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Abstract

For decades, the growth and volume of digital data collection has made it challenging
to digest large volumes of information and extract underlying structure. Coined ‘Big
Data’, massive amounts of information has quite often been gathered inconsistently
(e.g from many sources, of various forms, at different rates, etc.). These factors
impede the practices of not only processing data, but also analyzing and displaying
it in an efficient manner to the user. Many efforts have been completed in the data
mining and visual analytics community to create effective ways to further improve
analysis and achieve the knowledge desired for better understanding. Our approach
for improved big data visual analytics is two-fold, focusing on both visualization and
interaction. Given geo-tagged information, we are exploring the benefits of visualizing
datasets in the original geospatial domain by utilizing a virtual reality platform. After
running proven analytics on the data, we intend to represent the information in a more
realistic 3D setting, where analysts can achieve an enhanced situational awareness and
rely on familiar perceptions to draw in-depth conclusions on the dataset. In addition,
developing a human-computer interface that responds to natural user actions and
inputs creates a more intuitive environment. Tasks can be performed to manipulate
the dataset and allow users to dive deeper upon request, adhering to desired demands
and intentions. Due to the volume and popularity of social media, we developed a 3D
tool visualizing Twitter on MIT’s campus for analysis. Utilizing emerging technologies
of today to create a fully immersive tool that promotes visualization and interaction
can help ease the process of understanding and representing big data.

Thesis Supervisor: Vincent W. S. Chan
Title: Professor of EECS and Aeronautics and Astronautics

Thesis Supervisor: Jeremy Kepner
Title: MIT Lincoln Laboratory Fellow






Acknowledgments

This work would not have been possible without all who have helped me along the

way.

First and foremost, I would like to thank my advisor Vincent W. S. Chan. His
counsel and influence has been a major reason why I have been able to excel here at
MIT. Not only has he been able to help me academically, but he also managed to
assist me with life’s choices as I continued to pursue my career in engineering. He
has been patient and always made himself available whenever I needed to address my
concerns. I appreciate all of his guidance and am very grateful to have such a close

mentor.

Second, I would like to thank MIT Lincoln Laboratory. I can’t be more fortu-
nate to have gained a research experience from such a supporting and knowledgable
community. MIT’s collaboration with the Department of Defense has enabled me to
participate in projects with faculty and staff that promote academic, industrial, and
governmental pursuits. The endless opportunities this institution has bestowed upon
me has laid the foundation of an enriching work experience. To start, I would like to
thank Jeremy Kepner. As a respected MIT Lincoln Fellow, he has given advice and
support that has carried me throughout my academic career, where I feel more com-
petent and confident in my work and overcoming the challenges yet to come. Next,
I would like to thank Vijay Gadepally. His mentorship in and out of the office has
led to joint decision making and an improved work ethic that has greatly benefited
my time at MIT. Next, I would like to thank Matthew Hubbell. Since my early years
as an undergraduate, I have consulted with Matt on many project ideas and topics.
He has been my most direct mentor whom I've grown most attached with. Over the
years, he has seen my growth where I have honed my technological skills and began
to recognize my full potential. I am grateful for all his support and guidance. Also,
I would like to acknowledge Albert Reuther. As a pronounced group leader, he was
able to effectively convey all that the division has to offer and reflect positively on all

that I contributed.



Next, I would like to thank fellow colleagues and interns that have provided me
support as I developed this project. Lauren Edwards, for her expertise in D4M|4],
pMatlab[16], and Accumulo|2] that permitted integrating new analytics. Taylor Herr
for his progress in ingesting and formatting new Twitter data that I have successfully
incorporated into the foundation of my thesis. Andrew Uhmeyer for his expertise and
insights in game design and animation to help improve the graphics and usability of
my project. In addition, Dylan Hutchinson, Kate Thurmer, and many others at
Lincoln who have made the workplace a welcoming environment. I am glad to have
such endearing friends.

Furthermore, I would like to thank the Unity3D community. Given the privilege
to go to Unite Boston 2015[20] this past summer, I attended many talks, demos, and
showcases directly related to my research. Unity3D has attracted members from all
over the world including artists, indie developers, professors, avid gamers, students,
faculty, and leaders in industry to promote a shared passion in gaming and emerging
technologies. Their panel of experts provided me with valuable advice that made the
final optimizations on my thesis possible.

In addition, I would also like to thank my friends and family for their uncondi-
tional love and support. Their constant encouragement helped me continue to remain
persistent and diligent in my work when I had my doubts.

Finally, I would like to thank all the financial support I received from MIT to make
my undergraduate and graduate academic career possible. Thank you Jim Poitras for
your support during my early years at MIT and contributions to Theta Chi Fraternity.
I would like to acknowledge Anne Hunter, Vera Sayzew, and the EECS department
for all their assistance and direct mentorship. I am very appreciative of the Research
Assistantship program; I have been provided valuable support and guidance from
reputable associations such as MIT Lincoln Lab, Research Laboratory in Electronics,

and CSAIL.



Contents

1__Introduction| 15
(L1 Motivation|. . . . . . . . . .. 15
(1.2 Background| . . . . ... ... .. oo 17

(1.2.1 BigDatal. . . . .. ... ... oo 17
(1.2.2  Visual Analytics| . . . . . ... ... ... ... ... . ... 18
(1.2.3  Virtual Reality] . . . .. ... ... ... ... ... ... 19
(.3 Related Workl . . . . .. ... . oo 19
[1.3.1 Social Media and 2D Representations| . . . . . . . .. ... .. 19
[1.3.2 3D Game Engines and Virtual Reality] . . . ... .. ... .. 20
(L4 Thesis Overviewl. . . . . . . . .. ... oo 21

2 Application| 23

2.1 Architecture Overviewl . . . . . . . . .. .. .. ... ... ... 23

[2.1.1 Technologies|. . . . . . . . .. ... ... 23
2.1.1.1  Unity3D Game Engine] . . . . . . . .. ... ... .. 24

112 OculusRift] . . ... ... ... . 24

2.1.1.3 Leap Motion | . . . . . . .. ... ... ... .. ... 25

[2.1.2  Integration| . . . . . . . .. ... 26

2.2 Implementation|. . . . . . .. ... ... o 28
221 Data FExtractionl. . . . . . .. .. ... L oo 28
2211 DADAR Datal .. .. .. ... 0. 28

2212 "Twitter Dataf. . . . . .. ... ... 30

[2.2.2  Pre-Processingl . . . . . ... ... ... ... 31




2.2.2.1 Data Pipeline| . . ... ... ... ... ... ...

[2.2.3  User Interface and Design| . . . . . . .. ... ... ... ...
[2.2.3.1 DKI Prototyping (And Lessons Learned) | . . . . . .
[2.2.3.2  DK2 and an Improved Holodeckl . . . . . ... ...

[3 User Experience and Interaction|

[3.1 Analytical Tasks| . . . . .. ... ... ... ... ...
[3.1.1 Navigation and Exploration|. . . . . . .. ... ... ... ..
(3.1.2  Identification/Selection | . . . . . .. ... L
[3.1.3  Filtering/Dynamic Queries | . . . . . . ... ... ... ....
(3.1.4  Clustering/Pattern Recognition| . . . . . . . . ... ... ...
.10 Detail-On-Demand |. . . . ... ... ... 0.

[3.2  Constructing Narrative| . . . . .. ... ... ... ... .......

4_Results|

M1 FEwvaluation| . . . . . . . ..o
[4.1.1 VR as an Effective Workspace| . . . . . ... ... ... ...
[4.1.2 VR as a Visual Analytics Tool . . . . . . . ... ... ... ..

4.2 Performancel| . . . ... ... ...
[4.2.1 Ingest on Database] . . . . . .. .. ... ... . ...
[4.2.2  Game Rendering and LOD|. . . .. .. ... ... ... ....

5 Conclusion |
[b.1 Summary | . . . . ..
: allenges and Areas of Improvement | . . . . . . ... ...

[>.2  Chall d A ! |
b.21 Hardwarel . . . . . .. ... .. ... ... .
[b.2.2 Usability | . . . . .. .. ...

.3  Future Work | . . . . ... oo

.4 Closing Remarks| . . . . .. ... ... ... ... ...,

(A Equipment Specifications|

45
45
45
47
48
49
51
51

53
23
23
95
26
o6
58

61
61
62
62
62
64
65

67



IB__Additional Screenshots| 69

[C Associative Arrays and D4M]| 72
[C.1 Associative Arrays| . . . . . . . . . . . . 72
[C.2 'Two-Dimensional Associative Arrays| . . . . .. . .. ... ... ... 73
C.3 DAMI . o o 74

(C.3.1 Introduction|. . . . . . .. .. .. .. 74
(C.3.2 Indexing and Querying| . . . . . . . . . . ... ... .. 74
(C.3.3  Constructing and Destructingl . . . . . . ... ... ... ... 75
(C.3.4 Communication with Databasel . . . ... ... ... ... .. 75
(C.3.5 Sentiment Examplef . . . . . . ... ..o 000000 77




10



List of Figures

[2-1 Overview of Application Architecturel . . . . . . . . . . ... ... .. 27
2-2 LADAR Image of Cambridge] . . . . . . .. .. .. ... ... .... 29
[2-3  Data Pipeline tor Twitter Analysis| . . . . . . .. ... .. ... ... 32
[2-4  Rendition of MI'T"s campus imported FBX model| . . . . . . ... .. 36
-5 Mockup ot GUL'|. . . . . .. ... ... ... 37
[2-6  Debugging with the Leap Motion Controller | . . . . . . . . ... . .. 39
[2-7  Schematic of VRLeaplntertace Holodeck| . . . . . . ... ... .. .. 42
[2-8 3D mockup of VRLeaplntertace Holodeck|. . . . . . . ... .. .. .. 43
[2-9 Tteration of VRLeaplnterface Holodeck| . . . . . . ... ... ... .. 43
[3-1 List View of Teleporting Points of Interest |. . . . . . . ... ... .. 46
[3-2  Leap Motion Interactable Keyboard|. . . . . . .. .. ... ... ... 49
[3-3  Twitter Sentiment on MI'l’s Campus|. . . . . .. ... ... ... .. 50
[4-1  Command to Execute pMatlab Function in Parallell . . . . . . . . .. o7
[4-2  Time of Ingest - Daily | . . . . ... ... ... ... ... ... 57
[4-3  Time of Ingest - Parallel |. . . . . ... ... ... .. ... ... .. 58
[B-1 Screenshot of Multiple Queries|. . . . . . .. ... ... ... ... .. 69
[B-2° DK1 Information Overlay on Tweet| . . . . . . . . ... ... ... .. 70
[B-3 Waypoints tor Tweet Posts| . . . . . .. ... ... .. ... ... ... 70
[C-1 "Two-Dimensional Associative Arrays Examplel . . . . . . . ... . .. 73
[C-2  Representation of Accumulo Tables| . . . . . .. ... ... ... ... 76
[C-3 Determine Sentiment Score for Twitter Data in Associative Array| . . 77

11



[C-4  Matrix Representation of Sentiment Example|

12



List of Tables

2.1 Analytical Functions Pertormed on Associative Array |

“.1 Level of Detail Performance (FPS)| . ... ... ...

(A.1 Equpment Hardware and Software Specifications| . .

13



14



Chapter 1

Introduction

1.1 Motivation

Data is growing ever so fast and requires constant upkeeping. According to a 2011
review by Mckinsey[4§], the number of analysts and managers required to fully exploit
Big Data analysis is growing rapidly (e.g. approximately 190,000 analysts with “deep-
analytical" experience and 1.5 million managers collectively). The desire to gain a
sense of intuition on data through analysis is essential to the understanding and
promotion of success for one’s business. Determining an underlying structure that
best describes the flow of data could uncover hidden connections and patterns that
could enhance the knowledge of a network and its users. Many techniques are being
utilized to analyze Big Data, however, visualization is one that can very effectively
communicate insightful findings.

The gaming industry can be viewed as a medium that has propelled the devel-
opment of computer graphics and visualization forward. Effective simulations need
to incorporate realtime responses and realistic aesthetics to convey meaningful ex-
periences. Games combine both technical prowess and creative ability to produce
applications for entertainment, education, training, etc. I have always been an avid
gamer and a promoter of gamification. Creating a unique user experience that helps
drive insight and discovery is an awe-inspiring pursuit.

My appreciation can be further expressed in my readings of Ready Player One[30]
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and Ender’s Game[62]. These works realize the concept of immersive environments
that can be manipulated by the user’s finger tips to complete specific tasks. I am a
strong proponent of Human-Computer Interaction (HCI) because this field of study
attempts to bridge the gap between people and technology, designing solutions with
the user in mind. For example, as users attempt to retain and categorize new infor-
mation, they add to their cognitive overload by spatially positioning these abstract
elements in their head. This can potentially be mitigated through the use of emerging
technologies and conveying the same information in a 3D interface that is overlaid
in a natural or simulated environment. Tony Stark from Iron Man 2[36] and Tom
Cruise in Minority Report[64] rely on tools utilizing gesture and image recognition
to dictate how they want to view their surroundings. Collectively bringing all these
digital events into a physical reality is an astonishing feat.

Technologies are growing and performing more efficiently as characterized by
Moore’s Law[54]. Recently, Virtual Reality (VR) and Augmented Reality (AR) has
become a booming industry on the rise these past few years. Ever since the Kickstarter
campaign of Oculus Rift in 2012[59], visionaries want to bring virtual experiences to
the commercial market and consumers. The goal is to leverage these technologies to

enhance and create a realistic environment that further benefits the human condition.

“SEEING IS BELIEVING”

Humans rely on perception to aid in their belief that something is real[51]. Vi-
sualization and appealing to how one perceives their environment can help enhance
situational awareness and decision making skills. If the visual representation is con-
vincing enough, this process can also drive user interaction. An interaction technique
is the fusion of all the technological components that represent input and output, and
provides a way for the user to accomplish a task[68]. Combining design principles of
the user interface with the user experience that better relates to the natural 3D world
can yield promising results.

As part of the research and development community at MIT Lincoln Laboratory, I

am bringing my insights in Human-Computer Interaction and visualization to attempt
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to solve a challenging problem. The goal of this thesis is to not only apply visual
analytics to Big Data, but to do so in a convincing way that promotes a better

understanding of the data network and stimulates user interaction.

1.2 Background

1.2.1 Big Data

“WE ARE IN THE AGE OF B1G DATA”.

Lohr[47] expresses that information is continuing to accumulate and is being col-
lected at an increasing rate. As of 2012, about 2.5 exabytes of data are created each
day [61]. Today, big data can be used to convey different concepts such as social me-
dia, marketing, financial services, advertising, etc[61]. Much information can be used
to characterize particular analytical models in practice; however, this massive intake
of information can commonly be unstructured and overly complex. In fact, the main
principles that govern Big Data include volume, velocity, variety and veracity[50)].
These prime factors make it difficult to easily detect patterns and get an overall sense

of the data’s architecture.

7

Volume - unprecedented growth of data intake and storage. Many sources of

information exist, resulting in data ingests of massive amounts.

Velocity - speed of data creation and the rate in which it is processed. Determin-

ing how data continually flows effects how it can be further monitored.

Variety - diverse, and often unstructured, forms that data acquires. New tech-

niques in organization and representation is needed to simplify complexity.

Veracity - resilience and confidence of data to determine its overall utility. The

more consistent the data, the more reliable it is for decision making.

\.

According to Marr[49], another aspect to consider is value. We want to ensure the

findings obtained from the analysis are insightful and meaningful. In addition, we
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want to leverage findings for practical applications. Today’s challenges are to develop
meaningful tools for analysts and users to understand data in a more convincing way.
There are many ways we can attempt to find insight. These often consist of data
mining, machine learning, and optimization algorithms that draw in statistics and
computer science. Applying visualization is an important technique that’s used to

effectively communicate, understand, and improve the results of big data analyses.

1.2.2 Visual Analytics

Visualization plays a key role in exploring and understanding large datasets. Visual
analytics is the science of analytical reasoning assisted by interactive user interfaces[67].
According to Keim[4(], there is much to gain when data is represented in a more visual
way. This capability will enable quicker time to insight and more direct interactions
with information. Big Data may contain certain anomalies and abstract features that
are not so easily recognizable. The goal of performing analytics is to uncover these
underlying patterns and display it to the user effectively. This exploration process
of Big Data can be improved by integrating human intuition and perception. Hence,
the key concept of effective data visualization is to represent congested and complex

data in a way that is more manageable for the user.

One strategy is to combine visual analytics with known geographical represen-
tations called Geovisual Analytics (GVA). GVA describes the use of visuals with
map-based interfaces to further support the understanding of information [38]. The
motive for GVA is to get a better sense of large datasets by having a contoured ter-
rain in the background to help guide exploration and analysis. As a result, users
gain an additional sense of situational awareness by making comparisons and connec-
tions with their surroundings. Geovisual Analytics is also very helpful in determining

patterns that may be better depicted when data can be geographically distributed.
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1.2.3 Virtual Reality

There have been many approaches of using virtual reality as a visualization platform.
VR can be subdivided into a few different techniques. Overall, the goal is to promote
full immersion in which a simulated environment surrounds the user. One technique
is to have an immersive room with many panels or screens on the walls. Images
are projected on these walls, which usually covers all of the user’s peripherals. One
example of this is “The Cave"[31], which has developed many practical applications.
This platform has been utilized for data visualization, geographical exploration, and
more gameplay situations. Another less immersive but more focalized form of vir-
tual reality is the responsive workbench[44]. The workbench operates by projecting
computer-generated stereoscopic images onto a table seen by a group of users. Users
still wear shuttered glasses to get the impression they are viewing objects in 3D.
A noticeable drawback, however, is that the simulation’s field of view is limited by
the sight of the table itself. Most commonly used for VR are Head Mounted Dis-
plays (HMDs). This approach provides a stereoscopic display in which two imaging
screens are rendered for each eye. Ivan Sutherland created the first virtual reality
and augmented reality head mounted displays in the 1960s[65]. However, limitations
in processing power and information loss did not make it as usable and applicable
during that time. However, advances in CPU and GPU performance have made the
virtual reality experience more favorable and sustainable for users. It was not until
1987 when Jaron Lanier coined the term ‘Virtual Reality’[46]. Since then, it has been
experimented with in many diverse practical applications well into the 21st century,

as described in Section [[.3.2]

1.3 Related Work

1.3.1 Social Media and 2D Representations

Social media is a typical use case in the Big Data community due to it’s scope and

familiarity[26]. It provides a suitable foundation to run sample analyses that can
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potentially be used to extract more underlying information about the dataset such
as overall structure, user behaviour, relationships, trending topics, etc. Massively
Parallel Database (MAPD)[I0] is one solution for big data querying, visualization
and analysis. MAPD is the product of research being done at the Big Data group at
MIT CSAIL[13]. With the processing of spatial and Geographic Information Systems
(GIS) data, Twitter feeds can be depicted on a large-scale world map. Utilizing a SQL
database, the large collection of tweets from this social media can be easily filtered
and displayed on a 2D map. This system runs on a hybrid architecture of GPUs and
CPUs. MAPD achieves massive parallelism and works well with High Performance
Computing (HPC) clusters. This tweetmap represented as a desktop application
provides additional functionality such as aggregation filters, collective charts, and
query estimations.

TwitterHitter is another Big Data tool that takes advantage of geographic infor-
mation and geovisual analytics. TwitterHitter [72] is a desktop application developed
on the Microsoft .NET framework. This software allows users to access all attributes
of available tweets and match them to a user-defined query. The result is then stored
on a comprehensive database. TwitterHitter allows users to quickly apply spatial
statistics and geographic computational processes on the tweets. The user interface
visually outputs the collected results as a linked map, timeline, or a 2D extended
graph. This visualization can plot tweets pertaining to a single individual or multi-
ple users. In addition, a live stream view can be activated on the map for real-time
analysis. Although MAPD and TwitterHitter are advanced geovisual analytic tools
designed for the depiction of large data sets like Twitter, they still do not address the

challenge of representing complex multidimensional data.

1.3.2 3D Game Engines and Virtual Reality

When working in spatial and geographical domains, simulations and virtual reality
can lead to better discovery. Virtual Reality has made many advances in the realm of
game development, most notable for reproducing realistic first person perspectives[69].

Game engines such as Unity3D[19] are capable of constructing user experiences that
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combine computer graphics, interaction, creativity, etc. all together. They have also
been tested for applying techniques such as situational awareness[39] and information
visualization[43]. Djorgovski[32] and Donalek[34] have shown how VR has extended
from game applications into other areas of research. Some examples of utilizing virtual
reality for scientific study include physics[73], medicine|27], and shape perception[74].
These above works have demonstrated how immersion helps scientists more effectively
investigate and perceive their area of study. Data visualization has shown to support
analyses that are multi-dimensional and highly abstract. According to the MICA
experiment[32], utilizing virtual reality helps visualize and analyze large data in 3D
space. Caltech[34] shows how VR can create a more collaborative and immersive
platform for data visualization. Applying VR technology as a data visualization tool

is an emerging field of research with promising outlooks.

1.4 Thesis Overview

Integrating Visual Analytics into Big Data is a challenging problem with many
caveats. Our approach is to develop a Unity3D application that takes advantage
of geospatial visual analytics of Twitter data at MIT into a virtual reality setting.
Although the related social media work of MAPD and TwitterHitter are sufficient
Twitter geo-analytical tools, they remain two-dimensional, revealing some limitations
in user analytical tasks such as clustering, aggregation, and perception. By embed-
ding catalogued tweets into a 3D geospatial environment, users can more directly
perceive and interact with their data. Also, providing a geographical basis can pro-
vide additional value and context to the dataset.

The remaining portions of this thesis is structured as follows. Chapter [2] describes
the architecture, implementation, and the design of the user interface of our applica-
tion. Chapter|3|discusses the user interaction our application provides; elaborating on
the analytical tasks performed by the user and the narrative this process constructs.
We provide a discussion of our results in Chapter [l Finally, we conclude and mention

areas of future work in Chapter [5
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Contributions to the thesis are listed as follows:

Ingest large datasets that apply high performant analytics

Visualize data that promotes quicker digestion, ease of manipulation, and fur-

ther transparency

Experimenting with virtual reality as an effective workspace and data visual-

ization tool

Enhance the user experience in a virtual reality platform

Finally, the appendix lists additional tables, figures, and references that

complement the material in this thesis.
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Chapter 2

Application

2.1 Architecture Overview

This thesis has integrated many core technologies that have been in development
these recent years. We attempted to combine these commercial technologies with

innovative applications and analytical models developed at MIT Lincoln Laboratory.

2.1.1 Technologies

When planning this project and conceptualizing its design, we fully considered which
emerging technologies and hardware we wanted to utilize. For rapid prototyping, we
preferred equipment that was commercially distributed, readily available, and pro-
vides reliable developer support. We were more inclined to use inexpensive commodity
software\hardware to aid in the development process. After review, we decided to
use the Unity3D Engine with the Oculus Rift headset and Leap Motion controller.
Given the software developments kits (SDKs) with Unity3D integration, we can build
an application that can run on the traditional laptop computer. These devices would
provide the foundation for an immersive and interactive data visualization analytical
tool utilizing a virtual reality platform. Even though most of these technologies are
new with much improvement still to be made for development, they are sufficient for

research and have promising outlooks.
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2.1.1.1 Unity3D Game Engine

This project embedded information from large datasets into the Unity3D™ game
engine[19]. Many reasons demonstrate why Unity3D was the most reliable game
engine to develop on for this research. Unity3D is a fully capable physics engine that
is highly reputable in performance. Many features are readily available for developers
at varying subscriptions. Its flexibility in multi-platform support and scripting makes
it a valid candidate as a modeling and 3D visualization tool. Unity is built off the
NET framework, where programers can script game components in a 3D scene using
object oriented programming. As described in Section [1.3.2] Unity3D is extending
its capabilities as an effective visualization tool into markets outside of the gaming
industry, such as research and academia. It is also becoming one of the leading

development tools for virtual and augmented reality.

2.1.1.2 Oculus Rift

Head Mounted Displays (HMDs) are wearable devices placed on the head with a dis-
play covering the eyes. This optic is typically stereoscopic where an image is rendered
for each eye. The screen’s placement and orientation relative to the eyes can mask
the majority of the user’s peripherals. This allows the projections and images shown
on the display to be fully immersive. Many key factors are considered to describe the
performance of HMDs. Interpupillary Distance (IPD) measures the distance between
the pupils, which is necessary for determining focus and the overlapping viewing ar-
eas. Field of View (FOV) is the extent of the environment that is observed. Humans
typically have about 180 degrees FOV. Varying the field of view for HMDs will effect
the immersion felt by the user. Resolution of the display specifies the pixel density.
Given the display is already in close proximity to the face, a higher resolution is
preferred to allow for better quality and more realistic simulations.

The Rift is a virtual reality HMD developed by Oculus VR|I5]. Since 2012,
the company has been developing the Oculus Rift to be a leading platform for virtual

reality. The device is produced as a secondary display that is tethered to a personal
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computer for processing. They have also made efforts for mobile versions such as
the Samsung Gear VR[I7]. For developers, Oculus has released two development
kits. The initial DK1 includes a gyroscope, accelerometer, and magnetometer for
improved rotational tracking. However, limitations such as latency and low resolution
were noticeable and detracted from long term gameplay. The second version revealed
in the DK2 has better screen resolution, reduced latency, and a higher frame rate.
The OLED display has a HD resolution with 1080x1200 pixels per eye and a refresh
rate of 90 Hz. It also has a FOV of roughly 100 degrees. A supplemental Infrared
(IR) sensor aimed at the front of the Rift adds three axiis of freedom for positional
tracking that more accurately monitors head movement. Throughout the duration of
this thesis, we have prototyped on both versions and updated assets in the project

accordingly.

2.1.1.3 Leap Motion

Despite conventional I/O for desktop displays such as the mouse and keyboard, sup-
plemental devices are necessary to help relay user input in VR. When using a HMD
that simulates a 3D setting, the player no longer has full awareness of his or her phys-
ical world in reality. Naturally, the player relies on their senses and interaction with
his or her surroundings in order to correctly navigate the scene and dictate action.
Given this telepresence of “feeling like you are there”, additional mediums that are in

accordance to the player’s simulated environment is much more desired.

“3D OuTpruT MEETS 3D INPUT”

The Leap Motion[9] controller attempts to address these concerns. First
launched in 2013, the Leap Motion controller is a USB device designed for hand detec-
tion and gesture recognition. An image is generated from each of the two monochro-
matic IR cameras in the device, representing the live feed of a black and white “speckle
pattern” from the forward-facing infrared LEDs. Using machine vision and applied

depth-mapping algorithms, correspondences can be distinguished from the 2D images
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and 3D positional data can be synthesized. Leap Motion focuses primarily on detect-
ing the body parts within your hand (e.g. palms and fingers), allowing for more fast
and accurate hand tracking. The Leap Motion’s solution for hand tracking is anal-
ogous to the Microsoft’s Kinect[I2] for body tracking. Depending on the hardware,
the controller can reach up to approximately 200 FPS. The interaction zone in which
hands are most precisely tracked is about eight cubic feet (and one meter in the cam-
era’s forward direction) with a Field of View of 135-degrees. This is complementary
to the Rift’s FOV mentioned in Section 2.1.1.2] Leap has already begun their journey
creating virtual reality applications and have released easy-to-install VR developer

mounts for HMDs.

2.1.2 Integration

Our goal is to integrate all of these devices into one application to be used for data
visualization and analysis. Development was completed on a Mid 2009 15-inch Mac-
book Pro. All sensory inputs from cameras and USB devices were read directly into
the computer with a powered accessory USB hub. The application binary can directly
output to the Rift display via HDMI. For testing purposes, we still incorporated tra-
ditional input devices such as a mouse and keyboard, but also introduced the XBOX
360 controller for user navigation and selection. For a full list of equipment, software,
and hardware specifications, please refer to Appendix [A]

An overview of the overall integration of these technologies and a diagram
summarizing the architecture of this project can be seen in Figure 2-1 The compo-
nents mainly consist of (1) Data Extraction, (2) User Input, (3) Game Engine, and

(4) Visualization Output. Each module is described as follows:

1. Data Extraction Data is provided and collected primarily from MIT Lincoln
Laboratory’s database. These are in the form of parsable TSV files or portable
FBX models. Open source file readers and 3D software applications are used to
further customize the formatting and representation of this data to be used in

the gameplay application. Section provides a detailed description on how
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1) Data Extraction

2) User Input

3) Game Engine

4) Visualization Output
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— Manager Game Engine
Leap Motion Visualization | UIUX
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Figure 2-1: Overview of Application Architecture
Four main components drive the application; (1) Data is first extracted as parsable files
from MITLL, (2) User input devices such as the Oculus Rift and Leap Motion are used to
control player movement, (3) Unity3D game engine is used for hardware integration and
software development, lastly the (4) Visualization is represented as a 3D rendition of
MIT’s campus enriched with Twitter data and interactive user elements.

information has been obtained and pre-processed for both static and dynamic

data.

2. User Input As expressed in Section[2.1.1] modern equipment is needed in order
to correctly monitor user input in a virtual reality setting. The processing

power to record sensory information, camera orientation, positional tracking,
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etc. requires the utmost speed and accuracy to convey a convincing and smooth
simulation. Scripts posing as managers keep track of player status, recognized

gestures, and user-defined actions in order to guide the proper game response.

3. Game Engine Unity3D is the game engine we utilized for core development.
Given that the Software Development Kits (SDKs) used are open source and
easily integrable into Unity3D, communicating between devices is more seam-
less. We can now exploit the gameplay capabilities of Unity3D to produce an

effective interface design and create a distinct user experience.

4. Visualization Output During gameplay, the HMD displays a stereographic
view from the player’s perspective. With correct camera placement and high
quality resolution, the visualization is meant to be realistic and aesthetically

pleasing to the naked eye. More information concerning the game mechanics

and output generation are discussed in Section [2.2.2.2

2.2 Implementation

2.2.1 Data Extraction

Developing an accurate geographical environment into a 3D simulation is important
for effective situational awareness and user analysis. Data sources can often be incon-
sistent and diverse; therefore, much pre-processing is involved to ensure optimal data
is used for visualization and scene creation. In the next subsections, we will describe
two key sources for our data, LADAR and Twitter, and how they have been further

customized to provide as the foundational basis of this project.

2.2.1.1 LADAR Data

As a sensing technology developed at MIT Lincoln Laboratory, LADAR is utilized to
generate 3D representations of global locations|28]. LADAR measures the distance of

reflected light from a laser source to an illuminated target as an accurate metric for
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height mapping. In 2005, a LADAR dataset was collected from an overhead aircraft
over Cambridge, MA encompassing MIT’s campus|37]. With about 1m resolution, a
dense height map was created where each planar point corresponds to the altitude at

that location. The final image resulted in a 1.0km x 0.56km region of Cambridge, as

shown in Figure 2-2

- ia
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% (km)
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Figure 2-2: LADAR Image of Cambridge
Height map of Massachusettes Institute of Technology generated from LADAR data in

2005. Final scan shows a 1m resolution image of approximately one square kilometer of
Cambridge, MA.

To produce a 3D model of this particular region, the LADAR data is con-
verted into a stereolithography STL file. This is a common 3D file format that can be
imported to various modeling programs for further customization and enhancement.
3D graphics and animation software such as Blender™ 3] and Maya™|I1] was used
to aid in optimizing the view of campus. For noise reduction, mesh smoothing algo-
rithms was used to smooth jagged vertices and get rid of any outliers. These were
than exported to a FBX format so that it can be read into Unity3D.

Given this region of Cambridge, satellite imagery from Google Earth[7]

provides additional context of the setting. The longitudinal and latitudinal bounds
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of the area is (+42.3638, -71.0812) to (+42.3557,-71.1032). Two square JPEG images,
corresponding to about roughly one half km in world dimensions, were extracted from
Google Earth to capture the entire scene. These were then compressed into textures,
each 2048 x 2048 pixels. Section describes how these images were later used

in the construction of the game environment.

2.2.1.2 Twitter Data

The Big Data source on which we wanted to perform further analysis is Twitter.
Twitter is a social media blogging site where users can post messages in the form of
tweets of 140 characters or less[45]. If posted from a mobile device, tweets are bound
with a geo-tagged location in addition to their username, text message, timestamp,
etc. One of the key challenges associated with the research on Twitter data is in
the searching, aggregation, extraction, and analysis of a large collection of posts.
Analyzing tweets can help provide insight on many events such as social behaviours,
controversial topics, user reputation, and popular locations.

Initially, these tweets are gathered from Twitter Decahose[5)], which pro-
vides 10% of all random tweets, and can be narrowed down to user-defined criteria
(e.g time and location). In 2013, an MIT CSAIL[I3] initiative collected geo tweets
on MIT’s campus known as the Twitter Corpus[66]. This data originally spanned
approximately three months from April 2013 to July 2013 and contained about 450
million tweets. Since then, MIT Lincoln Laboratory was able to continue retrieving
and ingesting this data on a database to run additional analytical models. Results
were exported to a readable TSV format as described in the following Section [2.2.2.2]

In our first visualization, we extracted about 6,000 tweets over the course of
five months from October 2013 to February 2014. As of 2012, Twitter has announced
a powerful open source API that permitted a full history of tweets[6]. This allows
more freedom to explore the Twitter dataset with additional user-defined criteria
and an expansive search history (as opposed to the original limitation of only three
weeks). Internally, MIT Lincoln Laboratory conducted an open source data initiative

to collect and archive live tweets. As a result, we were able to update our collection

30



of tweets to display roughly 10,000 tweets from January 01, 2015 to July 25, 2015.

2.2.2 Pre-Processing

After ingesting the raw data, it is parsed into a tab separated value (TSV) format
and stored on the high performance database (DB) Apache Accumulo[2]. Using the
same procedures exercised by Weber and Gadepally[70], additional models can be
used to further query the data. Specifically, we utilized the Dynamic Distributed
Dimensional Data Model (D4M)[42], a high performance schema that can be used
with Accumulo. This permitted a customized pipeline to refactor the data described
below in Section 2.2.2.7]

Additional configuration went into initializing the game scene and generat-
ing 3D models. Given geographical data, global and local normalizations were needed
to accurately depict MIT’s campus. Visual efforts to efficiently represent Twitter data
aided in creating a more convincing environment. We also calibrated the player and
camera during instantiation to more directly correspond to user inputs and desired

actions.

2.2.2.1 Data Pipeline

We propose a pipeline that, given a collection of raw data, a researcher can perform
analytics on a subset of interest. Shown in Figure 2-3] we can generalize the pipeline
as it pertains to the DAM model. This can be described as (1) Parse raw data into
triples to be inserted into the database, (2) Ingest triples into the database, (3) Query
graphs from the database, (4) Analyze graphs using analytics and other methods.

1. Parse After collecting the raw Twitter data, the tab separated value (TSV) file
format is parsed to construct Associative Arrays. Associative Arrays represent
complex relationships of data either in a sparse matrix or graph form[42]. More
information can be found in Appendix [C.I] Each parsed file creates three addi-
tional files pertaining to the triple (row, column, value) store. We reflected this

in the Twitter data; each row pertains to the tweet 1D, each column pertains
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Figure 2-3: Data Pipeline for Twitter Analysis
(A) Generalized data pipeline in which raw data files are represented as row, column, value
triples and ingested on a database to be queried and analyzed using D4M. (B) Geo-tagged
tweets are stored and pre-processed into a TSV format which can be parsed to render 3D
objects in the scene.

to an attribute of a tweet (e.g status, username, location, etc), and each value

is the original tweet given a row,column pair.

2. Ingest Data is ingested onto the Accumulo database as four main tables as
shown in Figure [C-2] Tedge shows a relationship between a tweet ID and a
particular entity, whose value it represented as a boolean for the row,column
pair. TedegDeg is the sum of column,value pairs. TedgeTxt shows the original
tweet text. This representation allows for D4M to be performed in the following
query step in the pipeline. The total time to ingest all the data took about 14
minutes. Figure [4-3]in Section [£.2.T] graphs the time it took to ingest the data

and comments on how parallelism improves performance.

3. Query Now that the data is ingested and parsed in the Accumulo database, it
is possible to query using D4M. D4M is an innovative new programming model
that combines numerous processing techniques such as Linear Algebra, Asso-
ciative Arrays, and Triple-Store databases. The D4M syntax allows for easy
data filtering by latitude and longitude, as well as quickly inserting additional
attributes to tweets that satisfy certain criteria. Table [2.1] shows some types
of queries performed using the simple format of Associative Arrays. Additional

queries can be beneficial for producing further filters and analytics when con-
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Table 2.1:  Analytical Functions Performed on Associative Array
D)
£
& | Sentiment Language Links Hashtags Periculum Bounds
Z
A 'word_lower' 'lang' 'word' 'word' 'word_lower' ["lat', 'lon']
IS
© 'score’ '"lang' '"links' 'hashtags' 'periculi’ ['lat', 'lon']
source = langs = ['en'] links = hashtag = "#' p = bounds =
£ | "AFFIN-111.txt' ['http', ['danger', [42.3557,
m 'https'] 'stranger’, -71.0812,
Ay 'evil'] 42.3638,
-71.1032]
See Figure [C-3| LANG = LINKS = CatStr( | None PERI = CatStr( lons =
A(:,CatStr( ‘word|’,links) ; >word_lower|’,p); | [’lon|-71.1032,:,
LM ’lang|’,langs)); lon|-71.0812,°];
= lats =
[’lat|42.3557,:,
lat|42.3638,°];
Aout = Aout = Aout = Aout = Aout = LON =
DetermineScore(A) | A(Row(LANG),:); A(:,StartsWith( A(:,StartsWith( A(:,StartsWith( A(:,lons);
g LINKS)); ‘word|#7)) ; PERI)); A=
2 A(Row(LON), :);
m LAT =
ﬁm A(:,lats);
Aout =

ARow(LAT),:);
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figuring the simulation.

4. Analyze The final step is to perform analytics on the developed graph. This
is highly dependent on the goals of the researcher. As an example on the
Twitter dataset, we can perform sentiment analysis and attempt to gain an
overall sentiment of a tweet based on the words within the original post. We
used sources such as Matlab[63] as reference that utilizes a sentiment dictionary
and creates a summation based on a score for each word in a post. Figure
shows the simple function called to append a score value on the Associative
Array. Figure shows a visual representation emphasizing the benefits of
representing these relationships as sparse matrices where linear algebra can

easily manipulate and customize these arrays.

Post-processing, additional tasks can be performed. In particular, we wanted
to perform in-game tasks representative of what an analyst would like to explore and
research on a large data set. After the queries and analytics are performed above, we
can embed this as a TSV file that will be associated as meta data in the visualization.
This allows additional tasks such as dynamic filtering, aggregation, and adjustable

zooming to be done at runtime. These are later described in Chapter [3]

2.2.2.2 Model and Scene Formation

Creating the static scene requires some manua