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Abstract We present an algorithm that can anticipate tax evasion by modeling the

co-evolution of tax schemes with auditing policies. Malicious tax non-compliance,

or evasion, accounts for billions of lost revenue each year. Unfortunately when tax

administrators change the tax laws or auditing procedures to eliminate known

fraudulent schemes another potentially more profitable scheme takes it place.

Modeling both the tax schemes and auditing policies within a single framework can

therefore provide major advantages. In particular we can explore the likely forms of

tax schemes in response to changes in audit policies. This can serve as an early

warning system to help focus enforcement efforts. In addition, the audit policies can

be fine tuned to help improve tax scheme detection. We demonstrate our approach

using the iBOB tax scheme and show it can capture the co-evolution between tax

evasion and audit policy. Our experiments shows the expected oscillatory behavior

of a biological co-evolving system.

Keywords Tax evasion � Co-evolution � Grammatical evolution � Genetic
algorithms � Auditing policy � Partnership tax

1 Introduction

The 2006 U.S. gross tax gap, i.e. the difference between the tax owed and the tax

paid on time, was estimated at $450 billion (IRS 2006). The Government

Accountability Office (GAO) further estimates that $91 billion of this tax gap can

be attributed to income hidden in tax shelters composed of multiple ‘‘pass-through’’
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entities, such as partnerships, S corporations and trusts (GAO 2014a). Financial and

legal enterprises scour the tax code in search of ambiguities in order to discover and

promote abusive tax shelters. Such illegal tax avoidance strategies use complex

transactions within networks of tax entities that are designed to reduce and obscure

the tax liabilities for their individual shareholders. For the purpose of discussion

here we categorize such sequences of transactions as ’tax evasion schemes’ in

contrast to legal tax avoidance strategies that adhere to the letter and intent of the

tax code.

While tax auditors have historical examples of tax schemes to help guide

examination efforts, tax shelter promoters often adapt their strategies as existing

schemes are uncovered and/or when changes are made to the existing tax

regulations. One notable example is the so called BOSS tax shelter (Bond and

Options Sales Strategies) that was widely promoted yet was ultimately disallowed.

While audit changes were implemented to detect BOSS they were not able to detect

the newly emerged variant ‘‘Son of BOSS’’ (Wright 2013). This is typical of the

arms race between tax evaders and tax auditors. The significant challenges posed for

enforcement efforts here have prompted recent congressional action to address some

ambiguities in partnership audit and adjustment rules (Accountancy 2015).

There remains however significant challenges to enforcement efforts that arise from

two primary sources. (a) the complexity of the tax code: tax law is not only qualitatively

difficult to parse from a natural language perspective, it is quite interconnected (Li

et al. 2015; Katz and Bommarito 2014) as can be quantified by the number of links

between paragraphs. Furthermore calculation of certain tax quantities can be

complicated and byzantine. For example, owners of a partnership need to adjust

separate basis values and use one of two similar definitions of ‘‘built-in substantial

income’’ as described by Internal Revenue Code (IRC) §734 and §743. (b) dispersed,

sensitive and obfuscated data: tax reporting data is distributed and fraudsters

purposely obscure their intentions. These individuals often obfuscate their schemes by

using large hierarchies of entities, e.g. up to 100 tiers and 100,000 partners (GAO

2014b), providing as little information as possible and stalling reporting data. The

auditors work with aggregated and dispersed tax data, e.g. on form 1065 (Schedule

K-1)1 many of which might be filed as separate paper attachments.

In this paper we describe a methodology that can help detect strategies for

reducing tax liability by offsetting real gains in one part of a portfolio by creating

artificial capital losses elsewhere, specifically those that utilize the complicated

partnership tax law in Subchapter K of the IRC. While there are other strategies for

abusive tax avoidance that involve related party agreements, services pricing, or

state and local tax (SALT) jurisdictional items, we consider partnership tax for this

initial analysis. The tax schemes here consist of sequences of transactions between

entities in ownership networks that, when taken individually, appear compliant.

However, when all transactions are combined they have no other purpose than to

illegally mitigate tax liability and can potentially be labeled as tax evasion.

Propitiously, it is possible to disallow tax evasion by one of many anti-abuse

doctrines, e.g. the ‘‘economic substance’’ doctrine, which specifies that transactions

1 http://www.irs.gov/uac/Form-1065,-U.S.-Return-of-Partnership-Income.
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must contain both economic substance and a business purpose (Rostain and Regan

2014).

Tax auditors typically use protocols to rate whether an entity is suspicious

enough to undergo a full audit (Andreoni et al. 1998). Such a full audit is a thorough

investigation of the reported financial information to establish the correct tax

liability (IRS 2014a). Our goal is to develop algorithms that can model the co-

evolution of tax schemes as represented by networks of transactions with their

corresponding audit observables.

Our approach to detecting tax evasion places us in the realm of AI research and legal

reasoning that started in the 1970s (Buchanan and Headrick 1970). The field of AI and

law (Sartor and Rotolo 2013; Bench-Capon et al. 2012) deals with simulation of norms

and their emergence (Aubert and Müller 2013; Dechesne et al. 2013; Lotzmann et al.

2013). Pioneeringwork regarding taxes occurs in ‘‘Taxman’’ (McCarty 1977) andmore

recently in tax non-compliance modeling of real estate policy (Boer and Engers 2013).

Machine learning has recently emerged as a means of detecting suspicious transactions.

It relies upon known historical examples labeled to be compliant or non-compli-

ant (DeBarr andEyler-Walker 2006). The requirement of data labeled in thismanner for

training (Surden 2014; Ngai et al. 2011) limits the use of detection methods to identify

already known cases of abuse. Alternatively unsupervised techniques can be used to

cluster transactions based on their common resemblance. This requires a measure of

similarity between different transaction types as well as knowledge to classify a cluster

as abusive. In contrast our model does not require taxpayer data (it is similar to a

minmax search in a game of chess) and has the added advantage of alleviating any data

privacy concerns. The current paper specifically extends the prior efforts (Warner et al.

2014; Hemberg et al. 2015; Rosen et al. 2015) that describe tax evasion detection

through evolutionary search.

We proceed as follows in describing how our method Simulating Tax Evasion

and Law Through Heuristics (STEALTH) can be used to anticipate abusive tax

avoidance schemes. In Sect. 2 we begin with a background of the partnership tax

law fundamentals used in STEALTH and the related tax modeling literature. The

detailed methodology of how co-evolutionary heuristics can be used to search-and-

score tax schemes and audit plans is described in Sect. 3. In Sect. 4 we demonstrate

the capability of STEALTH to identify an artificial basis step-up tax scheme called

iBOB . Conclusions and future work are described in Sect. 5.

2 Background

We begin with a background of partnership tax law fundamentals and summarize

the existing literature on modeling tax evasion.

2.1 Asset taxation

We focus on taxes incurred during the sale and trade of investment property. While

an extensive set of rules apply to the calculation of taxes during such

transactions (IRS 2014b), we summarize below only the terms of most interest
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for our purposes: (a) Basis The original investment to acquire an asset, often times

its purchase price. Basis is used as the baseline against which to determine capital

gain or loss on asset disposition. Basis is also adjusted by any associated liabilities.

(b) Fair Market Value (FMV) The value of an asset at a given time. (c) Capital Gain

A capital gain results when an asset is disposed at a price higher than its adjusted

basis. Depending on how long the asset has been held, the capital gain is classified

as either long term (greater than 1 year) or short term (less than 1 year). Short term

capital gain is taxed at ordinary income rates. Long term capital gain is taxed at a

typically lower rate and varies with an individual’s filing status. (d) Capital Loss A

capital loss arises when an asset is disposed at price lower than its adjusted basis.

Similar to capital gains, capital losses are also classified as short or long term. If

capital losses exceed capital gains, the excess can be rolled across multiple years to

match capital gains in the future.

We elaborate some basic examples of basis, its adjustment and impact on taxable

gain or loss. An example of the use of basis to calculate capital gain is described below:

1. Purchase: 100 shares of IBM bought at $200 ? $100 commission. Basis is

$20,100 ($201/share).

2. Sale: 100 shares of IBM sold at $210 ? $100 commission.

3. Revenue: $20,900 ($209/share)

4. Capital gain: $20,900 - $20,100 = $800.

A taxpayer that incurs a loss from the sale of an asset can allocate that loss across

the rest of his portfolio to lower his tax liability from other capital gains that may

have been incurred. For example:

1. Taxpayer A owns a house with an FMV of $200k, in which taxpayer A has a

$120k basis.

2. When taxpayer A sells the house, a $80k capital gain is incurred.

3. Taxpayer A also owns a car with an FMV of $10k, in which taxpayer A has a

$30k basis.

4. Upon sale of the car, taxpayer A only has to pay tax on $60k because the capital
loss ($20k) from step 3 partially cancels the gain ($80k) from the house sale.

In some cases basis can be readjusted, for example during stock inheritance:

1. 100 shares IBM stock originally purchased for $4 in 1965

2. Inherited in 2013

3. Basis is ‘‘stepped-up’’ to market value on date of inheritance

4. Capital gain or loss is calculated as before on sale using the adjusted basis

2.1.1 Partnerships and carryover bases

Partnerships are legal tax entities that are governed by rules defined in sub-

chapter K, §701–777 of the IRC. While partnerships are required to file a tax return
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detailing their economic activity, they are not directly taxed. Instead, any

income/gain/loss is passed through to their immediate owners in proportion to

their ownership percentages. In order to determine the corresponding tax liability

for each of the partners, the basis of the original assets contributed to the partnership

must be tracked separately for both the inside basis – the part of the assets’ adjusted

basis that is attributable to each partner, and the outside basis – the basis each

partner holds in the partnership interest. Most times, the inside and outside basis will

match but can begin to differ when partnership interests are transferred. In order to

correct this mismatch, partnerships are allowed to adjust the inside basis of their

assets by making a special election known as the §754 election. This basis

adjustment can be made in the case of several scenarios, the two most common

being: (a) sale of a partnership interest (defined in IRC §743), and/or (b) distribution

of property (defined in IRC §734). Income, gain or loss calculation using adjusted

basis can become complicated when individuals form partnerships by pooling

resources (cash, property, labor) to conduct joint businesses. Individuals have been

found to disguise gains by conducting transactions across multiple tiers of nested

partnerships while claiming bogus §754 elections (Wright 2013).

2.2 Tax evasion modeling

Tax evasion can be considered a gamble like any other investment involving risk

and uncertainty (Allingham and Sandmo 1972). This insight forms the basis for

many agent based modeling approaches that divert from standard microeconomic

notions of tax evasion and instead consider the individual preferences of

heterogeneous actors or agents (Bloomquist 2006). For example, in one study

agents are either honest, imitative or free riders and a GA is used to update the

population of agents’ use of a utility function that determines the tax paying

behavior of the agent (Mittone and Patelli 2000). Tax compliance has also been

studied as an evolutionary coordination game (Bloomquist 2011). Another study

considered evolution of tax evasion (Lipatov 2003) by an agent based model using a

game theoretic approach. Cyclical behavior in compliance is seen here when the

audit probability is adjusted, but no guidance is provided on how to increase

compliance. In addition, attempts have been made to investigate how psychological

motives vary with different audit techniques (Davis et al. 2003; Hokamp and

Pickhardt 2010; Hokamp and Seibold 2014; Pickhardt and Prinz 2014). Econo-

physics models from statistical mechanics have also been considered, e.g. Ising

models have been used to model different social behavior and investigate thresholds

for efficient audits (Zaklan et al. 2009; Pickhardt and Seibold 2014; Zaklan et al.

2008). More recently, agent based models of tax compliance with varying social

network structure have been analyzed. For a given enforcement regime, an

environment with limited knowledge of neighbor payoffs appears to lead to higher

levels of aggregate compliance than when agents are aware of neighbor strategy

payoffs (Korobow et al. 2007). In addition, the effects of network topologies in the

propagation of evasive behavior is found important for tax compliance (Andrei

et al. 2013). Legal modeling approach of financial fraud was set up using Wigmore

charts, a graphical method for legal evidence, and ontologies (Kingston et al. 2004).
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Statistical machine learning techniques e.g. Decision Trees, Neural Networks,

Logistic Regression, Support Vector Machines, both supervised and unsupervised,

have also been used for fraud detections (Kallio and Back 2011; Bonchi et al. 1999;

Jaideep and Bjorklund 2009). Notable work here by (DeBarr and Eyler-Walker

2006) used Support Vector Machines to detect tax shelters. The kernel based

analysis used here identifies groups of taxpayers who appear to be participating in a

tax shelter promoted by a common financial advisor. This analysis task requires

estimating risk, a weighted combination of both the likelihood of abuse and the

potential revenue losses. It should also be noted that statistical machine learning is

applied to e-Discovery (Oard and Webber 2013) in order to retrieve similar

documents.

Unlike in prior research, the STEALTH approach described here considers a tax

evasion scheme as the unit of interest rather than an individual agents behavior. In

STEALTH there are no pre-defined labels of tax evasion schemes or similarity

metrics, and no modeling of assumed psychological behavior. There is no need for

data, labeled or unlabeled. Instead a scoring function is derived that is able to rank

the ’fitness’ of different tax schemes subject to varying audit risk. We investigate

how to reveal unknown schemes starting at the discrete transaction level. The

research gap STEALTH contributes to here is the quantitative modeling of

partnership tax law and the representation of partnership transactions and

corresponding audit risk. These topics are elaborated upon next.

3 STEALTH : a method for identifying tax schemes

The STEALTH approach to the challenges of tax evasion detection is characterized

across the multiple levels shown in Fig. 1: (a) the conceptual level with tax evaders

and auditors, (b) the model level of the tax ecosystem, with the representation of tax

schemes and audit score sheets, here we use decision tree rules to represent the tax

law, (c) the simulation level that processes a transaction sequence and outputs

deductible loss and audit scores, and (d) the optimization level that searches

transaction sequences based on audit risk. These levels are described in more detail

Fig. 1 Description of levels in STEALTH
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below. For reference, Table 1 provides an overview of some important terms used

in STEALTH . For additional formalism of these levels see Appendix 6.

3.1 STEALTH model of tax evasion

We break down the tax ecosystem into three fundamental components; tax entities

(e.g. taxpayers, partnerships) their assets (e.g. cash, real-estate, securities) and the

corresponding transactions that occur amongst them. In broad terms, tax laws

govern interactions between entities and specify any resulting tax liability that

might occur as a result of a transaction. In practice adherence to tax laws is verified

by the use of compliance audits. Figure 2 indicates how these activities are mapped

and sequenced in STEALTH . This flow is described further below.

3.1.1 Tax transactions and ownership networks

We represent partnerships and asset exchanges using an ownership network. The

nodes in the network represent tax entities, while the edges represent ownership

relations between those entities. A transaction consists of a pair of actions in

opposite directions, each of which transfers an asset from one entity to another

entity. Each transaction alters the state of the network by updating the stateful

variables in the nodes. Moreover, each entity has a portfolio of assets that it owns.

An asset is transferred from the portfolio of one entity to the portfolio of another

entity. As an example consider a tax ecosystem with four entities, two taxpayers

(Taxpayer A and B) and two partnerships (Partnership P1 and P2) as shown in

Fig. 3a. The nodes in the network are entities, arrows are edges for ownership

relations and the dotted lines represent transactions. Taxpayer B buys a share in

Partnership P1 from Taxpayer A with cash. This transaction consists of two actions;

Action 1 transfers cash from Taxpayer B to Taxpayer A and Action 2 transfers a

partnership share from Taxpayer A to Taxpayer B. When the partnership share is

transferred to the Taxpayer B node, the Taxpayer A node is updated to show the

cash in its portfolio. In addition, the transaction results in income ($40k) for

Table 1 STEALTH glossary

Tax evasion view Tax auditing view

Agent Tax evader Auditor

Representation Tax scheme Audit score sheet

STEALTH input Transaction sequences and

ownership network

Audit score sheet

STEALTH output Deductible loss (dl) Audit score (s)

Fitness function dlð1� sÞ �dlð1� sÞ
Audit score Risk of being audited Likelihood of auditing

Objective Minimize audit likelihood and

maximize deductible loss

Maximize likelihood of auditing a network of

transactions that generate high deductible loss
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Taxpayer A as the basis of the partnership share ($40k) is lower than the price

($80k) that Taxpayer B paid for the asset.

The network representation of our tax ecosystem allows us to record snapshots of

a sequence of transactions between multiple entities and calculate tax incurred per

entity, per transaction. Transactions happen sequentially, at any given time a

transaction will only take place between two given nodes. The network represen-

tation also makes our design modular. We can add different types of entities by

introducing more nodes in the network and similarly we can introduce more

diversity within nodes by having different types of assets.

The edges between nodes in the ownership network describe relationships in

enterprise structures. These may consist of parent-child subsidiary relationships,

spousal or family relationships or nested ownerships of entities (May 2012). For

example, as shown in Fig. 3, Taxpayer A owns a 4 % share of a partnership P1.

Similarly, partnership P1 has a 60 % share in partnership P2.

3.1.2 Integrating the tax law

Several actions are required to execute a transaction: (a) transaction feasibility

checks, (b) asset transfers within the ownership network and, (c) transaction tax

calculations. The tax law is imposed at each of these steps as follows:

Feasibility of a transaction Given a transaction consists of one action transferring

an asset from one entity to another entity, and another action transferring an asset

in the other direction, the tax law is checked to determine (a) if two assets can be

exchanged for each other (b) if the entity owns the asset that it is attempting to

Fig. 2 STEALTH tax ecosystem model transactions

(a) (b)

Fig. 3 Example of transaction with a network representation showing relationship edges and network
state transition via a transaction. a Initial state and transaction. b Network state after transaction
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transfer and can transfer it and (c) if the receiving entity is allowed to receive the

asset.

Transfer of assets Evaluate rules regarding the transfer of assets, e.g. determine

how the basis of an underlying asset needs to be adjusted. A simplified decision

tree rule to evaluate basis changes due to asset transfer is shown in Fig. 4.

Calculate tax Check rules regarding the tax impact of a transaction, This is

implemented as a decision tree rule as shown in Fig. 5.

STEALTH can be extended not only by adding new entities and assets to the tax

ecosystem, but by also adding/modifying tax rules. This requires alteration to some

or all three parts of the transaction transfer actions.

3.1.3 Audit score sheets

In STEALTH an audit is a procedure that examines a sequence of transactions to

help identify suspicious events. Audits play two roles in STEALTH . First we use

Fig. 4 A decision tree rule to evaluate asset basis changes

Fig. 5 A decision tree rule that shows the tax calculation on an asset transfer
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them to help direct and co-adapt transaction sequences towards non-compliance (see

Sect. 3.4). Second, they are used to quantify the degree of evasion.

In addition to amendments to the IRC, the IRS issues tax guidance on matters

related to regulations, revenue rulings and revenue procedures using a number of

announcements and notices. These collective communications can be used to clarify

the intent of the tax code and determine specific transactions and/or transaction

types deemed to be in violation of certain regulatory statutes. Audits in

STEALTH are modeled based on this public information. E.g. in 2004 the IRC

§743 (a) was altered to read

The basis of partnership property shall not be adjusted as the result of (1) a

transfer of an interest in a partnership by sale or exchange or on the death of a

partner unless (2) the election provided by §754 (relating to optional

adjustment to basis of partnership property) is in effect with respect to such

partnership or (3) unless the partnership has a substantial built-in loss

immediately after such transfer.

This amendment is captured in STEALTH using the following observable

events: (a) the sale of a partnership interest in exchange for a taxable asset, (b) the

partnership whose shares are being transferred has not made a §754 election, and

(c) the seller’s basis with respect to the non-cash assets owned by the partnership

exceeds their FMV by more than $250; 000, the threshold for substantial built-in

loss.

To represent audits in STEALTH we use a list of audit points (weights),

corresponding to all observable events that can occur when a set of transactions is

executed. An audit score sheet is a collection of audit points, each corresponding to

a different type of event that may be present in a transaction. The higher the audit

points associated with a certain type of event, the more suspicious that type of event

is. In order to mirror the limited resources available for auditing we also constrain

the sum of audit points to equal one.

The audit score associated with an audit score sheet, is defined as the sum of all

of the audit points present in a sequence of transactions, multiplied by their

Table 2 Each row has three columns with (1) the type of observable corresponding to the three char-

acterized observables from the IRS notice, (2) the associated audit point and (3) the number of times it

occurs in a list of transactions

Observable Points Frequency

1 Point1 Frequency1

2 Point2 Frequency2

3 Point3 Frequency3

1 [ 2 Point1[2 Frequency1[2

1 [ 3 Point1[3 Frequency1[3

2 [ 3 Point2[3 Frequency2[3

1 [ 2 [ 3 Point1[2[3 Frequency1[2[3
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respective frequencies. Visually, audit score sheets can be represented by a

spreadsheet, with each row corresponding to a different type of audit observable, as

shown in Table 2. One can imagine a hypothetical auditor going through a

sequence of transactions and incrementing the frequency in the far right column

whenever each type of event is observed.

Using this formulation, we interpret an audit score as the likelihood that a

sequence of transactions will be audited. That is, the more types of transactions

associated with high levels of suspicion there are in a sequence of transactions, the

higher the audit score will be.

The events on the audit score sheet can range from basic facts about a

transaction, such as whether a material asset is being exchanged, to more complex

aspects of the model state, such as ownership linkages between multiple entities.

Note the representation of audit points relies on the presence of ‘‘observable’’

events. An observable event is one that is possible to detect in the tax ecosystem

model, but not necessarily by the auditor. For example, if a taxpayer purchases a

share in a partnership for cash, STEALTH will process that as a transaction

involving a partnership asset, as well as tracking all parties involved in the

transaction.

The usefulness of the audit point representation is not only to suggest important

qualifiers to the auditor, but to evaluate how hypothetical auditing behavior effects

future schemes. Thus, even if an event is completely unobservable by the auditor, it

can still be useful for STEALTH .

3.2 Simulation with tax ecosystem model

At the core of STEALTH is a simulation of the tax ecosystem model, shown in

Fig. 6. The simulation first initializes the tax ecosystem, which is a set of

interconnected taxpayers and partnerships, and takes as input a transaction sequence

and an audit score sheet with associated points for each observable.

Each transaction needs to be analyzed for legality/feasibility before it can be

executed. A simple check is to validate whether or not an entity has an asset before

Tax Evader

Auditor

Tax Evasion Scheme

Taxable 
Income

Audit Score Sheet

Audit
Score

0.2
0.3
0.5

Fig. 6 STEALTH tax ecosystem simulator
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it can be transferred. Feasibility checks are divided into two broad categories

namely impossible transactions and economically unviable transactions. Once

validated the model can perform the actual transactions between entities and

calculate the tax/deductible loss associated with the feasible and taxable transac-

tions. The new state of the ownership network is also then updated.

Simultaneously, each transaction sequence is assigned an audit score by

multiplying the observed financial activity against the prescribed audit score sheet.

The audit points can specify patterns that represent combinations of financial

activity that may indicate abuse to an auditor, such as when a certain type of

transaction occurs between two linked entities.

3.3 Optimization architecture

The optimization in STEALTH is orchestrated by the adversarial relationship between

tax schemes and audits. STEALTH performs co-evolution of a population of tax

schemeswith a population of audit score sheets, both ofwhich are evaluated in every step

against a sub-population of the opposite agent type as shown in Fig. 7. That is, each tax

scheme ‘‘selects’’ some audit score sheets to calculate its fitness against and vice-versa.

3.3.1 Co-evolution as a search heuristic

In biology, co-evolution describes situations where two or more species reciprocally

affect each other’s evolution. The notion of adversarial co-evolution from biology

can be used for the circumstances of the auditors, e.g. each time the IRS changes the

tax code the tax evaders react by finding new ambiguities. The auditor and the tax

evaders are co-evolving as interacting species, much like foxes and hares. The

auditor searches for beneficiaries of abusive tax shelters while the beneficiaries seek

Tax Evader

Auditor

Select & Vary 

Select & Vary

Tax Ecosystem

0.2 0.3 0.5

Fig. 7 Concurrent optimization of high likelihood audit scores and low risk tax schemes

160 E. Hemberg et al.

123



to evade the auditor. At its core, the overall dynamics of the system reflect a

constantly transitioning series of complementary adjustments, with each predator/

prey seeking to bring advantage to the predator/prey under adjustment. A principle

that arguably explains the constant evolutionary arms race between the iterative tax

shelter pattern and IRS reaction is the ‘‘Red Queen Principle’’ (Van 1973): a

species (in this case the IRS or the tax evaders) must continually adapt to maintain

its relative fitness among the species it co-evolves with.

One algorithm which is used for co-evolutionary modeling is the Genetic

Algorithm (GA) (Goldberg 1989). It is a stochastic, adaptive learning heuristic

which searches and scores a number of solutions (individuals) in parallel. The GA

draws inspiration from the fundamental principles of population adaptation through

inheritance, selection and genetic variation in neo-Darwinian evolution. In the GA

‘‘individuals’’ are represented as fixed length bit strings and evaluated for fitness,

good ones are selected as parents, and new ones are created by inheritance with

variation as illustrated in Fig. 8.

The GA performs a search on networks of transactions to find the specific

sequence of transactions that maximize a fitness score. A tax scheme generated by

the GA is represented by a list of integers. A parser is used to read these integers and

generate a network of transactions with the help of a grammar. The transactions

consist of a list of Java interpretable objects that are input to a tax ecosystem model

to calculate the resulting taxable gain. There are two populations of individual

solutions: sequences of transactions and sets of audit points. The mechanics of co-

evolution are identical to a standard GA, except the fitness for each individual is

calculated with a k size subset of the opposite population. Simultaneous changes of

the networks of transactions and audit points are shown in Fig. 7. In order to

generate both a final tax value and an audit score, the tax simulator in

Fig. 8 Overview of the flow of
a Genetic Algorithm
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STEALTH must take both a network of transactions and audit points as inputs. As

each transaction in the network is executed, the tax simulator updates the audit

score, given the audit points associated with the observed events.

3.4 Rewarding co-evolution

The reward assigned to individual solutions in co-evolutionary search can be

quantified with the help of a ‘‘fitness’’ function. From the perspective of a tax

evader, two terms effect a tax scheme’s fitness function. First, the fitness should be

positively correlated with the deductible loss, in other words a tax scheme is only

effective if it results in a high deductible loss. The second term in the function

represents the likelihood of the audit disallowing the tax benefits gained from the

scheme. This term takes into account the likelihood of an audit (the audit score) and

the amount of tax that is evaded. Ideally the audit score should be low to reduce the

likelihood of an audit.

The objective of auditors is essentially the opposite. They seek to maximize the

likelihood of audit for a sequence of transactions with high deductible loss, relative

to other transaction sequences observed in the population. By considering fitness in

this manner, we are able to take into account both the effectiveness of tax schemes

from a purely tax perspective, as well as from a risk perspective.

Further details of the fitness functions are described in Appendix 6. In Sect. 4 we

investigate how STEALTH concurrently searches for co-adapting tax schemes and

audit scores.

4 Experiments with STEALTH

We demonstrate how tax schemes and audit scores co-evolve in STEALTH by

using a known artificial basis step-up tax scheme. The aim of the experiments is to

demonstrate that STEALTH can search simultaneously for tax schemes and audit

scores as they mutually adapt to one another over time. The results demonstrate that

STEALTH has the required fundamental components and processes for detecting

and anticipating tax evasion.

4.1 iBOB : an artificial basis step-up scheme

For the purposes of these experiments, we consider a particular known tax

scheme called Installment Sale Bogus Optional Basis (iBOB). In iBOB , a devious

taxpayer arranges a network of transactions designed to reduce his deductible loss

upon the eventual sale of an asset owned by one of his subsidiaries. He does this by

stepping up the basis of this asset according to the rules set forth in §743 (b) of the

tax code. In this way, he manages to eliminate taxable gain while ostensibly

remaining within the bounds of the tax law (GAO 2013).

The sequence of transactions for the iBOB scheme are enumerated below and

also shown graphically in Fig. 9.
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(a)

(b)

(c)

Fig. 9 The steps in the iBOB abusive tax avoidance scheme. The basis of an asset is artificially stepped
up and tax is avoided by using ‘‘pass-through’’ entities. a iBOB step 1. b iBOB step 2. c iBOB step 3
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1. Mr. Jones is a 99 %partner in JonesCo and FamilyTrust, whereas JonesCo is itself

a 99 %partner in another partnership, NewCo. NewCo owns a hotelwith a current

fair market value (FMV) of $200. If NewCo decides to sell the hotel at step 1

(Fig. 9a), Mr. Jones will incur a tax from this sale. The tax that Mr. Jones owes is

the difference between the FMVatwhich the hotel was sold and his share of inside

basis in this hotel, i.e. $198-$119 = $79. Mr. Jones can evade or indefinitely defer

this tax by artificially stepping up the inside basis of the hotel to $198.

2. In the next step (Fig. 9b), we see that FamilyTrust, which Mr. Jones controls,

decides to buy JonesCo’s partnership share in NewCo for a promissory note

with a face value of $198. Of course, FamilyTrust has no intention of paying off

this note, as any such payments entail a tax burden upon NewCo. Having

already made a §754 election, FamilyTrust can now step up its share of inside

basis in the hotel to $198.

3. When NewCo sells the Hotel to Mr.Brown for $200 (Fig. 9b), Mr. Jones does

not incur any tax, as the difference between the current market value and his

share of inside basis in the hotel is now zero.

4.2 Parameter settings in STEALTH experiments

To run STEALTH we need to specify the initial ownership network of tax entities, the

grammar for transactions, the audit score sheet and the co-evolutionary search parameters.

We initialize a network with two tax filers, Mr. Jones and Mr. Brown, and three

partnerships, JonesCo, NewCo, and FamilyTrust. These entities have portfolios of

assets that include Cash, an Annuity, a Hotel, and various partnership shares. The

assets can have different fair market values.

The Backus-Naur Form (BNF) grammar (see Appendix 6) used by STEALTH is

detailed in Fig. 10. The first recursive rule in the grammar shows that the search

space (language) is bounded only by the length of the input (genome) used to map

integers to transactions. We also note that the search space can be increased and

biased by altering the structure of the grammar.

In addition to iBOB , we note two additional patterns of transaction activity that

can result in zero immediate tax liability for Mr Jones. The first of these involves the

<transactions>::=<transactions><transaction> | <transaction>
<transaction>::=Transaction(<entity>,<entity>,<Asset>,<Asset>)
<entity>::=Brown|NewCo|Jones|JonesCo|FamilyTrust
<Asset>::=<Cash>|<Material>|<Annuity>|<PartnershipAsset>
<Cash>::=Cash(<Cvalue>)
<Material>::=Material(200,Hotel,1)
<Annuity>::=Annuity(<Avalue>,30)
<PartnershipAsset>::=PartnershipAsset(99,<Pname>)
<Share>::=Share(<Sshare>)
<Cvalue>::=200|300|100
<Avalue>::=200|300|100
<Pname>::=NewCo|JonesCo|FamilyTrust
<Sshare>::=30|50|20

Fig. 10 iBOB BNF grammar for STEALTH
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transfer of a partnership interest between two ‘‘linked’’ entities in the same

enterprise structure, usually resulting in a basis adjustment due to an earlier §754

election. By ‘‘linked’’ we mean a transaction in which the two parties are connected

by an ownership relationship. In the iBOB context, these include ‘‘singly linked’’

transactions, such as those that may occur between Mr Jones and JonesCo (or

JonesCo and NewCo), and ‘‘doubly linked’’ transactions, as may occur between Mr

Jones and NewCo. These types of transactions result in zero immediate tax liability

for all parties, but would almost certainly be audited. The second such transaction

involves the use of Annuities such as promissory notes that are taxed only at the

time of payment. As with ‘‘linked’’ transactions, defaulting on Annuity payments is

nominally legal and results in zero tax liability but can be very suspicious for

auditors.

4.3 Results: co-evolution of iBOB

We conducted a number of experiments to verify that the co-evolutionary dynamics

of STEALTH are consistent and suffice to find existing tax schemes. We expect that

as these schemes evolve to accommodate existing audit priorities, the audit points

will themselves evolve to detect the new abusive behavior. This should result in

either convergent or oscillatory dynamics.

Experiment 1 shows that when there is no audit observable that can capture the

tax scheme, the non observable tax scheme population converges to the tax

scheme that cannot be observed. Experiment 2 shows that if the tax scheme is

observable, then the audit points will converge to detect it. Finally in Experiment 3

we add an extra constraint to the audit observables such that exactly one of the audit

points must be zero. This constraint aids the representation of limited audit

resources.

In co-evolution, we are interested in not only the end-result tax scheme and audit

score distribution but also the dynamics that emerge between the two. Evaluating

the fitness levels of both populations and subsets of those populations over each

sequential generation can more accurately display the effects that the evolution of

one population has on the other. This is an important goal when trying to anticipate

tax schemes and audit points.

For the experiments considered here, STEALTH represents audit scores as the

sum of four audit points between 0 and 1. The initial average distribution of audit

scores in the population for each experiment is shown in Table 3. The value of each

Table 3 Each row lists an audit observable. Each column lists an experiment and the corresponding

initial average distribution of audit points in the population

Audit observable Experiment 1 Experiment 2 Experiment 3

iBOB 0 0.25 0.25

Annuity 0.33 0.25 0.25

Linked 0.33 0.25 0.25

Double linked 0.33 0.25 0.25
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audit point can be thought of as the relative importance of the associated transaction

to the auditor.

We ran 100 independent iterations of the co-evolutionary GA for 100 generations

each with tax scheme and audit score populations of size 100. We chose 0.5 of the

tax scheme population for evaluating the fitness of the solution in the other audit

score population and vice-versa. The parameters that govern the GA simulation are

enumerated in Table 4.

4.3.1 Experiment 1: audit observables that do not detect iBOB

For this experiment we purposefully left out audit points that can detect iBOB .

Thus, once iBOB is found it will propagate through the tax scheme population on

the merit of being the best tax scheme that is unauditable.

Figure 11 shows plots of tax scheme and audit score sheet fitness. Figure 11a

shows the fitnesses of both the tax schemes and the audit scores for the best

individual from each generation for a single iteration. Note, while iBOB was found

in only 34 % of the iterations here, we expect most iterations to converge to

iBOB as the number of generations increases. The average audit point values

displayed in Fig. 11b show the variation in the points over time. Note here the audit

points are unchanged and in equilibrium once iBOB has been found. The average

audit points of the best solutions for all the iterations are shown in Fig. 11c, where

we see that transactions that exchange a material for an annuity are assigned a

higher audit point.

Material-annuity transactions have a significantly higher audit point because they

occur more frequently than the other two transactions. That is, any transaction in

which the Hotel is exchanged for an annuity mitigates all of the taxable gain on the

ultimate sale of the hotel because annuities are non-taxable. Furthermore, a double

link transaction requires that a material-annuity transaction takes place because

Jones has to purchase the Hotel from NewCo with an annuity. Thus, the likelihood

of a tax scheme involving a material-annuity transaction is higher than the

likelihood of a single or double linked transaction based scheme. This results in a

higher average audit point assigned to material-annuity transactions because it is the

most common way to mitigate taxable gain in our example.

A clear pattern emerges when iBOB is evolved: initially, the pool of tax schemes

gravitates towards a sequence of transactions that contains suspicious activity,

Table 4 Parameters for the STEALTH iBOB experiments

Parameter Description Value

Mutation rate Probability of integer change in individual 0.1

Crossover rate Probability of combining two individual integer strings 0.7

Tournament Size Number of competitors when determining most fit individuals 2

Number chosen Fraction of other population that each individual is tested against 0.5

Population size Number of individuals in each population 100

Generations Number of times populations are evaluated 100
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which the audit scores are able to detect. Only after the audit scores evolve to reduce

the fitness of such schemes does iBOB become dominant.

Two distinct metastable states emerge when the basic iBOB is not found. The

most common is when a suspicious scheme is evolved in an early generation, which

the audit scores can effectively detect early on, causing the scheme fitness to

converge towards its minimum and the audit score fitness to converge to its

maximum. Alternatively, the pools of both tax schemes and audit scores oscillate in

respect to each other for the duration of the run, implying a process of suspicious

schemes emerging and audit scores evolving to detect them, causing another

suspicious scheme to become dominant. Many runs show oscillations or long-lived

transients, as these show the kind of predator-prey dynamics we expect, and

illustrate that the search can sometimes get stuck in a ‘metastable state’.

The transient behaviors that occur before the simulation ultimately settles into

iBOB . The transients can exhibit oscillations into unstable or weakly

metastable equilibria, and can sometimes get stuck for a while in one of these

equilibria where the scheme fitness is low and the audit fitness is high. We know the

only stable configuration is one in which iBOB dominates the population – any

‘‘oscillations’’, whatever the intervals between transient peaks, and whatever the

number of those peaks (1,2,3...) must eventually give way to iBOB.

4.3.2 Experiment 2: audit observables that can detect iBOB

In this experiment we include an audit point that can detect iBOB . Thus,

iBOB should not be able to propagate through the tax scheme population. Because

the audit score sheets were previously unable to detect iBOB, the fitness of the tax

schemes would only oscillate until a single iBOB scheme was introduced into the

population, at which point it would quickly propagate.

Figure 12a displays the fitnesses of both the tax schemes and the audit score

sheets from the best individual from each generation from one iteration. Since the

audit points completely cover all transactions that can create large recognizable loss,

the fitness is always minimal for the tax schemes and maximal for audit score

sheets. The corresponding audit points for the iteration are all constant as shown in

Fig. 12b. Furthermore, Fig. 12c shows that the average audit points of the best

individuals over all the runs corresponds to the expected values at the initial state.

We conclude that the observed co-evolutionary dynamics of STEALTH are

consistent with expectations for this example.

4.3.3 Experiment 3: sustained oscillatory dynamics of fitness values in STEALTH

Our goal with this set of experiments was to generate sustained oscillatory

dynamics, since we have shown in previous experiments that oscillations in tax

scheme fitness are possible for a short amount of time before converging to

bFig. 11 Evolution of iBOB in STEALTH Experiment 1. a Best fitness for one run. b Distribution of
audit points for one run. c Distribution of audit points averaged over runs
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equilibrium. This is a necessary step because a primary assumption underlying our

model is that tax schemes and audit scores sheets are engaged in a perpetual co-

evolutionary process in which no global attractor exists. Because the audit score

sheets were unable to detect iBOB in Experiment 1, the fitness of the tax schemes

would only oscillate until a single iBOB scheme was introduced into the population,

at which point it would quickly propagate. At the same time, simply allowing the

audit score sheets to detect iBOB would result in rapidly convergent dynamics, as

demonstrated in Experiment 2.

To generate sustaining oscillations, we augment the audit score sheets to assign

the lowest audit point a value of zero, so that there will always be at least one

scheme that is not detectable by the auditor. Our hypothesis is that once the

population of audit score sheets begins to converge, a tax scheme will evolve that

utilizes the type of behavior that is currently not detectable by the majority of audit

score sheets. The effective tax scheme will propagate within its population until the

audit score sheets gradually evolve to detect the now dominant behavior.

Figure 13a displays the fitnesses of both the tax schemes and the audit scores

from the best individual from each generation during a single iteration. In this

scenario, since the audit points cannot completely cover all the transactions that can

create large deductible loss the fitness oscillates between minimal for the tax

schemes and maximal for audit score sheets and vice versa. The audit points

corresponding to this iteration also oscillate as shown in Fig. 13b. In Fig. 13c we

see for the reasons listed in Sect. 4.3.1 that the highest average audit points of the

best individuals over all the iterations are for transactions involving annuities.

In Fig. 13, there is at first a high level of fitness among tax schemes across all

runs, but the initial dominant scheme is quickly detected by the corresponding audit

score sheet population, which decreases the overall fitness. Over time, new tax

schemes emerge in some of the runs that are initially not detectable by the

corresponding audit score sheet population, which generates a rapid upward surge in

tax scheme fitness. At closer inspection we see that the proportion of certain tax

schemes follow the existence of the highest fitness audit score sheet. We observe

that an audit score sheet capable of sufficiently auditing a certain type of tax

scheme can co-exist with that scheme for some time until the frequency of that tax

strategy starts to decline. This demonstrates (a) the successful audit score sheet

taking time to propagate amongst its population and (b) the jagged fitness landscape

of the transaction sequences. The audit score sheets eventually evolve to detect the

type of behavior that is present in the new dominant tax schemes, but the process is

more gradual. These results confirm our hypothesis that under the correct

conditions, sustained oscillatory dynamics in the fitness of tax schemes are possible.

While the experiments were designed to generate oscillatory behavior, the results

are promising because they show realistic dynamics between the tax schemes and

the corresponding auditing priorities. Specifically we can see that once a single new

tax scheme emerges that is not currently detectable by the auditor, it propagates

bFig. 12 Evolution of iBOB in STEALTH experiment 2. a Best fitness for one run. b Distribution of audit
points for one run. c Distribution of audit points averaged over runs
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throughout the population very quickly, as evident by the steep upward slope in the

average scheme fitness plot. Conversely, the audit score sheets take a longer time to

adapt to the new tax scheme. This dynamic mirrors the reality of actual audits.

4.3.4 HiBOB: iBOB with hierarchical enterprise structures

In an attempt to find potentially new evasion schemes, we added a hierarchy of

multiple partnerships to the SCOTE tax ecosystem with the initial ownership

structure shown in Fig. 14a. Here, NewCo owns 99% of FunCo, who in turn owns

bFig. 13 Evolution of iBOB in STEALTH experiment 3. a Best fitness for one run. b Distribution of audit
points for one run. c Distribution of audit points averaged over runs

(a) (b)

(c)

Fig. 14 The steps in the HiBOB tax scheme, a hierarchical extension of iBOB. a HiBOB base.
b HiBOB1. c HiBOB2
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99% of LQNH, who in turn now owns the Hotel. We postulated the emergence of 2

interesting transaction sequences utilizing this hierarchy, one that is evasive and the

other benign:

HiBOB1 HiBOB1 is almost identical to the original iBOB: FamilyTrust

purchases FunCo’s share in LQNH for an annuity and invokes a §754 election,

mitigating all capital gains on the eventual sale of the Hotel, as shown in

Fig. 14b. HiBOB1 is a derivative of the original iBOB because they both result in

zero tax liability and involve the sale of an entity’s stake in a partnership that

directly owns the material asset being sold.

HiBOB2 HiBOB2 is characterized by the purchase of a partnership asset by

FamilyTrust further up the partnership chain. That is, instead of FamilyTrust

purchasing a share in LQNH, the entity that owns the Hotel, they instead purchase

NewCo’s share in FunCo, as shown in Fig. 14c. Because §754 elections only

affect the assets of the partnership that is being purchased, the inside basis of the

Hotel in respect to FamilyTrust is not adjusted and there is subsequently no tax

benefit. This is true of all transactions that purchase partnership assets that do not

directly own the Hotel. For example, the same result would be accomplished if

FamilyTrust purchased JonesCo’s share in NewCo.

We ran the simulation 100 times with a population of size 500 for 100

generations with fixed audit weights to determine the ability of STEALTH to

discover these more complex transaction sequences. The audit observables were

fixed as for Experiment 1. HiBOB1 was found by the model over the course of all

100 runs. However HiBOB2 was not found by STEALTH in any of the runs. While

this result demonstrates the ability of STEALTH to distinguish between the HiBOB

types it also indicates the need for a smoother solution landscape to allow for

exploration of a larger variety of potential schemes.

5 Conclusions and future work

We developed a novel search heuristic called STEALTH that can simulate the co-

evolution of abusive tax schemes and audit scores. STEALTH is based on an

intuitive time evolving graph-based representation; entities are represented as nodes

with assets, edges are ownership relations between entities and transactions are

transfers of assets between nodes. STEALTH does not mine data and is

fundamentally based on evaluating and exploring rules. As such, STEALTH is a

complement to traditional data driven machine learning techniques. Since the

STEALTH output provides a readable and intuitive understanding of how

transactions can be sequenced to achieve tax evasion it can be used to inform

both supervised and unsupervised learning methods. Moreover, STEALTH has the

advantage that it allows search of both transactions given a fixed audit score sheet
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and the fine tuning of audit scores given fixed transactions. Thus it can be used to

determine audit points that are successful in finding suspicious large loss

deductions.

While promising, the experiments that have been conducted using our current

implementation have been limited. Given iBOB as an initial starting point and

assigning its most basic manifestation a high audit likelihood, a genetic algorithm is

able to find variants such as the HiBOB scheme in a significant portions of runs.

That being said, we constrain the search in a few non-trivial ways, such as by

limiting the generative grammar. Limiting the grammar, while indicative of the

model’s inability to find an acceptable local maxima without help, demonstrates

how the addition of expert knowledge can be incorporated into the search without

changing the source code. By choosing the types of assets that are exchanged, the

number of partnerships that can be formed and which entities engage in

transactions, our search can be catered to the situation at hand, greatly increasing

its efficiency.

We showed that STEALTH can generate oscillatory dynamics between tax

schemes and the audit score sheets designed to detect them. Co-evolutionary

algorithms often generate intricate run-time behaviors that make it difficult to

monitor progress towards a goal. Furthermore, potential gradient loss (disengage-

ment) of the search can occur here. This happens when the distribution of fitness

values in at least one population is almost flat. For example, if audit points are made

too ‘‘tough’’, no transaction sequences are able to pass the audit score sheet.

Additional precautions need to be taken to avoid mediocre stable states or relative

over-generalization, which favors versatile components over those of the optimal

solution.

The current drawbacks of STEALTH is that it has a very simplified view of

transactions, audit points and the tax law. Our next step is to increase the complexity

of both the transactions that compose the tax schemes and the types of activities that

are detectable by the audit score sheets. Examples here include logic to handle

(a) other deferred payment structures and loans/repurchase agreements, (b) asset

’leakage’ such as when transactions post to international destinations and

(c) automatic detection of patterns that emerge from tax schemes to help derive

audit score sheets.

A sensitivity analysis of the STEALTH algorithm is also required to ascertain the

stability of convergence to variations in input parameters and run-time settings.

Calculation of externalities such as the Fair Market Value can also have significant

uncertainty that can impact auditing cost and efficiency. A sweep of the distribution

of values here would help evaluate the robustness of audit sheet thresholds.

Ultimately we seek to evaluate the schemes generated by STEALTH against tax

return data and solicit feedback from domain experts.
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6 Appendix

6.1 Genetic Algorithm

Co-evolutionary search heuristics (de Jong et al. 2007; Ficici and Bucci 2007;

Wiegand and Potter 2006; Stanley and Miikkulainen 2004) evaluate an individual

solution based on interactions between populations of multiple solutions. The

individual solution may appear good in one context and poor in another context, e.g.

one solution’s ranking in a population can change depending on other solutions.

The control flow of a Genetic Algorithm search is shown in Fig. 8 The steps in a

single iteration (generation) are:

1. Initialize Input the initial solutions, e.g. uniformly randomly generated input

sequences.

2. Evaluate The individual solutions are evaluated and assigned a score (fitness)

according to some function.

3. Select Some individuals from the current population are included in a new

population.

4. Variation Individuals in the new population are modified by some operators,

e.g. crossover and mutation.

5. Replacement Update the current population with the new population.

6. Termination Stop if a termination criteria is met.

7. Iterate Return to step 2.

6.1.1 Grammatical evolution

Grammatical Evolution (GE) is a version of the Genetic Algorithm with a variable

length integer representation and a compressed form of indirect mapping using a

grammar (O’Neill andRyan 2003).We canmap to a transaction sequence bymeans of

a grammar which conveniently expresses all possible transaction sequences

compactly. GE has an explicit mapping step (genotype-to-phenotype) and biases the

search by changing the grammar, e.g. alter the search space size and reduce source

code modification. The grammar rewrites the input (genotype) to the output (pheno-

type), as shown in Fig. 15. Recursive rules in the grammar indicate that the search

space (language) is bounded only by the length of the input (genome) used in rewriting.

In GE, the compressed form of the search space is represented by a Backus-Naur

Form (BNF) grammar which defines the language that describes the possible output

sentences. A BNF grammar has terminal symbols, non-terminal symbols, a start

symbol and production rules for rewriting non-terminal symbols. The grammar is

used in a generative approach and the production rules are applied to each non-

terminal, beginning with the start symbol, until a complete program is formed. The

list of integers (genotype) rewrites the start symbol into a sentence. An integer from

the list of integers is used to choose a production rule from the current non-terminal

symbol by taking the current integer input and the modulo of the current number of

production choices. Each time a production from a rule with more than one
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production choice is selected to rewrite a non-terminal, the next integer is read and

the system traverses the genome. The rewriting is complete when the sentence

comprises only terminal symbols.

In Fig. 15 there is an example of the rewriting of an integer list (genotype) to a

sentence (phenotype) describing a transaction between two entities that exchange

assets.

1. We pick the first rule in the grammar as the start symbol, in this case

(1)\transactions[.

2. Expand the left most non-terminal symbol in our sentence \transac-
tions[. We take the current integer input 3 and the modulo of the number of

production choices 2, which is 1, thus we pick \transaction[ the

production choice at position 1 (the indexing starts at 0) and rewrite the

\transactions[with\transaction[.

3. Again expand the left most non-terminal symbol\transaction[. There is

only one production choice here, so it is rewritten to Transaction(\en-
tity[,\entity[,\Asset[,\Asset[).

4. Again expand the left most non-terminal symbol\entity[. We take the

current integer input 11 and the modulo of the number of production choices 5,

which is 1, thus we pick NewCo. The sentence is now Transac-
tion(NewCo,\entity[,\Asset[,\Asset[).

5. The left most non-terminal symbol is again\entity[. We take the current

integer input 10 and the modulo of the number of production choices 5, which

is 0, thus we pick Brown. The sentence is now Transaction(NewCo,
Brown,\Asset[,\Asset[).

6. The left most non-terminal symbol is now\Asset[. We take the current

integer input 4 and the modulo of the number of production choices 3, which is

1, thus we pick \Material[. The sentence is now Transac-
tion(NewCo, Brown,\Material[,\Asset[).

Fig. 15 Example of mapping a list of integers (Genotype) into a list of transactions (Phenotype) by using
grammatical evolution

176 E. Hemberg et al.

123



7. The left most non-terminal symbol is now \Material[. There are no

choices for\Material[so we rewrite it with Material(200, Hotel,
1). The sentence is now Transaction(NewCo, Brown, Mate-
rial(200, Hotel, 1),\Asset[).

8. The left most non-terminal symbol is again\Asset[. We take the current

integer input 30 and the modulo of the number of production choices 3, which

is 0, thus we pick\Cash[. The sentence is now Transaction(NewCo,
Brown, Material(200, Hotel, 1),\Cash[).

9. The left most non-terminal symbol is now \Material[. There are no

choices for\Cash[ so we rewrite it with Cash(\Cvalue[). The sentence

is now Transaction(NewCo, Brown, Material(200, Hotel, 1),
Cash(\CValue[).

10. The left most non-terminal symbol is Cash(\CValue[. We take the current

integer input 7 and the modulo of the number of production choices 3, which is

1, thus we pick 200. The sentence is now Transaction(NewCo, Brown,
Material(200, Hotel, 1), Cash(200).

11. There are no more non-terminal symbols left to rewrite and our string

rewriting is done.

6.2 STEALTH formalism

This section describes STEALTH in a more formal notation in order to define the

distinct scope of the approach.

6.2.1 Model of tax ecosystem

The ownership network at a given time is defined as a list of entities, each of which

owns a set of assets. At any point, the state of the network can be described as some

c 2 C, where c ¼ fe; a; dg, where e ¼ feigk1i¼0 is the set of entities, a ¼ faigk2i¼0 is the

set of all assets and k1; k2 2 Zþ; ei 2 E; ai 2 A. The operator d determines the owner

of each asset, i.e d : A 7!E, where A is the space of assets and E is the space of entities.

Next we define a sequence of transactions as a vector t ¼ ftigki¼0 for some

k 2 Zþ, t 2 T is the space of all transactions. A transaction is defined as

t ¼ fef ; et; af ; atg, where ef ; et 2 E are two entities and af ; at 2 A are two assets that

are being exchanged between the two entities.

For audits, suppose that there are n specific types of events that are observable,

represented by fbigni¼0. Associated with each type of event are the audit points

faigni¼0; a 2 R and the frequency that the event occurs within a network of

transactions ffigni¼0; fi 2 Zþ. We can then write the audit score, s corresponding to

the audit score sheet and network of transactions as

s ¼
Xn

i¼0

ai � fi where
Xn

i¼0

ai ¼ 1
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We observe that laws governing a given transaction depend on the ‘‘type’’ of

assets and entities being exchanged. For example, the laws governing the exchange

of a hotel for cash between two taxpayers are different from those governing the

contribution of an annuity to a partnership in exchange for a share. Thus, we can

determine the laws governing a given transaction by the combination of both asset

and entity types.

6.2.2 Simulation of tax ecosystem

Consider the abstract transaction t ¼ ðef ; et; af ; atÞ, which states that entity ef gives

et the asset af in exchange for at. Define Ê to be the finite set of entity types, and Â

to be the finite set of asset types. We can then write the set of all transactions as a

union of disjoint subsets T ¼ [n
i¼0Ti, where each subset contains all transactions of

a certain combination of asset and entity types. The steps that follow are.

1. a transaction type t is first checked to see if it is within the bounds of the legal/

feasible region by first determining to which subset Ti it belongs. We define

l : Ti 7!U as a map from a subset Ti 2 T to U that determines the laws / that

govern the transaction, given its combination of asset/entity types.

2. the transfers in the two actions composing the transaction represent the

transition of the network state ct to ctþ1 and ctþ1 to ctþ2 according to the map

s : T � C7!C
3. taxable gain/loss calculation takes a transaction t and a network state ct and

maps it to a deductible loss value dL for each taxable entity and an updated

network state, P : T � C 7!R� C

6.2.3 Optimization of tax ecosystem

We can describe the process by which sequences of transactions and initial ownership

network are generated by defining a grammar Nt : Z
n
þ7!T � C that maps a list of n

integers to an element in the set of sequences of transaction (T) and an element in the

set of all ownership networks (C). Thus, for any x 2 Zn
þ,NtðxÞ ¼ t; c0Þð where t 2 T is

a sequence of transactions and c0 2 C is an initial network.

We can now define the space of auditing observables as W, where for some

m 2 Zþ,

W ¼ fbigmi¼0 : bi 2 ½0; 1� and
Xm

i¼0

bi ¼ 1

( )
� Rm

þ

The grammar Na : Z
m
þ7!W maps a vector y 2 Zm

þ to an element in the set of auditing

behavior.

The tax ecosystem is defined as a function F : T � C�W 7!R2
þ that takes as

input a sequence of transactions, an initial network state and auditing observables,

and generates a network state and audit score. Contained within the network state is
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the deductible loss dL. In other words, for any t 2 T and c0 2 C generated from the

same vector of integers x and accompanying auditing observables w 2 W,

F t; c0;wÞ ¼ dL; sð Þð
The function F can be broken up into a network of transition functions that has

the same length as the number of transactions in the transaction set contained within

the function call (k). Each transition function generates a new network state and an

audit score. So for all i 2 ½0; k�, Fi ti; ci;wð Þ ¼ ciþ1; si
� �

where s ¼ sk
The goal of the tax evader is to minimize audit likelihood and maximize

recognizable loss. First of all, each set of transactions generates a deductible loss,

dL. Secondly an audit score sheet generates an audit score, s based on a network of

transactions, which represents the likelihood that a scheme will be audited, i.e. the

risk of being audited. Thus, we can represent the fitness function, he for a tax

evasion scheme, given a specific audit score sheet, as he ¼ dLð1� sÞ
The goal of the auditor is to maximize the likelihood of an audit of a network of

transactions with high deductible loss. The fitness function for an audit score sheet

given a specific tax scheme is the same as that shown above, but with the opposite sign

ha ¼ �he ¼ �dLð1� sÞ (where a negative deductible loss value indicates positive

taxable gain). Recalling that each audit score sheet evaluates a population of

transaction sequences, an individual can determine sequences with relatively low

levels of taxable gain. Thus, an audit score sheet is fit in the event that it assigns: 1) high

audit likelihood to transaction sequences with relatively low levels of taxable gain and

2) low audit likelihood to sequences with normal or high levels of taxable gain.

We describe how to judge the fitness of a network of transactions t and an

auditing behavior w based on the deductible loss dL and audit score s generated from

the tax ecosystem model F. We can now also define the fitness function h : R2
þ7!R

as such he dL; sð Þ ¼ dLð1� sÞ.
Now it is possible to fully define the maximizing objectives of networks of

transactions as

argmax
x�2X

he F Ntðx�Þ;NaðyÞð Þð Þ½ �

¼ arg max
t�2T;c�

0
2C

he F t�; c�0;w
� �� �� �

Over all y 2 Bðŷ; r1Þ for some ŷ 2 Zm
þ, where Bðŷ; r1Þ is a ball of radius r1 2 Rþ

around ŷ. This represents the fact that the goal of the GA is to find local maxima

around some subset of auditing behavior, rather than attempting to search the entire

U space. Conversely, the objective for the auditing behaviors is to maximize the

positive ha function, the opposite of the objective for the transactions, i.e. the goal is

arg max
y�2Zm

þ
ha F NtðxÞ;Naðy�ÞÞÞ� ¼ arg max

w�2W
ha F t;c0;w

�ð ÞÞ�ð½
���

Over all x 2 Bðx̂; r2Þ for some x̂ 2 X̂, where Bðx̂; r2Þ is a ball of radius r2 2 Rþ
around x̂. Similar to the previous objective function, this represents the fact that the

EA only searches for local maxima around a subset of all transaction sets and initial

model states.
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6.3 STEALTH software architecture

The UML diagrams in Figs. 16 and 17 shows the central classes defined in

STEALTH and their relationships. The Graph class contains all the entities and

assets. The GraphTransformer transitions the network from one state to the

Fig. 16 STEALTH UML diagram of the central classes

Fig. 17 STEALTH UML diagram assets and entities classes
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other by performing a Transaction consisting of two Assets and Entities,
checking the Legality of it and calculating the corresponding entries in the

AuditScoreSheet.
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