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Maximum-reward Motion in a Stochastic
Environment: The Nonequilibrium Statistical

Mechanics Perspective

Fangchang Ma and Sertac Karaman

Massachusetts Institute of Technology, Cambridge MA 02139, USA,
{fcma,sertac}@mit.edu,

Abstract. We consider the problem of computing the maximum-reward
motion in a reward field in an online setting. We assume that the robot
has a limited perception range, and it discovers the reward field on the fly.
We analyze the performance of a simple, practical lattice-based algorithm
with respect to the perception range. Our main result is that, with very
little perception range, the robot can collect as much reward as if it
could see the whole reward field, under certain assumptions. Along the
way, we establish novel connections between this class of problems and
certain fundamental problems of nonequilibrium statistical mechanics.
We demonstrate our results in simulation examples.

Keywords: Motion planning, stochastic environments, nonequilibrium
statistical mechanics.

1 Introduction

Nonequilibrium statistical mechanics is a branch of physics that studies systems
operating at out-of-equilibrium states [1–3]. Although the ideas originated in
the physics literature, the theory has profound applications that lie well outside
the domain of physics, such as biology [4, 3], stock markets [5], and highway
traffic [6, 7]. Arguably, it is for this reason that developing a fundamental and
comprehensive understanding of nonequilibrium statistical mechanics is consid-
ered to be one of the grand challenges in our time, both by the U.S. Department
of Energy [8, 9] and the U.S. National Academy of Sciences [10].

In this paper, we point out novel connections between the fundamental prob-
lems of nonequilibrium statistical mechanics and a large class of robot motion
planning and control problems. With the help of these connections, we design
practical algorithms with provable performance guarantees for planning prob-
lems involving agile robots operating in stochastic environments. In what follows,
we briefly introduce this class of problems and list our contributions.

We consider a large class of problems involving a robotic vehicle navigat-
ing in a stochastic reward field to collect maximal reward. Let us motivate these
problems with an example. Consider an environmental monitoring system, where
mobile robotic vehicles and stationary sensing devices work together to collect



valuable information about the state of the environment, as in Figure 1. Imag-
ine small sensing devices that house primitive sensors, for example, for seismic,
acoustic, or magnetic measurements. Along with sensing, these devices include
communication equipment and (primitive) computational platforms. Suppose
these sensing devices are deployed throughout the environment for persistent
monitoring purposes. Rather than attempting to form an ad-hoc network, we
envision a mobile data-harvesting vehicle that traverses the environment, discov-
ers the sensing devices on the fly, and approaches them to harvest their data.1

Fig. 1: An environmental monitoring system, where the blue cylinders are sensing
devices and the vehicle tries to collect as much data from them as possible.

The robot may not know the precise positions of the sensing devices a priori.
Instead, sensors are discovered on the fly, and the robot makes small correc-
tions in its trajectory to collect as much information as possible. Clearly, the
amount of information that can possibly be collected depends on the agility of
the robot (its actuation capabilities) as well as its perception range (how soon
it can discover the sensors). In this setting, we consider the following funda-
mental problems: How quickly can the mobile robots harvest the data from the
field, given their perception, actuation, and computation capabilities? What are
the planning algorithms that achieve the optimal performance?

Let us note that similar problems [11] arise in a large class of applications,
including spy planes taking pictures of unexpected enemies, and rescue vessels

1 Ad-hoc sensor networks may also be very valuable for environmental monitoring.
In fact, such technologies have been developed over past years. We note that the
presented approach is for motivational purposes. Yet, it may be beneficial over the
ad-hoc network approach due to substantial energy savings at the stationary sensors
(as communication requirement is much lower); hence, the sensor nodes require less
maintenance. The main drawbacks are additional complexity of a mobile vehicle,
and communication delay due to the mobile vehicles physically carrying the data.

2



saving lives after disasters, where target locations are discovered on the fly.
To generalize, we consider a robot that is traversing a stochastic “reward field”,
where the precise value of the reward is discovered on the fly. Given the statistics
of the reward, we aim to answer fundamental questions regarding the optimal
performance that can be achieved.

We answer some of the aforementioned questions by establishing strong con-
nections between this class of problems and nonequilibrium statistical mechanics.
Roughly speaking, we view the robot as a particle traveling in a stochastic field.
This perspective allows us to directly apply some of the recent results from
mathematical physics to characterize various properties of agile robotics.

Designing planning algorithms for agile robots to avoid obstacles in cluttered
environments has long been a focus of robotics [12–14]. In contrast, planning
problem for collecting maximal reward in a stochastic environment has received
relatively little attention, although similar problems were considered in the op-
erations research literature (see, e.g., [15]).

The analysis in this paper is fundamentally different from these references, as
we utilize the mathematical foundations of nonequilibrium statistical mechan-
ics. The results we utilize were reported in the mathematical physics literature
fairly recently [16–22]. In fact, the connections we establish between mathemat-
ical physics and this class of maximum-reward motion planning problems and
algorithms may be interesting on their own right, inspiring a novel class of anal-
ysis techniques and practical algorithms with formal performance guarantees.

This paper is organized as follows. In Section 2, we provide a more precise
problem definition, and we discuss a set of algorithmic approaches that solve this
problem in Section 3. We devote Section 4 to a mathematically rigorous analysis
of the proposed algorithms. We lay out the connections with nonequilibrium
statistical mechanics also in this section. In Section 5, we provide the results of
several computational experiments that validate our theoretical results. Finally,
we provide some concluding remarks in Section 6.

2 An Online Reward-collection Problem

We consider a mobile robotic vehicle that is tasked with visiting target locations.
Due to differential constraints, it is impossible to visit all targets. The robot’s
mission is to visit these target locations as best as possible, measured by the
amount of “reward” it collects per time unit during the course of the whole
mission.

Targets are discovered on the fly, in the sense that the robot obtains the
location and reward information associated with that target only when it gets
sufficiently close to a target location. Hence, the robot does not know a priori
all of the tasks and the reward associated with them. However, the statistics for
the spatial distribution of the target locations and their reward is known, for
example from past experience. To model this environment, we assume that the
target locations and their rewards are generated by a stochastic process. The
robot operates in this stochastic environment.
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We formalize this online motion planning problem as follows. Consider a
mobile robotic vehicle governed by the following ordinary differential equation:

ẋ(t) = f(x(t), u(t)) (1)

where x(t) ∈ X ⊂ Rn is the state and u(t) ∈ U ⊂ Rm is the control input. A
state trajectory x : [0, T ] → Y is said to be a dynamically-feasible trajectory, if
there exists u : [0, T ]→ U such that u, x satisfy Equation (1) for all t ∈ [0, T ].

Let R(·) denote the reward function, which associates each dynamically-
feasible trajectory, say x : [0, T ]→ Y , with a reward denoted by R(x) ∈ R. The
robot is tasked with finding a motion (i.e., a dynamically-feasible trajectory)
with maximal reward.

The reward function is not known a priori, but is revealed to the robot in
an online manner. We formalize this aspect of the problem as follows. Let P(·)
denote the perception footprint of the robot that associates each state z ∈ X of
the robot with a footprint P(z) ⊂ X. When the robot is in state z ∈ X, it is
able to observe only the reward function associated with the partial trajectories
within the set P(z). We assume that the reward function does not vary with time,
and that the statistics of its distribution is known to the robot. The reward can
only be collected once, so the robot keeps exploring new regions.

This general setting represents a large class of reward-collection problems. In
this paper we study a special case that is more closely related to the motivational
example presented in the previous section. Let T ⊂ X be a discrete set of
target locations. Suppose each target z ∈ T is associated with a reward r(z),
and the robot collects the reward r(z) if it visits the state z. That is, given
a trajectory x : [0, T ] → X, its reward is R(x) :=

∑
zi∈Z r(z), where Z :=

{z ∈ T : x(t) = z for some t ∈ [0, T ]}. The robot observes the locations and
the rewards of all targets that fall within its perception footprint, and collects
the associated reward if it visits a particular target location. It travels through
this environment, discovering targets on the fly and adapting its trajectory to
maximize the total reward it gathers by visiting these targets.

3 Lattice-based Motion Planning Algorithms

In such general setting, analytical solutions can be found only in some special
cases. Yet, there are efficient computational approaches, based on the proper
discretization of the set of all dynamically-feasible trajectories, that can achieve
good performance. Below, we outline such an algorithm.

Lattice-based motion planning algorithms have long been successfully utilized
in robotics applications [23, 24]. Roughly speaking, these algorithms form a di-
rected lattice in the state space of the robot, and they select the best one among
all paths through this lattice. This task is often computationally efficient, which
makes the algorithm practical even in challenging problem instances. Below, we
describe lattice-based planning algorithms in our notation.

An infinite graph G = (V,E), where V is a countable set of vertices and
E ⊂ V × V is a set of edges, is said to be a lattice, if the following are satisfied:
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(i) any vertex is a state of the dynamical system described by Equation (1),
i.e., V ⊂ X, and (ii) for any edge e = (v1, v2) ∈ E, there exists a dynamically
feasible trajectory xe : [0, Te]→ X such that x(0) = v1 and x(Te) = v2.

A lattice-based receding-horizon motion planning algorithm works as follows.
Initially, the robot is at a state zinit ∈ V . For each iteration, the best path
(e1, e2, . . . , ek) through the “visible” part of the lattice is computed, and the
robot follows the dynamically-feasible trajectory xe1 : [0, Te1 ] → X that is as-
sociated with the first edge on this path, denoted above by e1. Once the robot
reaches the state v′ = xe1(Te1), the same procedure is repeated with the part of
the lattice that is visible to the robot.

We formalize this algorithm below by first introducing some notation and
a couple of sensing and actuation procedures that this algorithm utilizes. Let
G = (V,E) be a lattice for the robot governed by Equation (1). Two edges
e1 = (v1, v

′
1), e2 = (v2, v

′
2) ∈ E are said to be connected if v′1 = v2. A path

through G is a sequence of edges, denoted by π = (e1, e2, . . . , ek) such that
ei ∈ E and ei and ei+1 are connected for all i ∈ {1, 2, . . . , k − 1}. The ith edge
on path π is denoted by π(i). The set of all paths through G is denoted by
Paths(G). Given a path p = (e1, e2, . . . , ek), let xei : [0, Tei ] → X denote the
dynamically feasible trajectory attached to the edge ei in the lattice G = (V,E),
and let Trajectory(p) denote the dynamically-feasible trajectory formed by
concatenating xei ’s, that is, Trajectory(p) is a dynamically-feasible trajectory

xp : [0, Tp] → X, where Tp =
∑k
i=1 Tei and xp(t) = xei(t −

∑i
j=1 Tej ) for all

t ∈
[∑i

j=1 Tej ,
∑i+1
j=1 Tej

]
and all i ∈ {1, 2, . . . , k− 1}. Recall that X is the state

space of the robot. Given a subset P ⊂ X and a (potentially infinite) graph G =
(V,E), the projection of G on P is a new graph defined and denoted as follows:
Projection(G,P ) := (VP , EP ), where VP = V ∩ P and EP = E ∩ (VP × VP ).

Now, we define two procedures that allow the algorithm’s perception and
actuation. Let CurrentState() be a procedure that returns the current state of
the robot. Given a dynamically-feasible trajectory x : [0, T ]→ X, let Execute(x)
denote the command that makes the robot follow the trajectory x.

...

..
.

(a) The two-dimensional lattice.

...

(b) A lattice with Dubins paths.

Fig. 2: The two-dimensional directed regular lattice, N2, is illustrated in Figure
(a). An example lattice for a curvature constrained vehicle, also called the Dubins
vehicle, is shown in Figure (b). The latter lattice can be embedded in N2.
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Finally, we provide a formal description of the lattice-based receding-horizon
motion planning procedure in Algorithm 1. The algorithm first retrieves the
robot’s current state (Line 2). Subsequently, it computes the portion of the lattice
that falls within its sensor footprint (Line 3), and it then computes the optimal
path through this sub-lattice (Line 4). Finally, the robot takes the trajectory
corresponding to the first edge along the best path (Line 5), and it follows this
path until it reaches the state that corresponds to the next vertex on the lattice
(Line 6). This procedure continues for N iterations (Lines 1-7).

1 for t = 1, . . . , N do
2 z ← CurrentState();
3 GP ← Projection(G,P(z));
4 π ← arg max{R(Trajectory(π) : π ∈ Paths(GP ))};
5 xfirst ← Trajectory(π(1));
6 Execute(xfirst);

7 end
Algorithm 1: Lattice-based receding-horizon online motion planning

This algorithm computes the maximum-reward path on a graph. Note that
this problem is NP-hard on a general graph [25]. However, for example, on acyclic
graphs, this problem can be solved efficiently [25]. In this paper, we focus on the
analysis of Algorithm 1 for acyclic lattices. This implies that, roughly speaking,
the robot does not return to a place it has been before, hence it constantly
explores new regions in the environment. An important acyclic graph is the d-
dimensional directed regular lattice Ld = (V,E), where V = Nd and (v, v′) ∈ E if
v = (v1, v2, . . . , vd) and v′ = (v1, v2, . . . , vk+1, . . . , vn) for some k ∈ {1, 2, . . . , k}.
The two-dimensional directed lattice is illustrated in Figure 2a. We say that a
lattice G = (V,E) is embedded in Nd if it is isomorphic to Nd. In Section 4.2, we
pay special attention to the two-dimensional lattice N2. In Figure 2b, we provide
an example 2 dimensional lattice for a non-holonomic vehicle.

4 Analysis of Online Motion Planning Algorithms

This section is devoted to the analysis of the lattice-based online planning al-
gorithm. This analysis sheds light on the relationship between the perception
capabilities of the robot and its performance. Specifically, we consider the fol-
lowing questions: How much reward can the robot collect given a certain percep-
tion range? How does this reward compare with the fundamental limit when the
robot can observe the entire reward field a priori and compute the best path?

4.1 On Perception Range versus Performance

Before presenting the main theoretical result of this section, let us provide some
notation. Let G = (V,E) be an acyclic graph with infinitely many vertices. Recall
that the set of all paths in G = (V,E) is denoted by Paths(G). Given a path
π ∈ Paths(G), let |π| denote the length of π measured by the number of vertices
that π visits. Let Π(vinit, n) denote the set of all paths that start from the vertex
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vinit and cross at most n vertices. Suppose each vertex v ∈ V is associated with
a reward denoted by ρ(v). Let R(vinit, n) denote the total reward collected by
following some path that starts from vinit and crosses at most n vertices, i.e.,

R(vinit, n) = max
π∈Π(vinit,n)

∑
v∈π

ρ(v).

Note that R(vinit, n) is the maximum reward that the robot can collect in n
steps if it could see the whole environment, not the reward collected with limited
perception range.

The perception range limitation allows the robot to observe the reward as-
sociated with only a subset of the vertices. Let m be a number such that any
vertex that can be reached with a path of length m is within the perception
range independently of the starting vertex, i.e., m is such that, for all vinit ∈ V ,
any state in {v ∈ π : π ∈ Π(vinit,m)} is within the perception range of the robot
when the robot is at state vinit.

Let Q(vinit, n;m) denote the reward that is achieved as follows. Let R1 denote
the reward that can be collected by a path that starts from vinit and has length
m, i.e., R1 := R(vinit,m). Let v1 denote the vertex that the maximum-reward
path (achieving reward R1) ends at. Similarly, define Rk := R(vk−1,m), and let
vk be the vertex that path achieving reward Rk ends at. Finally, define

Q(vinit, n;m) :=

n/m∑
i=1

Ri

Compare this quantity with the reward that Algorithm 1 can achieve. No-
tice that Algorithm 1 considers a larger set of paths each time it computes a
maximum-reward path through the observable part of the lattice. Moreover,
Algorithm 1 computes a new path right after the first edge along the path is
executed. In contrast, the computation of Q(vinit, n;m) considers only those
paths that are of distance m, and moreover it only computes a new path af-
ter the current one is fully executed. Given these observations, we expect the
reward achieved by Algorithm 1 to be at least Q(vinit, n;m). In other words,
Q(vinit, n;m) is a lower bound for the reward that Algorithm 1 can collect, when
measured in terms of suitable statistics, such as the expectation. Although this
statement can be properly formalized, we omit this formalism due to space lim-
itations.

Now we focus on the analysis of Q(vinit, n;m). In particular we compare
Q(vinit, n;m) and R(vinit, n). The former is the reward that the robot can collect
with limited perception range m. The latter is the reward that the robot can
collect if it had infinite perception range. In what follows, the initial vertex vinit

is fixed, and it is the same for all results reported below. For simplicity, we drop
vinit from our notation, and we write Q(n;m) and R(n) in the sequel.

Our first result allows us to define the mean reward.

Proposition 1. The following holds:

lim
n→∞

E[R(n)]

n
= sup
n∈N

E[R(n)]

n
.

7



Proof. The result follows directly from Fekete’s lemma [26], noting that the
sequence E[R(n)] is superadditive, hence −E[R(n)]/n is subadditive. ut

Let’s define the mean reward per step as R∗ := limn→∞ E[R(n)]/n, which
is well defined by Proposition 1. We compare R∗ with Q(n;m)/n for suitable
values of m.

Theorem 1. Suppose R∗ is finite. Suppose that the rewards ρ(v) are indepen-
dent (but not necessarily identically distributed) and that they are uniformly
almost-surely bounded random variables, i.e., there exists some L such that P(|ρ(v)| ≤
L) = 1, for all v ∈ V . Then, for any δ > 0, there exists a constant c such that

lim
n→∞

P
( ∣∣∣Q(n, c log n)

n
−R∗

∣∣∣ ≥ δ
)

= 0.

Roughly speaking, Theorem 1 implies that the robot can navigate to any
vertex that is at most n steps away almost optimally (as if it had infinite per-
ception range), if its perception range is at order log n. In other words, as the
perception range increases, the amount of distance that the robot can travel
optimally increases exponentially fast, as stated below.

Corollary 1. Suppose the assumptions of Theorem 1 hold. Then, for any δ > 0,
there exists some constant c such that

lim
m→∞

P
( ∣∣∣Q(L(m),m)

L(m)
−R∗

∣∣∣ ≥ δ
)

= 0,

where L(m) = ecm for some constant c that is independent of m (but depends
on δ).

This corollary follows from Theorem 1 with a change of variables.
Before proving Theorem 1, we state an intermediate result that enables our

proof. This intermediate result is a concentration inequality, which plays a key
role in deriving many results in nonequilibrium statistical mechanics [20].

Lemma 1 (See [20]). Let {Yi, i ∈ I} be a finite collection of independent
random variables that are bounded almost surely, i.e., P(|Yi| ≤ L) = 1 for all
i ∈ I. Let C be a collection of subsets of I with maximum cardinality R, i.e.,
maxC∈C |C| ≤ R and let Z = maxC∈C

∑
i∈C Yi. Then for any u > 0,

P(|Z − EZ| ≥ u) ≤ exp

(
− u2

64RL2
+ 64

)
.

Finally, we present the proof for Theorem 1.

Proof (Theorem 1). Let I be the collection of nodes in the lattice. Define C =
{N (π), π ∈ Π}, where N (π) = {v ∈ π} is the set of nodes in the path π. Then,
for the maximum-reward path with at most n steps, the maximum cardinality
is maxC∈C |C| ≤ n. Then, by substituting R(n) for Z in Lemma 1,

P (|R(n)− ER(n)| ≥ u) ≤ exp
(
− u2

64nL2
+ 64

)
.
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Therefore, for any δ = u
n > 0,

P(
∣∣Q(n, c log n)

n
− ER(n)

n

∣∣ ≥ δ)
=P(

∣∣∑ n
m
i=1Ri(m)

n
− ER(n)

n

∣∣ ≥ δ)
=P(

∣∣∑ n
m
i=1Ri(m)

n
− ER(m)

m
+

ER(m)

m
− ER(n)

n

∣∣ ≥ δ) (2)

≤P({
∣∣∑ n

m
i=1Ri(m)

n
− ER(m)

m

∣∣ ≥ δ

2
)}
⋃
{ER(m)

m
− ER(n)

n

∣∣ ≥ δ

2
}), (3)

≤P(
∣∣∑ n

m
i=1Ri(m)

n
− ER(m)

m

∣∣ ≥ δ

2
) + P(

ER(m)

m
− ER(n)

n

∣∣ ≥ δ

2
) (4)

=P(

n
m∑
i=1

∣∣Ri(m)− ER(m)
∣∣ ≥ nδ

2
) + P(

ER(m)

m
− ER(n)

n

∣∣ ≥ δ

2
). (5)

The inequality between line (2) and line (3) can be seen if we take the comple-

ments on both sides, where {
∣∣(∑ n

m
i=1 Ri(m)

n − ER(m)
m ) + (ER(m)

m − ER(n)
n )

∣∣ < δ} ⊃

{
∣∣∑ n

m
i=1 Ri(m)

n − ER(m)
m

∣∣ < δ
2}
⋂
{
∣∣ER(m)

m − ER(n)
n

∣∣ < δ
2}. Union bound is applied

between between line (3) and line (4). Now we set m = c log n. Taking limit on
both sides, we get

lim
n→∞

P(|Q(n, c log n)

n
− ER(n)

n
| ≥ δ)

≤ lim
n→∞

P(

n
m∑
i=1

∣∣Ri(m)− ER(m)
∣∣ ≥ nδ

2
) + lim

n→∞
P(

ER(m)

m
− ER(n)

n

∣∣ ≥ δ

2
) (6)

≤ lim
n→∞

P(

n
m∑
i=1

∣∣Ri(m)− ER(m)
∣∣ ≥ nδ

2
) + 0 (7)

≤ lim
n→∞

n
m∑
i=1

P(|Ri(m)− ER(m)| ≥ mδ

2
) (8)

≤ lim
n→∞

n

m
· exp(−

(mδ2 )2

64mL2
+ 64) (9)

= lim
n→∞

1

c log n
· exp

(
(1− δ2

256L2
· c) log n+ 64

)
(10)

The first inequality comes from line (5). The inequality between line (6) and line

(7) is due to Proposition 1. As n increases, m → ∞, and thus both ER(m)
m and

ER(n)
n converge to the same constant R∗. Union bound is again applied between

between line (7) and line (8). Lemma 1 is applied in line (9). Line(10) converges

to 0 when the constant c is sufficiently large, i.e., for any constant c ≥ 256L2

δ2 .
ut
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Although the conclusion in Theorem 1 is exciting, it may be too restricted
for real-world applications, as it requires both independence among ρ(v) and the
random variables ρ(v) to be bounded almost surely. We propose a conjecture
that generalizes Theorem 1 by relaxing these assumptions. We believe that the
reward collected by a robot is arbitrarily close to optimal (as formalized by
Theorem 1), even if the reward is locally dependent (instead of independent)
and the distribution of reward has light tails (instead of being bounded). Local
dependence refers to the case when ρ(v1) is conditionally independent of all other
rewards ρ(v2) given the local neighborhood of v1, if v2 is not a neighbor.

Conjecture 1. Assume that the non-negative reward ρ(z) at each state z is dis-
tributed with local dependence and that their distributions satisfy:∫ ∞

0

(1− F (x))1/ddx <∞.

Then, for any δ > 0, there exists a constant c such that

lim
n→∞

P
( ∣∣∣Q(n, c log n)

n
−R∗

∣∣∣ ≥ δ ) = 0.

Notice that the assumptions of this conjecture are much weaker. We leave the
proof of this conjecture as a future work. The rationale behind this conjecture
is two-fold. Firstly, the relaxation on the boundedness of F is supported in a
recent text [16], where the sketch of the proof is given and the details are left as
an exercise. Secondly, the relaxation of the independence requirement is inspired
by [17], where the Hoeffding inequality for independent random variables can be
extended to the local dependent case with only slight modifications.

4.2 Special Case: Planning on the Directed Regular Lattice

The result in Theorem 1 includes two constants, namely the mean reward R∗

and the constant c, the precise values of which are not known. In this section, we
prove various results to characterize these constants when the lattice G = (V,E)
can be embedded in Nd, particularly in the case when d = 2. Throughout this
section, we tacitly assume that G = (V,E) is embedded in Nd. Unless stated
otherwise, our results hold for all values of d satisfying d ≥ 2.

First, let us define some useful notation. The vertices of Nd are denoted by
w = (w1, w2, . . . , wd), where wk ∈ N. We define bkwc := (bk w1c, bk w2c, . . . ,
bk wdc). Given a vertex w ∈ Nd, let T (w) denote the reward of the maximum
reward path that starts from the origin and reaches the vertex w. With a slight
abuse of notation let Π(w) denote the set of all paths that start from the origin
and end at the vertex v. Then,

T (w) := max
π∈Π(w)

∑
w′∈π

ρ(w′).
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On Almost-sure Convergence of the Reward: Let us point out an existing
result that shows the convergence result in Proposition 1 can be improved.

Proposition 2 (See Proposition 2.1 in [21]). Assume E[ρ(w)] <∞. Define

g(w) := sup
k∈N

E[T (bkwc)]
k

.

Then, T (bnwc)
n converges to g(w) almost surely as n diverges to infinity, i.e.,

P
(

lim
n→∞

T (bnwc)
n

= g(w)
)

= 1

This result implies that R∗ is finite and that R(n)/n converges to R∗ as
n→∞, almost surely.

On Mean Reward: Suppose the dimensionality of the lattice is two, i.e., d = 2.
Let F denote the distribution for i.i.d. random variables ρ(w). Then, the results
in [21] imply that there are two cases for which R∗ can be computed exactly,
namely when F is an exponential distribution or a geometric distribution. More
specifically, if F is the exponential distribution with parameter λ = 1, then

g
(
(x, y)

)
= (
√
x+
√
y)2, for all (x, y) ∈ N2. (11)

On the other hand, if F is the geometric distribution with parameter p, then

g
(
(x, y)

)
=
x+ 2

√
xy(1− p) + y

p
, for all (x, y) ∈ N2.

According to a recent survey paper [22], Timo Sepplinen conjectured that the
function for general distributions F with mean µ and variance σ2 is

g
(
(x, y)

)
= µ(x+ y) + 2

√
σ2xy, for all (x, y) ∈ N2.

It is noted that a rigorous proof is beyond the reach of the mathematical sta-
tistical physics community at this stage. However, if this conjecture holds, it
has an important implication for the problem considered in this paper. By the
definition of R(n) and Proposition 2, the reward per step, R(n)/n converges to
µ+ σ as the distance that the vehicle travels increases to infinity, almost surely,
i.e..

P
(

lim
n→∞

R(n)

n
= µ+ σ

)
= 1.

under mild technical assumptions. Hence, in this case, R∗ = µ + σ. Simulation
results supporting this conjecture are shown in the next section.
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On the Fluctuations of the Reward: Now, we shift our attention to the con-
stant c in the statement of Theorem 1. Recall that this constant is independent
of n; however, it depends on δ. We characterize how this constant depends on
δ by employing results from the nonequilibrium statistical mechanics literature.
This investigation is possible by utilizing more accurate characterizations of the
function T (·). It is shown in [19] that, for the aforementioned two cases,

T
(

(bxnc, bync)
)
− n g

(
(x, y)

)
n

1
3

→ F2

as n goes to infinity, where F2 is the Tracy-Widom distribution.
In this case, we find that c = κ δ3/2 for some constant κ that is independent

of δ and n, as stated below.

Theorem 2. Suppose the lattice G = (V,E) is embedded in N2 and ρ(w) are
independent identically distributed random variables. Suppose their common dis-
tribution is either the exponential distribution or geometric distribution. Then,

lim
m→∞

P
( ∣∣∣Q(L(m);m)

m
−R∗

∣∣∣ ≥ δ ) = 0,

where L(m) = exp(κ δ3/2m), for some constant κ > 0 independent of m and δ.

Before proving the theorem, let us compare it with Corollary 1. While Corol-
lary 1 characterizes the reward with respect to perception range m, Theorem 2
also identifies its dependence on the error term δ. A natural conjecture is that
the result of Theorem 2 holds for any distribution with finite variance. In the
next section, we present simulation results that support this conjecture.

The proof of Theorem 2 is similar to that of Theorem 1. We omit the full
proof; but we outline the main differences.

Proof. Let TW be a random variable with the Tracy-Widom distribution. Then,
the results in [19] imply the following: For all u ≥ 0,

P(TW ≥ u) = lim
n→∞

P
( R(n)− nR∗

n1/3
≥ u

)
= lim
n→∞

P
(
n2/3 (R(n)/n−R∗) ≥ u

)
= lim
n→∞

P
((R(n)

n
−R∗

)
≥ un−2/3

)
Define δ := un−2/3. Hence, u = δ n2/3. It was showed very recently [27] that the
right tail of the Tracy-Widom distribution F2 can be characterized as follows:

lim
u→∞

P(TW ≥ u) = α exp

(
−4

3
u3/2

)
.

Combining this with the previous equality, we obtain:

lim
n→∞

P
(
R(n)

n
−R∗ ≥ δ

)
= α exp

(
−4

3

(
δ n2/3

)3/2
)

= α exp

(
−4

3
δ3/2 n

)
.

The rest of the proof follows the proof of Theorem 1. ut
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5 Computational Experiments

In this section we provide simulations to support our analysis. There are two
major results. The first simulation shows how the speed of reward collection
converges as the distance n that the vehicle travels increases. The second sim-
ulation visualizes how the expected distance that the robot can travel without
losing too much reward changes, as we increase the perception range.

5.1 Mean of Reward per Step

According to Equation (11), when F is an exponential distribution with λ =
1, the limit of reward per step is known. In this experiment, we create a 2-
dimensional matrix where each element w = (x, y) inside the matrix corresponds
to the reward ρ(w). The i.i.d random variables ρ(w) follow an exponential distri-
bution with mean 1. We find the maximal reward T (z), from the origin to a set
of locations {z = (x, y)|x + y = n}, using dynamic programming. This process
is repeated 1000 times to compute the empirical average. The result is shown in
Figure 3. A similar result can also be found for the geometric distribution.
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Fig. 3: This plot shows the relationship between the reward per step, T (x, n −
x)/n, and the x-coordinate of the final destination of the robot. It verifies that
the lemma g(x, y) = (

√
x+
√
y)2 for exponential distribution is correct.

Recall the conjecture that g(x, y) = µ(x+ y) + 2
√
σ2xy, which implies that

R(n)
n → µ+ σ almost surely as n→∞. As mentioned earlier, a rigorous proof is

not known yet, but we show some simulation examples that support this conjec-
ture. We set up an experiment which is very similar to the previous one, except
that the distribution F of the random variables ρ(w) is a Poisson distribution
with λ = 0.05. The Poisson distribution is interesting because it is closely related
with the example we provide in Section 1, when the sensing devices are dispersed
according to a Poisson distribution.

In Figure 4, we plot the relationship between R(n)
n and n. In this scenario,

µ+ σ = λ+
√
λ = 0.05 +

√
0.05 = 0.2736. From the graph we can see that R(n)

n
is converging towards this value.
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Fig. 4: This plot shows the relationship between the reward per step, R(n)
n , and

the travel distance n, for Poisson distribution with λ = 0.05. It supports the

conjecture that R(n)
n → µ+ σ as n→∞ for general distributions.

5.2 Receding Horizon

In Section 4.2 we have shown that with a perception range of m = O(log n), the
robot will be able to collect almost as many rewards as the optimal case (with
full information). Based on Theorem 2, we claim that for any fixed δ > 0, if we
know that the optimal reward per step is R∗, and we if would like to keep a
reward per step of no less than R∗− δ with a fixed perception range m, then the
expected maximal travel distance of the robot is of order L(m) = exp(κ ·δ1.5 ·m)
for some constant κ > 0 that depends only on the distribution F .

Consider the following computational experiment. Suppose the robot is run-
ning Algorithm 1 with a lattice that is embedded in N2. We run this simulation
until the reward per step falls below R∗−δ, and we measure the distance that the
robot has travelled before the simulation stops. We repeat this experiment 1000
times on different realizations of the random variables. We average the distance
that the robot travels to compute an empirical average. In Figures 5, we show
the relationship between the distance that the robot travels and the perception
range m for geometric distribution with p = 0.5 and and different values of δ.

The simulation results show that this distance increases exponentially, in
fact obeying the order exp(κ δ1.5m), where κ is around 0.4 in this case. These
simulation results support the result of Theorem 2.

6 Conclusions

We analyze the maximum-reward paths computed by a simple, practical receding-
horizon online motion planning algorithm. In particular, we show that the dis-
tance that the robot can travel almost optimally increases exponentially fast
with increasing perception range. We also characterize the exponent in terms of
the error term. Along the way, we establish novel connections between a class of
path planning problems and certain fundamental problems of non-equilibrium
statistical mechanics, which may be interesting on their own right.
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Fig. 5: This plot shows the relationship between the distance a robot can travel
(with reward per step no less than R∗−δ for geometric distribution with p = 0.5)
and different values of δ. Note that the y-axis is semi-log, which indicates that as
perception range increases, the distance a robot can travel without too much loss
in reward increases exponentially. The red line is an approximation of the real
data. Notice that the exponent is around 0.4 · δ1.5, which supports Theorem 2.

Future work includes the construction of a rigorous proof for the main con-
jecture of the paper (given in Conjecture 1). We will study how the maximum
reward scales with other perception capabilities, such as perception uncertainty,
as well as with the actuation and on-board computation capabilities of the robot.
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