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Abstract
Emphysema is one of the hallmarks of Chronic Obstructive Pulmonary Disease (COPD),
a devastating lung disease often caused by smoking. Emphysema appears on Com-
puted Tomography (CT) scans as a variety of textures that correlate with the disease
subtypes. It has been shown that the disease subtypes and the lung texture are linked
to physiological indicators and prognosis, although neither is well characterized clini-
cally. Most previous computational approaches to modeling emphysema imaging data
have focused on supervised classification of lung textures in patches of CT scans. In
this work, we describe a generative model that jointly captures heterogeneity of disease
subtypes and of the patient population. We also derive a corresponding inference al-
gorithm that simultaneously discovers disease subtypes and population structure in an
unsupervised manner. This approach enables us to create image-based descriptors of
emphysema beyond those that can be identified through manual labeling of currently
defined phenotypes. By applying the resulting algorithm to a large data set, we iden-
tify groups of patients and disease subtypes that correlate with distinct physiological
indicators.

Thesis Supervisor: Polina Golland
Title: Associate Professor
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Chapter 1

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a chronic hing disease character-

ized by poor airflow. One of the hallnarks of COPD is emphysema, (i.e., destriction of

structures supporting lung alveoli and permanent enlargement of airspaces) [9]. Several

subtypes of emphysema have been identified by radiologists. Patients with eniphyseiiia

exhibit a mixture of disease subtypes. This aspect of emphysema differentiates it from

most other diseases, in which patients only exhibit a single disease subtype. These sub-

types are used for diagnosis and predicting patient progliosis [23]. The subtypes have

also been shown to correlate with genetic data and biological markers [21]. Emphy-

semna manifests on Computed Tomography (CT) scans as a variety of textures, which

are associated with clinically defined emphysena disease subtypes. Figure 1.1 illus-

trates normal lung tissue, alonig with patches of several clinically defined emphysenia

subtypes.

There is substantial intra- reader and inter- reader variability when ident ifyimng sub-

types inl CT images [27]. Computational approaches to tme classification of textures ill

CT scans promise to identify subtle textural differences beyond those that are visible

Nomal Lung Tissue

Cenlrilobulai Empl

Pailobulari ELph

Paraseptal Emph

Figure 1.1: Image patches showing clinically defined emphyseia, subtypes

9



to human readers. This nuanced information can be harnessed to produce well-defined,
reproducible disease subtypes. Beyond fully 3D texture analysis, the additional bene-

fits of computational approaches include the possibility of providing novel insights into

the disease once the heterogeneity of the patient population is properly characterized.

Our approach departs from the majority of prior research that has focused on su-

pervised classification of patches extracted from CT scans based on examples labelled

by clinical experts [4, 17, 181. A notable exception is a recently demonstrated method

for joint modelling of imaging and genetic data in the same clinical population [1].
Our work models only the imaging data, but we explicitly detect and characterize ho-

mogeneous sub-populations defined based on the phenotypic similarities, which opens

interesting directions for future analysis.

* 1.1 Contributions

In this thesis, we address the challenge of modelling heterogeneity in the disease sub-

types and in the patient population in the context of an unusually large medical imag-

ing data set consisting of 2457 thoracic CT scans.

Our primary contribution is a method that simultaneously detects distinct patient

clusters and disease subtypes. The algorithm is based on a generative model that

captures the underlying assumptions about population structure and distributions of

disease subtypes. Specifically, we assume that each cluster of patients is associated

with a distinct distribution of disease subtypes. We derive an inference algorithm

that is based on variational Expectation-Maximization [2]. We apply the algorithm

to our data set and observe notable associations between physiological indicators and

patient clusters and disease subtypes identified by the method. Further, we examine

associations in simplified models that omit either patient clusters or disease subtypes

to demonstrate the clinical advantage of the fully hierarchical model that includes both

patient clusters and disease subtypes.

We also examine the choice of an appropriate texture descriptor that is used to

differentiate textures in the scans that appear in our data set. We choose these texture
descriptors based on their classification accuracy on a labeled portion of our data set.
These descriptors serve as the observed data in our generative model.

Figure 1.2 shows CT scans that belong to different patient clusters identified by
the algorithm presented in this thesis. The colors overlaying the lungs correspond to
disease subtypes identified by our algorithm. Each of the lungs exhibits a mixture of

disease subtypes.

10 CHAPTER 1. INTRODUCTION



Sec. 1.2. Thesis Outline 11

'p ;wo e a
0

Figure 1.2: Example CT scans froi each of the eight patient clusters idefltified b) our
algorithm. Colors correspoid to discasc subtypes identified by ot ir algorit lli.

N 1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2 we review background relevant to

the method development in this thesis, and we also place the proposed mletliods in the

context of previous work. In Chapter 3 we discuss our choice of texture descriptors.

In Chapter 4, we describe a generative model that we employed to identify disease

subtypes and patient clusters. In Chapter 5, we present the data. and the empirical

evaluation procedure and discuss the experimemital results. III the last chapter, w(

sunnarize and examie directions for futurc work.

I _4
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Chapter 2

Background and Previous Work

In this section, we describe clinical background relevant to the understanding of em-

physema and COPD. We discuss the basics of CT imaging, and methods for texture

classification in medical image analysis. We then place this work in the context of

previous medical imaging research that aimed to classify CT scans of patients with

COPD and related diseases. To the best of our knowledge, ours is the first study that

has successfully identified emphysema subtypes in a fully unsupervised manner.

* 2.1 Background on Emphysema and COPD

COPD is the third leading cause of death in the United States, affecting approxi-

mately 15 million people each year [11]. It is a highly heterogeneous disease. The

disease's subtypes and causality are not well characterized [12]. Except for smoking,

the risk factors associated with COPD and those influencing its prognosis are poorly

understood [21]. A few genetic variants that correlate with COPD risk have recently

been identified, along with certain environmental factors [12]. Currently, COPD is

diagnosed based on a ratio of volume of air that can be exhaled in one second and the

total amount of air that can be exhaled in one breath. If the ratio is less than 70%,
COPD diagnosis is established [19]. Biologically, COPD manifests as a combination

of chronic bronchitis and emphysema. To distinguish between and within these con-

tributions to COPD, radiological characterizations, generally based on CT scans, are

employed [15]. Emphysema presents as various patterns of physical lung tissue destruc-

tion, which can be observed as texture in CT scans. It has been shown that texture

patterns found in CT scans correlate strongly with histopathological findings [16].

Three common emphysema subtypes have been established in the medical prac-

tice: centrilobular, panlobular, and paraseptal emphysema. Further, radiologists may

utilize a variety of terminology including "honeycombing" and "ground-glass texture"

to describe patterns of lung destruction seen in emphysema. A patient may exhibit a

13



combination of these subtypes and textures to varying degrees, along with healthy lung

tissue [9]. Emphysema subtypes have been shown to strongly correlate with clinical

prognosis [23]. However, there are no uniform clinical, pathological, or texture-based

standards for identifying these subtypes or textures. This also leads to high degrees

of intra-reader and inter-reader variability when interpreting CT scans [27]. Addi-

tionally the emphysema textures are inherently three-dimensional, so humans cannot

fully visualize them. Improved understanding of emphysema subtypes would not only

improve the biological understanding of the disease, but also enable better tailored

treatments and more accurate prognosis. Moreover, it promises to help classify the

subtypes of the disease as linked to genetic components or environmental factors.

* 2.2 CT Imaging

CT imaging is used for diagnosis and imaging of structural changes in organs includ-

ing the brain, lungs, heart, extremities, and abdomen [5]. It has been an important

diagnostic tool for emphysema and COPD for two decades [16]. CT imaging is a

non-invasive imaging technique that uses X-rays to produce virtual slices, or tomo-

graphs of a given scanned object. These are processed to produce a three-dimensional

representation of the scanned area [17].

Texture is observed in CT scans as spatial intensity variation in the image, created

when X-rays are scattered by tissues with varying physical properties [17]. Although

the texture is created by different underlying physical structures, in this work we will

not attempt to reconstruct the underlying physical properties of the tissue. Instead,

we will analyze the texture features that are extracted from CT scans, and employ

these as markers to differentiate the underlying tissues.

N 2.3 Texture Definition

There is no single definition of texture. It is generally understood as the spatial

distribution of voxel or pixel intensity in an area of interest. Three dimensional tex-

tures exist in filled objects and are generated by volumetric data acquisition devices.

Three dimensional textures cannot be characterized in terms of reflectivity and sur-

face properties, but instead represent volumetric properties of the materials or tissues.

Additionally, three-dimensional textures cannot be fully visualized by humans, so it is

inherently only possible to model them algorithmically [5].

14 . CHAPTER 2. BACKGROUND AND PREVIOUS WORK



e 2.4 Texture Descriptors

Here we survey texture descriptors that have been used to model lung textures and

which we will employ in the proposed work. Each of these descriptors is defined for

a patch centered around a particular voxel. Several important properties differentiate

among these texture descriptors, including sensitivity to the underlying parameters and

rotational invariance [5]. In this work, we utilize the first three texture descriptors.

N 2.4.1 Histograms

Histograms describe the discretized distribution of intensities within a patch. Men-

doza et al. [14] employed histogram texture descriptors along with kernel density es-

timation to perform supervised classification of emphysema subtypes, demonstrating

superior performance to that of many commonly used complex descriptors. Histograms

are rotationally invariant but are sensitive to the patch and bin size [5]. It is necessary

to empirically determine the values of the bin size.

E 2.4.2 Grey Level Co-Occurrence Matrices

Grey Level Co-Occurrence Matrices (GLCMs) represent the joint probability distribu-

tion of intensity values of pixel pairs in a given patch [18]. To construct this descriptor,
the image is discretized into a given number of grey levels, often eight or 16. Pixel

pairs are examined at a given offset. Generally, the distance is set to be fairly small

(between one and three voxels). The value of the entry at position (i, j) in the GLCM

captures the proportion of pixel pairs at the offset where one voxel has intensity i, and

the other has an intensity j. This descriptor effectively extends histograms to pairwise

marginal distributions.

A common approach to obtain a degree of rotational invariance is to average the

GLCMs over some number of uniformly distributed directions in three dimensions.

The feature vector corresponding to a given voxel is a collection of features that can

be extracted from GLCMs - including the entropy, maximal probability, homogeneity,

and others [10]. This descriptor is sensitive to patch size, number of levels, and offset

used to compute the histogram.

N 2.4.3 Fourier Analysis and Discrete Cosine Transformation

Fourier transforms are equivalent to convolution of the patch with sine and cosine

functions. They are defined over functions with infinite support. To obtain a local

texture representation, the basis functions are typically bounded to a given region of

Sec. 2.4. Texture Descriptors 15



interest, and the boundary conditions are specified. The discrete cosine transform uses

only the real coefficients. The feature vector is generally constructed from the largest

coefficients. These descriptors can be modified to be rotationally invariant [5].

* 2.4.4 Difference of Gaussians and Gabor Filters

Let G, be the Gaussian kernel with standard deviation -. Radially symmetric recep-

tive fields correspond to the difference of Gaussians and are modeled by Fad = G, - G, 2 .

These are rotationally invariant. The two-dimensional Gabor filter bank can be ex-

tended to three dimensions, and maintain rotational invariance. These filter banks are

constructed across various octaves to cover the scale space of the scan or patch, and

so are generally not highly sensitive to underlying parameters. The feature vector of

the voxel can be defined as the convolution of the patch with the filter bank at a the

voxel of interest [13]. Alternatively, the feature vector can be a histogram defined over

the convolution of the filter bank with the patch [17].

* 2.4.5 Riesz Features and Wavelets

Riesz features were specifically proposed by Depeursinge et al. [4] for lung texture

classification. They are wavelets, which are filter banks that cover the entire spatial

spectrum of the image. The descriptor was originally defined for two dimensions, but

can be extended to 3D. The Riesz transform maps a function to its harmonic conjugate,

and can be thought of as a generalization of the Hilbert transform for Euclidean spaces

of dimension greater than one. Riesz transforms are convolved with the Laplacian of

a Gaussian at various scales to obtain rotationally-covariant basis functions. These

convolutions create a steerable filter bank, which makes it possible to analytically

obtain the filter coefficients at any orientation as a linear combination of basis filters.

This allows for the orientation of the filters at each voxel in such a way that they

produce a maximal response [22]. The feature vector for a voxel can be defined as

the convolution of the patch with the filter bank at a voxel, or as the energy of this

convolution [17].

* 2.5 Previous Work on CT Classification

Here, we survey previous research that aimed to classify CT scans of patients with

COPD and related diseases.

Comparing classifications across prior methods is challenging for a number of rea-

sons. Most previous work employed distinct clinical patient cohorts, largely due to

16 CHAPTER 2. BACKGROUND AND PREVIOUS WORK



the fact that few public sets of COPD scans are available. These cohorts have con-

tained from 18 [25] to 342 CT scans [14]. Additionally, a large part of the related

work is based on patient cohorts affected by diseases related to but not COPD. Most

previous work has also employed the results from a single scanner or scanning proto-

col, which limits transfer to new clinical cohorts as textures may manifest differently

with varying scanners and protocols. There has been some recent work [14] on newly

available multi-site patient cohorts [21, 23]. In previous work, 2D and 3D neighbor-

hoods of varying sizes were used for feature extraction to train classifiers. Typically,

these were square or cubic patches of a fixed size [14]; however, manually annotated

regions of variable shape have also been employed [17]. Additionally different types of

class labels have been investigated across different studies. Some studies focused solely

on identifying emphysema subtypes [6, 14, 24], while others treated emphysema as a

single texture class among other textures [4, 17, 18]. Additionally, the emphysema

subtypes and other textures present in images were not defined consistently across

different studies [17].

The majority of previous work focused on supervised learning for identifying clin-

ically defined emphysema subtypes, generally by classifying image patches. A broad

variety of modeling approaches have been employed, including Random Forests [17],

SVMs [3], and K-Nearest Neighbors [14]. Additionally, classification of lung disease

subtypes has been demonstrated for content-based image retrieval, which seeks to

retrieve earlier images similar to the input example [20].

A similar approach to ours was proposed by Dy et al. [6]. This work introduces a

partially supervised approach for lung texture classification, within the framework of

content-based retrieval. The authors used a collection of thoracic CT scans of patients

suffering from a variety of diseases related to and including emphysema. However, they

employed only two-dimensional regions for characterizing lung texture. Additionally,

they used supervised approaches to distinguish between emphysema subtypes, and then

perform unsupervised classification within these subtypes, which prevents discovery of

truly novel subtypes.

The most similar work to ours was proposed by Batmanghelich et al. [1]. This work

constructed a generative model that discovered disease subtypes based on imaging and

genetic data. In contrast, we discover emphysema subtypes in a strictly unsupervised

manner, by modelling both the heterogeneity of our patient population and the dis-

tribution of emphysema subtypes within groups of patients, based only on imaging

data.

Sec. 2.5. Previous Work on CT Classification 17
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Chapter 3

Choice of Texture Descriptors

In this section we discuss our data set and choice of texture descriptors. A variety of

texture descriptors are described in the previous chapter, some of which we analyze in

this section. As discussed in Section 2.5, COPD data sets differ greatly across their size

and choice of regions in which to classify and identify textures. Thus we must identify

the specific texture descriptors that are suitable to our cohort and problem. We employ

a supervised approach for feature selection, but not for training the generative model

discussed later in this thesis.

* 3.1 Data

We will investigate the proposed methods in the context of an imaging study that

includes CT scans of 2457 patients' lungs. COPDGene is a multicenter study that

acquired CT scans, genetic data, and physiological indicators such as spirometry mea-

sures, six-minute walking distance, height, weight, and blood pressure in COPD pa-

tients who are smokers [21]. The study's goal is to understand COPD subtypes,

pathology, and genetics. The data was collected by 21 sites across the United States,

using different CT scanners. The volumetric CT scans were obtained at full inhalation

and at relaxed exhalation. Image reconstruction produces sub-millimeter slice thick-

ness, and employs edge and smoothness enhancing filtering [21]. The images are then

resampled to obtain 1.5mm slice thickness. In addition, we have 1525 patches from

the CT scans of 267 patients from this cohort which were manually labeled by a clin-

ical expert [14]. The data was made available to us by our collaborators at Brigham

and Women's Hospital. This is an unusually large patient cohort, which promises to

provide new, powerful insights into the effects of emphysema and COPD on lungs.

19



* 3.2 Identifying Texture Descriptors

For each voxel in the image we seek to construct a feature vector whose entries cor-

respond to values of texture features extracted from a volumetric patch around the

voxel. Emphysema has been described at the level of the secondary pulmonary lob-

ule [14], therefore we selected patches large enough to encapsulate an entire secondary

lobule, but not too large as to blur the boundaries between regions. We chose to utilize

11x11x11 patches around each voxel. On our CT scans, these correspond to patches

of size approximately 24 x 24 x 24mm3 , which is the approximate size of secondary

pulmonary lobules.

We choose the appropriate texture descriptors by examining their accuracy in clas-

sifying patches that have been labeled by clinicians. Although a big motivator for

our unsupervised algorithm is that we wish to discover structure beyond that which is

available from clinician's labels, they still contain a degree of information that can be

harnessed to select the proper texture descriptors. For the feature selection, we used

the 1525 labeled patches from the CT scans of 267 patients. Each of these patches

was identified by one of four labels: centrilobular emphysema, panlobular emphysema,

paraseptal emphysema, and normal lung tissue.

To evaluate the classification accuracy, we performed repeated random

sub-sampling [2] 100 times on a balanced portion of the data set which was split

in half each time between testing and training data. We then trained a Support Vec-

tor Machine (SVM) classifier on the training set and evaluated its accuracy on the

testing set within each split.

We examined three types of texture descriptors: histograms, the discrete cosine

transform, and GLCMs, which are described in Section 2.4. Additionally, after a

primary exploration of the data we found that the vertical distance from the top of

the lung (normalized by lung size) correlates with the emphysema subtype, so we also

experimented with appending this value to the feature vector.

Initially, we examined the optimal number of bins for classification with histograms.

As shown in Figure 3.1, feature vectors consisting of 10 bins lead to as high a clas-

sification accuracy as those with higher bin counts. These feature vectors produce a

classification accuracy of 0.657.

We then applied the discrete cosine transform to the image patches and repeated

the classification experiment. As shown in Figure 3.1, we obtain a maximal classifi-

cation accuracy of 0.675 when using the first 11 Fourier coefficients in each direction.

However, this leads to an 11 3 , or 1331-dimensional feature vector. Further, we only

20 CHAPTER 3. CHOICE OF TEXTURE DESCRIPTORS



Sec. 3.2. Identifying Texture Descriptors

G4*

10 20 3C 40 0

(a) Accuracy with Histograms

+

G2

6 7 0 0 11

(b) Accuracy with the Discrete
Cosine Transform

1 42

(c) Accur-acy with GLCMs

Figure 3.1: Comparison of classification accuracies for different feature descriptors.

GLCM Feature Formula 1
Energy Yi E M

Contrast >i Z(i - j) 2 M2 2
Correlation Y: Z- L . MI - Z3py

Maximal Probability max{ MA 3 }
Dissimilarity Y ' & iz - jI Mij

Local Homogeneity Ti Zj 1+(z) AIZ

Entropy - E j Mi log(Mij)
Cluster Shade E (i + 3 - Ax - MY)3 Mij

Cluster Prominence K E (i + j - PX - PY)4 - M

Table 3.1: Table describing features that we extracted from GLCMs.

obtain accuracy comparable to that of the histogram feature vectors when using the

first 8 Fourier coefficients, which corresponds to a 512-dimensional feature vector.

We then repeated the classification experiment with feature vectors that consist

of features extracted from GLCMs. To construct the GLCMs, we first discretized the

patches into eight image intensity levels. We examined rotationally invariant features,

since lung texture features do not appear to exhibit a direction. These were produced

by summing the GL CMs over uniformly distributed directions in three dimensions and

extracting features from this new matrix. We examined offsets of distance one and

three and used nine common feature descriptors. These are listed in Table 3.1. In this

table, Mij corresponds to the entry in row i and column j in the GLCM. Additionally,

p,, = E i X Mij and /pt = Jgj JE Mij. Similarly or = E(i - px)2 E Mij and

go2 = Ej(j - pgt )2 E i Mij.

We found that we obtained a classification accuracy of 0.721 when using an offset

distance of 1, and an accuracy 0.719 with an offset distance of 3, as shown in Figure 3.1.

21
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Figure 3.2: Comparison of classification accuracies of GLCMs with a variable number
of histogram bins appended.

These three types of texture descriptors - histogram, the discrete cosine transform,

and GLCMs capture different aspects of texture within the patch. Histograms capture

the intensity distribution, while Fourier components capture the strengths of various

frequencies within a patch. GLCMs capture patterns of intensity variation between

the voxels.

It is slightly surprising that texture descriptors as simple as histograms prove so

accurate at differentiating the emphysema subtypes. Previous work [14] has demon-

strated that histograms are more accurate than several more complex approaches at

predicting emphysema subtypes. A possible explanation for the good performance

of histograms is that image intensities account for a large fraction of differences in

emphysema subtypes.

We then experimented with combining GLCMs and histograms to produce texture

descriptors. The motivation behind this is that both feature descriptors produce low-

dimensional representations and each captures different aspects of the texture. The

feature vectors were constructed by appending various numbers of histogram bins to

a feature vector consisting of GLCM descriptors. The classification accuracy is shown

in Figure 3.2. As can be seen in the Figure, there is very little improvement from

appending more than 2 histogram bins. With such feature vectors, we achieve a

classification accuracy of 0.792. We also appended the distance from the top of the

lung to our feature vector, but the classification results remained virtually identical.

Thus our feature vectors are 11-dimensional, where the first nine values correspond

to GLCM features, and the next two values correspond to histogram bins from the

patch around the voxel. This combination of descriptors captures different aspects of

texture, which creates powerful feature vectors.
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Chapter 4

Generative Model

In this chapter, we present a probabilistic generative model that captures assumptions

about the population structure of our cohort. We then derive a corresponding inference

algorithm. The generative model assumes that each underlying patient cluster shares

a common distribution of disease subtypes. This is an assumption supported by the

clinical understanding that different disease subtypes and combinations of subtypes

correlate with distinct clinical prognoses [23]. The evaluation of the identified patient

clusters and disease subtypes will be described in Chapter 5.

N 4.1 Formulation

Our generative model relies on the assumption that there are K underlying patient

clusters, each characterized by a different distribution of disease subtypes. We use N

to denote the total number of CT scans in the study. When processed, each scan is

represented by R non-overlapping patches. Let Snr be the patch around voxel r in

patient n. Patches are entirely contained within a lung. We apply a chosen feature

extraction method to Snr to construct a feature vector Fnr E Rd. The feature vectors

{Fnr} serve as the input into our algorithm. The images are not spatially aligned, as it

is challenging to find spatial correspondences between lungs of different individuals [15].

In the experiments presented in the next chapter of this thesis, we use a combination

of Grey Level Co-Occurrence Matrix (GLCM) [18] features and intensity histograms as

feature descriptors; the modeling approach readily accepts a broad range of descriptors.

The full generative model and a summary table of the parameters and variables is

shown in Figure 4.1.

The distribution of cluster assignments for any patient in the study is parameterized

by ir and is represented by a vector Cn for patient n. Cnk 1 if patient n belongs to

cluster k; Cnk = 0 otherwise. For all patients in cluster k the distribution of disease

subtypes is parameterized by ak and is represented by Lnr for patch r in patient n.

23
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C '\
Cn

Lnr a
K

Fnr

R
N

Ps,
S

Parameter/Variable Description

N Number of patients

S Number of subtypes

R Number of regions in each patient

K Number of patient clusters

7r Frequency of each patient cluster

Ozk Frequencies of emphysema subtypes in cluster k

As Mean of subtype s

E, Variance of subtype s

C Cluster label of patient n

Lnr Subtype of patch r in patient n

Fnr Feature vector of patch r in patient n

Figure 4.1: Graphical representation and summary of variables and parameters of the
generative model.



Each patch belongs to one of S disease subtypes. Lnrs = 1 if the patch belongs to

subtype s; Lnrs = 0 otherwise. We use a Gaussian distribution K(-; p, E) with mean p,
and covariance E, to model feature vectors in the disease subtype s.

The generative model can be summarized as follows:

K

Cn ~ ]J 7raCnk7 (4.1)
k=1

K R S
LnICn ~ 1 1 1 H(aks)LnrsCnk, (4.2)

k=1 r=1 s=1

R S

FnJLn ~ H 71(Fnr;IAsEs)Lnrs. (4.3)
s=1 r=1

Each subject is viewed as an independent and identically distributed sample from this

distribution, giving rise to the full likelihood model:

N K R S
p(F, C, L; a, r, ) = Hi 11 17 (rkoaks Lnr )CnkA f(Fnr; As, E.,)L-r. (4.4)

n=1k=1r=1s=1

We set the number of patient clusters K and the number of disease subtypes S. The

observed data consists of feature vectors {Fnr} of N patients for whom we extracted

features from R patches each. We aim to infer the most likely subtype Lnr for each

patch r in patient n and the most likely cluster C, for each patient n. Additionally, we

estimate the parameters: the mixing proportions of the patient clusters 7r, the mixing

proportions of the disease subtypes {ak} for each patient cluster, and the means and

variances {y, E, } of the image features for each disease subtype.

* 4.2 Inference with the Expectation-Maximization Algorithm

We perform inference on the model via an algorithm based on the variational

Expectation-Maximization (EM) algorithm [2], which approximates the exact EM al-

gorithm. In the exact EM algorithm, we seek to maximize the marginal log-likelihood

lnp(F; a, 7r, p, E) over the observed variables by iterative coordinate ascent [2]. To de-

scribe the exact EM algorithm, we re-write the marginal log-likelihood lnp(F; a, ir, p, E)

by choosing an arbitrary distribution q over the latent variables C and L. We then

obtain:

Sec. 4.2. Inference with the Expectation- Maxi mizat ion Algorithm 25



26 CHAPTER 4. GENERATIVE MODEL

In p(F; a,ir, p,E)

=Eq [in p(F, C, L; a, 7r, p, E)] - Eq [in p(C, LIF; a, 7r, p,

=Eq In p(F, C, L; a,7r,iyE)~ - E [i p(C, LIF; a, 7r, E)
I q(C, L) q(C, L) _

= Lq(F, C, L; a, ir, p, E) + KL(q(C, L)Ilp(C, LIF; a, 7r, ,, (4.5)

where

Lq(F, C, L; a, 7r, i, E) = Eq [In P(F L
q(C, L)

N K N K R S

= E S in7rkEq [CnkIF, a,7r, En] + ( E E E In aksq [LnrsCnk|F, a,7r, p,
n=1 k=1 n=1 k=1 r=1 s=1

N R S

+ 555 Eq[Lrrs IF, a, -K, i, E - InA(Fnr; ps, Es) + H(q(C, L)), (4.6)
n=r=1 s=1

where H(q(C, L)) is the entropy of q(C, L), and

KL(q(C, LIp(C, L|F; a, 7r, y, E)) = Eq In p(C, LIF; a, ', , (4.7)
1 q (C, L)

is the Kullback-Liebler (KL) divergence between q(C, L) and p(C, L|F; a, ir, y, E).

Since the KL-divergence is non-negative, Lq(F, C, L; a,ir, y, E) is a lower bound for

ln p(F; a, 7r, p, E).

The exact EM algorithm then iteratively maximizes ln p(F; a, 7r, p, E) by maximiz-

ing the lower bound Lq(F, C, L; a, 7r, /t, E). In this algorithm, we randomly initialize

the parameters a, 7r, y, and E. Then the algorithm iterates between two steps until

convergence criteria are met: the expectation step (E-step), and the maximization

step (M-step).

In the E-step, we hold the model parameters fixed and find the parameters of the

approximating distribution, q, that maximize L,(F, C, L; a, ivr, , E). We then compute

the values of expectations seen in equation 4.6 for the current estimates.

The KL-divergence is non-negative, so we can see by inspecting equation 4.5 that
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Lq(F, C, L; a, 'r, /t, E) will be maximized when

KL(q(C, L) IIp(C, LIF; a, 7r, p, E) = 0. (4.8)

For this to hold, we must set

q(C, L) = p(L, CIF, a, 7r, y, E) (4.9)

the full posterior distribution. At the end of the E-step,

Lq(F, C, L, a, lr, A, E) = In p(F, a, 7r, i, E). (4.10)

In the M-step, we hold the parameters of q(C, L) fixed and maximize

Lq(F, C, L; a, 7r, it, E) with respect to model parameters a, 7r, p, and E in

Lq(F, C, L; a, ir, 1 , E). The values of the expectations evaluated in the E-step are

necessary to perform these calculations. Maximizing the lower bound in the M-step

causes the marginal log-likelihood of the data to increase at every step.

E 4.3 Variational Expectation Maximization

In the exact EM algorithm presented above we must compute the expectations in

equation 4.6 with respect to the full posterior distribution in the E-step. This is

intractable due to coupling between the latent variables C and L. Thus, we employ

a variational EM algorithm [2]. The difference from the exact EM algorithm is that

we constrain the distribution q(C, L) in a way that will simplify our derivations in the

E-step [2]. We choose q(C, L) to approximate the full posterior distribution with a

product of two categorical distributions:

N K R S
q(C, L; 4, ) = qc(C; V) - qL(L; 0) =fl 1 n HH L111 11 nrs

n=1 k=1 r=1 s=1

where 4 and 9 are variational parameters. In this case the expectations in the E-step

become:

Eq(C,L;,O,O)[LnrsCnkIF, a, 7r, M, E]] = nk * -nrs ,

Eq(C,L;e,G)[CnkIF, a, 7r, M, Y] = nk,

Eq(C,L;e,O)[LrsIF, a, 7r, p,] = Gs. (4.12)
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This enables us to re-write the lower bound Lq(F, C, L; a, 7r, p, E) in equation 4.6

as follows:

Lq(F, C, L; a, 7r, y,
N K N K R S

= S 5 ln lrkEq(c) [Cnkl + 555 ( ln aksEq(L)[Lnrs] -Eq(c) [Cnk]
= n=1 k=1 r=1s=1

N R S

+ 555 Eq(L) [Lnrs] -In A(Fnr ; p,, E) + H(qc(C; 0)) + H(qL(L; 9))
n=1 r=1 s=1

N K N K R S

= >35 ln(rk)Onk 5555 In aksnk - nrs

n=k=1 n=1k=1r=1s=1
N R S

- 2 s1 5 (d -ln(2r)+ lnIs|+(Fnr - s)T(Fnr - p)T )
n=1 r=1 s=1

N K N R S

- E35 /nk ln 'nk -- 5 35 Onrs In Onrs
n=1k=1 n=1r=1s=1

= LrL, )(q(F, C, L; a, ,r, , )). (4.13)

In the variational algorithm, we iteratively optimize this variational lower bound

for lnp(F; a, 7r, pu, E) with respect to the parameters {lrk, aks, As, Es, /nk, nrs}. We

randomly initialize the parameters and then iterate between the E-step and M-step

until convergence.

In the E-step, we hold the model parameters ir, a, pu, and E fixed and esti-

mate the variational parameters / and 9 to maximize the lower bound in equa-

tion 4.13. Unlike the exact EM algorithm, we can no longer find q(C, L) such that

KL(q(C, L; 0, 0) 11p(C, LIF; a, ir, p, E)) = 0, so the lower bound is no longer equal to

the marginal log-likelihood at the end of the E-step. The M-step proceeds as in the

exact EM-case.

Once the parameter estimation process is complete, we determine the cluster la-

bels C, and the disease subtype labels Ln, by maximizing the approximate posterior

distributions qc(Cn; On) and qL (Lnr; Onr) respectively.

This algorithm is highly similar to the EM algorithm described in the previous

section. However, in the variational algorithm, we are maximizing the lower bound

LL (F, C, L; a, 7r, p, E) in equation (4.13), instead of the general lower bound

Lq(F, C, L; a, 7r, /t, E). At the end of every E-step in the exact EM algorithm the lower

bound equals Inp(F, a, 7r, P, E), which is not true in the variational algorithm, so the
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Algorithm 1: Variational EM Algorithm for Patch and Patient Classification

1. Select R patches from each of N patients to obtain {Snr}.

2. Extract features from each patch, Fnr = F(Snr).

3. Randomly initialize parameters a, 7r, y and E.

4. E-Step: Determine 0*, 0* = argmaxo,,{L (F,C, L; Q, r, u, Y)}:

S R
OC J~J OflrsOnk OCHH ak,
s=1 r=1

K

Onrs OC ak5, s.
k=1

K

,S.t Y. O nk = 1i
k=1

S

t. Z nrs = .
s=1

5. M-step: Determine

a* r argmax {L )(, C, L; a, 7r, y,

N

Irk E nk
n=1

N R

ak, 'C VnkZ nrs, s.t
n=1 r=1

IN R

As = NqE1:Ors * Fnr,
,n=1 r=1

S

Eaks=1,
s=1

N R

where N, = E E 0
7rs,

n=1 r=1

I N R _I JNs Onrs . (Fnr - As) - (Fnr -
n=1 r=1

6. Repeat steps 2 or 3 until convergence criteria are met.

7. For each (n, k), set Cnk =

8. For each (n, r, s), set Lnrs

0
if /nk = maxk{ qc(Cnk; 'Vk)}

otherwise

I if nrs =maxs{qL(Lnrs; Onr)}

otherwise
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variational algorithm is not guaranteed to maximize the log-likelihood at every step.

However, the variational approximation enables us to implement our algorithm. In

practice, these types of variational algorithms are highly effective and converge to

good results.

U 4.4 Deriving the E-Step

In the E-step, we keep the parameters of the full likelihood model fixed and seek to

calculate the parameters of q that maximize La, (F C, L; a, 7r, p, E):

We find

9*, /* argmaxo,{L, L;p)(F, C, L; !, r, 1, E)}. (4.14)

Equation 4.14 remains challenging to optimize simultaneously with respect to

both 9 and 0, since for a given value of n, 'nk and Onrs are coupled. Instead, we

iteratively optimize LE,O) (F, C, L; a, 7r, yi, E) with respect to the 0 and the 9 pa-

rameters separately. Once we hold the 9 parameters fixed, the / parameters are

decoupled, so we maximize each value of Onk and On,, independently.

With respect to a given ?nk, the expectation is convex. We can find the maximum

by taking the derivative of L )(F, C, L; a, 7r, p, E) with respect to /nk and setting

it to 0. We have that for all n, EKi 1 nk 1,so we add a Lagrange multiplier before

taking the derivative. The terms of (4.13) that contain a given /nk, along with the

Lagrange multiplier, are

R S K

Onk S 5 ln a0ks nrs - Ink In Onk + an (1Z /nk - 1). (4.15)
r=1s=1 k=1

By taking the derivative with respect to 'nk and setting it to 0, we obtain

R S

Z Z In aks nrs - In 4 nk - 1 + a,, 0. (4.16)
r=1 s=1

With a bit of algebra, and setting /3, = exp (1 - an). we obtain:

R S

1 Onr = O nk. (4.17)
r=1 s=1
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By summing over all k, we obtain:

1K

k=1nk
k=1

K R S

=1=1= Onrs

k=1 r=1 s=1

Hence we have the update rule for /nk:

R S

On~k fj f6 , where On=EKI
r=1 s=1

HR H lS 1 Inr".r

Similarly, we can derive the update rules for 6 nrs:

K
* atk where -YrPk1 1 (4.20)n Yn 171kn5 k1k-i

nr k=1

* 4.5 Deriving the M-Step

In the M-step, we determine the values of the parameters of the full likelihood model

that maximize Lr 0,)(F C, L; a, 7r, p, E) while keeping the parameters of q fixed.

In other words, we find:

a*, * p*, E* argmax ,,,:{L L;,OO) (F, C, L; a, 7r, p, I)}. (4.21)

* 4.5.1 Deriving the update rule for 7r

We derive the update rule for 7r as in the case of the standard EM algorithm. We have

that Z 7rk = 1. So we add a Lagrange multiplier to the terms of (4.13) that contain

7rk:

N K

E E In 7rkVnk + 71
n=1 k=1

irk - 1 . (4.22)

Taking the partial derivative with respect to irj produces

N

7 n=1
(4.23)

(4.18)

(4.19)
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We set this to 0 to find the optimal setting of irj. Thus EN V),, = n i-yr. Summing

over all such k, we derive

N K K

ZZ1bnk = E Z k =r,, (4.24)
n=1 k=1 k=1

based on the constraint that ZK 1 irk = 1. Thus

N K

7 = YZ nk = N. (4.25)
n=1 k=1

Hence, we have that

n=1

N 4.5.2 Deriving the update rule for a

We have that for all k, ES-1 ak, = 1. Hence for all k, we add a Lagrange multiplier

to the terms of (4.13) that contain a to obtain:

N R S S

Z Z 1 ln aknrs nk +vk (Z aks - 1). (4.27)
n=1 r=1 s=1 s=1

Taking the derivative with respect to a given akj, we calculate:

N R

S 5OnrV'nk - vk - aij = 0. (4.28)
n=1 r=1

By summing over all s and re-arranging, we have that:

N R S N

k E OnkE Onrs -R - nk. (4.29)
n=1 r=1 s=1 n=1

Thus, we obtain:

N R N

akj -55 'nk Onjr, where vk D R- E /)nk- (4.30)
Vk n=1 r=1 n=1
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E 4.5.3 Deriving the update rules for A, and E

The terms of L ;)(F, C, L; a, 7r, A, E) that contain A, are

- E nr- (Fnrs - pt)T-(Fnrs - As) (4.31)
n=1 r=1

Taking the derivative with respect to fs and setting it to 0, we obtain:

N R

Onrs (EsIns - Eslpts) = 0. (4.32)
n=1 r=1

It follows that:

N R N R

ps = - E nrs * Inr, where N = EL 9 nr. (4.33)
n lr=1 n=1r=1

We similarly find the update rule for E,, which is

1N R

E* E nrs -(Fnr - As) - (Fnr - s)T. (4.34)
n=1 r=1
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Chapter 5

Analysis of the Generative Model

and Discussion of Results

In this chapter, we discuss the implementation and performance of the algorithm de-

scribed in the previous chapter. We present the methods used determine the number of

patient clusters and the number of disease subtypes and examine parameters estimated

by our model. To ensure that our algorithm's results are meaningful, we analyze the

spatial contiguity of the disease subtypes and the model's stability. We conclude by

discussing the clinical relevance of our results.

* 5.1 Parameter Selection

The algorithm was run on 2457 patients with 1000 non-overlapping patches randomly

chosen from each patient. The patches are 11 x 11 x 11 and the feature vectors are

11-dimensional where the first 9 values consist of GLCM features, and the last two

consist of histogram bins, as described in Chapter 3.

The algorithm was run on a range of the number of patient clusters K and disease

subtypes S. We chose to examine the model with eight patient clusters and six disease

subtypes, as this was the largest number of disease subtypes and patient clusters for

which each patient cluster and disease subtype received at least five percent probability.

The rest of this chapter proceeds with a discussion of the algorithm's performance with

eight patient clusters and six disease subtypes.

N 5.2 Disease Subtypes

Patches belonging to each of our disease subtypes are shown in Figure 5.1. Subtype 1

is the one that most closely corresponds to normal lung tissue.

We compared the disease subtypes identified by our model to clinically identified

35
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Figure 5.1: Patches showing different disease subtypes identified by our model.

Clinical Label ST 1 ST 2 1ST 3 ST 4 ST5 ST 6

Normal Lung Tissue 339 0 1 103 7 61

Panlobular Emph. 1 146 9 0 0 0

Paraseptal Emph. 16 53 100 48 20 6

Mild Centrilobular Emph. 96 3 11 68 3 30

Moderate Centrilobular Emph. 69 74 112 28 4 2

Severe Centrilobular Emph. 8 57 49 0 0 0

Table 5.1: Confusion matrix between clinically defined subtypes and automatically
detected subtypes. The values in the table correspond to the number of patches with
the corresponding clinical label and detected subtype.

I
ones. To this end, we used the labelled patches described in Chapter 3, though we

employ different clinical labels from the one used in Chapter 3 for feature selection.

Here, we have six clinical labels for our patches: normal hung tissue, panlobular emphy-
sena, and paraseptal enphysenma, almng with mild, moderate, and severe centrilbular

emphysema.
A confusion miatrix between the disease subtypes and the clinical labels is shown in
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Patient Cluster 1 2 3 4 5 6 7 8

Proportion of Patients (7r) 0.258 0.219 0.146 0.123 0.092 0.059 0.053 0.051

Table 5.2: Settings for -F: mixing proportions of the patient clusters

07; 0

06006 06
0 a~s as

0 - 03 0 30

I _ _.4I . . m -

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

0 ~ 1

(e) Cluster 5 (f) Cluster 6 (g) Cluster 7 (h) Cluster 8

Figure 5.2: Expected distribution of subtypes in each patient cluster. The graph for
cluster k corresponds to the values of ak.

Table 5.1. Subtype 1 most closely corresponds to normal lung tissue. On the labelled

portion of our data set, we found that 67% of patches that were labelled as clinically

normal were placed in the same disease subtype by our algorithm, and clinically normal

patches represent 64% of all labelled patches within this disease subtype. Panlobular

and paraseptal emphysema correspond to disease subtype 2 and subtype 3 respectively.

Our results suggest that centrilobular emphysema is a mixture of identified disease

subtypes 1, 2, 3 and 4.

* 5.3 Patient Clusters

The values for IF, i.e. the proportion of patients in each cluster is reported in Table 5.2.

The values of the expected proportion of subtypes a in each patient category is dis-

played in Figure 5.2. In this figure, the plot for cluster k corresponds to the values
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of a0 k - the proportion of subtypes in cluster k. We observe that the distributions

of the subtypes is quite different for each patient cluster, which shows that we have

successfully identified distinct patient clusters.

Figure 5.3 shows labelled lungs of patients in different patient clusters. In these

images, each color corresponds to an emphysema subtype or normal tissue, which is

closest to the blue label.

* 5.4 Spatial Contiguity

Emphysema clusters spatially in the lungs, as do the disease subtypes our algorithm

identifies, as can be seen in Figure 5.3. We evaluated spatial contiguity by permutation

testing [81. For each voxel labelled by our algorithm we compute the proportion of

neighboring voxels that belong to the same disease subtype. We then average this

value over the entire lung to obtain a spatial contiguity score. To obtain a distribution

of the score under the null hypothesis we assigned voxels within the lungs to random

disease subtypes 1000 times for each scan while maintaining the proportion of disease

subtypes for each lung that was identified by our algorithm. We found that across all

CT scans, the spatial contiguity scores produced by our algorithm are greater than the

maximal values in the corresponding null distribution. This corresponds to rejecting

the null hypothesis with p < 0.001. Spatial contiguity is an important result, as we

have not imposed this constraint on our model, and instead it organically arose out of

the data.

N 5.5 Model Stability

We analyze the model's stability, using a method motivated by Levine, et al. [7]. We

ran our algorithm on a randomly selected half of the scans and labelled the remaining

scans based on the estimated model parameters. In particular, we assigned each patient

to the most likely cluster, and we assigned each voxel to the most likely subtype. We

repeated this process 10 times. Hence, we obtain 10 assignments of patients to clusters,

and 10 assignment of voxels to subtypes. We only compare the assignments of voxels

to subtypes in 100 patients, since it would be too cost-intensive to compute for all

of the patients. We calculate the adjusted mutual information between each pair of

assignment of patients to clusters, and average these values. Similarly, we calculate the

adjusted mutual information between each pair of assignment of voxels to subtypes,

and average these scores.

This adjusted mutual information score between two cluster assignments X and Y
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Figure 5.3: Slices from example CT scans from each of the eight patient clusters
identified by our algorithm. Colors correspond to disease subtypes identified by our
algorithm. Blue most closely corresponds to normal lung tissue.
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is defined as
I(X, Y) - E[I(X, Y)]

max(H(X), H(Y)) - E[I(X, Y)]'

The score takes on values between 0, when the mutual information between two

cluster assignments equals its expected value, and 1, when two cluster assignments

are identical [26]. Here, E[I(X, Y)] is the expected mutual information in the case

that X and Y have the same proportion of elements in each cluster, but the two

cluster assignments are independent. I(X, Y) is bounded by max(H(X), H(Y)), so

max(H(X), H(Y)) - E[I(X, Y)] ;> I(X, Y) - E[I(X, Y)]. This will be equal precisely

when I(X, Y) is maximized, that is when X and Y are identical, producing a score of

1. When X and Y are independent, I(X, Y) = E[I(X, Y)], so the score is 0.

The averaged score across assignments to patient clusters is 0.60 - which shows

some stability in these labelings. The averaged score across assignments of voxels

to disease subtypes is 0.79. This suggests that the identities of the disease subtypes

are more stable than the identities of the patient clusters, though both are consistent

across running the algorithm on different subsets of the data. This is likely due to the

fact that the disease subtypes are more directly linked to the data, while the patient

clusters are linked to the data only through the disease subtypes.

* 5.6 Associations with Physiological Indicators

To evaluate the clinical relevance of our model, we quantify the associations between

the structure detected by our method and the physiological indicators relevant to

COPD: six minute walking distance, body mass index (BMI), forced vital capacity

(FVC), forced expiratory volume (FEV), change in FVC value from treatment, and

the ratio between the FEV and FVC values. We ran our algorithm on a randomly

selected half of the scans and labelled the remaining scans based on the estimated

model parameters. In particular, we assigned each patient to the most likely cluster

and constructed an empirical distribution of disease subtypes for the patient based on

the image patches. We repeated this procedure 100 times to estimate variability in

the results.

We constructed three baseline models by eliminating patient clusters (K = 1) or

disease subtypes (S = 1) or both (K = 1, S = 1). In the last case, we extract feature

vectors from patches in each patient, and then average and normalize the feature

vectors in each patient to produce a single patient-specific feature vector.



* 5.6.1 Methods for Quantifying Association

The association between patient clusters and physiological indicators is quantified via

the normalized mutual information score [26].The normalized mutual information score

of two random variables X and Y is defined as

I(X, Y) (5.2)

VH(X) -.H(Y)

where I(X, Y) is the mutual information between X and Y, and H(X) is the en-

tropy of X. This score takes on values between 0 (no association), and 1 (perfect

dependency).

To quantify the associations between distributions of disease subtypes or the aver-

aged normalized feature vector for a patient and a physiological indicator we perform

linear regression. We have a physiological indicator c, and ai is the proportion of sub-

type i in a given patient or the i-th entry in a feature vector. The linear regression

finds the optimal settings for {}1= to best approximate c = f3iai across all

patients. We can quantify the strength of this correlation with the R2 score, which is

the percentage of the variance in c that is explained by the linear regression. The R2

score is defined as

R2 X =1 (Cj - f2 (5.3)
6(cZ -( )2

where fj = 1:6 _Oiaj, and E = _ cj. R2 takes on values between 0 (no linear

correlation), and 1 (perfect linear correlation).

Different metrics are used to quantify the associations between patient clusters and

proportions of disease subtypes or feature vectors, since the former is a discrete label

while the last two are continuous quantities.

N 5.6.2 Discussion of Identified Associations

Fig. 5.4 reports the associations for all models. These results demonstrate the advan-

tage of modelling both patient clusters and disease subtypes. We observe that there is

a stronger association between physiological indicators and patient clusters in the full

model than in the model with only clusters. For all physiological indicators, there is

a higher association with the distributions of disease subtypes in the full model than

in the model with only disease subtypes. This demonstrates that modelling patient

clusters produces more clinically relevant distributions of disease subtypes in each pa-
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Figure 5.4: Left: R2 value between the distributions of disease subtypes or feature
vectors and physiological indicators. Right: Normalized Mutual Information between

patient clusters and physiological indicators.

tient. The model without patient clusters or disease subtypes exhibits even weaker

associations than a model with only disease subtypes.

* 5.7 Discussion

We have shown that our method produces spatially contiguous clusters - which is an

isportant verification of our results since emphysema patterns tend to (luster spatially.

We have also shown that our method is stale across inns on different subsets of the

data.

The clinical relevance of our model is demonstrated by the associations between

both patient clisters and distributions of subtypes and a variety of physiological indi-

cators. Additionally, there are certain physiological indicators that correlate strongly

with patient clusters but not with distributions of disease subtypes, showing the im-

portance of the patient clusters. It appears that some clinical information is present in

the distribution of subtypes but not in the patient clusters, suggesting that the patient

clusters may not capture all of the necessary clinical informiation. We have shown that

our model has small but significant advantages over a model in which only subtypes or

clusters are modeled, and even larger advantages over a model with neither subtypes

nor clusters.



Chapter 6

Conclusions and Future Work

The work presented in this thesis enables us to model population structure across a

large cohort of patients and to differentiate groups of patients that exhibit the same

distributions of emphysema disease subtypes and consequently may have the same

clinical prognoses and manifestations of the disease. Additionally, our method enables

us to distinguish three-dimensional textures in CT scans of lungs affected by COPD,

which correspond to distinct disease subtypes.

* 6.1 Contributions

In this thesis, we presented an unsupervised framework for the discovery of both patient

clusters and of disease subtypes. Specifically, we construct a generative model that

parameterizes the assignment of voxels in CT scans to subtypes and the assignment of

patients to clusters. The observed data for our algorithm consists of texture descriptors

of patches extracted from CT scans of patients with COPD. Our model performs

inference using a variational expectation-maximization approach.

Our model enables us to harness the information available in our data set of 2457

CT scans and identify disease subtypes in the context of population structure. We

examine the performance of our model and demonstrate that the patient clusters and

disease subtypes that our model produces are clinically relevant.

* 6.2 Extensions and Future Work

Our work could be extended by incorporating several clinical markers into the gen-

erative model. In this work, we compare our clusters to these markers but do not

model them directly. Many clinical markers correspond to patient prognosis, so their

inclusion could cause patients with similar disease prognosis and disease phenotype to

be assigned to the same cluster.
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Another extension is to incorporate clinically defined subtype labels in a semi-

supervised manner. In this framework, our algorithm would generally proceed in

an unsupervised manner, but it would attempt to group regions of the lung that

clinicians assign the same label to into the same subtype. This model would likely

produce different results than the model that we describe in this thesis. It would then

be possible to explore how clinician's labelings of emphysema subtypes change the

patient clusters.

Further, the patient clusters that our model produces merit further exploration. It

would be worthwhile to examine their correlation to genetic markers. An additional ex-

tension is to directly examine whether different patient clusters exhibit distinct clinical

prognoses or respond to different clinical interventions.
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