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Abstract−This paper proposes a maximum likelihood estimation (MLE) method for estimating time varying local
concentration of the target molecule proximate to the sensor from the time profile of monomolecular adsorption and
desorption on the surface of the sensor at nanoscale. Recently, several carbon nanotube sensors have been developed
that can selectively detect target molecules at a trace concentration level. These sensors use light intensity changes
mediated by adsorption or desorption phenomena on their surfaces. The molecular events occurring at trace concen-
tration levels are inherently stochastic, posing a challenge for optimal estimation. The stochastic behavior is modeled by
the chemical master equation (CME), composed of a set of ordinary differential equations describing the time evolu-
tion of probabilities for the possible adsorption states. Given the significant stochastic nature of the underlying phe-
nomena, rigorous stochastic estimation based on the CME should lead to an improved accuracy over than deterministic
estimation formulated based on the continuum model. Motivated by this expectation, we formulate the MLE based on
an analytical solution of the relevant CME, both for the constant and the time-varying local concentrations, with the
objective of estimating the analyte concentration field in real time from the adsorption readings of the sensor array.
The performances of the MLE and the deterministic least squares are compared using data generated by kinetic Monte
Carlo (KMC) simulations of the stochastic process. Some future challenges are described for estimating and controlling
the concentration field in a distributed domain using the sensor technology.

Keywords: Maximum Likelihood Estimation, Stochastic Processes, Chemical Master Equation, Carbon Nanotube-based
Sensors, Sensor Array System

INTRODUCTION

Some of the most promising applications of nano-materials are
in the sensors area [1,2]. Carbon nanotube (CNT)-based sensors
have been developed and touted for having the ability to detect tar-
get molecules at a single molecule resolution [3]. A near-infrared
fluorescent semiconducting single-walled carbon nanotube (SWNT),
in particular, has been shown to induce stepwise fluctuations in
the light intensity whenever an adsorption or desorption event of a
target molecule occurs on its surface [4,5]. Several fluorescent SWNT
sensors have been reported, with high selectivity for glucose [6],
DNA [7], ATP [8], hydrogen peroxide [9,10], and nitric oxide [11,
12]. These sensors enable novel scientific investigations as well as
open doors for engineering novel devices/processes. For example,
with the nano-scale sensors for nitric oxide molecules, their roles
in the body as signaling molecules can be investigated.

An important challenge occurs at the sensor level in translating
changes in the light intensity, which can be translated into the num-
ber of adsorbed molecules on the surface of the sensor, to variations
in the local concentration of a target molecule surrounding the sen-
sor. This task is complicated by the fact that the adsorption/desorp-
tion phenomena occurring at the nanoscale are highly stochastic.
For a reliable estimation of local concentration at that length scale,
use of a stochastic model describing the evolution of the probability
distribution among all possible states may be needed. As an esti-
mation problem, the translation of the adsorption data on the sen-
sor surface into local concentration estimates surrounding the sensor
is the main topic addressed by this article.

Stochastic dynamics with continuous states can be modeled by
Langevin dynamics or the Fokker-Planck equation. However, many
nano-scale systems involve discrete states, and their stochastic dynam-
ics can be conveniently modeled by the chemical master equation
(CME) [13]:

(1)

where P(σ, t) is the probability of the system being in state σ at
time t, and W(σ', σ) is the transition rate from state σ' to state σ.
The CME describes the time evolution of the probability distribution
among all possible configurations. The CME (1) can be written as

dP σ, t( )
dt

-------------------  = W σ', σ( )P σ', t( ) − W σ, σ'( )P σ, t( )
σ'
∑

σ'
∑
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(2)

where x(t) is the single state vector containing all the probability
variables and A(t; θ) is the matrix collecting all transition rates, which
have dependence on the parameter vector θ containing parame-
ters related with phenomena at the molecular scale, such as chem-
ical reactions, adsorption/desorption, and diffusion. In the specific
system, θ contains an adsorption rate constant, which is propor-
tional to the local concentration of target molecules surrounding
the sensor. The common approach for solving the chemical master
equation is to perform kinetic Monte Carlo (KMC) simulations to
obtain approximate solutions. However, the KMC approach typi-
cally demands a very large number of simulations to be performed
for a close approximation of the exact solution, and is not suitable
for use in real-time estimation.

An analytical solution was derived for the CME for a monomo-
lecular reaction system by Jahnke and Huisinga [14]. Their analy-
sis modeled the monomolecular adsorption and desorption pro-
cess as a birth-and-death process, which led to a Poisson or a mul-
tinomial distribution of the population for an open or a closed sys-
tem, respectively. The analytical form of the solution makes possible
an efficient estimation of parameters appearing in the CME. Based
on this idea, maximum likelihood estimation (MLE) of the adsorp-
tion rate constant for the SWNT sensor system has been proposed
[15-17].

On the other hand, the benefit from adopting a more complex
stochastic estimation method over conventional deterministic meth-
ods like least squares in this context has not been assessed fully. In
addition, the previous works treated only constant local concentra-
tion for an isolated single sensor, which is not realistic for a sensor
system working in a real environment. This article, in addition to
considering constant local concentration, examines time-varying con-
centration, which needs to be followed by the SWNT sensor array
system. This work provides a basis to build a state estimator that
recursively estimates the distributions of certain target molecules
over a spatial regime. For this, we employed mass transport phe-
nomena such as diffusion into the state of target molecules and
apply it to distributed nano-sensors on 2D field.

We assessed the degree of performance improvement, realized
by adopting the rigorous stochastic estimation approach of MLE
in place of the conventional deterministic least-squares. The results
indicate that more accurate estimation results can be obtained by
adopting the estimation method that rigorously accounts for the
stochastic nature. It is also shown that the simulations can be used
to estimate the upper and lower detection limits of the analyte con-
centration for a given nano-sensor design, and to examine the effects
of the parameter mismatch on estimation.

NANOSENSING SYSTEM

1. SWNT-based Sensor
As discussed by Cognet et al. [5], when molecules adsorb on

the surface of the SWNT-based sensor, the fluorescence gets par-
tially quenched resulting in discretized light intensity decreases. Simi-
larly, the light intensity increases when molecules desorb from the

surface. Fig. 1 illustrates the basic SWNT sensing mechanism. The
SWNT surface functionalization (e.g., wrapping with DNAs) is to
enhance selectivity and sensitivity for a specific chemical species
(e.g., nitric oxide). A recently developed SWNT sensor provides a
fluctuating light intensity time profile at the concentration range
from 0.2 to 20μM for nitric oxide molecules [11]. The detection
range has a close relation with the sensing material design deter-
mining the frequency of adsorption and desorption events in the
measurement data at the range, which can be interpreted as ad-
sorption and desorption rates of the target molecule on the sur-
face. In case of the SWNT sensor detecting nitric oxide molecules,
dominant adsorption occurrence has been shown in the data due
to a preferred design for high adsorption rate, while the SWNT
sensor detecting hydrogen peroxide molecules has shown frequent
adsorption and desorption occurrences in the data [9,11].

To specify the sensing system for modeling purposes, some as-
sumptions should be made. The adsorption sites on the sensor
surface are assumed to be evenly distributed as shown in Fig. 1.

dx t( )
dt

------------  = A t; θ( )x t( )

Fig. 1. A schematic of the SWNT-based sensing mechanism.

Fig. 2. (a) An atomic force microscopy (AFM) image of AT15-SWNTs
(Reprinted with permission from [27]. Copyright 2011 Amer-
ican Chemical Society) and (b) an ideal two-dimensional
sensor array system.
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The effect of diffusion of molecules on the SWNT surface can be
ignored since the stepwise change of light intensity only occurs from
adsorption and desorption events, not molecule movements [5].
By counting the number of step changes in the intensity, the num-
ber of adsorption and desorption events and thus the total num-
ber of adsorbed molecules can be deduced. For a typical SWNT
sensor having a mean nanotube length of 10μm, the maximum
number of the adsorption sites is about 10 [11].

Synthesized SWNT-based sensors can be placed in a two-dimen-
sional sensor array covering an area of up to ten or more squared
centimeters [11]. For example, Fig. 2 shows the SWNT sensor array
composed of single-stranded d(AT)15 DNA oligonucleotide wrapped
SWNTs (AT15-SWNTs) detecting nitric oxide molecules selectively.
An individual suspension of AT15-SWNTs in the array can be de-
tected by atomic force microscopy (AFM, Fig. 2(a)) and its ideal
system can be depicted as an evenly distributed sensor array on a
two-dimensional field (Fig. 2(b)). From this array system, the ob-
jective is to estimate time profiles of two-dimensional concentra-
tion fields of target molecules. This spatiotemporal profile informa-
tion can be useful for monitoring and control of a two-dimensional
(2D) spatial system (e.g., see [18] and citations therein).
2. Adsorption Model

In developing a kinetic model for the SWNT sensor [16], free
target molecules, A, in a surrounding liquid are assumed to adsorb
onto available sites of the nanotube segment, θ, to form bound mole-
cules, Aθ, through the reversible adsorption reaction:

(3)

where k'A [s−1] and kD [s−1] are adsorption and desorption rate con-
stants, respectively. The adsorption rate is generally considered to
be a pseudo-first-order in the concentration of target molecules
proximate to the sensor and the number of unoccupied sites, and
the desorption rate is assumed to be a pseudo-first-order in the
number of occupied sites [16], so the associated rates are expressed
as

rA=k'ANθ (4)

rD=kDNAθ (5)

k'A=kAC (6)

where Nθ is the number of empty sites, NAθ is the number of oc-
cupied sites, kA is a constant factor in the adsorption coefficient,
and C is the local concentration of the surrounding target mole-
cules. The local concentration of target molecules in the liquid phase
is sufficiently high (~μM) such that it is not affected by the adsorp-
tion and desorption events (maximum 10 molecules on the sensor).

For each local sensor, a CME can be formulated that is com-
posed of differential equations describing the evolution of the proba-
bilities for all possible states of the system. For this system, the state
can be defined as the number of adsorbed molecules, NAθ∈[0, NT],
resulting in NT+1 total possible states. Hence, it is assumed that
exact locations of adsorbed molecules do not matter, just their total
number. The probability of being in each state is denoted by, Pi=
Pr(NAθ=i)∈[0, 1], where is the number of adsorbed molecules.
The CME, along with the appropriate boundary equation, can be

expressed by NT+1 ordinary differential equations (ODEs):

(7)

(8)

(9)

subject to

(10)

(11)

On the other hand, the continuum (or average) model can be
formed by writing just one differential equation for the number of
adsorbed molecules (with the assumption that adsorption/desorp-
tion occur deterministically) from the rates (4) and (5):

(12)

subject to

(13)

The solution to the continuum Eq. (12) with constant concen-
tration in (6) can be easily obtained for an arbitrary initial condi-
tion, (0), as

(14)

where  is the average value for the number of occupied sites
at time .

In a real system, the adsorption rate constant, k'A, can be time-
varying due to variations in the concentration of surrounding mol-
ecules. For time-varying concentration in (6), the analytical solu-
tion

(15)

can be obtained by applying the integrating factor. However, the
general solution of (15) is fairly complex to evaluate, with an inte-
gral appearing within an integral. Even if C(t) has simple dynam-
ics such as following an exponential decay function, the integrals
within the solution may be difficult to evaluate analytically. For this
reason, the solution (14) can be used by considering the previous
measurement as an initial condition, (tk−1), and assuming
constant C(tk−1) over each sampling time interval:

(16)

Δt=tk−tk−1 (17)

where k is the index for the time step and Δt is size of the time step

A + θ         Aθ
k'A

kD

dP0 t( )
dt

--------------- = − P0 t( ) k'ANT[ ] + P1 t( ) kD[ ]

dPi t( )
dt

-------------- = Pi−1 t( ) k'A NT − i −1( )( )[ ] − Pi t( ) kDi + k'A NT − i( )[ ]

+  Pi+1 t( ) kD i +1( )[ ], i∀  =1, 2, …, NT −1

dPNT
t( )

dt
----------------- = PNT−1 t( ) k'A[ ] − PNT

t( ) kDNT[ ]

Pi t( )  =1
i=0

NT

∑

0 Pi t( ) 1, i∀  = 0, …, NT≤ ≤

dÑAθ t( )
dt

------------------- = rA − rD = k'A NT − ÑAθ t( )( ) − kDÑAθ t( )

0 ÑAθ t( ) NT≤ ≤

ÑAθ

ÑAθ t( )  = 
NT + ÑAθ 0( ) 1+ kD/ kAC( )( ) − NT( )e− kAC+kD( )t

1+ kD/ kAC( )
----------------------------------------------------------------------------------------------------

ÑAθ t( )

ÑAθ t( )  = 

kAC r( )NTe 0

r
kAC s( )+kD( )dsdr  + ÑAθ 0( )

0

t
∫

e 0

t
kAC u( )+kD( )du

------------------------------------------------------------------------------------

∫

∫

ÑAθ

ÑAθ tk( ) = 

NT + ÑAθ tk−1( ) 1+kD/ kAC tk−1( )( )( )  −NT( )e− kAC tk−1( )+kD( )Δt

1+kD/ kAC tk−1( )( )
-------------------------------------------------------------------------------------------------------------------------------
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from the previous measurement. The solution at tk depends on the
solution at the previous time step of tk−1, and Δt should be set suf-
ficiently small for the approximation to be accurate.

BIRTH-AND-DEATH MARKOV PROCESS & 
ANALYTIC SOLUTION OF THE CME

Solving the CME numerically can become computationally ex-
pensive as the number of possible states grows. An analytical solu-
tion can be valuable in developing a real-time estimation approach
that accounts fully for the stochastic nature of the molecular-level
events. The birth-and-death model, which was studied by [14], pro-
vides a path to an analytic solution. The adsorption and desorp-
tion process can be considered as a birth-and-death process system
[16]. Birth corresponds to a desorption event and death to an ad-
sorption event.

For this system, the probability distribution follows a binomial
distribution [14]. More specifically, this result says that the num-
ber of adsorbed molecules NAθ at a time tk is a random variable
distributed as a binomial with the number of trials equal to NT and
probability parameter equal to λ(tk), which is related to (tk)
calculated from the continuum Eq. (12) by

(18)

(19)

(20)

The adsorption rate constant (directly related to the local concen-
tration of target molecule) is embedded in the expression for the
probability parameter λ(tk).

With the assumption of the monomolecular adsorption reac-
tion, the overall population can be divided into two subsets, repre-
senting occupied sites and unoccupied sites on the sensor. Then,
with some arbitrary measured value of NAθ at tk−1 (denoted hereafter
by (tk−1)), the distribution at the next time step can be derived
as the convolution of two binomial distributions applicable to the
“fully occupied” and “empty” subsets, which are of size (tk−1) and
1− (tk−1), respectively. The first binomial distribution can be
derived from (19) by assuming the sites are fully occupied initially.
Similarly, the second binomial distribution can be derived from
(19) by considering the initial state to be empty [14]:

(21)

(22)

(23)

If the expression for (tk) obtained by setting (tk−1)=NT

in (16) is substituted into (20), the probability parameter λ(tk−1) be-
comes equal to λF(tk−1) in (22). The variable NT cancels out and the
expression is independent of it. If the same substitution is carried

out by setting (tk−1)=0 in (16), λ(tk−1) becomes λE(tk−1) in (23).
For a constant local concentration, C(tk−1) in (22) and (23) is C for
all time.

The adsorbed molecules on the sensor are now defined by a bino-
mial random variable, which is not commonly studied in the esti-
mation literature (most estimation methods assume Gaussian dis-
tributions, explicitly or implicitly). To show the difference explic-
itly, Fig. 3 compares the binomial distribution and the best approx-
imating Gaussian distribution for the number of adsorbed molecules
resulting from kA=1, kD=10−2 and C=10−2, and initially empty sites.
The number of adsorbed molecules corresponding to the maximum
probability in the binomial distribution is not coincident with that
in the Gaussian distribution (see Fig. 3(a)). In addition, the two
distributions at t=300 seconds shown in the Fig. 3(b) differ signifi-
cantly. It can be expected that estimation results based on the bino-
mial distribution and Gaussian distribution would be different.

ESTIMATION METHOD FORMULATIONS

It is assumed that k'A(t) appearing in both the CME (7)-(9) and
continuum Eq. (12) is proportional to the local concentration of
target molecules, C(t), surrounding the sensor [16]. This assump-
tion means that accurate estimation of k'A(t) translates directly into
accurate estimation of the local concentration (with known adsorp-
tion parameter kA), which is the desired system information. This
article formulates and compares two representative estimation meth-
ods for the local concentration: (1) maximum likelihood estima-

ÑAθ

NAθ tk( )~B NT, λ tk( )( )

Pr NAθ tk( ) = i( ) = 
NT
i⎝ ⎠

⎛ ⎞ λ tk( )( )i 1− λ tk( )( )
NT−i

λ tk( ) = 
ÑAθ tk( )

NT
-----------------

Nˆ Aθ

Nˆ Aθ

Nˆ Aθ

NAθ tk( )~B N̂Aθ tk−1( ), λF tk−1( )( ) * B NT − N̂Aθ tk−1( ), λE tk−1( )( )

λ
F tk−1( ) = 

1+ kD/ kAC tk−1( )( )e− kAC tk−1( )+kD( )Δt

1+ kD/ kAC tk−1( )( )
--------------------------------------------------------------------------

λ
E tk−1( ) = 

1− e− kAC tk−1( )+kD( )Δt

1+ kD/ kAC tk−1( )( )
------------------------------------------

ÑAθ ÑAθ

ÑAθ

Fig. 3. Comparison of the binomial distribution and Gaussian dis-
tribution for kA=1, kD=10−2 and C=10−2, and initially empty
sites with (a) time profile of the number of adsorbed mole-
cules with maximum probability and (b) distributions at t=
20 sec showing significant differences.
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tion (MLE) based on the probability distribution solution of the
CME, and (2) least-squares estimation (LSE) based on the deter-
ministic solution of the continuum equation.
1. Maximum Likelihood Estimation

For the MLE, the objective function is based on the joint proba-
bility distribution of the measurement sequence (tk) obtained
for time steps k=1, …, N from sensors j=1, …, NS in the system:

(24)

(25)

(26)

where C(tk) is a vector containing the estimated concentrations of
target molecules at the kth time for all sensor locations. For a Mar-
kov system, the joint probability distribution can be expressed as

(27)

The binomial distribution (21), which was derived for an arbi-
trary starting state, can be used in the place of the conditional proba-
bility distributions appearing in the objective function (27) as

(28)

Optimal estimates of the adsorption parameters C(tk), k=0, …,
N−1 are obtained by maximizing the objective function for the given
measurement sequence (tk). Typically, a logarithm of the objec-
tive function JMLE (28) is maximized instead to convert the multiplica-
tions into summations for the convenience of numerical operation:

(29)

The binomial distribution is in the exponential family of which log-
arithm for parameter set is concave [19].

For constant concentration, C(tk) is equal to C for all time steps
k=0, …, N−1. For time-varying concentration, the elements of C(tk)
may be correlated spatially and temporally according to some under-
lying governing equation (e.g., the diffusion equation) for the fluid
phase that surrounds the carbon-nanotube-based sensor arrays.
2. Least Squares Estimation

The objective function in LSE is the sum of the squared errors
between the measurement data (tk) and calculated data 

(tk):

(30)

 can be substituted by the expression in (16) for both
constant and time-varying concentrations. Optimal estimates of
the concentration sequence are obtained by minimizing the objec-
tive function

(31)

CASE STUDY: SINGLE SENSOR

1. Kinetic Monte Carlo Simulation
Since it is difficult to perform a fair and thorough comparison

of the two estimation methods using an experimental setup, given
the large stochastic variations, representative stochastic data sets
were generated from the KMC simulations. Each KMC simula-
tion run can be viewed as a particular realization of the stochastic
system that is described by the CME. The adsorption/desorption
process involves fairly simple molecular events and Zhang et al.
[11] showed that experimental data for this system were well de-
scribed by the KMC when the adsorption rate is much larger than
the desorption rate.

For constant concentration, four different values of the concen-
tration are evaluated. In the particular numerical study, the num-
ber of adsorbed molecules on the sensor is allowed to range from
0 to 10, so the number of possible discrete states is 11. The simula-
tion time is 600 s. The starting state is assumed to be 0 (empty of
molecules), which is assumed to be unknown to the estimator. It is
also assumed that no two events can occur simultaneously. For gen-
erating both adsorption and desorption occurrences in the sam-
ple data, the kA and kD are assumed to be 1 and 0.01, respectively.
The plots in Fig. 4 show three representative realizations of the time
profile of the number of adsorbed molecules (chosen from the 10,000
kMC runs) for four different constant local concentrations. The

Nˆ Aθ

JMLE C tk( ), k  = 0, …, N −1( )

=  Pr N̂Aθ tN( ), …, N̂Aθ t1( ) C tN−1( ), …, C t0( )( )

N̂Aθ tk( )  = 

N̂Aθ, 1 tk( )

N̂Aθ, 2 tk( )

M

N̂Aθ, NS
tk( )

C tk( ) = 

C1 tk( )

C2 tk( )

M

CNS
tk( )

JMLE C tk( ), k  = 0, …, N −1( )

=  Pr N̂Aθ, j tk( ) N̂Aθ, j tk−1( ), Cj tk−1( )( )
k=1

N
∏

j=1

NS

∏

JMLE C tk( ), k  = 0, …, N −1( )

=  

B N̂Aθ, j tk−1( ), λF tk−1( )( )

* B NT − N̂Aθ, j tk−1( ), λE tk−1( )( )⎝ ⎠
⎜ ⎟
⎛ ⎞

k=1

N
∏

j=1

NS

∏

Nˆ Aθ

JMLElog
C tk( ), k=0, …, N−1

limmax

Nˆ Aθ ÑAθ

JLSE C tk( ), k = 0, …, N −1( ) = N̂Aθ, j tk( )  − ÑAθ, j tk( )( )2

k=1

N
∑

j=1

NS

∑

ÑAθ, j tk( )

JLSE
C tk( ), k=0, …, N−1

limmin

Fig. 4. Measurement data generated by running KMC simulations
for a constant concentration of (a) 10−1, (b) 10−2, (c) 10−3, and
(d) 10−4 for kA=1 and kD=0.01.
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adsorption data show distinct time profiles for the five different
realizations even for the same local concentration, indicating sig-
nificant stochastic characteristics in the system behavior. For C=
10−4, two of the three runs have adsorption events occurring rarely,
due to the low adsorption rate (Fig. 4(d)).

In a real environment, the concentration of free target molecules
surrounding a sensor is time varying. To assess the performance
of the estimators in such a situation, it is assumed that the local
concentration follows an exponential decay function with an ini-
tial value of C0 and a decay factor of α:

(32)

With such time-varying C(t), measurement data are generated by
running the KMC simulation of the CME (see Fig. 5). Similarly, as
before (as seen from Fig. 4), significant stochastic variations are
observed.
2. Estimation Results for Constant Concentration

Data from KMC simulation runs were used to test and compare
the performance of the two estimation methods. One of MATLAB’s
constrained optimization programs, sequential quadratic program-

ming (SQP) in fmincon, was used to solve the optimizations in both
MLE and LSE with a feasible parameter range of:

(33)

The initial guess was set as 10−5 in all cases. The analytical solu-
tion (16) of the continuum Eq. (12) was used for both the constant
and time-varying concentrations.

First, the behavior of the objective functions of the MLE (28)
and LSE (30) with respect to varying local concentration estimate
is investigated using data generated from one run (600 samples)
with constant C of 10−2 (Fig. 6). The shape of the ML objective func-
tion is a typical negative log-likelihood curve that is steeper and
more compressed in scale than that of the LS objective function.
For this particular case, the optimal value of ML is observed to be
closer to the true value than that of LS, which happens more fre-
quently in repeated runs.

In Table 1, the estimated values of the local concentration (given
at the end of a run) averaged over the 10,000 runs (600-sample
dataset per one run) except for the cases of failures and their rela-
tive root-mean-square errors (RMSEs) in percentage are compared
for four different values of constant concentrations. The %RMSE
in the table is defined by

(34)

C tk( )  = C0e−αtk

10−6 Ck, j 106, k =1, …, N, j =1, …, NS≤ ≤

%RMSE =100
Ctrue − Ĉk, j

Ctrue
------------------------
⎝ ⎠
⎛ ⎞

2

k=1

N

∑
j=1

NS

∑ NSN( )

Fig. 5. Time plots of the adsorption data generated by running KMC
simulations for a time-varying concentration profile, C(t),
decreasing exponentially, starting at C0 of (a) 10−1, (b) 10−2,
(c) 10−3, and (d) 10−4, with the decay factor α=−0.005, kA=
1, and kD=0.01.

Fig. 6. Plot of the objective functions of MLE and LSE with respect
to varying local concentration estimate.

Table 1. Estimation results for four constant concentrations of 10−1, 10−2, 10−3, and 10−4 (averaged results from 10,000 runs with 600 samples
per run)

True C (mole) Methods Averaged estimate of C (mole) %RMSE of the estimate (%) Number of estimation failure (trials)
10−1 MLE 1.016×10−1 013.7 0000

LSE 1.034×10−1 018.5 0000
10−2 MLE 1.015×10−2 018.2 0000

LSE 1.042×10−2 024.2 0000
10−3 MLE 1.019×10−3 043.6 0026

LSE 1.052×10−3 059.7 0026
10−4 MLE 2.257×10−4 196.9 5507

LSE 2.314×10−4 265.3 5507
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In all cases, the average estimated values for MLE are closer to
the true values than for LSE. In addition, the %RMSE of the esti-
mates for MLE are significantly smaller than for LSE in all cases.
For C=10−4, the %RMSE for both methods show very high val-
ues, and more than half of the 10,000 estimation trials have failed
to give a reliable solution. This reduced estimation performance is
inherent in the experimental data for this very low concentration,
as most of the datasets contain rare or even no adsorption events
(see Fig. 4(d)). At this low concentration region, an accurate esti-
mation may be impossible regardless of the method used.
3. Detectable Range Analysis

An analysis of detectable concentration range for the SWNT-
based sensor is not available in previous mathematical analyses
published in the literature. Instead, the concentration range where
experimental adsorption time profiles obtained has been roughly
mentioned for different sensor designs and target molecules indi-
vidually. For using the developed sensors in real applications such
as in control systems, the lower and upper limits of the detectable
concentration range for given sensor and target molecules should
be clearly determined and provided as a key sensor property. Also,
the lower and upper limit analysis could provide feedback about
sensor design modification or improvement for use in a desired
detectable range. Simulation-based analysis with sufficient KMC
runs is expected to provide the limits.

For a single sensor, the low analyte concentration range from
C=10−4 to C=10−3 is explored more densely to determine the lower
limit of detection. Fig. 7 shows a histogram of estimates from 10,000
trials (600 s run per one trial) of the MLE for each true concentra-
tion with. At a concentration less than 3×10−4, more than 16% of
the estimation trials failed as indicated by a separated peak at the
left in Fig. 7. For a concentration greater than 4×10−4, more than
90% of the estimation trials give reliable solutions. To estimate the
analyte concentration at the lower value range with higher confi-
dence, the sensor should be designed to have a larger kA value, which
is associated with a higher sensitivity for the target molecules.

The upper limit concentration can be seen by comparing the
averaged estimation value in Table 2. For concentrations higher
than 1, the estimation trial always gave a solution without failure, but
the averaged estimates cannot break the bound of around 2000 mole
for MLE and 200 mole for LSE. Especially, a concentration higher
than 1000 is so high that saturation of the possible adsorption sites
occurs too quickly at early stage and after that rare desorption oc-
curs as shown in the second column of Table 2. Opposite to the
design needed to extend the lower limit, the sensor design should
have smaller kA value for estimating higher values of the analyte
concentration.
4. Effects of Parameter Mismatch

Throughout this paper, the MLE and LSE for estimating the local
concentration near the sensor assume that the true values of the
rate constants, kA and kD are known exactly. However, in reality, a
mismatch in these parameters can exist between the stochastic ad-

Table 2. Estimation results for constant concentrations higher than (averaged results from 10,000 runs with 600 samples per run)
True C
(mole)

Averaged # of adsorption/
# of desorption in one run Methods Averaged estimate

of C (mole)
%RMSE of the
estimate (%)

012 45.17/35.27 MLE 0.964 007.9
LSE 0.927 012.8

102 15.89/5.900 MLE 11.47 047.1
LSE 11.47 047.3

102 10.06/0.060 MLE 133.5 081.7
LSE 200.0 100.0

103 10.01/0.010 MLE 1887.21 099.7
LSE 205.02 079.5

104 10.00/0.000 MLE 2546.8 074.6
LSE 204.9 098.0

105 10.00/0.000 MLE 2119.1 097.9
LSE 204.9 099.8

106 10.00/0.000 MLE 2119.5 099.8
LSE 204.9 100.0

Fig. 7. Histogram of the concentration estimates from 10,000 tri-
als of MLE for concentrations ranging from C=10−4 to C=
10−3 (“E-d” in the horizontal axis means 10−d).
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sorption model and the actual sensing system. To see the effect of
potential mismatches in them, we applied ±10% and ±20% varia-
tions to the assumed kA and kD values in the model equations of
(14) and (21)-(23) for LSE and MLE, respectively. The sample data
used are the data generated by the KMC simulations in the sub-
section 2. Based on the detection range analysis in the subsection
3, the concentrations of C=10−1 and C=10−2, which showed no fail-

Table 3. Estimation results for constant concentrations of 10−1 and
10−2 with mismatch in kA (averaged results from 10,000
runs with 600 samples per run)

Mismatch True C
(mole) Methods

Averaged
estimate of C

(mole)

%RMSE of
the estimate

(%)
−10% of kA 10−1 MLE 1.129×10−1 19.9

LSE 1.149×10−1 25.1
10−2 MLE 1.128×10−2 23.8

LSE 1.158×10−2 30.8
+10% of kA 10−1 MLE 9.239×10−2 14.6

LSE 9.400×10−2 17.6
10−2 MLE 9.225×10−3 18.2

LSE 9.471×10−3 22.3
−20% of kA 10−1 MLE 1.270×10−1 32.0

LSE 1.292×10−1 37.1
10−2 MLE 1.268×10−2 35.1

LSE 1.302×10−2 42.4
+20% of kA 10−1 MLE 8.469×10−2 19.1

LSE 8.617×10−2 20.5
10−2 MLE 8.456×10−3 21.6

LSE 8.682×10−3 23.8

Table 4. Estimation results for constant concentrations of 10−1 and
10−2 with mismatch in kD (averaged results from 10,000 runs
with 600 samples per run)

Mismatch True C
(mole) Methods

Averaged
estimate of C

(mole)

%RMSE of
the estimate

(%)
−10% of kD 10−1 MLE 1.004×10−1 13.4

LSE 9.995×10−2 17.8
10−2 MLE 1.010×10−2 18.0

LSE 9.727×10−3 22.5
+10% of kD 10−1 MLE 1.029×10−1 14.2

LSE 1.067×10−1 19.8
10−2 MLE 1.020×10−2 18.4

LSE 1.111×10−2 27.6
−20% of kD 10−1 MLE 9.921×10−2 13.2

LSE 9.688×10−2 17.7
10−2 MLE 1.005×10−2 17.8

LSE 9.037×10−3 22.9
+20% of kD 10−1 MLE 1.042×10−1 14.7

LSE 1.100×10−1 21.5
10−2 MLE 1.025×10−2 18.6

LSE 1.180×10−2 32.3

Fig. 8. Time plots of the measurements for the number of adsorbed
molecules (inset) and the LSE and MLE estimates for time-
varying C(t) exponentially decreasing from an initial value
of (a) 10−1, (b) 10−2, (c) 10−3, and (d) 10−4.

ure in the estimation, are considered in this analysis.
Table 3 shows the averaged estimation results for 10,000 trials

with the mismatch of kA. For the cases of −10% and −20% varia-
tions, the estimates from MLE are closer to the true value than LSE.
On the other hand, for the cases of +10% and +20% variations, the
opposite results are obtained. As defined in Eq. (6), the adsorption
rate constant and the concentration to be estimated are closely inter-
connected as a pair with multiplication. For this reason, when we
have a positive variation in kA, the estimated concentration is de-
creased and vice versa. The larger positive biases seen in the esti-
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mates from LSE, as shown in Table 1, are further increased the error
in the estimates caused by the negative variation in the parameter.
On the other hand, the very bias of LSE actually ends up compen-
sating for the decrease in the estimates caused by the positive vari-
ations.

In case of the mismatch of kD, the average estimates from MLE
are closer to the true value than LSE in all cases (Table 4). The effect
of kD on the concentration is not as significant as kA. In both meth-
ods, the estimates tend to increase for the positive variation, and
decrease for the negative variation, and the amounts of increase
and decrease in LSE are larger than those in MLE.

Above all, the RMSEs of MLE for both mismatches in kA and
kD always show smaller values than LSE, which indicates that the
estimates from MLE are more narrowly distributed around the true
value than LSE. In conclusion, despite the mismatch, the perfor-
mance advantage of MLE over LSE is still maintained.
5. Estimation Results for Time-varying Concentration

For time-varying concentration, the concentration was modeled
as following the exponentially decaying function (32). The perfor-
mance of the two methods can be compared by observing how well
the concentration estimates track the true concentration profile
throughout the run time. Plots showing the estimation performances
for exemplary KMC simulation runs are in Fig. 8.

The MLE estimates follow the true concentration more closely
than the LSE counterpart for concentration C starting from 10−1

and 10−2 (see Fig. 8(a), (b)). For concentration C starting from 10−3

and 10−4, neither estimation method can reasonably estimate the
concentration until an adsorption event actually occurs (see Fig.
8(c), (d), including insets), which is expected since there is very lit-
tle information in the data up to that time. The lack of detection
of an adsorption event for a certain period of time limits the esti-
mates for the concentration from being much larger than zero (Fig.
8(c), (d)). As time increases, the true concentration value eventu-
ally becomes simply too small to be tracked closely, which is most
evident in the last simulation (Fig. 8(d)). Without a sufficient num-
ber of adsorption events occurring, accurate estimation is not pos-
sible regardless of the method employed.

These results illustrate an important characteristic of single mol-
ecule detection: The estimation problem becomes very asymmet-
ric for low adsorption rates. Since the rates are proportional to the
local fluid concentration, these results also indicate that no estima-
tion method can be effective at fluid concentrations below the detec-
tion limit for given adsorption parameter. For local fluid concen-
trations that are high enough to enable sufficient adsorption/desorp-
tion events to occur, the MLE method based on the CME produces

Table 5. Estimation results for a time-varying true concentration
C(tk)=C0e−αtk (averaged results from 10,000 runs with 600
samples per run)

Initial true C0

(mole) Methods RMSE of the estimate

10−1 MLE 1.676×10−2

LSE 2.710×10−2

10−2 MLE 2.973×10−3

LSE 4.287×10−3

Fig. 9. Mass transfer phenomena of target molecules on a 3×3 sen-
sor array system, (a) injection of trace molecules at the cen-
ter and (b) diffusion across the sensor array.

more accurate results than the standard approach of applying LSE to
the continuum model, as can be seen from Table 5 and Fig. 8(a), (b).

SENSOR ARRAY

In Section 5.4, the estimation was formulated for a single iso-
lated sensor using simple concentration dynamics such as an expo-
nential decay. In reality, multiple sensors are placed in an array struc-
ture to measure two-dimensional concentration profiles, of which
spatial and temporal patterns are governed by underlying physical
phenomena such as diffusion (see Fig. 2).

This section expands the previous section’s results to a 2D sen-
sor array in which a trace of target molecules are injected in the
center of the array (Fig. 9(a)). The injected molecules then diffuse
from the center towards the edges and out of the system as time
goes on (Fig. 9(b)). Depending on the value of the diffusion coeffi-
cient, the rate of reaching zero concentration can be slowed down
or accelerated.

The measurement values are assumed to be obtained at every
sampling time from the sensors, which are distributed in a 2D array
structure of uniform spacing along the x and y directions. The local
concentration of target molecules at each sensor is assumed to fol-
low the diffusion phenomenon described by

(35)∂C x, y, t( )
∂t

------------------------- = D∇2C x, y, t( )
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where C(x, y, t) is the concentration of a target molecule at posi-
tion (x, y) and D is the diffusion coefficient, which is assumed to
be known. This description is adequate for diffusion in which the
local solution concentration is high enough that depletion from
the liquid phase due to adsorption onto sensors is negligible. For
very low concentration of target molecules, the transport would be
better described using stochastic models like Brownian motion or
random walk. Modeling of such molecular transport is beyond the
scope of this work, in which the interest is in processing the infor-
mation from multiple sensors with the MLE and LSE methods.

For a uniform mesh of size (Δx, Δy) and a constant discretization
time Δt=tk+1−tk, the partial differential Eq. (35) can be approximated
by a set of discrete-time equations by using the finite difference
method [20]:

(36)

(37)

By sequentially numbering the nodes at mesh points, the equa-
tions can be written into the standard discrete-time state-space sys-
tem structure:

(38)

(39)

(40)

(41)

(42)

(43)

(44)

where each 0 refers to the appropriately dimensioned null matrix
whose entries are all zeros. The nxny×nxny system matrix A has a
symmetric structure interconnecting the nearby nodes. If sensors
are placed on all the nodes, Eq. (38) can be directly related to the
local concentration C(tk) near the sensor.

Then, the spatiotemporal variations of the adsorption parame-
ter can be expressed as

C(tk+1)=AC(tk), (45)

which can be used as constraints in both MLE (28) and LSE (30)
formulations.

This numerical study considers a 3×3 sensor array with uniform
spacing of 0.5 between the sensors placed along the x and y direc-
tions. From the nine individual sensors, adsorption data reflecting
the local concentrations can be obtained every 1 second. By set-
ting kA=1, kD=0.01, D=0.005, and the initial condition

C0=[0 0 0 0 0.1 0 0 0 0], (46)

which indicates a trace injection at (0.5,0.5) at t=0, typical KMC
simulation data for the nine locations can be obtained (Fig. 10). As
this system has adsorption rates similar to or smaller than the de-
sorption rate in magnitude, frequent adsorption and desorption
events can be observed in the data from all locations.

Due to the symmetric nature of the diffusion system, the sam-
ple data for the pairs [(0,0), (0,1), (1,0), (1,1)] and [(0,0.5), (0.5,0),
(0.5,1), (1,0.5)] were all generated with the same concentration
time profiles, respectively, in the KMC simulation (Fig. 11). How-
ever, the KMC realizations for the pairs showed very different ad-
sorption time profiles, indicating the significant stochastic charac-
teristics of the system. In addition, locations far from the center

Ci, j
k+1− Ci, j

k

Δt
----------------------  = D

Ci+1, j
k

 − 2Ci, j
k

 + Ci−1, j
k

Δx( )2
----------------------------------------------  + 

Ci, j+1
k

 − 2Ci, j
k

 + Ci, j−1
k

Δy( )2
----------------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

C xi, yj, tk( ) Ci, j
k ; i =1, …, nx; j =1, …, ny; k = 0, …, nT≡

xk+1= Axk

xk = C1, 1
k C2, 1

k … Ci, j
k Ci+1, j

k … Cnx−1, ny

k Cnx, ny
[ ]

T
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0 A2 O O O M

M O O O A2 0
M O O A2 A1 A2

0 L L 0 A2 A1

A1= 

1− 2sx − 2sy sx 0 L

sx 1− 2sx − 2sy sx O

0 sx O O

M O O O

M O O sx

0 L L 0

L 0
O M

O M

sx 0
1− 2sx − 2sy sx

sx 1− 2sx − 2sy

A2 = 
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sy = D Δt
Δy( )2
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Fig. 10. Sample data generated by the KMC simulation for differ-
ent sensor locations in a 3×3 sensor array system with kA=
1, and kD=0.01, and D=0.005.
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(e.g., [(0,0), (0,1), (1,0), (1,1)]) showed no adsorption events for a
significant initial period of time. Results in Section 5.4 showed that
accurate estimation using a single local sensor is impossible regard-
less of method.

Fig. 11 and Table 6 show the estimation results of the proposed

MLE and LSE using the multiple sensor data in Fig. 10. While there
is some error in short time, the MLE estimates track the true con-
centration dynamics quite well for all the locations with less bias
than for LSE. In addition, at the locations [(0,0), (0,1), (1,0), (1,1)],
accurate estimation starts even before an adsorption event occurs.
The reason is that the diffusion Eqs. (45) correlate the concentra-
tions for the entire spatial domain, and therefore good estimation
at one sensor location can have an ameliorating effect at other sen-
sor locations.

As an additional case study for the 3×3 sensor array system,
signals with random tracer injections on all sensors at every 200
seconds are tried to check the tracking performance of MLE. With
kA=1, kD=0.01 and D=0.005, a total of 100 datasets (nine time-
profiles in one dataset) are generated from the KMC simulation,
for example, in the left side of Fig. 12. The estimation was performed
with the assumption that the injection timing is known. At every
200 seconds, the estimation is re-initialized for the unknown inter-
mediate injections. The initial state on each sensor is not zero, which
indicates some adsorption sites are occupied. From the estimation
results in the right side of Fig. 12, we can confirm that MLE gives
a better tracking performance than LSE. The calculated RMSE of
MLE (0.0127) is smaller than that of LSE (0.0130).

This study establishes the possibility of using the proposed MLE
method to estimate a spatiotemporal concentration profile with a
sensor array placed on a two-dimensional field. Importantly, the
proposed MLE method, when used with physical constraints cor-
relating the spatiotemporal data from multiple sensors, can enjoy
extended detection ranges to include those regions with very low
concentrations of molecules.

CONCLUSIONS

For an inherently stochastic adsorption process, maximum like-
lihood estimation based on an analytical solution of the chemical
master equation was shown to provide more accurate local con-
centration estimates (with less bias and variance) than least squares
estimation. This conclusion is valid for concentrations resulting in
sufficient adsorption events so that the sensor produces enough
information for the estimation to become feasible. For sensor arrays
where not only adsorption events but also desorption events oc-
curred frequently, the proposed MLE method showed a good track-
ing performance even for regions of very low concentration.

The results can be viewed as a first step towards a complete meth-
odology for state/parameter estimation of a distributed parameter
system integrated with a nano-sensor array system. Our eventual
goal is to build an optimal recursive state estimator for 2D concen-
tration fields of target molecules present in small quantity, and use
the estimated concentration fields in a control system designed to
achieve a specified 2D spatial control objective. Such an estimator
can be useful in many emerging applications including in the bio-
medical field. For example, the real-time estimates of concentra-
tion profile could be fed into an optimal control system that injects
special molecules into the process to achieve specific temporal and
spatial concentration patterns, which induce a desired stem cell dif-
ferentiation [21]. Many challenges remain, including the modeling
of molecular transport when target molecules are present in trace

Fig. 11. True vs. estimated parameters for the 9 locations in the 3×3
sensor array system with kA=1, and kD=0.01, and D=0.005.

Table 6. Estimation results for the concentrations Ck+1=ACk at vari-
ous locations (averaged results from 1,000 runs with 200
samples per run)

Sensor location Methods RMSE of estimates
(1,0) MLE 4.428×10−3

LSE 4.490×10−3

(1,0.5) MLE 1.148×10−2

LSE 1.184×10−2

(1,1) MLE 4.020×10−3

LSE 4.554×10−3

(0.5,0) MLE 1.067×10−2

LSE 1.200×10−2

(0.5,0.5) MLE 2.493×10−2

LSE 2.547×10−2

(0.5,1) MLE 1.131×10−2

LSE 1.210×10−2

(0,0) MLE 3.924×10−3

LSE 4.065×10−3

(0,0.5) MLE 1.175×10−2

LSE 1.253×10−2

(0,1) MLE 4.363×10−3

LSE 4.548×10−3

All MLE 1.156×10−2

LSE 1.209×10−2
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quantities.
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