students to cope with the microscopic nature

of chemistry, and provide an analysis of students’ responses to the reflection questionnaire.

Next, we present the case-based questionnaires used to assess students’ modeling skill and

examples of students’ responses. We also provide qualitative and quantitative analyses of

the modeling skill and sub-skills. Finally, we discuss the hierarchy of modeling sub-skills

difficulty level.

Theoretical background

Chemistry can be described at three distinct levels: the macroscopic (sensory) level (vis-

ible/touchable phenomena), the microscopic level (atomic/molecular particles), and the

symbolic level (representing matter in terms of formulae and equations) (Gabel 1998;

Johnstone 1991). A fourth ‘process’ level was suggested by Dori and Hameiri (2003): at

the process level, substances are formed, decomposed, or react with other substances. A

student’s response is considered to be at the process level when two conditions are ful-

filled: s/he demonstrates understanding of the reaction through which a compound is

generated, decomposed, or interacts with other compound(s), and s/he is capable of

explaining the reaction in terms of one or more of the first three levels. The process level

has been implemented as part of a scoring scheme in other studies (Kaberman and Dori

2009; Dori and Sasson 2008) and was instrumental in a paper by Robinson (2003).

Difficulties in learning the chemistry subject matter

Many high school students find it difficult to understand macroscopic changes on the basis

of microscopic explanations. The concepts in chemistry involve large quantities of parti-

cles that are extremely small in nature, often preventing students from being able to
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connect a representation of the compounds at the microscopic level with how they are

actually structured at the macroscopic level (Gabel and Sherwood 1984; Gabel et al. 1992).

Kozma and Russell (1997) argued that understanding chemistry relies on making sense

of the invisible and untouchable. As much of chemistry exists at the molecular level,

inaccessible to direct perception, chemistry is inherently representational or symbolic. The

researchers raised the question of whether chemistry students understand the communi-

cative intent of the representations used by chemists and modern textbooks, and whether

students have the necessary prior knowledge to comprehend chemical principles from

images, formulae, diagrams, and graphs.

Nicoll (2003) used five categories to describe the variances observed in how under-

graduate chemistry students chose to build a model: arrangement, color, geometry, size,

and sticks. The researcher found that students do not necessarily have a developed mental

image of how atoms are arranged in a specific molecule, nor do they necessarily pay

attention to bonding when building molecular models. Chemists have developed the ability

to ‘see’ chemistry in their minds as images of molecules and their transformations.

Chemists also construct, transform, and use a range of symbolic representations: drawings,

equations, and graphs (Kozma and Russell 2005). Thus, an important goal of chemical

educators is to make students aware of their misconceptions and help them to ‘see’

chemistry as chemists do, by switching between diverse representations, enabling them to

develop scientifically based concepts.

Visualization and models

Visualizations are perceptible, symbolic images and objects in the physical world that are

used to represent different aspects of phenomena in order to make the unseen seen (Dori

and Belcher 2005; Kozma and Russell 2005). Chemists have developed a variety of rep-

resentations, especially models, to investigate natural phenomena through the concepts of

molecules, atoms, subatomic particles, and the relationships amongst them. A model is a

representation of an object, event, process, or system (Gilbert and Boulter 1998), or a

physical or computational representation of the composition and structure of a molecule.

Gilbert (2005) discussed model types, including expressed, consensus, scientific, and

teaching models. Specially developed teaching models are created to support the learning

of some abstract topics, especially concepts related to bonding and structure (Kozma and

Russell 2005). Computerized modeling environments and visualization modes may affect

the structure of mental models that students acquire during learning and can help students

gain better insight into aspects of structure and process in chemistry (Dori and Barak 2001;

Schnotz and Kürschner 2008).

Molecular modeling software enables one to interactively construct ball-and-stick,

space-filling, and electron density models even for large molecules. Interactive modeling

programs provide for the construction of molecules from atoms, find the lowest energy

geometric structure, measure bond lengths and angles for this structure, and manipulate

and rotate the model to be viewed from different angles (Barak and Dori 2005; Kozma and

Russell 2005). Viewing dynamic 3D animations can improve students’ incomplete mental

models of the dynamic nature of chemical reactions (Sanger et al. 2001).

Representational competence is described by Kozma and Russell (2005) as a set of

skills and practices that allow a person to reflectively use representations or visualizations

to think about chemical phenomena and processes and to communicate information about

them to others.
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Using representations to perform tasks requires a series of cognitive operations in the

spatial domain, including recognizing the graphic conventions, manipulating spatial

information, and mentally tracking constraints. Thus, it is likely that learning chemistry

involves visuospatial abilities that enable students to perform cognitive operations spa-

tially, including translating a chemical formula into its molecular structure(s), and visu-

alizing and comparing possible 3D configurations. Being able to comprehend and mentally

manipulate chemical configurations is critical for students to conduct advanced scientific

research (Wu and Shah 2004).

Unlike content, modeling ability can only be learned through intensive practice, so

teachers should teach modeling skills, encourage students to use multiple rather than

isolated models, and discuss and critique various models, since each type elaborates only a

fraction of its target (Harrison and Treagust 2000, 2001).

Kozma (2003) examined the role of multiple representations in understanding science

and found that scientists coordinate features within and across multiple representations to

reason about their research and negotiate shared understanding. Students have difficulties

moving across multiple representations, so their understanding and discourse are con-

strained by the surface features of individual representations. The researcher recommended

that students use multiple linked representations in the context of collaborative, authentic

laboratory investigations.

Dori and Barak (2001) investigated the effect that teaching organic chemistry using

virtual and physical models had on students’ understanding of both new concepts and the

spatial structure of new molecules. They found that experimental students who worked

with two kinds of models gained better understanding of the model concept. They were

more capable of defining and implementing new concepts and were able to transfer

between the chemistry understanding levels: symbol, macroscopic, microscopic and

process.

We developed the Case-based Computerized Laboratories (CCL) and Computerized

Molecular Modeling (CMM) learning unit, described below, in response to researchers’

calls to teach scientific thinking skills, and specifically modeling skill, via multiple

representations.

Research objective and design

The research objective was to investigate the effect of the CMM component of the CCL &

CMM learning unit on students’ modeling skill and sub-skills.

We define modeling skill as understanding of spatial molecular structures and the ability

to transfer between molecular representations and chemistry understanding levels. Table 1,

the basis of our research design, presents a comparison between the current state of affairs

in the literature pertaining to modeling and our study. Based on this analysis, we defined

the following modeling sub-skill types: (A) drawing and transferring between a molecular

formula, a structural formula, and a model; and (B) transferring between, on the one hand,

symbols and/or models and, on the other hand, the microscopic, macroscopic, and process

chemistry understanding levels.

Sub-skills of type A require understanding of the symbol level and molecular structure

in order to perform transformation among the various chemical representations. Sub-skills

of type B require mastery of combinations of subsets of the four chemistry understanding

levels.
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Table 1 Comparison between previous research on modeling skill and sub-skills and this study

Topic Modeling skill in the literature CMM learning environment

and modeling sub-skills

1. Features of scientific
knowledge

Osborne et al. (2003)

The experts stated that scientific

knowledge should aim at providing

scientific explanations based on

models and representations of reality

We responded to Osborene et al., call for

presenting science as a

multidimensional interaction among

the models and empirical observation

of the real world

We constructed science activities that
engage students in hands-on modeling
assignments, help them to better
understand the microscopic and
process levels, and improve their
modeling sub-skills

Levy and Wilensky (2009) Connected chemistry environment is

used for teaching the gas laws and

kinetic molecular theory and for

connecting the macroscopic form of

chemical system to the conceptual

model, symbolic and physical world

2. Visualization tools for
chemists and students

Kozma et al. (2000)

The symbolic elements of structural

diagrams can be manipulated by

chemists in ways that correspond to

the structure of molecules and the

processes that are used to synthesize

them

Chemists often use TLC, mass

spectroscopy and NMR to generate

characteristic traces (streaks of color

or peaks on a graph) in order to verify

their molecular structures and

transform nature in a representational

sense

To visualize the synthesis process,

chemists always sketch structures of

reactants and products, and draw

symbols, arrows, and equations to

describe chemical processes

We based our criteria of model drawing

on the types of representations

suggested by Kozma et al., namely

constituent components, relative

arrangement of atoms in space, and

bonding between atoms

CMM and the unit mediate between

macroscopic phenomena, learner’s

experience, and the microscopic world

by enabling model presentation of

molecules on the screen. We focused
on visualization through CMM, a tool
that chemists use for a variety of
purposes

We examined learners’ ability to

visualize the synthesis of propylene

glycol. The students’ assignment

included reactants and products, partly

as molecular formula and partly as

models

3. Teaching of modeling
skills

Harrison and Treagust

(2000)

The authors recommended that teachers

teach modeling skill, encourage

students to use multiple analogical

models, and take the time to discuss

and critique them

CMM employs a variety of models,

including line, ball-and-stick and

space-filling. The modeling sub-skills

were discussed in class and students

wrote down reflection concerning their

use of the CMM environment

The interviewed student drew models,

referred to bond order, shape of the

molecule and angles between the

atoms. His ability to transfer from one

model to another was examined

Our rubrics for assessing students’

modeling sub-skills were based on

similar criteria. However we also
investigated students’ ability to
transfer from symbols to
macroscopic, microscopic, and
processes levels

4. Coding students’
responses

Nicoll (2003)

Undergraduate students were

interviewed while building play-dough

models of formaldehyde based on its

molecular formula. Students’

responses were analyzed by

arrangement, color, geometry, size,

and sticks. No transformation was

assessed

Our rubrics coded four of these areas and

identified as different modeling sub-

skills. We also defined transformations
between representations as a sub-skill,
quantified students’ responses, and
scored them
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Table 1 continued

Topic Modeling skill in the literature CMM learning environment

and modeling sub-skills

5. Improving students’
modeling skill via
visualization tools

Wu et al. (2001)

A development of a simplified version of

a visualization tool was based on

professional tools

Students worked together, constructed

molecules, and viewed them in three

representation types: wireframe, ball-

and-stick, and space-filling.

Researchers used video recordings,

artifacts, interviews, and pre- and

posttests

High school students’ ability to make

transformations between 2D and 3D

models improved after studying with

eChem visualization tool. They

developed better understanding of

isomers and polarity

The CMM software is used by chemists.

The students only used the basic

capabilities

Research tools were quite similar: a

reflection, and pre/post-questionnaires.

We analyzed different aspects in the
questionnaires, and also the scores of
the different items in each aspect. We

did not emphasize electron dot

representation. Rather, we emphasized
model drawing and transformation
between the four chemistry
understanding levels

We also found improvement in students’

modeling skill. We presented in detail
our assessment tools used to examine
the extent of students’ improvement

6. Students’ difficulties in
transferring among
multiple
representations

Wu and Shah (2004)

Multimedia tools address students’

alternative conceptions, such as

interpreting visual representations at

the macroscopic level by surface

features. This type of tools integrates

multiple symbol systems to

demonstrate chemical reactions at the

macroscopic and the symbolic levels

CMM was designed to help students

make transformations between the

symbolic level and the microscopic

level. The teachers taught students the
four chemistry understanding levels:
macroscopic, microscopic, symbolic
and process. Teachers exposed them to
criteria for constructing
argumentations that include those
chemistry levels. We used the
chemistry levels in our rubrics as
assessment criteria

One misconception students exhibit is

interpreting chemical reactions as a

static process

Some students are not able to form 3D

mental images by visualizing 2D

structures. A design principle for

visualization tool is to facilitate

identification of depth cues and

transformation between 2D and 3D

Our assignments were designed to

emphasize the dynamic nature of

chemical reactions while encouraging

students to incorporate the process

level in their explanations. This helps
eliminate the misconception of the
static nature of chemical reactions

Our study investigated students’

competence of making the

transformations between 2D and 3D

representations. We also examined the
frequency of appearance of 3D models
in students’ drawings in response to
questions they were asked

7. Students’ difficulties in
translation

Keig and Rubba (1993)

The authors investigated students’

translation between formula, electron

configuration, and ball-and-stick

models through think-aloud interviews

without any specific treatment.

Students were unable to translate from

model to formula or build a ball-and-

stick model from the formula

When the CMM environment was

designed, we assumed that the

difficulties described by Keig and

Rubba (1993) indeed existed

Our treatment was the development and
deployment of the CMM environment
and learning unit. Our students
improved significantly their ability to
transfer between molecular formula
and spatial models and vice versa

Differences and additions are in italic
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Research setting

The new learning unit in chemistry—CCL & CMM—was developed at the Technion,

Israel Institute of Technology. Development of this unit was part of a national reform in

chemical education for Israeli high school students, which brought back the laboratory

component into the matriculation examination (Barnea et al. 2010). The target population

of the CCL & CMM learning unit was Israeli honors 12th grade chemistry students. The

honors curriculum in Israel consists of five learning units, and the CCL & CMM unit is an

elective unit of these five. The main pedagogical goals of the unit are to expose 12th grade

honors chemistry students to an appealing learning environment that attempts to mimic the

chemists’ research environment and to foster their higher order thinking skills. The

thinking skills we investigated included question posing, modeling, inquiry, graphing

skills, and transfer (Kaberman and Dori 2009; Dori and Sasson 2008; Sasson and Dori

2006).

Based on the theoretical subjects that had been studied in traditional lessons in 11th

grade, which included such topics as energy, acid–base reactions, and sedimentation, our

CCL & CMM learning unit involves inquiry-based experiments in the laboratory. Many

organic materials, such as benzene, tri-chloro-ethane, and hexane, are no longer permitted

for use in Israeli high school laboratories, due to their hazardous nature. This narrows the

number of possible organic chemistry inquiry-based experiments. In response to this

challenge, we decided to teach organic chemistry in the CMM learning environment,

where the students can investigate daily-life organic molecules without handling hazardous

materials that might compromise their health. The students studied the CCL part of the

learning unit for about 5 months and its CMM part for another couple of months.

Since our article focuses on modeling skill, we present only the CMM part of the CCL

& CMM learning unit and environment. The environment included two CMM software

packages, which the students downloaded from the Internet: the ISIS-draw from MDL

(2000) and the WebLab Viewer from MSI (2000).1

Arguably, the two CMM software packages alone are not sufficient. Indeed, the CMM

environment setting included three additional elements: well trained teachers, the learning

unit, and assignments that were aimed at familiarizing the students with the microscopic

and symbolic levels in their explanations.

The ISIS/Draw software enables students to construct molecules by determining the

type and number of atoms and the covalent bonds between them according to the bonding

rules. It is also possible to draw carbon chains, sugar rings and amino acid molecules, as

well as to add different functional groups to the drawn molecules. After constructing the

molecule, students are shown its two-dimensional structure. For example, given the for-

mula of lactic acid, CH3CH(OH)COOH, students are asked to construct the molecule using

ISIS/Draw. They then view the molecule in 3D using WebLab Viewer (see Fig. 1).

The software enables the transfer of the 3D drawing between three molecular repre-

sentation forms (line, ball-and-stick and space-filling), the rotation of the molecules, and

measuring bond length and angle size between different atoms (Barnea and Dori 1999).

Without these activities students do not necessarily develop an accurate mental image of

how atoms are arranged in a specific molecule (Nicoll 2003).

Students were asked to investigate the daily-life molecules and tried to make connec-

tions between the measurements they took at the microscopic level and the properties of

the substances at the macroscopic level. Viewing the line model of the lactic acid, one can

1 WebLab Viewer was shareware at the time the experiment was conducted.
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measure bond lengths, but might conclude that it has a planar structure. However,

examining the ball-and-stick and the space-filling models shows the spatial structure of the

molecule. After investigating the different bond lengths and the functional groups in the

molecule, the students were asked to explain (a) the different bond lengths based on the

electro-negativity of the atoms and the single/double bonds, and (b) the physical and

chemical properties of the substance: boiling point, solubility in water, and chemical

reactions. The assignments required an understanding of macroscopic properties and

processes of the substance based on the molecule’s analysis at the microscopic level.

The students practiced for about 20 hours in the CMM environment and investigated

5–7 different daily-life molecules. They had to construct the molecules and present them in

2D and 3D representations.

Research participants

The research described in this article was part of a longitudinal 3-year project that

investigated studying in the CCL & CMM environment. In the first year of the research

(first stage), only the CCL part of the learning unit was taught. The first year study findings

are described in Dori et al. (2004). A year later, the CMM portion became an integral part

of the larger learning unit, and our research consisted of two additional stages (second and

third), each spanning a whole academic year. The 614 honors 12th grade chemistry stu-

dents who studied the CCL & CMM unit were from high schools in Israel. The students

(second stage—224 students, third stage—390 different students) underwent the same

learning process in the CMM learning environment.

In 10th and 11th grades, these students had studied a variety of topics in chemistry with

emphasis on chemical structure and bonding. While designing the learning unit we

assumed that the students had this prior knowledge.

The teachers of the research group participated in a summer training workshop and were

familiar with the CCL & CMM learning unit and its characteristics. These teachers also

participated in an ongoing training throughout the academic year. They received further

help and answers to any questions that were raised while they taught the new CCL & CMM

learning unit.

To analyze the effect of the students’ academic levels on their modeling skill scores, we

divided the participants using Duncan’s multiple range test into three academic levels—

Fig. 1 Four molecular representations of lactic acid
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low, intermediate and high—based on their total pre-questionnaire scores. The total score

of the pre-questionnaire was calculated based on average scores of all the thinking skills

examined in the CCL & CMM learning unit—modeling, question posing, inquiry,

graphing and transfer skills (Kaberman and Dori 2009; Dori and Sasson 2008; Sasson and

Dori 2006).

Research tools

We used a mixed method of both qualitative and quantitative research tools (Denzin and

Lincoln 2000; Johnson and Onwuegbuzie 2004) to gain deeper understanding of the stu-

dents’ modeling skill. This approach adds insights and understanding that might be missed

when only a single method is used (Strauss and Corbin 1990).

As a qualitative research tool, we used a reflection questionnaire, in which we asked

students to express their opinions about the CCL & CMM learning unit. We used pre- and

post-questionnaires as both qualitative and quantitative research tools to assess students’

higher order thinking skills in general and the modeling skill in particular. Initially, the

questionnaires underwent content analysis to determine categories based on students’

responses. Then, quantitative analysis was applied for descriptive and more advanced

statistics.

The reflection questionnaire included six aspects of learning and assessment via the new

learning unit, and was administered after completing the learning process in the CCL &

CMM learning environment.

The pre- and post-questionnaires were administered to the students before and after the

entire CCL & CMM learning unit, respectively. The questionnaires included a case study

concerning a chemistry-related real-life story and a variety of assignments for investigating

the various thinking skills. One chemical case study from the second stage questionnaire

started with the question: Trees cause air pollution—Is this possible? It described the

substance isoprene (C5H8) as the most common organic compound that oak and sycamore

trees emit at daylight.

The task that examined modeling sub-skills included five questions. [The text enclosed

in brackets is the required modeling sub-skill, which did not appear in the questionnaire.]

1. The molecular formula of isoprene is C5H8. Write a possible acyclic structural formula

for the molecule. [Transfer from molecular formula to structural formula—a sub-skill

of type A.]

2. Draw a model for the structural formula of C5H8 you suggested. [Transfer from

structural formula to a 3D model drawing—a sub-skill of type A.]

3. Many organic compounds are considered as air pollutants. One of them is propylene

(propene), which reacts with water and KMnO4 to produce propylene glycol (3D

model is given).

a. Write the molecular and structural formula of propylene glycol. [Transfer from a 3D

model to molecular and structural formula—a sub-skill of type A.]

b. Draw a model for propylene. [Transfer from molecular formula to a 3D model

drawing—a sub-skill of type A.]

Question 3 required the students to demonstrate their sub-skill of transferring from a 3D

model to molecular and structural formulae and vice versa.
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4. The structural formula of patulin is described below. Explain in bonding and structure

terms why the patulin is solid in room temperature. [Transfer from symbols to

macroscopic and microscopic level—a sub-skill of type B.]

O

O
O

HH OH

H
H

H

5. NaI is a white solid substance, whose molar mass is 150 g/mol with melting

temperature of 662�C, while the molar mass of patulin is 154 g/mol, with melting

temperature of 110�C. Describe the melting processes of NaI and patulin. Explain the

difference between these two processes. [Transfer from the symbol level (structural

formula and ionic formula) to the process level expressed as verbal explanations—a

sub-skill of type B.]

Question 5 required the student to compare an ionic substance—NaI to an organic

substance—patulin. Ionic materials were encountered in the hands-on CCL, while organic

materials were the focus of the CMM learning unit.

Some of the modeling sub-skills appeared in both research stages while others appeared

only in one or the other (e.g., Questions 4 and 5 appeared only in the third stage which

dealt with the patulin toxin case study). In addition, the students were allowed to choose

not to respond to all the assignments in the questionnaire. They were instructed to respond

to at least one question in each of the higher order thinking skills that we examined.

As noted, the students in second and third stages underwent the same learning process in

the CMM learning environment. Our questionnaires, administered to both stages, exam-

ined five different higher order thinking skills studied in the CCL & CMM unit. One of

them was the modeling skill and its sub-skills. Due to the large number of skills and sub-

skills we wished to examine, it was not feasible to dedicate a question to each sub-skill in

any one of the two stages. Therefore, only a subset of the questions in the two stages

examined the same modeling sub-skills. Since the concept and design of the questionnaires

in both stages were the same and the intervention program was identical, we combined the

responses from the two stages to questions that examined the same sub-skills. Therefore,

the results presented in Fig. 3 and Table 3 vary in the number of students.

Assessment of students’ responses to modeling skill assignments

New assessment tools were designed especially for the CCL & CMM learning unit in order

to encourage the development of students’ higher order thinking skills. These assessment

tools consisted of a detailed rubric for each skill that enabled us to diagnose students’

different thinking skills. Using our rubrics and applying content analysis on students’

responses, we categorized the responses to the examined thinking skills and normalized the

scores to a 1–100 scale for each skill. The questionnaires were analyzed in two phases. In

the first, qualitative, phase we applied content analysis of students’ responses to extract

categories and used them to characterize students’ responses. In the second, quantitative,

78 Y. J. Dori, Z. Kaberman

123



phase we scored each student’s response using the rubrics and statistically analyzed the

results. Scoring students’ answers to the examined skills in the pre- and post-questionnaires

provided us with a broad picture of the students’ thinking skills before and after studying

the CCL & CMM learning unit.

Examples of students’ responses to the assignments, which examined the different

modeling sub-skills and their analysis, are presented in Fig. 2.

Findings

A key question in the reflection questionnaire was ‘‘In what ways did the CCL & CMM

learning unit contribute to deepening your knowledge in chemistry? In your opinion, will

the knowledge and skills you acquired during studying this learning unit assist you in the

future?’’ No question instructed the students to specifically relate to the CMM environment

or modeling skill. Nevertheless, over 60% of the students referred to the CMM part of the

learning unit.

Students reacted positively to CMM and recognized the importance of modeling both to

their chemical understanding and to their future career. They noted the advantages of the

environment and indicated their enjoyment of viewing and drawing the molecules.

Students’ reflections on CMM and modeling skill are introduced in Table 2.

Students’ modeling skill was assessed as the sum of the modeling sub-skills described

above. We first present a statistical analysis of students’ modeling skill scores sorted by

academic levels and then the specific sub-skill’s difficulty.

In the modeling skill (the sum of all the modeling sub-skills), students’ average pre- and

post-questionnaire scores in the second stage (N = 224) were 48 and 81, respectively, and

in the third stage (N = 390) 43 and 75, respectively.

The net gain, defined as the post- minus the pre-questionnaire scores, was about 30

points for both stages with no statistically significant difference between the stages. Indeed,

the concept and design of the questionnaires in both stages were the same and the inter-

vention program was identical. Therefore, we combined questions that examined the same

sub-skill in both stages.

The effect sizes of the net gain scores were statistically significant in both stages

(p \ 0.0001), amounting to 1.17 in the second stage and 0.85 in the third. Table 3 presents

students’ modeling skill scores by academic level for the two stages.

In both stages, students at all academic levels improved their modeling skill scores

significantly. Low academic level students’ scores were the highest, implying that, com-

pared with their intermediate and high academic level peers, their modeling skill improved

the most, probably due to the ceiling effect.

Students’ Modeling Sub-Skills Analysis

Content and quantitative analyses of students’ responses indicated that the modeling sub-

skills were at different complexity levels. The findings are presented next in increasing

sub-skill complexity assignments and classified into one of the two modeling sub-skill

types: (A) drawing and transferring between a molecular formula, a structural formula, and

a model, and (B) transferring between symbols and/or models on the one hand and the

microscopic, macroscopic, and process chemistry understanding levels on the other.
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Fig. 2 Analysis of students’ responses to modeling sub-skills Type A & B assignments
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Figure 3 presents students’ performance in four of the five examined modeling sub-

skills—two of type A and two of type B. The first task, depicted in the upper left graph,

relates to transferring from molecular to structural formula:

The molecular formula of isoprene is C5H8. Write a possible acyclic structural formula

for the molecule.

In this sub-skill, already in the pre-questionnaire, 75% of the students transferred from

the molecular to the structural formula correctly. This number increased to 86% in the

post-questionnaire.

Table 2 Categories gleaned from students’ responses to the reflection questionnaire

Categories Examples

Transfer between levels of
chemistry understanding

W: I learned visually about molecular structures. Using a picture,
drawing, or sketch I was able to understand processes at the
microscopic leve

A computerized environment R: … Because of the integration of computers into the unit, I enjoyed
performing experiments and explore molecules via molecular
modeling

An enjoyable environment EI: I enjoyed drawing the molecules and really see the molecule I learn
about. I enjoyed working on the molecule inquiry project and
investigating an interesting molecule on my own

Inquiry O: I liked the molecule inquiry project, as this assignment made it
possible for me to choose a molecule of a substance I am familiar
with from daily life and which I was curious to investigate

Contribution to future professional
career

M: I want to study Genetics in the future, and this requires intensive
work with computers and models of different DNA molecules. The
skills I acquired will help me build 3D models of molecules and
better understand the research I will be conducting

Connection to previous chemistry
topics

A: In molecular modeling activities, we examined bond lengths and
types. These activities enabled us to better understand subjects which
we had studied theoretically two years earlier and took for granted
what was written in textbooks without any proof

Spatial ability I: The learning unit improved my spatial ability to visualize how a
molecule of a substance looks like and my ability to analyze it. Till
now I could only imagine the molecules by looking at plastic models
or drawing the structure formula, but not spatially. Now I can see
each particle and the way it is bonded to other particles

Table 3 Students’ scores in the modeling skill sorted by academic levels and stages

Academic level x Second stage t* x Third stage t*

Na Pre SD Post SD Na Pre SD Post SD

High 42 63 22 88 16 5.8 143 51 23 74 18 8.6

Intermediate 137 43 25 77 20 13.6 184 39 22 75 19 13.4

Low 45 46 28 86 14 8.8 49 35 18 76 19 9.8

Whole population 224 48 26 81 19 17.0 376 43 23 75 19 16.6

*p \ 0.0001
a Ntotal = 600 for the academic level analysis, since only students who responded to both questionnaires
were considered
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The second sub-skill was transfer from a 3D model to molecular and structural for-

mulae. The assignment here aimed to assess how students convert an unfamiliar 3D model

into its molecular and structural formulae: ‘‘Write the molecular and structural formula of

product 1—propylene glycol.’’ The students had not only to know the atoms involved, but

also to understand the whole structure of the molecule. The results, shown at the bottom-

left corner of Fig. 3, were that in the pre-questionnaire, 22% of the students did not respond

to the assignment at all, 32% of them wrote an incorrect response, and 7% made a partial

transfer from the model to the molecular and structural formula. In the post-questionnaire,

only 13% of the students did not respond or gave an incorrect response. The percentage of

students who provided a complete response, implying that they succeeded in making the

transfer from the 3D model to the molecular and structural formula, doubled from 39% in

the pre-questionnaire to 79% in the post-questionnaire.

The third sub-skill examined, transfer from simple and complex molecular formulae to a

model, was designed to examine how students draw a model from simple and complex

molecular formulae. It included two assignments: Draw a model to the substance propylene

(propene), C3H6; and Draw a model for the structural formula of C5H8 you suggested in

question 1.

Propylene (C3H6) is a relatively simple molecule, while isoprene (C5H8) is more

complex, as propylene contains only three carbon atoms and one double bond, whereas

isoprene contains five carbon atoms and students can place its two double bonds in various

combinations or draw a model with a triple carbon–carbon bond. We compared the post-

questionnaire frequencies of model types students had generated in response to the two

assignments to their pre-questionnaire responses (see Table 4).

In the pre-questionnaire, half of the students did not draw any model, most likely

because they were given the option not to respond to all the questions. In the post-

questionnaire, 88% of the students at least tried to draw a model, indicating a huge increase

in their confidence in drawing models. There was a threefold decline from the pre-ques-

tionnaire (22%) to the post-questionnaire (7%) in the percentage of students who drew
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linear 2D models and a parallel threefold increase in drawing spatial models (from 26 to

80%). Further analysis of transferring from molecular and structural formulae to a 3D

model is based on our rubrics of the drawing sub-skill, which were based on the quality of

the simple and the complex molecular models students drew.

While in the pre-questionnaire about half of the students did not respond or drew an

incorrect model of the molecule, the analogous percentage decreased to less than a quarter

in the post-questionnaire. With respect to the quality of the models of the molecule, as

shown in Table 4, 46% of the students drew the model correctly in the post-questionnaire,

compared with only 13% in the pre-questionnaire.

In the post-questionnaire, most (76%) of the students who were able to transfer from the

formula to the model did so correctly, and only 7% made a partial transfer, while in the

pre-questionnaire only 37% of the students succeeded in making a complete transfer and

3% made a partial one.

The fourth sub-skill, transfer from the symbol to the microscopic and macroscopic

levels—type B modeling sub-skill (given in the third stage only and depicted in the top-

right of Fig. 3)—was examined by the following assignment: The structural formula of

patulin is described below, explain in bonding and structure terms why the patulin is solid

in room temperature.

About 10% of the students skipped this assignment in both the pre- and post-ques-

tionnaires. In the pre-questionnaire, 70% referred to the question incorrectly or partially,

while in the post-questionnaire only 50% responded incorrectly or partially. The per-

centage of students who responded fully doubled from the pre- to the post-questionnaire.

The fifth, last, and most complex examined modeling sub-skill was transfer from the

symbol to the process level. Requiring textual explanation, this type B sub-skill was

examined via the following assignment: Describe the melting process of NaI and of pat-

ulin. The outcomes are presented in the bottom-right of Fig. 3.

This assignment was indeed found to be the most difficult, as it requires utilizing and

transferring through all four chemistry understanding levels, from the symbols of patulin

and NaI to their melting processes.

While only a small percentage of the students (15%) responded to this difficult task in

the pre-questionnaire, 54% at least attempted to perform this assignment in the post-

questionnaire (Ntotal = 390 students).

Discussion

This research concerns the higher order thinking skill of modeling and modeling sub-skills,

as employed by students coping with multiple representations, reactions, and physical

Table 4 Distribution of stu-
dents’ performance in 3D model
drawing and transfer assignments

Response quality
(N = 614)

Percentage

Model
drawing

Transfer from structural formula
to 3D model

Pre Post Pre Post

Missing 50 12 50 12

Incorrect 8 6 10 5

Partial 29 36 3 7

Complete 13 46 37 76
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properties of organic compounds. We have established that the CMM learning environ-

ment contributed to improved modeling skill scores for students at all academic levels. In

what follows, we discuss our findings regarding students’ different modeling sub-skills,

ordered in increasing level of difficulty. We then look into students’ achievements in the

modeling skill as a whole, based on the sum of their modeling sub-skills scores.

Transfer from molecular formula to structural formula

The ability to transfer from a molecular to a structural formula does not necessarily require

exposure to the CMM environment, as students regularly study transfer from molecular to

structural formula in traditional organic chemistry classes. Since all the students who took

the pre-questionnaire in the beginning of 12th grade had already been examined on organic

chemistry in their 11th grade matriculation test, we expected the students to provide a

correct response to this task regardless of their inclusion in our research group. Indeed,

about 75% of the students already correctly transferred from molecular to structural for-

mulae in the pre-questionnaire. In the post-questionnaire, more than 80% of the students

made a complete transfer and suggested a correct structural formula to the given molecular

formula.

Transfer from a 3D model to molecular and structural formula

The propylene glycol assignment required the students to count the number of different

atoms, each presented with a different color, and to understand the structure of each

molecule and the bonds between the molecule’s atoms. In the pre-questionnaire, about half

of the students did not answer this question or answered it incorrectly, while about 40%

answered it correctly. In the post-questionnaire, about 80% of the students correctly

transferred the 3D model into molecular and structural formulae.

While engaged in CMM-based investigation of different molecules, students con-

structed their 2D structural models and transferred them to 3D models. This gave them a

feeling for the correspondence between the molecular formula, the structural formula, and

the 2D and 3D models of the same molecule. It is therefore unsurprising that in the post-

questionnaire 79% of the students made a complete transfer from the model of propylene

glycol to its structural formula, compared with only 39% in the pre-questionnaire. Wu et al.

(2001) also reported that high school students’ ability to make transformations between 2D

and 3D models improved after studying with eChem, a computer-based visualization tool.

Model drawing of simple and complex molecules

In the pre-questionnaire, about half of the students did not draw any model, while in the

post-questionnaire, 82% drew models, indicating an increase in their confidence to draw

models (see Table 4). Initially, the students were not familiar with the model drawing task,

since drawing models in general, and 3D models in particular, had not been emphasized in

class, and the teacher was the only one who drew 2D structural formulae on the board. It

was only after the teachers had participated in the training program, conducted to assim-

ilate the learning unit, that they became aware of the need to draw 3D models and to teach

this skill to their students. Teachers’ professional development is indeed key to incorpo-

rating visuospatial models into science teaching. This necessary professional development

can be achieved through teacher preparation and in-service programs. De Jong et al. (2005)
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claimed that pre-service chemistry teachers need to develop pedagogical content knowl-

edge about using particle models to help secondary school students understand the rela-

tionships between phenomena and corpuscular entities. In our post-questionnaire, only

about 10% of the students did not try to draw a model, indicating that most students felt

comfortable performing this type of assignment.

In the post-questionnaire, about 80% of the students drew ball-and-stick models, but a

very few (one or two) students chose to draw 3D space-filling models. Our findings agree

with those of Wu et al. (2001), who argued that students do not prefer space-filling models

in identifying structural differences and functional groups because bond types (i.e., single,

double, or triple) are invisible in this type of model. The ball-and-stick models are most

concrete, because they convey the visible information of atoms and bond orders. It is also

more difficult to draw 3D space-filling models by hand due to the need to express 3D

information on two dimensional paper without any computer assistance.

We assessed the model drawings from two aspects: (a) drawing quality in terms of

bonds, angles, and linear vs. spatial expression, and (b) the quality of transfer between the

structural formula that the students suggested and the model they drew, as well as the

extent to which they understood the linkage between the two, as expressed by matching the

kind and number of atoms and the covalent bonds between them.

Almost half (46%) of the students in the post-questionnaire drew correct and complete

models, making the distinction between single and double bonds and drawing correct

angles that gave the model its spatial characteristics, compared to only 13% who drew a

correct and complete model in the pre-questionnaire—a 3.5 factor increase.

The students utilized the CMM environment to conduct a long inquiry process, in which

they investigated several molecules by viewing them in three kinds of 3D models. The

teachers used the CMM environment to focus on spatial molecular structures in class

discussions, referring to measurements of angles between different atoms that the students

had taken, such as the 109.5� angle between a carbon atom and two atoms attached to it,

typical of tetrahedral structures.

Most of the molecules students investigated were organic compounds. We expected

students to draw their models in the post-questionnaires in a way that resembled what they

had seen on the computer screen. Yet there were students who drew linear models with no

spatial characteristics. We attribute this to the fact that the assignments students had to

submit before they responded to the post-questionnaire were mostly computerized, and the

students printed screenshots as responses. Therefore, they did not have enough practice in

drawing models using paper and pencil. This might explain difficulties encountered by

about half of the students in drawing spatial models in the post-questionnaire.

Transfer from symbols to the microscopic and macroscopic level

The percentage of students who responded correctly to the assignment calling for trans-

ferring from symbols to the microscopic and macroscopic level doubled from the pre- to

the post-questionnaire. Student O. wrote: ‘‘The learning unit contributed to my under-

standing of the symbolic level. Through molecular modeling I could see the molecules

[microscopic level] I investigated in different forms of representation, beyond the letters

[symbolic level] which represent the molecule. It contributed to my understanding of

substances properties [macroscopic level].’’
In spite of this improvement, only 37% of the students in the post-questionnaire referred

correctly and fully to the different aspects of the inter-molecular interactions between the

patulin molecules. Most of the students identified the hydroxyl functional groups in the
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structural formula of the patulin, but ignored its high molar mass and the electronegative

oxygen atoms, two additional factors that strengthen the inter-molecular Van der Waals

interactions. Many students referred to the covalent bonds between the atoms, indicating

lack of comprehension of the factors that affect the state of the matter.

The assignments that accompanied the visualization activities in the CMM learning unit

emphasized the connections between the symbolic, macroscopic, microscopic, and process

levels. Assisted by the ISIS-draw and the WebLab Viewer software packages, students

investigated the molecules according to guiding questions in the unit. Teachers conducted

intensive class discussions about the physical properties of the substance and the inter-

molecular interactions that affect them. However, after this treatment students still expe-

rienced difficulties in transferring between the symbolic level and the microscopic and the

macroscopic levels. This finding resonates with that of Brosnan and Reynolds (2001), who

noted that although symbolic and microscopic representations are frequently used in

chemistry textbooks, applying ideas of particles and constructing microscopic represen-

tations to make explanations of observations are difficult for many secondary school

students. Indeed, while the CMM learning unit did improve students’ capabilities to

transfer from the symbolic to the micro and macro chemistry understanding levels, there is

room for further improvement, and planning needs to be done to increase students’

achievements in this sub-skill.

Transfer from the symbol to the process level with verbal explanation

The assignment designed to examine this sub-skill involved symbols of the ionic NaI

compound and the molecular patulin compound, whose structural formulae was given.

Students had to describe and write for each of the substances its melting process equation.

In order to respond to this task correctly, students had to transfer from the lower symbolic

level to the highest, process level, the highest of the four chemistry understanding levels.

While making this transfer, they had to traverse the intermediate microscopic and mac-

roscopic levels. During the teachers’ training program we emphasized the significance of

constructing proper argumentations based on the chemistry understanding levels. A good

argumentation should contain as many as possible of the four chemistry understanding

levels, since an argumentation that is based on the various levels would include all the

relevant chemical and/or physical aspects.

Not surprisingly, the transfer from the simplest symbol level to the most advanced

process level was the sub-skill that students found the most difficult. Even in the post-

questionnaire, 46% of the students elected not to respond to this task, but this was almost

half the percentage (85%) of those who elected not to respond to this question in the pre-

questionnaire. However, of the respondents in the post-questionnaire, 94% provided a

partial or a complete answer. The relatively low student response rate compared with the

response rate to other questions, as well as the partial responses, exposed various hurdles,

such as an inability to identify NaI as an ionic substance or to explain the melting process

of patulin as breaking intra-molecular covalent bonds. Bonding and structure is one of the

most important subjects in the chemistry curriculum in Israel, but high school students,

both in Israel and around the world, still lack fundamental understanding of chemical

bonding (Levy Nahum et al. 2007). In view of this finding, we recommend that teachers

spend more time with their students on transferring from the symbol to the process level

and develop well-structured argumentations that include at least three of the four levels of

chemistry understanding. Such argumentations will enable students to regulate their
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learning and check whether their answers are complete, while the teachers will be better

equipped to identify students’ misconceptions and to correct them.

The various modeling sub-skills are presented pictorially in Fig. 4 as a hierarchy of

increasing difficulty. As the student climbs the steps, s/he is required to master increasingly

higher level modeling sub-skills, starting with transferring from molecular to structural

formula at the bottom, all the way to transferring from the symbol to the process level.

Each stair contains the modeling sub-skill definition, while the vertical face of the stair has

an example of the sub-skill taken from the questionnaire.

The CMM learning environment facilitates the development of students’ abilities to

transfer among molecular representations and chemistry understanding levels, all the way

from the symbol level to the process level. At the bottom of the hierarchy, a student is

required to transfer from understanding a symbol of a molecular formula of a single molecule

to its structural formula. At the top of the hierarchy, the student should be able to explain the

melting processes of both ionic and molecular substances and to compare the two.

Overall achievements in the modeling skill of the CMM students

To obtain a general modeling and transfer score, we totaled each student’s scores in each

modeling sub-skill. In both stages of the study, the students improved their modeling skill

achievements significantly. The average starting point was quite low, with a pre-ques-

tionnaire average score of less than 50 in both stages.

In the pre-questionnaire students had not yet been exposed to the CMM environment,

neither had they practiced transfer between models and formulae. Their knowledge in

organic chemistry was acquired a year earlier, during 11th grade, as they were working

occasionally with plastic models. After exploring molecular models in computerized

media, students became more skillful in writing structural formulae of molecules, drawing

models spatially, making connections between the different representations of molecules,

and using the different levels of chemistry understanding—symbol, microscopic, macro-

scopic, and process—for their argumentations.

To gain deeper insight into the students’ total modeling skill, we divided them into low,

intermediate, and high academic levels. The findings in both stages were consistent and
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showed that students in all academic levels improved their scores significantly. Comparing

the net gain scores of each one of the three academic level students, we found that low

academic level students improved the most, while high academic levels students improved

the least.

Students at a low academic level usually find it difficult to understand the microscopic

level of chemistry and to imagine the abstract structure of the molecules. The learning

process in the CMM environment is most useful for these students, as it simplifies the

microscopic level and provides views of diverse representations of molecules, which had

been invisible. The students can also manipulate the molecules and observe them from

different angles, measure different parameters and investigate them in new ways. At the

end of the process, students’ scores in all academic levels were very similar and the gap

between them was narrowed.

High academic level students had good spatial abilities and needed the training provided

in the CMM environment less than the low academic level students. Due to the ceiling

effect, their net gain was the lowest. As Small and Morton (1983) showed, direct training

or practice on visuospatial tasks can improve achievements in chemistry. Students who

received training on visualization skills had significantly higher scores on questions that

required the use of 3D models in a retention test.

The net gain scores of the students in the modeling skill were high, about 30 points on

average, and were consistent over the 2 years (see Table 3). We attribute this outcome to

two aspects: (1) the intensive process that the students underwent while responding to

variety of learning tasks in the CMM environment; and (2) the teachers who participated in

summer training programs and received on-going support throughout the academic year.

The modeling skill with its sub-skills is one of several higher order thinking skills

examined in our longitudinal study. As Zohar (2004) claimed, while many science teachers

maintain that only high achievers should be taught to acquire higher order thinking skills,

students of all academic levels can benefit from such teaching. Our findings support this

claim.

Research limitation, strengths, and recommendations

Our research has one limitation and several strong points, as well as contributing to the

knowledge base of students’ comprehension of models and transfer among different rep-

resentations of molecules.

The research limitation is that some of the sub-skills were assessed by only one

question. These questions may not be the sole representatives of their respective sub-skill.

However, there is a limit to the length of a questionnaire one can require students to

complete. We propose an initial hierarchy based on our findings. Future research should

validate this hierarchy through additional assessment.

Beside this limitation, the research features the following strengths:

• We defined a new set of sub-modeling skills (types A and B), ranked it, and suggested

an initial hierarchy of their difficulty levels. Type A sub-skills are related to drawing

and transferring between a molecular formula, a structural formula, and a model. Type

B modeling sub-skills deal with transferring between symbols and/or models on the one

hand and the microscopic, macroscopic, and process chemistry understanding levels on

the other hand. The two modeling sub-skill types were found to be intertwined, with

sub-skills of type A being in general lower than those of type B. We recommend that

teachers become aware of the various modeling sub-skills and their hierarchy.
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• New assignments and case-based tools were developed, and the content of students’

responses was thoroughly analyzed. Other researchers can validate our initial hierarchy

using a different set of questions.

• We have established a connection between students’ modeling skill and their ability to

understand and explain chemical phenomena via the four levels of chemistry

understanding. Since textbooks often use a variety of models and symbols, students

are expected to be competent in transferring between the symbol level and the

macroscopic, microscopic, and process levels. The CMM learning environment and the

corresponding teaching approach can be most instrumental in facilitating this transfer.

Russell and Kozma (2005) argued that test items requiring students to supply answers

are more likely to cause them to look beyond the surface features of the visualizations and

produce responses based upon their views of the underlying chemistry. Our case-based

questionnaires responded to this call while focusing on CMM visualization, a tool that

chemists use. By presenting our assessment tool and its content analysis for modeling sub-

skills assignments, we present teachers and educators with ways to analyze their students’

responses both qualitatively and quantitatively. The assessment tools were found to be

diagnostic, as we were able to pinpoint specific difficulties in drawing 3D models and in

transferring amongst the four levels of chemistry understanding.

Finally, student improvement was most noticeable amongst the low academic level

students. This might indicate that the CMM environment provides adequate scaffolding,

especially to the lower achievers. Last but not least, this study ranks important sub-skills

within the modeling skill.

In view of the value of fostering students’ modeling sub-skills, we recommend that

chemical educators use case-based tools to validate the initial hierarchy with a different set

of questions.
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