
MIT Open Access Articles

Modeling the effects of extracellular potassium on 
bursting properties in pre-Bötzinger complex neurons

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bacak, Bartholomew J., Joshua Segaran, and Yaroslav I. Molkov. “Modeling the Effects 
of Extracellular Potassium on Bursting Properties in Pre-Bötzinger Complex Neurons.” Journal 
of Computational Neuroscience 40.2 (2016): 231–245.

As Published: http://dx.doi.org/10.1007/s10827-016-0594-8

Publisher: Springer US

Persistent URL: http://hdl.handle.net/1721.1/105884

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/105884


Modeling the effects of extracellular potassium on bursting
properties in pre-Bötzinger complex neurons

Bartholomew J. Bacak1
& Joshua Segaran2

& Yaroslav I. Molkov3

Received: 8 July 2015 /Revised: 3 February 2016 /Accepted: 8 February 2016 /Published online: 22 February 2016
# Springer Science+Business Media New York 2016

Abstract There are many types of neurons that intrinsically
generate rhythmic bursting activity, even when isolated, and
these neurons underlie several specific motor behaviors.
Rhythmic neurons that drive the inspiratory phase of respira-
tion are located in the medullary pre-Bötzinger Complex (pre-
BötC). However, it is not known if their rhythmic bursting is
the result of intrinsic mechanisms or synaptic interactions. In
many cases, for bursting to occur, the excitability of these
neurons needs to be elevated. This excitation is provided
in vitro (e.g. in slices), by increasing extracellular potassium
concentration (Kout) well beyond physiologic levels.
Elevated Kout shifts the reversal potentials for all potassium
currents including the potassium component of leakage to
higher values. However, how an increase in Kout, and the
resultant changes in potassium currents, induce bursting activ-
ity, have yet to be established. Moreover, it is not known if the
endogenous bursting induced in vitro is representative of neu-
ral behavior in vivo. Our modeling study examines the inter-
play between Kout, excitability, and selected currents, as they
relate to endogenous rhythmic bursting. Starting with a
Hodgkin-Huxley formalization of a pre-BötC neuron, a

potassium ion component was incorporated into the leakage
current, and model behaviors were investigated at varying
concentrations ofKout. Our simulations show that endogenous
bursting activity, evoked in vitro by elevation of Kout, is the
result of a specific relationship between the leakage and volt-
age-dependent, delayed rectifier potassium currents, which
may not be observed at physiological levels of extracellular
potassium.
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1 Introduction

Nervous systems of invertebrates and vertebrates contain neu-
ronal structures capable of generating rhythmic neuronal ac-
tivity, even without external input, i.e. endogenous rhythmic-
ity, that controls several motor behaviors, such as locomotion
and respiration. One such rhythmic structure, the medullary
pre-Bötzinger complex (pre-BötC), represents the putative site
for inspiratory rhythm generation in mammals (Smith et al.
1991, 2013; Johnson et al. 1994). Recordings from the me-
dulla, performed in vivo, show a rhythmic activity pattern that
projects to pre-motor and motorneurons that cause the cyclical
contraction and relaxation of various respiratory muscles
(Ramirez et al. 2002; Richter and Spyer 2001; Smith et al.
2000). This rhythm was further characterized as a Bthree-
phase^ pattern, containing inspiratory, post-inspiratory, and
augmenting-expiratory phases (Lawson et al. 1989; Richter
1982, see Richter and Smith 2014 for review). Analogous
activity patterns have been extensively characterized in vitro.
When progressive caudal transections are made, the normal
three-phase pattern switches to a two-phase rhythm (inspira-
tion and expiration), and finally to a single, only inspiratory,
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phase (Rybak et al. 2007; Smith et al. 2007, 2009). The one-
phase rhythm occurred when only the pre-BötC remained in-
tact, and thus indicates that a network of pre-BötC neurons is
capable of endogenous bursting. Moreover, it has been dem-
onstrated that some pre-BötC neurons continued generating
rhythmic bursting, in these in vitro preparations, even after
synaptic connections were blocked (Johnson et al. 1994;
Thoby-Brisson and Ramirez 2001).

A successive transition from quiescence, to bursting, and
then to tonic spiking can be induced, in vitro, in an individual
neuron, by progressively increasing the resting membrane po-
tential. This can be performed directly, by electrical current
(Koshiya and Smith 1999), or by elevation of extracellular
potassium concentration, Kout, from its physiological level of
3–4 mM up to 8–9 mM (Johnson et al. 1994; Shao and
Feldman 1997; Del Negro et al. 2001; Thoby-Brisson and
Ramirez 2001). Del Negro et al. 2001 showed that further
elevation of Kout caused a transition from bursting to tonic
spiking. It was proposed that this elevation of Kout was neces-
sary to increase neuronal excitability (neuronal membrane de-
polarization) and compensate for a lack of external excitatory
drives operating in the more intact in vivo systems. Despite the
extensive study of endogenously bursting neurons of the pre-
BötC, in vitro, it has yet to be determined, due to experimental
limitations, if endogenous bursting occurs physiologically.

To address these limitations, several computational models
have been developed to study the mechanisms underlying
bursting behaviors in pre-BötC neurons. Butera et al. 1999a,
b suggested that the rhythmic bursting observed in pre-BötC
slice preparations may arise from a persistent (or slowly
inactivating) sodium current (INaP). The presence of INaP in
pre-BötC neurons was then confirmed (Del Negro et al. 2001;
Rybak et al. 2003a; Koizumi and Smith 2008), and pre-BötC
rhythmicactivity in medullary slices could be abolished by the
INaP blocker, riluzole (Rybak et al. 2004a; Koizumi and Smith
2008). Large scale models of the broader respiratory network,
also using the INaP-dependent burst mechanism, have
reproduced a breadth of experimental findings, including the
transitions described in the first paragraph (Molkov et al.
2010; Rybak et al. 2004b, c, 2007). In these models, elevation
of Kout and its effects on neurons were not explicitly simulat-
ed. Instead, neuronal excitability was directly adjusted by
modulating the leakage reversal potential,EL, leading tomem-
brane depolarization. However, elevation of Kout does not on-
ly affect EL, but also the potassium reversal potential, EK, and
therefore all potassium currents. The delayed rectifier potassi-
um current, IK, is of particular interest because of its role in
neuronal after spike repolarization (Rybak et al. 2003b).
Higher EK values weaken IK, which in turn can affect regimes
of neuronal activity and transitions between regular spiking
and bursting.

The primary aim of this study was to evaluate the plausi-
bility of specific neuronal bursting mechanisms at a range of

Kout values that encompasses those observed in vivo and the
elevated concentrations used for in vitro experiments. We de-
veloped a novel model formalization where both IK and IL
were dependent on Kout. The results of our study suggest that
the mechanisms thought to underlie endogenous bursting
in vitro, e.g. the persistent-sodium current in our model, were
insufficient to produce this behavior whenKoutwas reduced to
in vivo concentrations.

2 Methods

2.1 Model description

Our model of a single pre-BötC neuron represents an exten-
sion of previous conductance-based models (Butera et al.
1999a, b; Rybak et al. 2004a). The model includes the follow-
ing currents: fast sodium (INa), persistent (slowly inactivating)
sodium (INaP), delayed rectifier potassium, (IK) leakage (IL),
and synaptic (ISyn) currents.

The neuron’s membrane potential (V) is defined using the
differential equation:

C⋅
dV

dt
¼ −INa−INaP−IK−IL−ISyn; ð1Þ

where C is the membrane capacitance.
The currents are modeled by the following equations:

INa ¼ gNa⋅m
3
Na⋅hNa⋅ V−ENað Þ; ð2Þ

INaP ¼ gNaP⋅mNaP⋅hNaP⋅ V−ENað Þ; ð3Þ
IK ¼ gK ⋅n

4⋅ V−EKð Þ; ð4Þ
IL ¼ gL⋅ V−ELð Þ; ð5Þ
ISyn ¼ gSyn⋅ V−ESyn

� �
; ð6Þ

where: gNa, gNaP, and gK are maximal conductances for the
fast sodium, persistent sodium, and potassium delayed recti-
fier currents, respectively; gL and gSyn are the leakage and
synaptic conductances, respectively; mcur and hcur (where
the index, cur, identifies either Na or NaP) represent the acti-
vation and inactivation gating variables for the corresponding
voltage-gated sodium channels whose dynamics are described
by the following equations:

τh;cur Vð Þ⋅ dhcur
dt

¼ h∞;cur Vð Þ−hcur; ð7Þ

τm;cur Vð Þ⋅ dmcur

dt
¼ m∞;cur Vð Þ−mcur; ð8Þ

where the voltage dependent inactivation, h∞,cur, and the volt-
age dependent activation,m∞,cur, have voltage dependent time
constants, τh,cur and τm,cur, respectively. These voltage
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dependent gating functions for the sodium currents, INaP and
INa, are governed by the following equations, first described
by Butera et al. 1999a:

h∞;cur Vð Þ ¼ 1þ exp V−Vh;cur

� �
=kh;cur

� �� �−1
; ð9Þ

m∞;cur Vð Þ ¼ 1þ exp V−Vm;cur

� �
=km;cur

� �� �−1
; ð10Þ

τh;cur Vð Þ ¼ τh;cur;max=cosh V−Vh;τ ;cur

� �
=kh;τ ;cur

� �
; ð11Þ

τm;cur Vð Þ ¼ τm;cur;max=cosh V−Vm;τ ;cur

� �
=km;τ ;cur

� �
: ð12Þ

The parameters of Eqs. (9–12) may be found in Section 2.2.
The voltage dependent activation, n, of the delayed rectifier
potassium current, IK, follows the same general form as the
other currents activations:

τn Vð Þ⋅ dn
dt

¼ n∞ Vð Þ−n; ð13Þ

and obeys the voltage dependent functions described by
Huguenard and McCormick 1992:

n∞ Vð Þ ¼ k1 Vð Þ= k1 Vð Þ þ k2 Vð Þð Þ; ð14Þ
τn Vð Þ ¼ k1 Vð Þ þ k2 Vð Þð Þ−1; ð15Þ
k1 Vð Þ ¼ nA⋅ nAV þ Vð Þ= 1−exp − nAV þ Vð Þ=nAkf gð Þ; ð16Þ
k2 Vð Þ ¼ nB⋅exp − V þ nBVð Þ=nBkf g: ð17Þ

All parameters for Eqs. (13–17) are listed in Section 2.2.
The reversal potentials, ENa and EK in Eqs. (2–4), for Na+

and K+ ions, were calculated with the Nernst equation:

Eion ¼ R⋅T
n⋅F

⋅ln
Ionout
Ionin

; ð18Þ

where R is the universal gas constant, T is the temperature in
Kelvin, n is the charge of the ion, and F is Faraday’s constant.

In order to explore the mechanisms behind the K+-depen-
dent neuronal excitability a detailed description of the leakage
current (IL) was developed. TheK

+ andCl− components of the
leak current hyperpolarize the cell, while the Na+ component
causes neuronal depolarization (Forsythe and Redman 1988).
Each of these ions has a conductance (gx) and a reversal po-
tential (Ex), that were incorporated into IL as follows:

gL⋅ V−ELð Þ ¼ gLK ⋅ V−EKð Þ þ gLNa⋅ V−ENað Þ
þ gLCl⋅ V−EClð Þ; ð19Þ

gL ¼ gLK þ gLCl þ gLNa; ð20Þ
EL⋅gL ¼ EK ⋅gLK þ ECl⋅gLCl þ ENa⋅gLNa; ð21Þ
where EL is the effective reversal potential of the leakage
current and gL is its conductance (both are assumed to be
known). Equation (19) is a general equation showing that IL
is the sum of the three distinct currents. Equations (20) and

(21) are derived from (19). We included the Cl ion because it
is associated with a hyperpolarizing current, as it brings neg-
ative charge into the cell, and it has been proven to be part of
the leakage current in previous experimental studies (Forsythe
and Redman 1988). Only the potassium component of the leak
current is affected by variations in extra cellular potassium
concentration. A dimensionless parameter, δ, was introduced
to specify the ratio of potassium contribution to the hyperpo-
larizing ionic component of IL, of K

+ and Cl−:

δ⋅ gLCl þ gLKð Þ ¼ gLK ; ð22Þ

Increasing δ increases gLK, thus changing Kout has a larger
effect on IL. By solving the linear system (20), (21), (22), we
calculated the conductances of each ionic component’s con-
tribution to the overall leakage current, under standard condi-
tions with Kout of 4 mM, e.g. gLK is defined by the formula:

gLK ¼ δ ⋅ EL− ENað Þ⋅gL
δ⋅ EK− EClð Þ− ENa− EClð Þ ; ð23Þ

where EL=−64 mV, ECl=−90 mV, and gL=2.5 nS are con-
stants taken from Jasinski et al. 2013, and ENa was calculated
using standard intracellular and extracellular Na+ concentra-
tions (see section 2.2Model Parameters). The conductances of
individual ions in ILwere calculated using Eq. (23) with a Kout

of 4 mM and a varying value of δ.
We refer to the excitatory synaptic conductance (gsyn) mim-

icking network input for the synaptic current, Isyn, as drive.
This parameter was varied to induce different neuronal re-
gimes in the system. Esyn is the reversal potential of excitatory
synaptic current given in the following section.

2.2 Model parameters

The following default values of parameters were used, except
where it is indicated in the text that some parameter values
were varied in particular simulations:

Membrane capacitance (pF): C=36.
Universal gas constant (J/(mol ·K)): R=8.314.
Faraday constant (C/mol): F=9.648 · 104.
Temperature (K): T=308.

Ionic concentrations (mM): Naout =120, Nain =15,
Kout=varied, Kin =140.
Parameters for INa, INaP and IK: Vm,Na=−43.8 mV, km,
Na=6, km,τ,Na=14, Vh,Na=−67.5 mV, kh,Na=−10.8, kh,τ,
Na = −12.8, Vm,NaP = −47.1 mV, km,NaP = 3.1, km,τ,
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Maximal conductances (nS): gNa ¼ 120, gNaP ¼ 5, gK
is varied, gL=2.5, gsyn=0.

Reversal potentials (mV): ENa ¼ R⋅T
F ln Naout

Nain
,

EK ¼ R⋅T
F lnKout

Kin
, EL=−64, ECl=−90, Esyn=−10.



NaP = 6.2, Vh,NaP = −60 mV, kh,NaP = 9, kh,τ,NaP =9,
nA=0.01, nAV=44, nAk=5, nB=0.17, nBV=49, nBk=40.
Time constants (ms): τm,Na,max=0.25, τh,Na,max=8.46, τm,
NaP,max=1, τh,NaP,max=5000.

2.3 Classification of neuronal behaviors with bifurcation
diagrams

The model produced a variety of qualitatively unique behav-
iors including: quiescence (silence), bursting (Figs. 1a, c),
tonic spiking (Fig. 1b), and sustained depolarization
(Fig. 1d). Bursting behaviors were separated into two groups:
regular bursts (see Fig. 1a) and plateau-like bursts with a tran-
sient depolarization block (maintained depolarization) within
a cluster of spikes (see Fig. 1c), and will heretofore be referred
to as Bregular^ and Bdepolarization block^ (DB) bursts, re-
spectively. Bursting with a depolarization block (DB bursting)
is typically dismissed as an artifact or transitional regime in
experimental recordings, see Thoby-Brisson and Ramirez
2001 for an example of this bursting behavior. One-
dimensional bifurcation diagrams were constructed (see be-
low) to detect and classify bursting behaviors. Bifurcation
diagrams were also used for the analysis of the dramatic
changes in the system’s behavior when drive, Kout, and δwere
varied.

We used a technique involving the construction of Poincaré
sections to create bifurcation diagrams (Kantz and Schreiber
2004). The Poincaré section was constructed by locating in-
stances of the neuron’s potential crossing a chosen threshold,
−35 mV, in a specified direction. The time between these
instances, i.e. the interspike interval, was plotted against spe-
cific bifurcation parameters, e.g. Kout, drive, or δ (c.f. Fig. 2a–
c). Such bifurcation diagrams show qualitative changes in the
system’s behavior as the parameters were varied.

Two-dimensional bifurcation diagrams have different bi-
furcation parameters on the x- and y-axis and the regions of
bursting are shaded black (see Fig. 2d). Occasionally

bistabilities occurred when two unique regimes co-existed at
the same value of bifurcation parameters (see Fig. 2c at drive
[0.3, 0.34] for a representative example). To find bistabilities,
the simulation was performed with a slowly increasing drive
and then repeated with slowly decreasing drive. The time in-
terval separating changes in drive was sufficiently large to
allow the system to closely converge to its steady state prior
to the calculation of interspike intervals. Similar observations
have been made with in vitro preparations that demonstrate
switching between quiescence and bursting behavior when a
small transient current pulse is applied (Guttman et al. 1980).
The in silico parallel creates two stable regions of attraction
and applying an external drive can perturb the system away
from one region and towards the other (Rinzel 1985).
Transitions are also completed using external drive in regions
where no bistability exists; progressively increasing an exter-
nal drive will cause transitions from silence to bursting and
from bursting to tonic spiking for certain fixed parameter
values.

2.4 Qualitative analysis

Fast-slow decomposition analysis of the system involved
the projection of the system’s dynamics onto the plane
of variables describing membrane potential, V, and the
inactivation of persistent sodium, hNaP. The time con-
stants for V, hNa, mNa, mNaP, n, and hNaP are such that
the slower variable, hNaP, may be treated as a fixed
parameter of the five-dimensional fast subsystem with
dynamical variables: V, hNa, mNa, mNaP, and n. The
equilibrium solutions, or critical points, of the fast sub-
system were projected into (hNaP, V) and formed the
slow-manifold as hNaP was varied, see Fig. 3a blue
curve. The slow-manifold had a cubic shape with three
branches. The lower and middle branches are connected
by a point which is the lower knee (LK) of the slow-
manifold. From right to left, along the slow-manifold,
critical points become unstable at a Hopf bifurcation

Fig. 1 Neuronal voltage patterns. a Bursting occurs when groups of
multiple action potentials are followed by a period of silence. b Tonic
(spiking) occurs when individual action potentials occur repeatedly,
without a period of silence. c DB bursting has periods of silence
separating bursts that contain a period of tonic depolarization. d

Depolarization block is defined as a steady state characterized by a high
membrane potential (about −35 mV), as a result of a weak delayed
rectifier potassium current, IK (discussed in text) which renders a
neuron unable to spike
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point (HB, blue circle), with periodic orbits emerging
(red lines represent the extrema of the voltage on the
emerging periodic orbit). The hNaP-nullcline, calculated
when the first derivative of hNaP = 0, see Eq. (7), is
represented by a black dashed line, and the solution to
the full system is depicted by a trajectory drawn with a
solid black line.

Fast-slow decomposition methods reveal the mecha-
nisms underpinning the regular and DB bursts. These
regimes each have the same general structure, i.e. that

of a saddle-loop (homoclinic) bifurcation in the fast
subsystem responsible for the burst termination (ex-
plained later in more detail), and differ primarily in
the positioning of the LK, HB, and the hNaP-nullcline.
When at rest, the system’s trajectory travels along the
lower branch of the slow manifold until reaching the
LK and rapidly moving to less negative values of V.
A regular burst will occur when the hNaP-coordinate of
the LK is less than the HB, and the V-coordinate of the
lower bound of the periodic orbit is greater than that of

Fig. 2 Bifurcation diagrams with δ = 0. a–c. Interspike interval was
calculated as drive was increased (red dots) and decreased (green dots).
a One-dimensional bifurcation diagram with Kout = 2.0 mM. Tonic
spiking occurred when drive > 0.3 and silence was observed at lower
drive. b One-dimensional bifurcation diagram with Kout= 3.0 mM. At
this lower concentration of Kout, regular bursting occurred for drive
values between 0.303 and 0.34. Regular bursting has only one
intraburst interval greater than one second, as opposed to the two
branches characteristic of DB bursting. As before, tonic activity
occurred at higher levels of drive. c One-dimensional bifurcation
diagram with interspike interval versus drive at Kout of 6.5 mM. A
bistability of silence and tonic spiking occurred when drive < 0.3.
When drive is slightly greater than 0.3, a transition from silence to DB
bursting occurred. DB bursting is characterized by the existence of two

branches that correspond to interspike interval durations greater than one
second. When drive was between 0.3 and 0.35, DB bursting coexisted
with tonic spiking. At higher levels of drive, only tonic spiking occurred.
d Two-dimensional bifurcation diagram, showing neuronal regimes as
Kout and drive vary, while δ was fixed at 0. Both DB and regular bursting
regimes are shaded black. The boundary between silent and active
regimes, i.e. the activation curve, was vertical. The portion of bursting
above the dashed white line represents areas of DB bursting, and the
areas below represent regular bursting. The dashed red line separates
DB bursting (below line) from a region of bistability between DB
bursting and tonic spiking. Boundaries separating qualitative behaviors
were calculated using one-dimensional bifurcation diagrams that varied
Kout when drive was fixed
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the LK (see Fig. 3b), this enables the neuron to activate
and immediately assume periodic or bursting behavior.
DB bursts occur when the opposite is true, i.e. the LK
exists at higher values of hNaP than the HB. This cre-
ates a trajectory where the burst initiates and oscillates
down to the stable upper branch of the slow-manifold
before resuming its oscillatory activity after the HB and
ultimately terminating upon crossing the hNaP-nullcline
(see Fig. 3c).

All fast-slow decomposition diagrams were constructed in
Matlab. Simulations were performed using XPPAUT
(Ermentrout 2002).

3 Results

3.1 Effect of delayed rectifier potassium current
on bursting patterns

Previous studies dealt with the depolarizing change to the
leakage current from changing Kout and tended to neglect the
effect of Kout on IK current. We studied conditions when δ=0
to allow us to determine the impact ofKout on IKwith no effect
upon the leakage current. This particular experiment allowed
us to obtain a better understanding of the changes in the IK
current, in a manner not previously studied.

Fig. 3 Fast-slow analysis of transitions between tonic, bursting, and
depolarization blocks at drive= 0.32, δ = 0, and varying Kout (2 (a), 4
(b), 6.5 (c), and 9 mM (d)). The slow-manifold is depicted by solid
and dashed blue lines when the critical points are stable and unstable,
respectively. The lower and middle branches of the slow-manifold
converge to result in a saddle node bifurcation, forming the lower knee
of the slow-manifold (LK). When the slow-manifold loses its stability, at
the solid blue circle representing the location of the Hopf bifurcation
(HB), a periodic orbit emerges and its minimal and maximal V-
coordinates are depicted with red lines. The hNaP-nullcline is
represented by a dashed black line. The solid black line represents the

neuron’s trajectory in (hNaP, V). a When the V-coordinate of the periodic
orbit’s lower boundary is less than the LK, a saddle node on an invariant
circle (SNIC) bifurcation emerges. b Elevated Kout shifts the HB to lower
hNaP-coordinates, moving the periodic orbit to higher V-coordinates than
the LK. This shift underlies the transition from a SNIC to a saddle loop
(SL), or homoclinic, bifurcation scenario. c Bistable behavior when
Kout= 6.5 mM. The initial conditions determine if tonic spiking (green)
or DB bursting (black) occurs. d The trajectory reaches a stable state
created by the intersection of the stable slow-manifold and the hNaP-
nullcline, depicted with a solid black circle
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When δ=0, there are three main bursting regions (Fig. 2d).
One-dimensional bifurcation diagrams were constructed to
depict the single interspike interval of tonic spiking
(Fig. 2a), as well as to differentiate between regular bursting
(Fig. 2b), DB bursting, and the bistable regime of DB bursting
and tonic spiking (Fig. 2c). The DB bursting had a period of
depolarization without oscillations (Fig. 2c) and had two dis-
tinct clusters of large interspike intervals, i.e. intraburst and
interburst intervals on the order of 1 and 10 s, respectively. We
were able to distinguish regular and DB bursting by the pres-
ence of the intraburst interval branch on the one-dimensional
bifurcation diagram (Fig. 2c). Figure 2d showed that DB
bursting occurred with δ=0, when Kout was 4.5 to 7.0 mM.
This finding was unexpected since experimental models typ-
ically demonstrate regular rather than DB bursting at high
Kout. High Kout values caused IK to be weaker because of
increases in the potassium reversal potential, EK, see Eqs. (4)
and (18). Figure 2c shows an area of bistability of DB bursting
and tonic spiking. The activation curve, which is the line at
which quiescence transitions to active regimes, was vertical
when δ=0 (Fig. 2d), thus there was no bursting for drive
values less than ~0.3.

Fast-slow analysis of the regimes shown in Fig. 2 was
performed for varying levels of Kout (Fig. 3). The slow-
manifold (blue lines) has stable (solid blue) and unstable
(dashed blue) portions. When Kout is low, i.e. 2 mM, the min-
imal V value on the periodic orbit (red lines) emerging from
the Hopf bifurcation (HB), in the fast subsystem, extends to
values of V below the lower knee (LK) of the slow-manifold
creating the saddle-node loop, otherwise referred to as a
saddle-node on invariant circle (SNIC) bifurcation (Fig. 3a).
For a fixed value of hNaP less than the hNaP-coordinate of the
LK, the lower branch of the slow-manifold is stable and the
middle branch is unstable creating a system of a node and a
saddle that move towards each other as hNaP increases. When
the image point reaches the LK of the slow-manifold, the
stable node and saddle in the fast subsystem annihilate and
the periodic orbit emerges. In the full system entering this
orbit makes the voltage exhibit periodic (tonic) spiking. It is
worth mentioning that in case of a SNIC bifurcation observed
at low values of Kout, no bistability is present in the fast sub-
system and hence no bursting is possible in the full system.

Fast-slow decomposition of the system when Kout=4 mM
shows that, in the fast subsystem, the stable quiescent state
also disappears at the hNaP-coordinate of the LK of the slow-
manifold as hNaP increases (Fig. 3b). However, the periodic
orbits emerging from the HB terminate at a saddle-loop (SL)
bifurcation (homoclinic bifurcation) where the limit cycle
merges to the unstable (saddle) branch of the slow-manifold.
Since this bifurcation happens at a lower hNaP-coordinate than
the LK of the slow-manifold, the fast subsystem is bistable
between SL and LK thus creating prerequisites for bursting
behavior.

Regular bursting occurs at Kout of 4 mM because the posi-
tion of the HB is at a higher hNaP-coordinate than the LK of the
slow-manifold. Increasing Kout further, and thus reducing the
hNaP-coordinate of the HB, creates the prerequisites for DB
bursting (Fig. 3c, black trajectory, see corresponding mem-
brane potential trace Fig. 1c). When the system's trajectory
reaches the LK of the slow-manifold it makes an upward jump
towards the stable upper branch of the slow manifold and
oscillates down to rest on this branch. However, the trajectory
continues its leftward movement, due to the positioning of the
hNaP-nullcline, until it reaches the HB where the upper branch
of the slow-manifold loses its stability. This loss of stability
manifests as a reemergence of oscillatory activity contained by
the limit cycle. However, this instability is extremely weak, so
that the trajectory remains close to the high potential branch of
the slow-manifold. When the trajectory eventually escapes the
vicinity of the upper branch and reaches hNaP-coordinates less
than that of the SL, it falls to the stable low potential branch of
the slow-manifold of the fast subsystem, indicating the neu-
ron's return to a quiescent state in the fast subsystem.

This regime of DB bursting occurs, atKout=6.5 mM, when
the system’s initial conditions are outside the basin of attrac-
tion of the co-existing periodic orbit representing tonic spik-
ing. The two regimes depicted in Fig. 3c correspond to the
bistability shown in Fig. 2c, when drive= [0.3, 0.34].

Finally, when Kout is increased further, the hNaP-nullcline
intersects the upper branch of the slow-manifold at hNaP-co-
ordinates greater than the HB (Fig. 3e). This intersection cre-
ates a stable fixed point in the full system as it belongs to the
stable high potential branch of the slow-manifold, and under-
lies the state of depolarization block (see membrane potential
trace in Fig. 3d).

3.2 Bursting patterns whenKout affects the leakage current

When δ is positive (Fig. 4), K+-ions contribute to IL.
Comparing the subpanels in Fig. 4, it is evident that δ has only
a minor effect on the position of active regimes relative toKout

concentration. Note that in all subpanels of Fig. 4, Kout values
of 2.0, 4.0, and 6.5 mM correspond to regimes of silence,
regular bursting, and a co-existence of DB bursting and tonic
activity, respectively. This happens for various magnitudes of
δ though the drive values where these behaviors occur are
shifted. In addition, the one-dimensional bifurcation diagrams
at various δ values (not shown) indicated that the bursting
patterns were strongly dependent on Kout levels. Increasing
Kout caused a change from regular to DB bursting. In addition,
as δ increased, the slope of the activation curve decreased.
This change is caused by the stronger K+-related leakage cur-
rent, specifically, an increase in gLK as seen in Eq. (23), which
allowed small changes in Kout to have a more significant
depolarizing effect. Therefore, the drive necessary to activate
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the neuron is progressively reduced for Kout concentrations
above 4 mM.

Figure 5 shows that increasingKout for non-zero values of δ
causes a decrease in the hNaP-coordinates of the Hopf bifurca-
tion (HB) and the lower knee (LK) of the slow-manifold in the
(hNaP, V). The latter reflects an increase in the excitability of

the neuron due to the depolarizing contribution of Kout to the
leakage current when δ is greater than zero. The Kout-depen-
dent decrease in the hNaP-coordinate of the LK, becomes more
dramatic as δ increases (see Fig. 5), but the hNaP-coordinate of
the HB does not demonstrate this same Kout-dependence. This
implies that changes in the hNaP-coordinate of the HB do not
reflect the increased excitability caused by elevated Kout.
Instead, movement of the HB is representative of IK suppres-
sion, by an increased EK.

When δ is 0.25 and drive is 0.35 the transition from silence
to bursting, and later to tonic, is caused by a combination of
these two movements (Fig. 6a–c). Silence occurs when the
low potential branch of the slow-manifold intersects the
hNaP-nullcline, creating a stable fixed point where the trajec-
tory converges (Fig. 6a, black solid black circle). Increasing
Kout moves the LK to lower hNaP-coordinates and when the
hNaP-nullcline no longer intersects the low potential branch of
the slow-manifold, silence transitions to regular bursting
(Fig. 6b). DB bursting occurs at slightly higher values of
Kout (not shown) which causes a decrease in the hNaP-coordi-
nate of the HB, allowing the DB burst dynamics, described in
Section 3.1, to emerge..

When Kout is increased to 6 mM the LK, and subsequently
the SL, move to lower hNaP-coordinates in the (hNaP, V) plane
(Fig. 6c). This pushes a substantial portion of the periodic
orbit below the hNaP-nullcline, where hNaP has positive rate
of change, thus preventing the neuron’s trajectory from
reaching the SL, and burst termination does not occur and
tonic spiking persists (Fig. 6c). Finally, increasing Kout to
9 mM moves the HB to a lower hNaP-coordinate than the
one of the intersection of the hNaP-nullcline and the upper
branch of the slow-manifold (Fig. 6d). Because this intersec-
tion occurs at a point where the slow-manifold is stable, a new
fixed point is created, and the neuron’s trajectory terminates at
this point (Fig. 6d, black circle). A stable fixed point on the
upper branch of the slow-manifold is characteristic of a depo-
larization block. The exact relationship between the locations
of these features, and their ability to produce regular or DB
bursts was discussed previously in Section 3.1.

These results suggest that changes in Kout must impart an
effect on IL, i.e. δ>0, for the experimentally observed transi-
tions between silence, bursting, and tonic spiking to occur

�Fig. 4 Bifurcation diagrams with varying δ. Two-dimensional
bifurcation diagrams with δ of 0.25 (a), 0.50 (b), 0.75 (c) showing
neuronal regimes as Kout and drive were varied. The portion of bursting
left of the dashed white lines represent areas of a bistability between DB
bursting and tonic spiking, and areas to the right correspond to regular
bursting. Depolarization block occurs at Kout values above the blue line.
(a) In comparison to Fig. 2d (δ= 0), the activation curve is no longer
vertical, but similar changes in neuronal regimes were seen as Kout

increased. (b, c). Increasing δ caused DB bursting to occur with
drive= 0 and the activation curve became more horizontal. The range of
Kout concentration defining the border between DB and regular bursting
remained consistent with (a) and Fig. 2d
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when Kout is increased (compare Figs. 4 and 3d). Moreover,
the transitions between these behaviors are affected, and the
regimes of DB bursting and depolarization block are created,
by a decrease in the hNaP-coordinate of a Hopf bifurcation in
the fast subsystem when IK is suppressed by an elevated Kout .

3.3 Bursting patterns without synaptic drive

Many experimental models use a cocktail of compounds, e.g.
tetrodotoxin, curare, strychnine, etc., to block synaptic inter-
actions between neurons. This is of particular interest when

Fig. 5 Movement of the Hopf
bifurcation (HB) and lower knee
(LK) of slow-manifold, to lower
hNaP-coordinates, when Kout is
increased and drive= 0.35. All
coloring is consistent with Fig. 3.
Fast-slow analysis for δ= 0.25 (a)
and δ= 0.75 (b) Larger δ results in
a greater shift of the LK but not
HB as Kout increases

Fig. 6 Fast-slow analysis of
transitions between silence (a),
bursting (b), tonic (c), and
depolarization block (d) for
δ= 0.25, drive= 0.35, and varying
levels of Kout. Coloring is
consistent with Fig. 3. Stable
equilibria of the fast subsystem,
i.e. silence (a) and depolarization
block (d), are depicted with solid
black circles. Kout is 2, 4, 6, and
9 mM in sequential panels.
Increasing Kout causes a leftward
movement of both the Hopf
bifurcation and the lower left knee
of the slow-manifold when δ >0
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exploring the endogenous bursting capabilities of neurons (see
Introduction). In our model, this experimental perturbation
can be approximated by setting the conductance of the synap-
tic current, i.e. drive, to zero. Figure 7 shows a two-
dimensional bifurcation diagram when drive=0. Unlike the
experimental results, see Johnson et al. 1994; Shao and
Feldman 1997; Del Negro et al. 2001; Thoby-Brisson and
Ramirez 2001, no regular bursting was observed. Instead only
DB bursting occurred for all values of δ and Kout. Even when
Koutwas greater than 7 mM, bursting did not occur, only tonic
spiking and depolarization block were observed.

3.4 Conductance of delayed rectifier potassium current
(gK)

Our model did not produce regular bursting at Kout concentra-
tions that would be used to induce bursting in vitro (see
Figs. 2d, 4 and 7), because of the attenuation of IK. To coun-
teract this we increased the current’s maximal conductance, .
gK , thus strengthening IK, see Eq. (4). A stronger IK, promotes
repolarization, allowing the neuron to recover from depolari-
zation block. Therefore, the advantage of gK manipulation, as
opposed to using Kout, is the ability to modulate only the
delayed rectifier potassium current and not all currents that
rely on a potassium gradient, i.e. the leakage current. The need
for this form of specific modulation has been demonstrated in
studies aimed at preventing hypoxia induced apoptosis by
down-regulating only the delayed rectifier potassium current
(Yu et al. 1997; Wei et al. 2003). Additionally, down regula-
tion of gK to suppress IK, and induce bursting in a quiescent
neuron, suggested that bursting may be induced without the
general increase in excitability thought responsible for burst-
ing when Kout is increased. We investigated this by evaluating

the neuronal regimes that occurred when gK was varied at
different Kout concentrations. To restrict the number of control
parameters we set δ = 0. Figures 8b and 9 show two-
dimensional bifurcation diagrams on the (drive, gK ) and (δ,
gK ) planes with Kout concentrations of 4 and 8 mM, respec-
tively. We chose these values of Kout because 4 mM is a typ-
ically reported in vivo concentration (Hall 2010) and in vitro
experiments often elevate extracellular potassium to 8 mM to
induce bursting (Koshiya and Smith 1999).

gK ¼ 123; 217 nS½ �. However, gK values above 200 nS pro-
duced an atypical form of regular bursting, with only a few
spikes comprising each burst (see Fig. 8a). When Kout was set
to 8 mM, regular bursting only occurred when δ= [0.38,
0.454] and gK ¼ 225; 475½ � nS. The lack of overlap between
the gK ranges for regular bursting indicates that the bursting
mechanisms in our model may be insufficient to explain be-
haviors observed at in vivo and in vitro concentration of ex-
tracellular potassium.

4 Discussion

The model proposed in this study was derived from the pre-
vious persistent sodium-based models of a pre-BötC (Butera
et al. 1999a, b), where an external drive or change in the
leakage reversal potential were used to evoke bursting. In
contrast, in vitro studies induced bursting by elevating extra-
cellular potassium (Kout). It has been proposed that elevation
of Kout increases the reversal potential of the leakage current,
and thus increases the neuronal excitability in a similar man-
ner to changing drive. In our study, we directly simulated the
effect of increasingKout on the bursting patterns of the neuron,
and investigated the interplay between the delayed rectifier
potassium and leakage currents.

Fast-slow decomposition analysis revealed that bursting
was the result of a transition from a saddle node on an invari-
ant circle (SNIC) bifurcation to a saddle-loop (or homoclinic)
bifurcation occurring in the fast subsystem. Specifically, when
the delayed rectifier potassium current, IK, was suppressed by
increasing Kout, or reducing gK , the V-range of the periodic
orbit emanating from the Hopf bifurcation (HB) transitioned
from enclosing the system of a stable node and saddle, and
thus forming the SNIC bifurcation (see Fig. 3a), to existing at
higher V-coordinates, in the (hNaP, V) plane, than the stable
node and saddle, thus forming a saddle-loop bifurcation
(Figs. 3b). Moreover, the position of the HB relative to the
lower knee (LK) of the slow-manifold, is of particular rele-
vance when the LK is moved to lower hNaP-coordinates by
increasing the drive or Koutwhen δ>0. It was demonstrated in
the previous sections that the transition from bursting to tonic
spiking relied on a different qualitative mechanism than the
transition from silence to bursting described above.

Fig. 7 Two-dimensional bifurcation diagram of Kout vs. δ. The dashed
white line separates DB bursting (below line) and a bistable region of DB
bursting and tonic spiking. Above the solid blue line depolarization block
occurs. Boundaries were calculated by creating one-dimensional
bifurcation diagrams were Kout was varied at fixed values of δ
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Specifically, a burst failed to terminate, and thus remained as
tonic spiking, when the periodic orbit of the HB failed to reach
the saddle loop (Fig. 3c, green trajectory). It was also shown
that moving the HB to lower hNaP-coordinates eventually led
to a depolarization block. Lastly, when the upper branch of the
slow-manifold intersected with the hNaP-nullcline, creating a
stable fixed point, the neuron's membrane potential remained
at a constant, and depolarized, voltage.

In addition to the artificial increase in Kout used in vitro,
fluctuations in IK properties may occur naturally, and therefore

contribute to pathological behavior of the neurons. Hypoxic
conditions disrupt the upward ramping phrenic nerve wave-
form, characteristic of eupneic breathing (Richter and
Ballantyne 1983). Furthermore, hypoxic conditions cause pe-
riods of apnea and, depending on the magnitude and duration
of oxygen deprivation, may cause gasping behavior. Gasping
is characterized by a decrementing phrenic nerve activity dur-
ing bursts and may arise from different regions of the medulla
than those responsible for the eupneic rhythm (St-John 1990;
St-John et al. 2002) or may be closely related to
chemosensitive pacemaker cells in the pre-B tzinger complex
(Solomon et al. 2000). It has also been demonstrated, in
in vivo studies, that hypoxia induced gasping correlates with
a sharp rise in extracellular potassium concentrations (Melton
et al. 1991, 1996). The rise in Kout is a direct result of the
declining energy production caused by sustained hypoxia
(Lipinski and Bingmann 1986; Morris 1974), but a direct
causal relationship between rising Kout and gasping has yet
to be established. In addition to the rise in Kout, hypoxia has
been shown to suppress various voltage-gated potassium
channels, though this is likely a secondary effect of elevated
Kout (Jiang and Haddad 1994; Conforti and Millhorn 1997;
Thompson and Nurse 1998; Gebhardt and Heinemann 1999;
Liu et al. 1999; Lopez-Barneo et al. 2001). In addition to
altered potassium dynamics, an augmentation of the persistent
sodium current, INaP, has been observed during hypoxic con-
ditions (Hammarstrom and Gage 1998, 2000, 2002; Kawai et
al. 1999). It was shown that the effects of hypoxic conditions
may be manipulated, independently, to produce rhythmic
bursting in a computational model (Rybak et al. 2004a).
This work has led some to hypothesize that the transition from
eupnea to gasping is representative of a switch from a

Fig. 9 Bifurcation diagram of gK vs δ, whenKout= 8mM. The portion of
bursting below thewhite dashed line represents areas of DB bursting, and
areas above represents areas of regular bursting. Below the blue solid line
depolarization block occurs. Boundaries were calculated by creating one-
dimensional bifurcation diagrams with varying values of gK at a fixed
value of δ

Fig. 8 Varying gK with Kout = 4 mM and δ = 0. a One-dimensional
bifurcation diagram showed only regular bursting at gK ¼ 200 nS,
however, these bursts uncharacteristically contained three or fewer
spikes per burst. b Two-dimensional bifurcation diagram showed that
regular bursting occurred when gK ¼ 125; 210½ � nS, depending on
the value of drive used. DB bursting occurred below the white dashed

line, and the area above represents areas of regular bursting. The DB
bursting area was further divided into just DB bursting (above the red
dashed line) and an area of bistability between DB bursting and tonic
spiking. Boundaries were calculated by creating one-dimensional
bifurcation diagrams were gK was varied for fixed values of drive
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network-based to endogenous bursting driven mechanism, re-
spectively, and the sharp rise in Kout likely plays an important
role in the transition (Rybak et al. 2002; St-John et al. 2002).
The work in the present study seeks to elucidate the mecha-
nisms through which endogenous bursting could be produced
by such a rise in Kout in both in vitro and in vivo conditions.

The results of our simulations indicate that bursting was
primarily the result of IK suppression, and even though in-
creases in neuronal excitability are necessary, they are not
sufficient to induce and sustain bursting behavior. To supple-
ment this argument, a two-dimensional bifurcation diagram
was built to examine how the range of Kout values where
bursting occurred changed as the potassium contribution to
the leakage current (δ) increased (Fig. 10). This was per-
formed at a fixed value of drive=0.35, that was known to
cause bursting based on prior simulations, see Figs. 2 and 4.
When δ=0 the Kout concentration imparted no effect on net-
work excitability, i.e. IL, and operated strictly by suppressing
IK. However, as δ increased, so did IL, but the impact on IK
remained constant. The resultant effect was a progressively
smaller range ofKout values over which burstingwas observed
as δ increased. This result demonstrated that increased net-
work excitability, via δ, and therefore IL, diminished Kout in-
duced bursting activity.

We introduce the concept of regular versus DB bursting in
Section 3.1. The period of sustained depolarization within a
DB burst corresponds to a cessation of neuronal activity that
may contribute to abnormal respiratory rhythm. We separated
the two types of bursting using one-dimensional bifurcation
diagrams (Fig. 2b, c). The separation of bursting into these
two types has not been previously investigated, and would
benefit from more detailed analysis in the future. More rigid
definitions could be created by extending the work presented
in this paper. Exact boundaries could be calculated from the
relative positions of the HB and the LK of slow-manifold in

terms of their hNaP-coordinates. Specifically, regular bursting
occurred when the hNaP-coordinate of the HB is greater than
the LK, assuming all other parameters are such that bursting
occurs. The transition point to DB bursting occurred when the
HB and LK moved to a point where their hNaP-coordinates
were equal.

Changing δ did not have a substantial effect upon the po-
sition of bursting regimes with respect to different levels of
Kout, see Fig. 4. Therefore, the use of any value of δ in theo-
retical models is acceptable for the study of bursting patterns
at different Kout values. The greatest effect of changing δ was
on the slope of the activation curve. As δ increased this curve
became more horizontal (Fig. 4a–c) and intersected the
drive=0 line. This finding indicated that active regimes could
exist in the absence of synaptic connections. However, our
data shows that regular bursting did not occur when drive=0
(Fig. 7), instead, only DB bursting was observed.

Neuronal regime transitions from silence to bursting, and
then to tonic spiking has been demonstrated in vitro as Kout

was progressively elevated (Del Negro et al. 2001).
Additionally, bursting had a higher frequency as Kout in-
creased. When Kout did not contribute to IL, i.e. δ=0, increas-
ing Kout never caused a transition to bursting (Fig. 2d). In this
scenario the boundary between silence and active regimes was
completely independent of Kout. However, when δ was in-
creased (Fig. 4), we found that, with moderate values of drive,
it was possible to transition directly from silence to regular
bursting to tonic spiking, as seen on the bifurcation diagrams
with δ of 0.25, 0.5, and 0.75 (Fig. 4). The frequency of burst-
ing during these transitions also increased with Kout (not
shown), as was reported experimentally (Del Negro et al.
2001).

The lack of bursting at Kout of 8 mM when drive=0 (see
Fig. 7) indicated that IK may have been too weak, and there-
fore the neuron could not repolarize. We increased gK to
strengthen IK and study its effect upon burst patterns
(Fig. 9). We found that for bursting to occur at Kout=8 mM
and drive=0, δ had to be in the range of 0.38 to 0.45. Bursting
did not occur at higher values (δ>0.45). This finding contra-
dicts the view that K+ is the principal factor in the hyperpo-
larizing leakage current, as previously thought. Forsythe and
Redman 1988 reported a ratio 0.25 for the conductance of the
Cl− and K+ leakage components. This would correspond, in
our model, to a δ of 0.8, significantly greater than our predict-
ed values.

We found that regular bursting only occurred at gK values
below 217 nS, when Kout was 4 mM (Fig. 8), and above 225
nS when Koutwas 8 mM (Fig. 9). Thus, regular bursting could
not occur at the same value of gK atKout levels of 4 and 8 mM.
This result suggests that the mechanisms commonly attributed
to endogenous bursting in pre-BötC neurons in vitro, and used
in our computational model, may be insufficient for burst
production in vivo. Moreover when Kout was 4 mM, the

Fig. 10 Bifurcation diagram of Kout vs δ when drive = 0.35. As δ
increases there is a noticeable decrease in the range of Kout values
where bursting occurred
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transition from quiescence to the only active regime, i.e. tonic
spiking, occurred through a SNIC bifurcation. This suggests
that, in vivo, neurons may demonstrate type I excitability,
which in many cases allows for a substantially simplified de-
scription (Izhikevich 2000). Consequently, our results suggest
that rhythmic activity in vivo is likely to rely on other mech-
anisms than can be accounted for with the commonly-
accepted models. For example, Jasinski et al. 2013 showed
that recurrent synaptic excitation, in combination with the
sodium-potassium exchanger (pump), produced robust rhyth-
mic network activity even when all intrinsic bursting mecha-
nisms were blocked.

To test our modeling predictions, a current could be ap-
plied to a neuron at low concentration ofKout. This would be
similar to artificial increase in the neuron’s synaptic drive,
and show whether bursting occurs at low Kout concentra-
tions, such as those observed in vivo. Another possible
in vitro study would be decreasing extracellularCl− concen-
tration. This would enable manipulation of the leakage cur-
rent without affecting the delayed rectifier potassium cur-
rent. If we transition directly from silence to spiking it
would further strengthen our claim that bursting cannot oc-
cur at low Kout concentrations.

The above collection of findings suggests that either the
current experimental models do not correlate with the physi-
ology in vivo and/or there are errors in the assumptions under-
lying current theoretical models. The use of the sodium-
potassium pump suggested by Jasinski et al. 2013 may in-
crease the area of bursting on a two-dimensional bifurcation
diagram of drive versus Kout. Such an increase in the bursting
area may help explain the mechanistic discrepancies, between
in vivo and in vitro burst generation, highlighted by our work.
Another potential issue with the theoretical model may relate
to our exclusion of calcium-based currents. However, it
should be noted that there is conflicting evidence regarding
the importance of calcium-related channels in the activity of
respiratory neurons (Del Negro et al. 2001; Rubin et al. 2009;
Ramirez et al. 2011). In addition, we assumed that the potas-
sium reversal potential followed the Nernst equation, but it has
previously been suggested that there may be deviations from
the Nernst equations for Kout concentrations less than 10 mM
(Forsythe and Redman 1988).

In conclusion, the results of our study suggest that eleva-
tion of extracellular potassium concentration attenuates potas-
sium currents. This effect underlies the emergence of the en-
dogenous bursting observed in individual neurons of the pre-
BötC, which is putatively sustained by the slowly inactivating
persistent sodium current. However, physiologic concentra-
tions of extracellular potassium may be insufficient for sup-
pression of these currents and the development of endogenous
bursting. Our modeling study suggests that neuronal bursting
in vivo is unlikely to be endogenous and instead may result
from network interactions.
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