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Abstract: We describe asymptotic behavior of linear waves on Kerr(–de Sitter) black
holes and more general Lorentzian manifolds, providing a quantitative analysis of
the ringdown phenomenon. In particular we prove that if the initial data is local-
ized at frequencies ∼ λ � 1, then the energy norm of the solution is bounded by
O(λ1/2e−(νmin−ε)t/2) + O(λ−∞), for t ≤ C log λ, where νmin is a natural dynamical
quantity. The key tool is a microlocal projector splitting the solution into a component
with controlled rate of exponential decay and an O(λe−(νmin−ε)t ) + O(λ−∞) remainder.
This splitting generalizes expansions into quasi-normal modes available in completely
integrable settings. In the case of generalized Kerr(–de Sitter) black holes satisfying cer-
tain natural conditions, quasi-normal modes are localized in bands and satisfy a precise
counting law.

1. Introduction

The subject of this paper is decay properties of solutions to the wave equation for the
rotating Kerr (cosmological constant � = 0) and Kerr–de Sitter (� > 0) black holes,
as well as for their stationary perturbations. These solutions are the linear scalar model
for the ringdown phenomenon of black holes, and the results of this paper provide a
quantitative understanding of the waves emitted at ringdown—see [DyZw] for a further
discussion of applications to physics.

In the recent decade, there has been a lot of progress in understanding decay of linear
waves, producing a polynomial decay rate O(t−3) for Kerr and an exponential decay
rate O(e−νt ) for Kerr–de Sitter (the latter is modulo constant functions). The weaker
decay for � = 0 is explained by the presence of an asymptotically Euclidean infinite
end; however, this polynomial decay comes from low frequency contributions.

In this paper we concentrate on the decay of solutions with initial data localized at
high frequencies∼ λ� 1; it is related to the geometry of the trapped set ˜K , consisting of
lightlike geodesics that never escape to the spatial infinity or through the event horizons.
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The trapped set for both Kerr and Kerr–de Sitter metrics is r -normally hyperbolic, and this
dynamical property is stable under stationary perturbations of the metric—see Sect. 3.6.
The key quantities associated to such trapping are the minimal and maximal transversal
expansion rates 0 < νmin ≤ νmax, see (2.9), (2.10). Using our recent work [Dy15],we
show the exponential decay rate O(λ1/2e−(νmin−ε)t/2)+O(λ−∞), valid for t = O(log λ)
(Theorem 1). This bound is new for the Kerr case, complementing Price’s law.

Our methods give a more precise microlocal description of long time propagation of
high frequency solutions. In Theorem 2, we split a solution u(t) into two approximate
solutions to the wave equation, u�(t) and u R(t), with the rate of decay of u�(t) between
e−(νmax+ε)t/2 and e−(νmin−ε)t/2 and u R(t) bounded from above byλe−(νmin−ε)t , all modulo
O(λ−∞) errors. The splitting is achieved using a Fourier integral operator quantizing a
natural canonical relation and built in [Dy15] from the global dynamics of the flow. This
result can be viewed as describing the singularities of the least decaying component of
the wave.

For the � > 0 case, we furthermore study resonances, or quasi-normal modes, the
complex frequencies z of solutions to the wave equation of the form e−i ztv(x). Under
a pinching condition νmax < 2νmin which is numerically verified to be true for a large
range of parameters (see Fig. 2a), we show existence of a band of quasi-normal modes
satisfying a Weyl law—Theorem 3. In particular, this provides a large family of exact
high frequency solutions to the wave equation that decay no faster than e−(νmax+ε)t/2. We
finally compare our theoretical prediction on the imaginary parts of resonances in the
band with the exact quasi-normal modes for Kerr computed by the authors of [BeCaSt],
obtaining a remarkable agreement—see Fig. 2b.

Theorems 1–3 are related to the resonance expansion and quantization condition
proved for the slowly rotating Kerr–de Sitter in [Dy12]. In this paper we only use
dynamical assumptions stable under perturbations, rather than complete integrability of
geodesic flow on Kerr(–de Sitter), and do not recover the precise results of [Dy12].

Statement of results. The Kerr(–de Sitter) metric, described in detail in Sect. 3.1,
depends on three parameters, M (mass), a (speed of rotation), and � (cosmological
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Fig. 1. a The numerically computed admissible range of parameters for the subextremal Kerr–de Sitter black
hole (light shaded) and a schematic depiction of the range of parameters to which our results apply (dark
shaded). The region above the dashed line is where the resolvent does not admit a meromorphic continuation,
see (3.16). b An illustration of Theorem 3; (1.13) counts resonances in the outlined box and the unshaded
regions above and below the box represent (1.11)
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constant). We assume that the dimensionless quantities a/M and �M2 lie in a small
neighborhood (see Fig. 1a) of either the Schwarzschild(–de Sitter) case,

a = 0, 9�M2 < 1, (1.1)

or the subextremal Kerr case

� = 0, |a| < M. (1.2)

(See the remark following Proposition 3.2 for a discussion of the range of parameters.) To
facilitate the discussion of perturbations, we adopt the abstract framework of Sect. 2.2,
with the spacetime ˜X0 = Rt × X0 and a Lorentzian metric g̃ on ˜X0 which is stationary
in the sense that ∂t is Killing. The space slice X0 is noncompact because of the spatial
infinity and/or event horizon(s); to measure the distance to those, we use a function
μ ∈ C∞(X0; (0,∞)), such that Xδ := {μ > δ} is compact for each δ > 0. For the
exact Kerr(–de Sitter metric), the function μ is defined in (3.6).

We study solutions to the wave equation in ˜X0,

�g̃u(t) = 0, t ≥ 0; u|t=0 = f0, ∂t u|t=0 = f1, (1.3)

with f0, f1 ∈ C∞0 (X0) and the time variable shifted so that the metric continues smoothly
past the event horizons—see (3.45). To simplify the statements, and because our work
focuses on the phenomena caused by trapping, we only study the behavior of solutions
in Xδ1 for some small δ1 > 0. Define the energy norm

‖u(t)‖E := ‖u(t)‖H1(Xδ1 )
+ ‖∂t u(t)‖L2(Xδ1 )

. (1.4)

Theorem 1. Fix T, N > 0, ε, δ1 > 0, and let (˜X0, g̃) be the Kerr(–de Sitter) metric
with M, a,� near one of the cases (1.1) or (1.2), or its small stationary perturbation
as discussed in Sect. 3.6 (the maximal size of the perturbation depending on T, N).

Assume that f0(λ), f1(λ) ∈ C∞0 (Xδ1) are localized at frequency ∼ λ → ∞ in the
sense of (1.6). Then the solution uλ to (1.3) with initial data f0, f1 satisfies the bound

‖uλ(t)‖E ≤ C(λ1/2e−(νmin−ε)t/2 + λ−N )‖uλ(0)‖E , 0 ≤ t ≤ T log λ. (1.5)

Here we say that f = f (λ) is localized at frequencies ∼ λ, if for each coordinate
neighborhood U in X0 and each χ ∈ C∞0 (U ), the Fourier transforms ̂χ f (ξ) in the
corresponding coordinate system satisfy for each N ,

∫

R3\{C−1
U,χ≤|ξ |≤CU,χ }

〈ξ 〉N |̂χ f (ξ)|2 dξ = O(λ−N ), (1.6)

where CU,χ > 0 is a constant independent of λ. For the proof, it is more convenient to use
semiclassical rescaling of frequencies ξ �→ hξ , where h = λ−1 → 0 is the semiclassical
parameter, and the notion of h-wavefront set WFh( f ) ⊂ T ∗X0. The requirement that
f j is microlocalized at frequencies ∼ h−1 is then equivalent to stating that WFh( f j ) is
contained in a fixed compact subset of T ∗X0\0, with 0 denoting the zero section; see
Sect. 2.1 for details.

The main component of the proof of Theorem 1 is the following
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Theorem 2. Under the assumptions of Theorem 1, for each families f0(h), f1(h) ∈
C∞0 (Xδ1) with WFh( f j ) contained in a fixed compact subset of T ∗X0\0 and u(h) the
corresponding solution to (1.3), for t0 large enough there exists a decomposition

u(t, x) = u�(t, x) + u R(t, x), t0 ≤ t ≤ T log(1/h), x ∈ Xδ/2,

such that �g̃u�(t),�g̃u R(t) are O(hN )H N
h

on Xδ1 uniformly in t ∈ [t0, T log(1/h)],
and we have uniformly in t0 ≤ t ≤ T log(1/h),

‖u�(t0)‖E ≤ Ch−1/2‖u(0)‖E , (1.7)

‖u�(t)‖E ≤ Ce−(νmin−ε)t/2‖u�(t0)‖E + ChN‖u(0)‖E , (1.8)

‖u�(t)‖E ≥ C−1e−(νmax+ε)t/2‖u�(t0)‖E − ChN‖u(0)‖E , (1.9)

‖u R(t)‖E ≤ C(h−1e−(νmin−ε)t + hN )‖u(0)‖E . (1.10)

The decomposition u = u� + u R is achieved in Sect. 2.4 using the Fourier integral
operator� constructed for r -normally hyperbolic trapped sets in [Dy15]. The component
u� enjoys additional microlocal properties, such as localization on the outgoing tail and
approximately solving a pseudodifferential equation—see the proof of Theorem 4 in
Sect. 2.4 and [Dy15, Sect. 8.5]. We note that (1.9) gives a lower bound on the rate
of decay of the approximate solution u�, if ‖u�(t0)‖E is not too small compared to
‖u(0)‖E , and the existence of a large family of solutions with the latter property follows
from the construction of u�.

We remark that Theorems 1 and 2 are completely independent from the behavior of
linear waves at low frequency. In fact, we do not even use the boundedness in time of
solutions for the wave equation, assuming merely that they grow at most exponentially
(which is trivially true in our case); this suffices since O(h∞) remainders overcome
such growth for t = O(log(1/h)). If a boundedness statement is available, then our
results can be extended to all times, though the corresponding rate of decay stays fixed
for t � log(1/h) because of the O(h∞) term.

To formulate the next result, we restrict to the case � > 0, or its small stationary
perturbation. In this case, the metric has two event horizons and we consider the discrete
set Res of resonances, as defined for example in [Va10]. As a direct application of [Dy15,
Theorems 1 and 2], we obtain two gaps and a band of resonances in between with a Weyl
law (see Fig. 1b).

Theorem 3. Let (˜X0, g̃) be the Kerr–de Sitter metric with M, a,� near one of the cases
(1.1) or (1.2) and � > 0, or its small stationary perturbation as discussed in Sect. 3.6.
Fix ε > 0. Then:

1. For h small enough, there are no resonances in the region

{|Re z| ≥ h−1, Im z ∈ [−(νmin − ε), 0]\ 1
2 (−(νmax + ε),−(νmin − ε))} (1.11)

and the corresponding semiclassical scattering resolvent, namely the inverse of the
operator (3.56), is bounded by Ch−2 for z in this region.

2. Under the pinching condition

νmax < 2νmin (1.12)

and for ε small enough so that νmax + ε < 2(νmin − ε), we have the Weyl law

#(Res∩{0 ≤ Re z ≤ h−1, Im z ∈ [−(νmin − ε), 0]}) = (2πh)1−n(c
˜K + o(1)) (1.13)
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Fig. 2. a Numerically computed minimal and maximal transversal expansion rates for � = 0 and the range

of a for which (1.12) holds. b A log-log plot of the relative errors
|νR

min(l)−νmin/2|
νR

min(l)
,
|νR

max(l)−νmax/2|
νR

max(l)
, where

νR
min(l), ν

R
max(l) are the minimal/maximal imaginary parts of resonances in the first band defined by (1.14)

as h → 0, where c
˜K is the symplectic volume of a certain part of the trapped set ˜K ,

see (2.16) and (3.42).

The pinching condition (1.12) is true for the non-rotating case a = 0, since νmin =
νmax there (see Proposition 3.8). However, it is violated for the nearly extremal case
M − |a| � M , at least for � small enough; in fact, as |a|/M → 1, νmax stays bounded
away from zero, while νmin converges to zero—see Proposition 3.9 and Fig. 2a. Note
that (νmin − ε)/2 is the size of the resonance free strip and thus gives the minimal rate
of exponential decay of linear waves on Kerr–de Sitter, modulo terms coming from
finitely many resonances, by means of a resonance expansion—see for example [Va10,
Lemma 3.1].

To demonstrate the sharpness of the size of the band of resonances {Imω ∈
1
2 [−νmax − ε,−νmin + ε]}, we use the exact quasi-normal modes for the Kerr metric
computed (formally, since one cannot meromorphically continue the resolvent in the
� = 0 case; however, one could consider the case of a very small positive�) by Berti–
Cardoso–Starinets [BeCaSt]. Similarly to the quantization condition of [Dy12], these
resonances ωmlk are indexed by three integer parameters m ≥ 0 (depth), l ≥ 0 (angular
energy), and k ∈ [−l, l] (angular momentum). The parameter l roughly corresponds to
the real part of the resonance and the parameter m, to its imaginary part. We define

νR
min(l) := min

k∈[−l,l](− Imω0lk), νR
max(l) := max

k∈[−l,l](− Imω0lk). (1.14)

We compare νR
min(l), ν

R
max(l) with νmin/2, νmax/2 and plot the supremum of the relative

error over a/M ∈ [0, 0.95] for different values of l; the error decays like O(l−1)—see
Fig. 2b.

Previous work. We give an overview of results on decay and non-decay on black hole
backgrounds; for a more detailed discussion of previous results on normally hyperbolic
trapped sets and resonance asymptotics, see the introduction to [Dy15].

The study of boundedness of solutions to the wave equation for the Schwarzschild
(� = a = 0) black hole was initiated in [Wa,KaWa] and decay results for this case have
been proved in [BlSt,DaRo09,MMTT,Lu10a]. The slowly rotating Kerr case (� =
0, |a| � M) was considered in [AnBl,DaRo11,DaRo08,Ta,TaTo,To,MeTaTo,Lu10b],
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and the full subextremal Kerr case (� = 0, |a| < M) in [FKSY,FKSYErr,DaRo10,
DaRo12,Sh1,Sh2]—see [DaRo12] for a more detailed overview. In either case the decay
is polynomial in time, with the optimal decay rate O(t−3). A decay rate of O(t−2l−3),
known as Price’s Law, was proved in [DoScSo11,DoScSo12] for linear waves on the
Schwarzschild black hole for solutions living on the lth spherical harmonic; the constant
in the O(·) depends on l. Our Theorem 1 improves on these decay rates in the high
frequency regime l = λ� 1, for times O(log λ).

The extremal Kerr case (� = 0, |a| = M) was recently studied for axisymmetric
solutions in [Ar12], with a weaker upper bound due to the degeneracy of the event
horizon. The earlier work [Ar11a,Ar11b] suggests that one cannot expect the O(t−3)

decay to hold in the extremal case. In the high frequency regime studied here, we do not
expect to get exponential decay due to the presence of slowly damped geodesics near
the event horizon, see Fig. 2a above.

The Schwarzschild–de Sitter case (� > 0, a = 0) was considered in [SBZw,BoHä,
DaRo07,MeSBVa], proving an exponential decay rate at all frequencies, a quantization
condition for resonances, and a resonance expansion, all relying on separation of vari-
ables techniques. In [Dy11a,Dy11b,Dy12], a same flavor of results was proved for the
slowly rotating Kerr–de Sitter (� > 0, |a| � M). The problem was then studied from
a more geometric perspective, aiming for results that do not depend on symmetries and
apply to perturbations of the metric—the resonance free strip of [WuZw] for normally
hyperbolic trapping, the gluing method of [DaVa], and the analysis of the event horizons
and low frequencies of [Va10] together give an exponential decay rate which is stable

under perturbations, for � > 0, |a| <
√

3
2 M , provided that there are no resonances in

the upper half-plane except for the resonance at zero. Our Theorem 3 provides detailed
information on the behavior of resonances below the resonance free strip of [WuZw],
without relying on the symmetries of the problem.

Finally, we mention the Kerr–AdS case (� < 0). The metric in this case exhibits
strong (elliptic) trapping, which suggests that the decay of linear waves is very slow
because of the high frequency contributions. A logarithmic upper bound O(1/ log t)
was proved in [HoSm11], and the existence of resonances exponentially close to the real
axis and a logarithmic lower bound were established in [Ga,HoSm13].

Quasi-normal modes (QNMs) of black holes have a rich history of study in the physics
literature, see [KoSc]. The exact QNMs of Kerr black holes were computed in [BeCaSt],
which we use for Fig. 2b. The high-frequency approximation for QNMs, using separation
of variables and WKB techniques, has been obtained in [YNZZZC,YZZNBC,YZZC,
Ho]. In particular, for the nearly extremal Kerr case their size of the resonance free strip
agrees with Proposition 3.9; moreover, they find a large number of QNMs with small
imaginary parts, which correspond to a positive proportion of the Liouville tori on the
trapped set lying close to the event horizon. See [YNZZZC] for an overview of the recent
physics literature on the topic. We remark that the speed of rotation of an astrophysical
black hole (NGC 1365) has recently been accurately measured in [RHMWBCCGHNSZ],
yielding a high speed of rotation: a/M ≥ 0.84 at 90 % confidence.

In the more recent physics work [YZZC], quasi-normal mode contributions for scalar
waves on the Kerr metric are summed over separate bands to obtain a decomposition
similar to the one in Theorem 2. We remark that [YZZC] relies on separation of variables
techniques and WKB approximations for individual quasi-normal modes, not unlike the
ones in [Dy12]; the contributions of QNMs are then summed using the Poisson formula.
The present paper exhibits a similar phenomenon, relying instead on the geometry and
the dynamics of the spacetime, and applies to perturbations of Kerr as well.
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Structure of the paper. In Sect. 2, we study semiclassical properties of solutions to
the wave equation on stationary Lorentzian metrics with noncompact space slices. We
operate under the geometric and dynamical assumptions of Sect. 2.2. These assumptions
are motivated by Kerr(–de Sitter) metrics and their stationary perturbations, but no
explicit mention of these metrics is made at this point. The analysis of Sect. 2 works
in a fixed compact subset of the space slice, and the results apply under microlocal
assumptions in this compact subset. More precisely, we assume the outgoing property
of solutions to the wave equation for Theorems 1–2 and meromorphic continuation of
the scattering resolvent with an outgoing parametrix for Theorem 3 (which are verified
for our specific applications in Sects. 3.4 and 3.5). In Sect. 2.3, we reduce the problem to
the space slice via the stationary d’Alembert–Beltrami operator and show that some of
the assumptions of [Dy15, Sects. 4.1, 5.1] are satisfied. In Sect. 2.4, we use the methods
of [Dy15] to prove asymptotics of outgoing solutions to the wave equation.

Section 3 contains the applications of [Dy15] and Sect. 2 to the Kerr(–de Sitter)
metrics and their perturbations. In Sect. 3.1, we define the metrics and establish their basic
properties, verifying in particular the geometric assumptions of Sect. 2.2. In Sect. 3.2, we
show that the trapping is r -normally hyperbolic, verifying the dynamical assumptions of
Sect. 2.2. In Sect. 3.3, we study in greater detail trapping in the Schwarzschild(–de Sitter)
case a = 0 and in the nearly extremal Kerr case� = 0, a = M−ε, in particular showing
that the pinching condition (1.12) is violated for the latter case. In the same subsection
we study numerically some properties of the trapping for the general Kerr case, and
give a formula for the constant in the Weyl law. In Sect. 3.4, we study solutions to the
wave equation on Kerr(–de Sitter), using the results of Sect. 2.4 to prove Theorems 1
and 2. In Sect. 3.5, we use the results of [Dy15,Va10] to prove Theorem 3 for Kerr–de
Sitter. Finally, in Sect. 3.6, we explain why our results apply to small smooth stationary
perturbations of Kerr(–de Sitter) metrics.

2. General Framework for Linear Waves

2.1. Semiclassical preliminaries. We start by briefly reviewing some notions of semi-
classical analysis, following [Dy15, Sect. 3]. For a detailed introduction to the subject,
the reader is directed to [Zw].

Let X be an n-dimensional manifold without boundary. Following [Dy15, Sect. 3.1],
we consider the class�k(X) of all semiclassical pseudodifferential operators with clas-
sical symbols of order k. If X is noncompact, we impose no restrictions on how fast the
corresponding symbols can grow at spatial infinity. The microsupport of a pseudodiffer-
ential operator A ∈ �k(X), also known as its h-wavefront set WFh(A), is a closed subset
of the fiber-radially compactified cotangent bundle T

∗
X . We denote by �comp(X) the

class of all pseudodifferential operators whose wavefront set is a compact subset of T ∗X
(and in particular lies away from the fiber infinity). Finally, we say that A = O(h∞)
microlocally in some open set U ⊂ T

∗
X , if WFh(A)∩U = ∅; similar notions apply to

tempered distributions and operators below.
Using pseudodifferential operators, we can study microlocalization of h-tempered

distributions, namely families of distributions u(h) ∈ D′(X) having a polynomial
in h bound in some Sobolev norms on compact sets, by means of the wavefront set
WFh(u) ⊂ T

∗
X . Using Schwartz kernels, we can furthermore study h-tempered oper-

ators B(h) : C∞0 (X1) → D′(X2) and their wavefront sets WFh(B) ⊂ T
∗
(X1 × X2).

Besides pseudodifferential operators (whose wavefront set is this framework is the image
under the diagonal embedding T

∗
X → T

∗
(X × X) of the wavefront set used in the
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previous paragraph) we will use the class I comp(�) of compactly supported and com-
pactly microlocalized Fourier integral operators associated to some canonical relation
� ⊂ T ∗(X × X), see [Dy15, Sect. 3.2]; for B ∈ I comp(�), WFh(B) ⊂ � is compact.

The h-wavefront set of an h-tempered family of distributions u(h) can be character-
ized using the semiclassical Fourier transform

Fhv(ξ) = (2πh)−n/2
∫

Rn
e−

i
h x ·ξ v(x) dx, v ∈ S ′(Rn).

We have (x, ξ) �∈ WFh(u) if and only if there exists a coordinate neighborhood Ux of x
in X , a function χ ∈ C∞0 (Ux )with χ(x) �= 0, and a neighborhood Uξ of ξ in T

∗
x X such

that if we consider χu as a function on R
n using the corresponding coordinate system,

then for each N ,
∫

Uξ
〈ξ 〉N |Fh(χu)(ξ)|2 dξ = O(hN ). (2.1)

The proof is done analogously to [HöIII, Theorem 18.1.27].
One additional concept that we need is microlocalization of distributions depending

on the time variable that varies in a set whose size can grow with h. Assume that u(t; h)
is a family of distributions on (−ε, T (h) + ε)× X , where ε > 0 is fixed and T (h) > 0
depends on h. For s ∈ [0, T (h)], define the shifted function

us(t; h) = u(s + t; h), t ∈ (−ε, ε),
so that us ∈ D′((−ε, ε) × X) is a distribution on a time interval independent of h.
We then say that u is h-tempered uniformly in t , if us is h-tempered uniformly in
s, that is, for each χ ∈ C∞0 ((−ε, ε) × X), there exist constants C and N such that
‖χus‖H−N

h
≤ Ch−N for all s ∈ [0, T (h)]. Next, we define the projected wavefront set

W̃Fh(u) ⊂ T ∗X × Rτ , where τ is the momentum corresponding to t and T ∗X × Rτ is
the fiber-radial compactification of the vector bundle T ∗X×Rτ , with Rτ part of the fiber,
as follows: (x, ξ, τ ) does not lie in W̃Fh(u) if and only if there exists a neighborhood U
of (x, ξ, τ ) in T ∗X × Rτ such that

sup
s∈[0,T (h)]

‖Aus‖L2 = O(h∞)

for each compactly supported A ∈ �comp((−ε, ε)× X) such that WFh(A)∩((−ε, ε)t×
U ) = ∅. If T (h) is independent of h, then W̃Fh(u) is simply the closure of the projection
of WFh(u) onto the (x, ξ, τ ) variables. The notion of W̃Fh makes it possible to talk about
u being microlocalized inside, or being O(h∞), on subsets of T

∗
((−ε, T (h) + ε)× X)

independent of t .
We now discuss restrictions to space slices. Assume that u(h) ∈ D′((−ε, T (h)+ε)×

X) is h-tempered uniformly in t and moreover, W̃Fh(u) does not intersect the spatial
fiber infinity {ξ = 0, τ = ∞}. Then u (as well as all its derivatives in t) is a smooth
function of t with values in D′(X), u(t) is h-tempered uniformly in t ∈ [0, T (h)], and

WFh(u(t)) ⊂ {(x, ξ) | ∃τ : (x, ξ, τ ) ∈ W̃Fh(u)},
uniformly in t ∈ [0, T (h)]. One can see this using (2.1) and the formula for the Fourier
transform of the restriction w of v ∈ S ′(Rn+1) to the hypersurface {t = 0}:

Fhw(ξ) = (2πh)−1/2
∫

R

Fhv(ξ, τ ) dτ.
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2.2. General assumptions. In this section, we study Lorentzian metrics whose space
slice is noncompact, and define r -normal hyperbolicity and the dynamical quantities
νmin, νmax in this case.

Geometric assumptions. We assume that:

(1) (˜X0, g̃) is an n + 1 dimensional Lorentzian manifold of signature (1, n), and ˜X0 =
Rt × X0, where X0, the space slice, is a manifold without boundary;

(2) the metric g̃ is stationary in the sense that its coefficients do not depend on t , or
equivalently, ∂t is a Killing field;

(3) the space slices {t = const} are spacelike, or equivalently, the covector dt is timelike
with respect to the dual metric g̃−1 on T ∗˜X0;

The (nonsemiclassical) principal symbol of the d’Alembert–Beltrami operator �g̃ (with-
out the negative sign), denoted by p̃(x̃, ξ̃ ), is

p̃(x̃, ξ̃ ) = −g̃−1
x̃ (ξ̃ , ξ̃ ), (2.2)

here x̃ = (t, x)denotes a point in ˜X0 and ξ̃ = (τ, ξ) a covector in T ∗x̃ ˜X0. The Hamiltonian
flow of p̃ is the (rescaled) geodesic flow on T ∗x̃ ˜X0; we are in particular interested in
nontrivial lightlike geodesics, i.e. the flow lines of Hp̃ on the set { p̃ = 0}\0, where 0
denotes the zero section.

Note that we do not assume that the vector field ∂t is timelike, since this is false
inside the ergoregion for rotating black holes. Because of this, the intersections of the
sets {τ = const}, invariant under the geodesic flow, with the energy surface { p̃ = 0}
need not be compact in the ξ direction, and it is possible that ξ will blow up in finite
time along a flow line of Hp̃, while x stays in a compact subset of X0. 1 We consider
instead the rescaled flow

ϕ̃s := exp(s Hp̃/∂τ p̃) on { p̃ = 0}\0. (2.3)

Here ∂τ p̃(x̃, ξ̃ ) = −2g̃−1
x̃ (ξ̃ , dt) never vanishes on { p̃ = 0}\0 by assumption (3). Since

Hp̃t = ∂τ p̃, the variable t grows linearly with unit rate along the flow ϕ̃s . The flow
lines of (2.3) exist for all s as long as x stays in a compact subset of X0. The flow is
homogeneous, which makes it possible to define it on the cosphere bundle S∗˜X0, which
is the quotient of T ∗˜X0\0 by the action of dilations. Finally, the flow preserves the
restriction of the symplectic form to the tangent bundle of { p̃ = 0}.

We next assume the existence of a ‘defining function of infinity’ μ on the space slice
with a concavity property:

(4) there exists a function μ ∈ C∞(X0) such that μ > 0 on X0, for δ > 0 the set

Xδ := {μ > δ} ⊂ X0 (2.4)

is compactly contained in X0, and there exists δ0 > 0 such that for each flow line
γ (s) of (2.3), and with μ naturally defined on T ∗˜X0,

μ(γ (s)) < δ0, ∂sμ(γ (s)) = 0 �⇒ ∂2
s μ(γ (s)) < 0. (2.5)

We now define the trapped set.

1 The simplest example of such behavior is p̃ = xξ2 + 2ξτ − τ2, considering the geodesic starting at
x = t = τ = 0, ξ = 1.
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Definition 2.1. Let γ (s) be a maximally extended flow line of (2.3). We say that γ (s)
is trapped as s → +∞, if there exists δ > 0 such that μ(γ (s)) > δ for all s ≥ 0 (and
as a consequence, γ (s) exists for all s ≥ 0). Denote by ˜�− the union of all γ trapped
as s → +∞; similarly, we define the union ˜�+ of all γ trapped as s →−∞. Define the
trapped set ˜K := ˜�+ ∩˜�− ⊂ { p̃ = 0}\0.

If μ(γ (s)) < δ0 and ∂sμ(γ (s)) ≤ 0 for some s, then it follows from assumption (4)
that γ (s) is not trapped as s → +∞. Also, if γ (s) is not trapped as s → +∞, then
μ(γ (s)) < δ0 and ∂sμ(γ (s)) < 0 for s > 0 large enough. It follows that ˜�± are closed
conic subsets of { p̃ = 0}\0, and ˜K ⊂ {μ ≥ δ0}.

We next split the light cone { p̃ = 0}\0 into the sets C+ and C− of positively and
negatively time oriented covectors:

C± = { p̃ = 0} ∩ {±∂τ p̃ > 0}. (2.6)

Since ∂τ p̃ never vanishes on { p̃ = 0}\0 by assumption (3), we have { p̃ = 0}\0 =
C+ � C−.

We fix the sign of τ on the trapped set, in particular requiring that ˜K ⊂ {τ �= 0}:
(5) ˜K ∩ C± ⊂ {±τ < 0}.
Dynamical assumptions. We now formulate the assumptions on the dynamical structure
of the flow (2.3). They are analogous to the assumptions of [Dy15, Sect. 5.1] and related
to them in Sect. 2.3 below. We start by requiring that ˜�± are regular:

(6) for a large constant r , ˜�± are codimension 1 orientable Cr submanifolds of
{ p̃ = 0}\0;

(7) ˜�± intersect transversely inside { p̃ = 0}\0, and the intersections ˜K ∩ {t = const}
are symplectic submanifolds of T ∗˜X0.

We next define a natural invariant decomposition of the tangent space to { p̃ = 0} at
˜K . Let (T˜�±)⊥ be the symplectic complement of the tangent space to ˜�±. Since ˜�±
has codimension 2 and is contained in { p̃ = 0}, (T˜�±)⊥ is a two-dimensional vector
subbundle of T (T ∗˜X0) containing Hp̃. Since Hp̃t �= 0 on { p̃ = 0}\0, we can define the
one-dimensional vector subbundles of T (T ∗˜X0)

˜V± := (T˜�±)⊥ ∩ {dt = 0}. (2.7)

Since ˜�± is a codimension 1 submanifold of { p̃ = 0} and Hp̃ is tangent to ˜�±, we see
that ˜�± is coisotropic and then ˜V± are one-dimensional subbundles of T˜�±; moreover,
since ∂t ∈ T˜�±, we find ˜V± ⊂ {dτ = 0}. Since ˜K ∩ {t = const} is symplectic, we have

T
˜K
˜�± = T ˜K ⊕ ˜V±|˜K , T

˜K p̃−1(0) = T ˜K ⊕ ˜V−|˜K ⊕ ˜V+|˜K . (2.8)

Since the flow ϕ̃s from (2.3) maps the space slice {t = t0} to {t = t0 + s} and Hp̃ is
tangent to T˜�±, we see that the splittings (2.8) are invariant under ϕ̃s .

We now formulate the dynamical assumptions on the linearization of the flow ϕ̃s

with respect to the splitting (2.8). Define the minimal expansion rate in the transverse
direction νmin as the supremum of all ν for which there exists a constant C such that

sup
ρ̃∈˜K

‖dϕ̃∓s(ρ̃)|V±‖ ≤ Ce−νs, s ≥ 0, (2.9)
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with ‖ · ‖ denoting any smooth t-independent norm on the fibers of T (T ∗˜X0), homo-
geneous of degree zero with respect to dilations on T ∗˜X0. Similarly, define νmax as the
infimum of all ν for which these exists a constant c > 0 such that

inf
ρ̃∈˜K

‖dϕ̃∓s(ρ̃)|V±‖ ≥ ce−νs, s ≥ 0. (2.10)

We now formulate the dynamical assumption of r -normal hyperbolicity:

(8) νmin > rμmax, where μmax is the maximal expansion rate of the flow along ˜K ,
defined as the infimum of all ν for which there exists a constant C such that

sup
ρ̃∈˜K

‖dϕ̃s(ρ̃)|T ˜K ‖ ≤ Ceνs, s ∈ R. (2.11)

The large constant r determines how many terms we need to obtain in semiclassical
expansions, and how many derivatives of these terms need to exist—see [Dy15]. The-
orem 3 simply needs r to be large (in principle, depending on the dimension), while
Theorems 1 and 2 require r to be large enough depending on N , T . For exact Kerr(–de
Sitter) metrics, our assumptions are satisfied for all r , but a small perturbation will satisfy
them for some fixed large r depending on the size of the perturbation. See Sect. 3.6 for
more details.

2.3. Reduction to the space slice. We now put a Lorentzian manifold (˜X0, g̃) satis-
fying assumptions of Sect. 2.2 into the framework of [Dy15]. Consider the stationary
d’Alembert–Beltrami operator Pg̃(ω),ω ∈ C, the second order semiclassical differential
operator on the space slice X0 obtained by replacing h Dt by −ω in the semiclassical
d’Alembert–Beltrami operator h2�g̃ . The principal symbol of Pg̃(ω) is given by

p(x, ξ ;ω) = p̃(t, x,−ω, ξ),

where p̃ is defined in (2.2) and the right-hand side does not depend on t . We will show
that the operator Pg̃(ω) satisfies a subset of the assumptions of [Dy15, Sects. 4.1, 5.1].

First of all, we need to understand the solutions in ω to the equation p = 0. Let

p(x, ξ) ∈ C∞(T ∗X0\0)

be the unique real solution ω to the equation p(x, ξ ;ω) = 0 such that (t, x,−ω, ξ) ∈
C+, with the positive time oriented light cone C+ defined in (2.6). The existence and
uniqueness of such solution follows from assumption (3) in Sect. 2.2, and we also find
from the definition of C+ that

∂ωp(x, ξ ; p(x, ξ)) < 0, (x, ξ) ∈ T ∗X0\0. (2.12)

We can write C+ as the graph of p:

C+ = {(t, x,−p(x, ξ), ξ) | t ∈ R, (x, ξ) ∈ T ∗X0\0}.
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The level sets of p are not compact if ∂t is not timelike. To avoid dealing with the
fiber infinity, we use assumption (5) in Sect. 2.2 to identify a bounded region in T ∗X0
invariant under the flow and containing the trapped set.

Lemma 2.2. There exists an open conic subset W ⊂ C+, independent of t , such that
˜K ∩ C+ ⊂W , the closure of W in C+ is contained in {τ < 0}, and W is invariant under
the flow (2.3).

Proof. Consider a conic neighborhood W0 of ˜K∩C+ in C+ independent of t and such that
the closure of W0 is contained in {μ > δ0/2} ∩ {τ < 0}; this is possible by assumption
(5) and since ˜K is contained in {μ ≥ δ0}. Let W ⊂ C+ be the union of all maximally
extended flow lines of (2.3) passing through W0. Then W is an open conic subset of C+
containing ˜K ∩ C+ and invariant under the flow (2.3). It remains to show that each point
(x̃, ξ̃ ) ∈ C+ ∩ {τ ≥ 0} has a neighborhood that does not intersect W . To see this, note
that the corresponding trajectory γ (s) of (2.3) does not lie in ˜�+ ∪ ˜�− (as otherwise,
the projection of γ (s) onto the cosphere bundle would converge to ˜K as s → +∞ or
s →−∞, by [Dy15, Lemma 4.1]; it remains to use assumption (5) and the fact that τ is
constant on γ (s)). We then see that γ (s) escapes for both s → +∞ and s → −∞ and
does not intersect the closure of W0 and same is true for nearby trajectories; therefore,
a neighborhood of (x̃, ξ̃ ) does not intersect W . ��

Arguing similarly (using an open conic subset W ′
0 of C+ such that W0 ⊂ W ′

0 and

W ′
0 ⊂ {μ > δ0/2} ∩ {τ < 0}), we construct an open conic subset W ′ of C+ independent

of t and such that

˜K ∩ C+ ⊂W, W ⊂W ′, W ′ ⊂ {τ < 0},
and W,W ′ are invariant under the flow (2.3). Now, take small δ1 > 0 and define

˜U := C+ ∩ {|1 + τ | < δ1} ∩W ∩ {μ > δ1},
˜U ′ := C+ ∩ {|1 + τ | < 2δ1} ∩W ′ ∩ {μ > δ1/2}.

(2.13)

Then ˜U , ˜U ′ are open subsets of C+ convex under the flow (2.3), ˜K ∩ {|1 + τ | < δ1} ⊂ ˜U
(note that ˜K ∩ {τ < 0} ⊂ C+ by assumption (5)), and the closure of ˜U is contained in
˜U ′. Moreover, the projections of U ,U ′ onto the (x, τ, ξ) variables are bounded because
W,W ′ are conic and W,W ′ ⊂ {τ �= 0}.

Let U � U ′ � T ∗X0 be the projections of ˜U , ˜U ′ onto the (x, ξ) variables, so that

˜U = {(t, x,−p(x, ξ), ξ) | t ∈ R, (x, ξ) ∈ U},
and similarly for U ′. Note that U ⊂ {|p− 1| < δ1} and U ′ ⊂ {|p− 1| < 2δ1}. Since U ′
is bounded, and by (2.12), for δ1 > 0 small enough and (x, ξ) ∈ U ′, p(x, ξ) is the only
solution to the equation p(x, ξ ;ω) = 0 in {ω ∈ C | |ω − 1| < 2δ1}.

We now study the Hamiltonian flow of p. Since

∂x,ξ p(x, ξ) = −∂x,ξp(x, ξ, p(x, ξ))

∂ωp(x, ξ, p(x, ξ))
,

and for each t ,

−∂ωp(x, ξ, p(x, ξ)) = ∂τ p̃(t, x,−p(x, ξ), ξ),
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we see that the flow of Hp is the projection of the rescaled geodesic flow (2.3) on C+:
for (x, ξ) ∈ T ∗X0\0,

ϕ̃s(t, x,−p(x, ξ), ξ) = (t + s, x(s),−p(x, ξ), ξ(s)), (x(s), ξ(s)) = es Hp (x, ξ).
(2.14)

We now verify some of the assumptions of [Dy15, Sect. 4.1]. We let X be an n-
dimensional manifold containing X0 (for the Kerr–de Sitter metric it is constructed in
Sect. 3.5) and consider the volume form d Vol on X0 related to the volume form d ˜Vol on
˜X0 generated by g̃ by the formula d ˜Vol = dt∧d Vol. The operator Pg̃(ω) is a semiclassi-
cal pseudodifferential operator depending holomorphically onω ∈ � := {|ω−1| < 2δ1}
and p is its semiclassical principal symbol. We do not specify the spaces H1,H2 here
and do not establish any mapping or Fredholm properties of Pg̃(ω); for our specific
applications it is done in Sect. 3.5. Except for these mapping properties, the assump-
tions (1), (2), and (5)–(9) of [Dy15, Sect. 4.1] are satisfied, with U ,U ′ defined above,
[α0, α1] := [1− δ1/2, 1 + δ1/2], and the incoming/outgoing tails �± on the space slice
given by (for each t)

�± = {(x, ξ) | (t, x,−p(x, ξ), ξ) ∈ ˜�± ∩ {|1 + τ | ≤ δ1} ∩W ∩ {μ ≥ δ1}}, (2.15)

and similarly for the trapped set K = �+ ∩ �−.
Finally, the dynamical assumptions of [Dy15, Sect. 5.1] are also satisfied, as follows

directly from (2.14) and the dynamical assumptions of Sect. 2.2. Note that the subbundles
V± of T�± defined in [Dy15, Sect. 5.1] coincide with the subbundles ˜V± of T˜�± defined
in Sect. 2.7 under the identification T(x,ξ)(T ∗X0)  T(t,x,−p(x,ξ),ξ)(T ∗˜X0)∩{dt = dτ =
0}, and the expansion rates νmin, νmax, μmax defined in (2.9)–(2.11) coincide with those
defined in [Dy15, (5.1)–(5.3)].

To relate the constants for the Weyl laws in Theorem 3 and [Dy15, Theorem 2] , we
note that for [a, b] ⊂ (1− δ1/2, 1 + δ1/2),

Volσ (K ∩ p−1[a, b]) = Volσ̃ (˜K ∩ {a ≤ −τ ≤ b} ∩ {t = const}).
Here Volσ and Volσ̃ stand for symplectic volume forms of order 2n − 2 on T ∗X0 and
T ∗˜X0, respectively. The constant c

˜K from Theorem 3 is then given by

c
˜K = Volσ̃ (˜K ∩ {0 ≤ τ ≤ 1} ∩ {t = const}). (2.16)

2.4. Applications to linear waves. In this section, we apply the results of [Dy15] to
understand the decay properties of linear waves; Theorem 4 below forms the base for
the proofs of Theorems 1 and 2 in Sect. 3.4.

Consider a family of approximate solutions u(h) ∈ D′((−1, T (h) + 1)t × X0) to the
wave equation

h2�g̃u(h) = O(h∞)C∞ . (2.17)

Here h � 1 is the semiclassical parameter and T (h) > 0 depends on h (for our particular
application, T (h) = T log(1/h) for some constant T ). We assume that u is h-tempered
uniformly in t , as defined in Sect. 2.1. Then by the elliptic estimate (see for instance
[Dy15, Proposition 3.2]), u is microlocalized on the light cone:

W̃Fh(u) ⊂ { p̃ = 0}, (2.18)
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Fig. 3. The phase space picture of the flow, showing shaded WFh(u(t)) for a all t and b all t ≥ t1, for u
satisfying Definition 2.3. The horizontal axis corresponds to μ

where W̃Fh(u) is defined in Sect. 2.1. By the restriction statement in Sect. 2.1, u is a
smooth function of t with values in h-tempered distributions on X0. Moreover, we obtain
for 0 < δ1 < δ2 small enough and each t0 ∈ [0, T (h)],

‖u(t0)‖H1
x (Xδ2 )

≤ C‖u‖H1
t,x ([t0−1,t0+1]×Xδ1 )

+ O(h∞),
‖u‖L2

t [t0−1,t0+1]L2
x (Xδ1 )

≤ C‖u‖L∞t [t0−1,t0+1]L2
x (Xδ1 )

+ O(h∞). (2.19)

The second of these inequalities is trivial; the first one is done by applying the standard
energy estimate for the wave equation to the function χ(t − t0)u, with χ ∈ C∞0 (−ε, ε)
equal to 1 near 0 and ε > 0 small depending on δ1, δ2.

We furthermore restrict ourselves to the following class of outgoing solutions, see
Fig. 3a.

Definition 2.3. Fix small δ1 > 0. A solution u to (2.17), h-tempered uniformly in
t ∈ (−1, T (h) + 1), is called outgoing, if its projected wavefront set W̃Fh(u), defined
in Sect. 2.1, satisfies (for ˜U defined in (2.13))

W̃Fh(u) ∩ {μ > δ1} ⊂ ˜U ∩ {|τ + 1| < δ1/4}, (2.20)

W̃Fh(u) ∩ {δ1 ≤ μ ≤ 2δ1} ⊂ {Hp̃μ ≤ 0}. (2.21)

The main result of this section is

Theorem 4. Fix T, N , ε > 0 and let the assumptions of Sect. 2.2 hold, including r-
normal hyperbolicity with r large depending on T, N. Assume that u is an outgoing
solution to (2.17), for t ∈ (−1, T log(1/h) + 1), and ‖u(t)‖H−N

h (Xδ1/2)
= O(h−N )

uniformly in t . Then for t0 large enough and independent of h, we can write

u(t, x) = u�(t, x) + u R(t, x), t0 ≤ t ≤ T log(1/h),

such that h2�g̃u�, h2�g̃u R are O(hN )H N
h

on Xδ1 and, with ‖ · ‖E defined in (1.4),
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‖u�(t0)‖E ≤ Ch−1/2‖u(0)‖E + O(hN ), (2.22)

‖u�(t)‖E ≤ Ce−(νmin−ε)t/2‖u�(t0)‖E + O(hN ), (2.23)

‖u�(t)‖E ≥ C−1e−(νmax+ε)t/2‖u�(t0)‖E −O(hN ), (2.24)

‖u R(t)‖E ≤ Ch−1e−(νmin−ε)t‖u(0)‖E + O(hN ), (2.25)

‖u(t)‖E ≤ Ceεt‖u(0)‖E + O(hN ), (2.26)

all uniformly in t ∈ [t0, T log(1/h)].
For the proof, we assume that the metric is r -normally hyperbolic for all r , and prove

the bounds for all T, N (so that O(hN ) becomes O(h∞)); since semiclassical arguments
require finitely many derivatives to work, the statement will be true for r large depending
on T and N .

We first recall the factorization of [Dy15, Lemma 4.3]:

Pg̃(ω) = S(ω)(P − ω)S(ω) + O(h∞) microlocally near U , (2.27)

where S(ω) is a family of pseudodifferential operators elliptic near U , and such that
S(ω)∗ = S(ω) for ω ∈ R, and P is a self-adjoint pseudodifferential operator, moreover
we assume that it is compactly supported and compactly microlocalized. If we define
the self-adjoint pseudodifferential operator ˜S on ˜X0 by replacing ω by −h Dt in S(ω),
then we get

h2�g̃ = ˜S(h Dt + P)˜S + O(h∞) microlocally near ˜U . (2.28)

We define

u(t) := (˜Su)(t), 0 ≤ t ≤ T log(1/h),

note that u(t) and its t-derivatives are bounded uniformly in t with values in h-tempered
distributions on X0 by the discussion of restrictions to space slices in Sect. 2.1 and
by (2.18). We have by (2.17), (2.20), (2.21), and (2.28),

(h Dt + P)u(t) = O(h∞) microlocally near Xδ1 , (2.29)

WFh(u(t)) ∩ Xδ1 ⊂ {|p − 1| < δ1/4}, (2.30)

WFh(u(t)) ∩ {δ1 ≤ μ ≤ 2δ1} ⊂ {Hpμ ≤ 0}, (2.31)

uniformly in t ∈ [0, T log(1/h)].
We next use the construction of [Dy15, Lemma 5.1] , which (combined with the

homogeneity of the flow) gives functions ϕ± defined in a conic neighborhood of K in
T ∗X0, such that �± = {ϕ± = 0} in this neighborhood, ϕ± are homogeneous of degree
zero, and

Hpϕ± = ∓c±ϕ±, νmin − ε < c± < νmax + ε, (2.32)

where c± are some smooth functions on the domain of ϕ±. Then for small δ > 0,

Uδ := {|ϕ+| ≤ δ, |ϕ−| ≤ δ}
is a small closed conic neighborhood of K in T ∗X0\0.

We now fix δ small enough so that [Dy15, Theorem 3 in Sect. 7.1 and Proposition 7.1]
apply, giving a Fourier integral operator � ∈ Icomp(�

◦) which satisfies the equations

�2 = � + O(h∞), [P,�] = O(h∞) (2.33)
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microlocally near the set ̂W × ̂W , with

̂W := Uδ ∩ {|p − 1| ≤ δ1/2}. (2.34)

Here�◦ ⊂ �− ∩�+ is the canonical relation defined in [Dy15, (5.12)]. Also, we define

W ′ := Uδ/2 ∩ {|p − 1| ≤ δ1/4}. (2.35)

We now derive certain conditions on the microlocalization of u for large enough
times, see Fig. 3b (compare with [Dy15, Figure 5]).

Proposition 2.4. For t1 large enough independent of h, the function u(t) satisfies

WFh(u(t)) ∩ ̂W ⊂ {|ϕ+| < δ/2}, (2.36)

WFh(u(t)) ∩ �− ⊂ W ′, (2.37)

uniformly in t ∈ [t1, T log(1/h)].
Proof. Consider (x, ξ) ∈ WFh(u(t)) ∩ X2δ1 for some t ∈ [t1, T log(1/h)]. Put
γ (s) = es Hp (x, ξ). Then by propagation of singularities (see for example [Dy15, Propo-
sition 3.4]) for the equation (2.29), we see that either there exists s0 ∈ [−t1, 0] such that
γ (s0) ∈ {δ1 ≤ μ ≤ 2δ1}∩WFh(u(t +s0)), or γ (s) ∈ X2δ1 for all s ∈ [−t1, 0]. However,
in the first of these two cases, by (2.31) we have γ (s0) ∈ {μ ≤ 2δ1} ∩ {Hpμ ≤ 0},
which implies that γ (0) ∈ {μ ≤ 2δ1} by assumption (4) in Sect. 2.2, a contradiction.
Therefore,

et Hp (x, ξ) ∈ X2δ1 , t ∈ [−t1, 0].
It remains to note that for t1 large enough,

e−t1 Hp (̂W ∩ {|ϕ+| ≥ δ/2}) ∩ X2δ1 = ∅;
et1 Hp (�− ∩ {|p − 1| < δ1/4} ∩ X2δ1) ⊂ W ′;

the first of these statements follows from the fact that ̂W ∩ {|ϕ+| ≥ δ/2} is a compact
set not intersecting �+, and the second one, from [Dy15, Lemma 4.1]. ��

By (2.29), (2.33), and (2.37), and since WFh(�) ⊂ �− × �+ we have uniformly in
t ∈ [t1, T log(1/h)],

(h Dt + P)�u(t) = O(h∞) microlocally near ̂W . (2.38)

By [Dy15, Proposition 6.1 and Sect. 6.2], we have

‖�u(t)‖L2 ≤ Ch−1/2‖u(t)‖L2 . (2.39)

We now use the methods of [Dy15, Sect. 8] to prove a microlocal version of Theorem 4
near the trapped set.

Proposition 2.5. There exist compactly supported A0, A1 ∈ �comp(X0)microlocalized
inside ̂W , elliptic on W ′, and such that for t ∈ [t1, T log(1/h)],

‖A0�u(t)‖L2 ≤ Ce−(νmin−ε)t/2‖A0�u(t1)‖L2 + O(h∞), (2.40)

‖A0�u(t)‖L2 ≥ C−1e−(νmax+ε)t/2‖A0�u(t1)‖L2 −O(h∞), (2.41)

‖A1(1−�)u(t)‖L2 ≤ Ch−1e−(νmin−ε)t‖A0u(t1)‖L2 + O(h∞), (2.42)

‖A1u(t)‖L2 ≤ Ceεt‖A0u(t1)‖L2 + O(h∞). (2.43)
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Proof. We will use the operators �±, � constructed in [Dy15, Proposition 7.1]. The
microlocalization statements we make will be uniform in t ∈ [t1, T log(1/h)].

We first prove (2.42), following the proof of [Dy15, Proposition 8.1]. Put

v(t) := �u(t).

Then similarly to [Dy15, (8.14)], we find

(1−�)u(t) = �−v(t) + O(h∞) microlocally near ̂W .

By (2.29) and (2.38),

(h Dt + P)(1−�)u(t) = O(h∞) microlocally near ̂W .

Similarly to [Dy15, Proposition 8.3], we use the commutation relation [P,�−] =
−ih�−Z− + O(h∞) together with propagation of singularities for the operator �−
to find

(h Dt + P − ih Z−)v(t) = O(h∞) microlocally near ̂W . (2.44)

Here Z− ∈ �comp(X0) satisfies σ(Z−) = c− near ̂W .
Let X− ∈ �comp(X0) be the operator used in [Dy15, Sect. 8.2], satisfying

WFh(X−) � ̂W , σ(X−) ≥ 0 everywhere, and σ(X−) > 0 on W ′. Similarly to [Dy15,
(8.18)], we get

1

2
∂t 〈X−v(t), v(t)〉 + 〈Y−v(t), v(t)〉 = O(h∞), (2.45)

where

Y− = 1

2
(Z∗−X− + X−Z−) +

1

2ih
[P,X−]

satisfies WFh(Y−) � ̂W , and similarly to [Dy15, (8.19)] we have

σ(Y−) ≥ (νmin − ε)σ (X−) near WFh(v(t)),

and the inequality is strict on W ′. Similarly to [Dy15, Lemma 8.4], by sharp Gårding
inequality we get

〈(Y− − (νmin − ε)X−)v(t), v(t)〉 ≥ ‖A1v(t)‖2
L2 − Ch‖A′0v(t)‖2

L2 −O(h∞) (2.46)

for an appropriate choice of A1 and some A′0 ∈ �comp(X0) microlocalized inside ̂W .
Also similarly to [Dy15, Lemma 8.4], by propagation of singularities for the equa-
tion (2.44) we get for t1 large enough,

‖A′0v(t)‖2
L2 ≤ C‖A0v(t1)‖2

L2 +O(h∞), t ∈ [t1, 2t1], (2.47)

‖A′0v(t)‖2
L2 ≤ C‖A1v(t − t1)‖2

L2 + O(h∞), t ≥ 2t1, (2.48)

for an appropriate choice of A0. By (2.45) and (2.46), we see that

〈X−v(t), v(t)〉 ≤ Ce−2(νmin−ε)t 〈X−v(t1), v(t1)〉
−C−1

∫ t

t1
e−2(νmin−ε)(t−s)‖A1v(s)‖2

L2 ds

+ Ch
∫ t

t1
e−2(νmin−ε)(t−s)‖A′0v(s)‖2

L2 ds + O(h∞).
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Breaking the second integral on the right-hand side in two pieces and estimating each
of them separately by (2.47) and (2.48), we get for an appropriate choice of A0,

〈X−v(t), v(t)〉 ≤ Ce−2(νmin−ε)t‖A0v(t1)‖2
L2 + O(h∞).

We can moreover assume that X− has the form A∗1 A1 + X ∗
1 X1 + O(h∞) for some

pseudodifferential operator X1; this can be arranged since σ(X−) > 0 on WFh(A1) and
the argument of [Dy15, Sect. 8.2] only depends on the principal symbol of X−, which
can be taken to be the square of a smooth function. Then ‖A1v(t)‖2

L2 ≤ 〈X−v(t), v(t)〉+
O(h∞) and we get

‖A1v(t)‖L2 ≤ Ce−(νmin−ε)t‖A0v(t1)‖L2 + O(h∞). (2.49)

To prove (2.42), it remains to note that (1−�)u(t) = v(t) + O(h∞) microlocally near
̂W and ‖v(t1)‖L2 ≤ Ch−1‖u(t1)‖L2 by part 1 of [Dy15, Proposition 6.13].

To prove (2.43), we argue similarly to (2.45), but use the equation (2.29) instead
of (2.44). We get

1

2
∂t 〈X−u(t),u(t)〉 + 〈Y ′−u(t),u(t)〉 = O(h∞),

where

Y ′− =
1

2ih
[P,X−]

satisfies WFh(Y ′−) � ̂W and

σ(Y ′−) ≥ −εσ (X−) near WFh(u(t)),

and the inequality is strict on W ′. The remainder of the proof of (2.43) proceeds exactly
as the proof of (2.49).

Finally, we prove (2.40) and (2.41), following the proof of [Dy15, Proposition 8.2] .
Let X+ ∈ �comp(X0) be the operator defined in [Dy15, Sect. 8.3], satisfying in particular
WFh(X+) � ̂W , σ(X+) ≥ 0 everywhere, and σ(X+) > 0 on W ′. Similarly to [Dy15,
(8.33)], we get from (2.38) that for an appropriate choice of A0,

1

2
∂t 〈X+�u(t),�u(t)〉 + 〈Z+�u(t),�u(t)〉 = O(h)‖A0�u(t)‖2

L2 + O(h∞), (2.50)

where Z+ ∈ �comp(X0), WFh(Z+) � ̂W ,

νmin − ε
2

σ(X+) ≤ σ(Z+) ≤ νmax + ε

2
σ(X+) near WFh(�u(t)),

and both inequalities are strict on W ′ ∩WFh(�u(t)). By [Dy15, Lemma 8.7], we deduce
that

〈Z+�u(t),�u(t)〉 ≥ νmin − ε
2

〈X+�u(t),�u(t)〉 + ‖A0�u(t)‖2
L2 −O(h∞),

〈Z+�u(t),�u(t)〉 ≤ νmax + ε

2
〈X+�u(t),�u(t)〉 − ‖A0�u(t)‖2

L2 + O(h∞)
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By (2.50), we find

(∂t + (νmin − ε))〈X+�u(t),�u(t)〉 ≤ O(h∞),
(∂t + (νmax + ε))〈X+�u(t),�u(t)〉 ≥ −O(h∞).

Therefore,

〈X+�u(t),�u(t)〉 ≤ Ce−(νmin−ε)t 〈X+�u(t1),�u(t1)〉 + O(h∞),
〈X+�u(t),�u(t)〉 ≥ C−1e−(νmax+ε)t 〈X+�u(t1),�u(t1)〉 −O(h∞).

To prove (2.39) and (2.40), it remains to note that

〈X+�u(t),�u(t)〉 ≥ C−1‖A0�u(t)‖2
L2 −O(h∞),

〈X+�u(t),�u(t)〉 ≤ C‖A0�u(t)‖2
L2 + O(h∞);

the first of these statements follows by [Dy15, Lemma 8.7] and the second one is arranged
by choosing A0 to be elliptic on WFh(X+). ��
Proof of Theorem 4. To construct the component u�(t), we use �u(t) together with
the Schrödinger propagator e−i t P/h . Since P∗ = P and P is compactly supported and
compactly microlocalized, the operator e−i t P/h quantizes the flow et Hp in the sense of
[Dy15, Proposition 3.1]. Since WFh(�u(t)) ⊂ �+, we have by (2.38),

(h Dt + P)e−i t1 P/h�u(t) = O(h∞) on Xδ1, t ≥ t1, (2.51)

if t1 is large enough so that

e−t1 Hp (�+ ∩ Xδ1 ∩ {|p − 1| < δ1/4}) ⊂ W ′; (2.52)

such t1 exists by [Dy15, Lemma 4.1]. We then take an elliptic parametrix ˜S ′ of ˜S near
˜U (see [Dy15, Proposition 3.3]) and define

u�(t) := ˜S ′(e−i t1 P/h�u(t − t1)), t ∈ [t0 − 1, T log(1/h)], t0 := 2t1 + 1. (2.53)

Then by (2.28) and (2.51) we get

h2�g̃u� = O(h∞) on Xδ1 ,

uniformly in t ∈ [t0, T log(1/h)]. Put

u R(t) := u(t)− u�(t), t ∈ [t0, T log(1/h)],
then h2�g̃u R = O(h∞) on Xδ1 as well.

It remains to prove (2.22)–(2.26). Since WFh(�u(t)) ⊂ �+ and by (2.52), we find

‖˜Su�(t)‖L2(Xδ1 )
≤ C‖A0�u(t − t1)‖L2 + O(h∞);

here A0 is the operator from Proposition 2.5. Since [P,�] = O(h∞)microlocally near
̂W × ̂W , and by (2.29) and (2.37) (replacing t1 by s ∈ [0, t1] in the definition of u� and
differentiating in s) we get

˜Su�(t) = �u(t) + O(h∞) microlocally near ̂W . (2.54)
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Therefore,

‖A0�u(t)‖L2 ≤ C‖˜Su�(t)‖L2(Xδ1 )
+ O(h∞).

Next, by (2.21) each backwards flow line of et Hp starting in X2δ1 either stays forever
in X2δ1 or reaches the complement of WFh(u(t))—see the proof of Proposition 2.4. By
propagation of singularities for the equation (2.29), we find

‖Au(t1)‖L2 ≤ C‖u(0)‖L2(Xδ1 )
+ O(h∞), A ∈ �comp(X2δ1).

Also, for t1 large enough, each flow line γ (t), t ∈ [−t1, 0], of Hp such that γ (0) ∈ Xδ1

either satisfies γ (−t1) ∈ W ′ and γ ([−t1, 0]) ⊂ Xδ1 , or there exists s ∈ [−t1, 0] such
that γ (s) �∈ WFh(u(t)) for t ∈ [t1, T log(1/h)] and γ ([s, 0]) ⊂ Xδ1 . This is true since
if γ (s) ∈ WFh(u(t)), then γ ([s − t1, s]) ⊂ Xδ1 , see the proof of Proposition 2.4. By
propagation of singularities for (2.29), we get

‖u(t)‖L2(Xδ1 )
≤ C‖A1u(t − t1)‖L2 + O(h∞), t ∈ [2t1, T log(1/h)]. (2.55)

By (2.29) and (2.51), we have (h Dt + P)(˜Su R(t)) = O(h∞) on Xδ1 . Using propagation
of singularities for this equation in a manner similar to (2.55), we obtain by (2.54)

‖˜Su R(t)‖L2(Xδ1 )
≤ C‖A1(1−�)u(t − t1)‖L2 + O(h∞), t ∈ [2t1, T log(1/h)].

Combining these estimates with (2.39)–(2.43), we arrive to

‖˜Su�(t0)‖L2(Xδ1 )
≤ Ch−1/2‖u(0)‖L2(Xδ1 )

+ O(h∞),
‖˜Su�(t)‖L2(Xδ1 )

≤ Ce−(νmin−ε)t/2‖˜Su�(t0)‖L2(Xδ1 )
+ O(h∞),

‖˜Su�(t)‖L2(Xδ1 )
≥ C−1e−(νmax+ε)t/2‖˜Su�(t0)‖L2(Xδ1 )

−O(h∞),
‖˜Su R(t)‖L2(Xδ1 )

≤ Ch−1e−(νmin−ε)t‖u(0)‖L2(Xδ1 )
+ O(h∞),

‖u(t)‖L2(Xδ1 )
≤ Ceεt‖u(0)‖L2(Xδ1 )

+ O(h∞),

holding uniformly in t ∈ [t0 − 1, T log(1/h)]. To obtain (2.22)–(2.26) from here, we
need to remove the operator ˜S from the estimates; for that, we can use the fact that ˜S is
bounded uniformly in h on L2

t,x together with the equivalency of the norms h‖ · ‖L∞t Ex
and ‖ · ‖L2

t,x
for solutions of the wave equation (2.17) given by (2.19) and the functions

of interest being microlocalized at frequencies ∼ h−1. ��

3. Applications to Kerr(–de Sitter) Metrics

3.1. General properties. The Kerr(–de Sitter) metric in the Boyer–Lindquist coordinates
is given by the formulas [Ca]

g = −ρ2
(dr2

�r
+

dθ2

�θ

)

− �θ sin2 θ

(1 + α)2ρ2 (a dt − (r2 + a2)dϕ)2

+
�r

(1 + α)2ρ2 (dt − a sin2 θ dϕ)2.
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Here M > 0 denotes the mass of the black hole, a its angular speed of rotation, and
� ≥ 0 is the cosmological constant (with � = 0 in the Kerr case and � > 0 in the
Kerr–de Sitter case);

�r = (r2 + a2)
(

1− �r2

3

)

− 2Mr, �θ = 1 + α cos2 θ,

ρ2 = r2 + a2 cos2 θ, α = �a2

3
.

The metric is originally defined on

˜X0 := Rt × X0, X0 := (r−, r+)r × S
2,

here θ ∈ [0, π ] and ϕ ∈ S
1 = R/(2πZ) are the spherical coordinates on S

2. The
numbers r− < r+ are the roots of �r defined below; in particular, �r > 0 on (r−, r+)

and ±∂r�r (r±) < 0. The metric becomes singular on the surfaces {r = r±}, known as
the event horizons; however, this can be fixed by a change of coordinates, see Sect. 3.4.

The Kerr(–de Sitter) family admits the scaling M �→ s M,� �→ s−2�, a �→ sa, r �→
sr, t �→ st for s > 0; therefore, we often consider the parameters a/M and �M2

invariant under this scaling. We assume that a/M,�M2 lie in a neighborhood of the
Schwarzschild(–de Sitter) case (1.1) or the Kerr case (1.2). Then for � > 0, �r is a
degree 4 polynomial with real roots r1 < r2 < r− < r+, with r− > M . For � = 0, �r
is a degree 2 polynomial with real roots r1 < M < r−; we put r+ = ∞. The general set
of � and a for which �r has all real roots as above was studied numerically in [AkMa,
Sect. 3], and is pictured on Fig. 1a in the introduction. Note that in [AkMa], the roots are
labeled r−− < r− < r+ < rC ; we do not adopt this (perhaps more standard) convention
in favor of the notation of [Dy11a,Dy12,Va10], and since the roots r1, r2 are irrelevant
in our analysis.

The symbol p̃ defined in (2.2) using the dual metric is (denoting by τ the momentum
corresponding to t)

p̃ = ρ−2G, G = Gr + Gθ ,

Gr = �rξ
2
r −

(1 + α)2

�r
((r2 + a2)τ + aξϕ)

2,

Gθ = �θξ2
θ +

(1 + α)2

�θ sin2 θ
(a sin2 θ τ + ξϕ)

2.

Note that
∂(t,ϕ,θ,ξθ )Gr = 0, ∂(t,ϕ,r,ξr )Gθ = 0, (3.1)

therefore {Gr ,Gθ } = 0 and Gθ , τ, ξϕ are conserved quantities for the geodesic
flow (2.3).

To handle the poles {θ = 0} and {θ = π}, where the spherical coordinates (θ, ϕ)
break down, introduce new coordinates (in a neighborhood of either of the poles)

x1 = sin θ cosϕ, x2 = sin θ sin ϕ; (3.2)

note that sin2 θ = x2
1 + x2

2 is a smooth function in this coordinate system. For the
corresponding momenta ξ1, ξ2, we have

ξθ = (x1ξ1 + x2ξ2) cot θ, ξϕ = x1ξ2 − x2ξ1,
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note that ξϕ is a smooth function vanishing at the poles. Then Gr ,Gθ are smooth func-
tions near the poles, with

Gθ = (1 + α)(ξ2
1 + ξ2

2 ) when x1 = x2 = 0. (3.3)

The vector field ∂t is not timelike inside the ergoregion, described by the inequality

�r ≤ a2�θ sin2 θ. (3.4)

For a �= 0, this region is always nonempty. However, the covector dt is always timelike:

G|ξ=dt = (1 + α)2
(a2 sin2 θ

�θ
− (r2 + a2)2

�r

)

< 0, (3.5)

since �r < r2 + a2.
We now verify the geometric assumptions (1)–(4) of Sect. 2.2. Assumptions (1)–(3)

have been established already; assumption (4) is proved by

Proposition 3.1. Consider the function μ(r) ∈ C∞(r−, r+) defined by

μ(r) := �r (r)

r4 . (3.6)

Then there exists δ0 > 0 such that for each (x̃, ξ̃ ) ∈ T ∗˜X0,

μ(x̃) < δ0, ξ̃ �= 0, p̃(x̃, ξ̃ ) = 0, Hp̃μ(x̃, ξ̃ ) = 0 �⇒ H2
p̃μ(x̃, ξ̃ ) < 0. (3.7)

Moreover, δ0 can be chosen to depend continuously on M,�, a.

Proof. First of all, we calculate

∂rμ(r) = −4�r − r∂r�r

r5
, 4�r − r∂r�r = 2((1− α)r2 − 3Mr + 2a2), (3.8)

therefore ∂rμ(r) < 0 for α ≤ 1/2 and r > 6M . Since ∂r�r (r±) �= 0, we see that for
δ0 small enough and μ(r) < δ0, we have ∂rμ(r) �= 0. Therefore, we can replace the
condition Hp̃μ = 0 in (3.7) by Hp̃r = 0, which implies that ξr = 0; in this case, H2

p̃μ

has the same sign as −∂rμ∂r Gr . We calculate for ξr = 0,

∂r Gr = − (1 + α)2((r2 + a2)τ + aξϕ)

�2
r

�(r),

�(r) := 4rτ�r − ((r2 + a2)τ + aξϕ)∂r�r .

(3.9)

Next, denote
A := (r2 + a2)τ + aξϕ, B := a sin2 θ τ + ξϕ, (3.10)

then

ρ2τ = A − aB, � = (4r�r − ρ2∂r�r )A − 4ar�r B

ρ2 . (3.11)

Using the equation p̃ = 0, we get

A2

�r
≥ B2

�θ sin2 θ
on { p̃ = ξr = 0} ∩ {0 < θ < π}. (3.12)
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Since �θ sin2 θ ≤ 1 everywhere for α ≤ 1, and B = 0 for sin θ = 0, we find

A2 ≥ �r B2. (3.13)

In particular, we see that A �= 0, since otherwise B = 0, implying that τ = ξϕ = 0 and
thus ξ̃ = 0 since p̃ = ξr = 0. Now, H2

p̃μ has the same sign as

∂rμ((4r�r − ρ2∂r�r )A
2 − 4ar�r AB). (3.14)

We now calculate by (3.8) and since ∂r�r ≤ 2r , for α ≤ 1/2

4r�r − ρ2∂r�r = 2r((1− α)r2 − 3Mr + 2a2)− a2 cos2 θ∂r�r

≥ r(r2 − 6Mr + 2a2),

and thus, since �r ≤ r2 + a2 and |a| < M , and by (3.13),

(4r�r − ρ2∂r�r )A
2 − 4ar�r AB ≥ A2r(r2 − 6Mr + 2a2 − 4|a|√�r )

≥ A2r(r2 − 10Mr − 4M2).

We see that (3.7) holds for r large enough, namely r > 14M .
We now assume that r ≤ 14M and μ < δ0. Then (here the constants do not depend

on δ0 and are locally uniform in M,�, a)

�r = O(δ0), |∂r�r | ≥ C−1, ∂rμ = r−4∂r�r + O(δ0).

Then for δ0 small enough, by (3.13) the expression (3.14) has the same sign as

A2∂r�r (−ρ2∂r�r + O(
√

δ0)) < 0,

as required. ��

3.2. Structure of the trapped set. We now study the structure of trapping for Kerr(–de
Sitter) metrics, summarized in the following

Proposition 3.2. For (�M2, a/M) in a neighborhood of the union of (1.1) and (1.2),
assumptions (5)–(8) of Sect. 2.2 are satisfied, withμmax = 0 (see (2.11)) and the trapped
set (see Definition 2.1) given by

˜K = {G = ξr = ∂r Gr = 0, ξ̃ �= 0} ⊂ T ∗˜X0\0. (3.15)

Remark. The assumptions on M,�, a can quite possibly be relaxed. The only parts of the
proof that need us to be in a neighborhood of (1.1) or (1.2) are (3.18) and (3.19). Several

other statements require that α is small (in particular, (3.27) requires α <
√

2−1√
2+1

), but this
is true for the full admissible range of parameters depicted on Fig. 1a in the introduction.
However, if �, a are large enough so that

r ∈ (r−, r+), ∂r�r (r) = 0 �⇒ �r (r) = a2, (3.16)

then the trapped set contains points with τ = 0 (and also ξr = ξθ = 0, θ = π/2, ξϕ �= 0),
which prevent us from having a meromorphic continuation of the resolvent and violate
the required assumption (5) in Sect. 2.2—see the discussion preceding [Va10, (6.13)].
The set of values of �, a satisfying (3.16) is pictured as the dashed line on Fig. 1a.
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Remark. Some parts of Proposition 3.2 have previously been verified in [Va10, Sect.

6.4] in the case |a| <
√

3
2 M and under the additional assumption [Va10, (6.13)].

We start by analysing the set ˜K defined by (3.15); the fact that ˜K is indeed the
trapped set is established later, in Proposition 3.5. We first note that ˜K is a closed conic
subset of { p̃ = 0}\0, invariant under the flow (2.3); indeed, ξr = 0 implies Hp̃r = 0,
∂r Gr = 0 implies Hp̃ξr = 0, Hp̃τ = Hp̃ξϕ = 0 everywhere, and ∂r Gr depends only
on r, ξr , τ, ξϕ .

By (3.9), and since (r2 + a2)τ + aξϕ = p̃ = 0 implies ξ̃ = 0, we see that

� = 0 on ˜K . (3.17)

Assumption (5) in Sect. 2.2 follows from the inequality

τ((r2 + a2)τ + aξϕ) > 0 on ˜K . (3.18)

For the Schwarzschild(–de Sitter) case (1.1), this is trivial (noting that τ = 0 implies
ξ̃ = 0); for the Kerr case (1.2), it follows from (3.17) together with the fact that ∂r�r > 0.
The general case now follows by perturbation, using that, by Proposition 3.1, ˜K is
contained in a fixed compact subset of X0.

We next claim that
∂2

r G < 0 on ˜K . (3.19)

By (3.9), this is equivalent to requiring that τ∂r� > 0 on ˜K . Now, in either of the
cases (1.1) or (1.2), we calculate

�(r) = 2(τr3 − 3Mτr2 + a(aτ − ξϕ)r + Ma(aτ + ξϕ)). (3.20)

In particular,

�(M) = 4Mτ(a2 − M2), ∂2
r �(r) = 12τ(r − M).

Since |a| < M , we see that

τ�(M) < 0; τ∂2
r �(r) > 0 for r > M.

Therefore, if r > r− > M and �(r) = 0, then τ∂r�(r) > 0 and we get (3.19) in the
cases (1.1) and (1.2); the general case follows by perturbation, similarly to (3.18).

To study the behavior of ˜K in the angular variables, we introduce the equatorial set

˜Ke := ˜K ∩ {θ = π/2, ξθ = 0}. (3.21)

This is a closed conic subset of ˜K invariant under the flow (2.3) (which is proved similarly
to the invariance of ˜K ). We have

∂ξϕG �= 0 on ˜Ke. (3.22)

Indeed,

∂ξϕG = 2(1 + α)2
(

− a((r2 + a2)τ + aξϕ)

�r
+ aτ + ξϕ

)

on {θ = π/2}. (3.23)
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Also, the equation G = 0 implies

((r2 + a2)τ + aξϕ)2

�r
= (a sin2 θ τ + ξϕ)2

�θ sin2 θ
on ˜K ∩ {ξθ = 0}. (3.24)

Putting θ = π/2 into (3.24), we solve for �r and substitute it into (3.23), obtaining

∂ξϕG = 2(1 + α)2
r2τ(aτ + ξϕ)

(r2 + a2)τ + aξϕ
�= 0 on ˜Ke, (3.25)

implying (3.22).
At the poles {θ = 0, π}, we have

|∂ξ1 G| + |∂ξ2 G| > 0. (3.26)

This follows immediately from (3.3), as ξ1 = ξ2 = 0 would imply Gθ = 0, which is
impossible given that ξr = 0, G = 0, and ξ̃ �= 0.

Finally, we claim that

˜K ∩ {ξθ = ∂θG = 0} ∩ {0 < θ < π} = ˜Ke, (3.27)

∂2
θ G > 0 on ˜Ke. (3.28)

To see this, note that 0 < �r < r2 + a2, �θ ≥ 1, and (r2 + a2)τ + aξϕ �= 0 by (3.18);
we get from (3.24)

((r2 + a2)τ + aξϕ)
2 < (r2 + a2)

(a sin2 θ τ + ξϕ)2

sin2 θ
on ˜K ∩ {ξθ = 0},

or, using that |a| < M < r ,

ξ2
ϕ

sin2 θ
> (r2 + a2)τ 2 > 2a2τ 2 on ˜K ∩ {ξθ = 0}. (3.29)

Next, if ξθ = 0, then

∂θG = 2(1 + α)2(a sin2 θτ + ξϕ) cos θ

�2
θ sin3 θ

((1 + α)a sin2 θ τ − (1 + α cos(2θ))ξϕ).

In particular, using (3.29) we obtain (3.28) for α = 0:

∂2
θ G = 2(ξ2

ϕ − a2τ 2) > 0 on ˜Ke,

and the case of small α follows by perturbation. It remains to prove (3.27). Assume
the contrary, that ∂θG = 0, ξθ = 0, but θ �= π/2. By (3.24), a sin2 θτ + ξϕ �= 0;
therefore, (1 + α)a sin2 θ τ = (1 + α cos(2θ))ξϕ . Combining this with (3.29), we get
(1+α) sin θ >

√
2(1+α cos(2θ)), which implies that (1+α) >

√
2(1−α), a contradiction

with the fact that α is small.
It follows from (3.19), (3.22), (3.26), and (3.27) that at each point of ˜K the matrix

of partial derivatives G, ξr , ∂r G in the variables (r, ξr , ∗), where ∗ stands for one of
θ, ξθ , ξϕ, ξ1, ξ2, is invertible. This gives
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Proposition 3.3. The set ˜K defined by (3.15) is a smooth codimension 2 submanifold of
{ p̃ = 0}\0, and its projection ̂K onto the x̂ = (t, θ, ϕ), ξ̂ = (τ, ξθ , ξϕ) variables is a
smooth codimension 1 submanifold of T ∗(R× S

2).

We now study the global dynamics of the flow, relating it to the set ˜K . Take (x̃0, ξ̃0) ∈
{ p̃ = 0}\0 and let (x̃(t), ξ̃ (t)) be the corresponding Hamiltonian trajectory of (2.3).
Consider the function

�0(r) = Gr (x̃
0, ξ̃0) + (1 + α)2

((r2 + a2)τ 0 + aξ0
ϕ)

2

�r (r)
.

Note that Gr (x̃(t), ξ̃ (t)), τ (t), ξϕ(t) are constant in t and (r(t), ξr (t)) is a rescaled
Hamiltonian flow trajectory of

H0(r, ξr ) := �r (r)ξ
2
r −�0(r);

in particular, (r(t), ξr (t)) solve the equation

�r (r)ξ
2
r = �0(r). (3.30)

The key property of �0 is given by

Proposition 3.4. For each r ∈ (r−, r+),

�0(r) ≥ 0, ∂r�
0(r) = 0 �⇒ ∂2

r �
0(r) > 0. (3.31)

Proof. Assume that �0(r) ≥ 0. Then we can find (x̃1, ξ̃1) ∈ T ∗˜X0 such that
(t1, θ1, ϕ1) = (t0, θ0, ϕ0), r̃1 = r , τ 1 = τ 0, ξ1

ϕ = ξ0
ϕ , ξ1

r = 0, and p̃(x̃1, ξ̃1) = 0;

indeed, it suffices to start with (x̃0, ξ̃0), put r1 = r, ξ1
r = 0, and change the ξ1

θ com-
ponent (or one of ξ1

1 , ξ
1
2 components if we are at the poles of the sphere) so that

Gθ (x̃1, ξ̃1) = Gθ (x̃0, ξ̃0) + �0(r). If additionally ∂r�
0(r) = 0, then (x̃1, ξ̃1) ∈ ˜K ;

it remains to apply (3.19). ��
We now consider the following two cases.

Case 1: |�0(r)| + |∂r�
0(r)| > 0 for all r ∈ (r−, r+). In this case, the set of solutions

to (3.30) is a closed one-dimensional submanifold of T ∗(r−, r+) and the Hamiltonian
field of H0 is nonvanishing on this manifold. This manifold has no compact connected
components, as the function �0(r) cannot achieve a local maximum on it by (3.31). It
follows that the geodesic (x̃(t), ξ̃ (t)) escapes in both time directions.

Case 2: there exists r ′ ∈ (r−, r+) such that �0(r ′) = ∂r�
0(r ′) = 0. Then

(t0, r ′, θ0, ϕ0, τ 0, 0, ξ0
θ , ξ

0
ϕ) ∈ ˜K ,

therefore the projection (x̂0, ξ̂0) lies in ̂K (see Proposition 3.3). By (3.31), we see that
∂2

r �
0(r ′) > 0 and (r − r ′)∂r�

0(r) > 0 for r �= r ′. Then the set of solutions to the
equation (3.30) is equal to the union �0

+ ∪ �0−, where

�0± = {ξr = ∓ sgn(τ 0) sgn(r − r ′)
√

�0(r)/�r (r)},
note that�0± are smooth one-dimensional submanifolds of T ∗(r−, r+) intersecting trans-
versely at (r ′, 0). The trajectory (x̃(t), ξ̃ (t)) is trapped as t → ∓∞ if and only if
(r0, ξ0

r ) ∈ �0±. Note that by (3.18), τ 0 is negative on C+ and positive on C−.
The analysis of the two cases above implies
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Proposition 3.5. The incoming/outgoing tails ˜�± (see Definition 2.1) are given by (here
̂K is defined in Proposition 3.3)

˜�± := {(r, x̂, ξr , ξ̂ ) | (x̂, ξ̂ ) ∈ ̂K , ξr = ∓ sgn(τ̂ ) sgn(r − r ′
x̂,ξ̂
)
√

�x̂,ξ̂ (r)/�r (r)},

where

�x̂,ξ̂ (r) = −Gθ (x̂, ξ̂ ) + (1 + α)2
((r2 + a2)τ̂ + aξ̂ϕ)2

�r (r)
,

and r ′
x̂,ξ̂

is the only solution to the equation �x̂,ξ̂ (r) = 0; moreover, ∂r�x̂,ξ̂ (r
′
x̂,ξ̂
) = 0

and ∂2
r �x̂,ξ̂ (r

′
x̂,ξ̂
) > 0. Furthermore, ˜�± are conic smooth codimension 1 submanifolds

of { p̃ = 0}\0 intersecting transversely, and their intersection is equal to the set ˜K
defined in (3.15).

We also see from (3.19) and the fact that ∂τ p̃ �= 0 on { p̃ = 0}\0 (as follows from (3.5))
that the matrix of Poisson brackets of functions G, ∂r G, ξr , t on ˜K is nondegenerate,
which implies that the intersections ˜K ∩ {t = const} are symplectic submanifolds of
T ∗˜X0. Together with Proposition 3.5, this verifies assumptions (6) and (7) of Sect. 2.2.

It remains to verify r -normal hyperbolicity of the flow ϕ̃s defined in (2.3). We start
by showing that the maximal expansion rate in the directions of the trapped set μmax,
defined in (2.11), is equal to zero.

Proposition 3.6. For each ε > 0, there exists a constant C such that for each v ∈ T ˜K ,

|dϕ̃sv| ≤ Ceε|s||v|.
Here | · | denotes any fixed smooth homogeneous norm on the fibers of T ˜K .

Proof. Using the group property of the flow, it suffices to show that for each ε > 0 there
exists T > 0 such that for each v ∈ T ˜K ,

|dϕ̃T v| < eεT |v|. (3.32)

Since ˜K is a closed conic set, and ˜K ∩ {τ = 1} ∩ {t = 0} is compact, it suffices to show
that for each flow line γ (s) of (2.3) on ˜K , there exists T such that (3.32) holds for each
v = v(0) tangent to ˜K at γ (0). Denote v(s) = dϕ̃sv(0).

If γ (s) is a trajectory of (2.3) on T ˜K , then r, ξr = 0, τ are constant on γ (s) and
the generator of the flow does not depend on the variable t ; therefore, it suffices to
show (3.32) for the restriction of the matrix of dϕ̃T to the ∂θ , ∂ϕ, ∂ξθ , ∂ξϕ variables. This
is equivalent to considering the Hamiltonian flow of G in the θ, ϕ, ξθ , ξϕ variables only,
on T ∗S2. Recall that the equatorial set ˜Ke = ˜K ∩ {θ = π/2, ξθ = 0} defined in (3.21)
is invariant under ϕ̃s . We then consider two cases.

Case 1: γ (s) �∈ ˜Ke for all s. Then the differentials of G and ξϕ are linearly independent
by (3.26) and (3.27). Since {G, ξϕ} = 0, by Arnold–Liouville theorem (see for example
[Dy15, Proposition 2.8]), there is a local symplectomorphism from a neighborhood of
γ (s) in T ∗S2 to T ∗T2, where T

2 is the two-dimensional torus, which conjugates G to
some function f (η1, η2); here (y1, y2, η1, η2) are the canonical coordinates on T ∗T2.
The corresponding evolution of tangent vectors is given by ∂svy(s) = ∇2 f (η(s))vη(s),
∂svη(s) = 0, and (3.32) follows.
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Case 2: γ (s) ∈ ˜Ke for all s. Since ∂svξϕ (s) = 0 and ∂sv does not depend on vϕ(s), it
suffices to estimate vθ (s), vξθ (s). We then find

∂svθ (s) = 2vξθ (s), ∂svξθ (s) = −∂2
θ G(γ (s))vθ (s)− ∂2

θξϕ
G(γ (s))vξϕ (s).

Now, by (3.28), ∂2
θ G(γ (s)) is a positive constant; (3.32) follows. ��

We finally show that the minimal expansion rate νmin, defined in (2.9), is positive.
By Proposition 3.5, (x̃, ξ̃ ) ∈ ˜�± if and only if

(x̂, ξ̂ ) ∈ ̂K , ϕ̃±(x̃, ξ̃ ) = 0,

where

ϕ̃±(x̃, ξ̃ ) = ξr ∓ sgn(∂τG) sgn(r − r ′
x̂,ξ̂
)
√

�x̂,ξ̂ (r)/�r (r).

Since HG is tangent to ˜�±, we have HG ϕ̃± = 0 on ˜�±; it follows that

HG ϕ̃±(x̃, ξ̃ )
∂τG

= ∓ν̃±(x̃, ξ̃ )ϕ̃±(x̃, ξ̃ ) when (x̂, ξ̂ ) ∈ ̂K , (3.33)

for some functions ν̃±. By calculating ∂ξr HG ϕ̃±|˜K , we find ν̃+|˜K = ν̃−|˜K = ν̃, where

ν̃ =
√−2�r∂2

r Gr

|∂τG| ; (3.34)

note that ∂2
r Gr < 0 on ˜K by (3.19) and ∂τG �= 0 on { p̃ = 0}\0 by assumption (3) in

Sect. 2.2.
Let ˜V± be the one-dimensional subbundles of T˜�± defined in (2.7), invariant under

the flow ϕ̃s . Since dϕ̃∓ vanishes on T ˜K and is not identically zero on T
˜K
˜�±, we can fix

a basis v± of ˜V±|˜K by requiring that

dϕ̃∓ · v± = 1.

Denote by V = HG/∂τG the generator of the flow ϕ̃s . The Lie derivative LV v± is a
multiple of v±; to compute it, we use the identity

0 = V (dϕ̃∓ · v±) = LV (dϕ̃∓) · v± + dϕ̃∓ · LV v±.
Since (3.33) holds on ˜�+ ∪˜�−, we get on vectors tangent to ˜�±,

LV (dϕ̃∓) = d(±ν̃∓ϕ̃∓) = ±ν̃dϕ̃∓ on ˜K .

It follows that

∂s(dϕ̃
s v±) = ±(ν̃ ◦ ϕ̃s)v±,

which implies immediately

Proposition 3.7. The expansion rates defined in (2.9) and (2.10) are given by

νmin = lim inf
T→∞ inf

(x,ξ)∈K
〈ν̃〉T , νmax = lim sup

T→∞
sup

(x,ξ)∈K
〈ν̃〉T ,

where ν̃ > 0 is the function on ˜K defined in (3.34) and

〈ν̃〉T := 1

T

∫ T

0
ν̃ ◦ ϕs ds.

Together, Propositions 3.6 and 3.7 verify assumption (8) of Sect. 2.2 and finish the proof
of Proposition 3.2.
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3.3. Trapping in special cases. We now establish some properties of the trapped set ˜K
and the local expansion rate ν̃, defined in (3.34), in two special cases. We start with the
Schwarzschild(–de Sitter) case (1.1), when everything can be described explicitly.

Proposition 3.8. For a = 0, we have

˜K =
{

ξr = 0, r = 3M, τ �= 0, Gθ = 27M2

1− 9�M2 τ
2
}

, (3.35)

ν̃ =
√

1− 9�M2

3
√

3M
. (3.36)

Proof. We recall from (3.17) that ˜K is given by the equations G = 0, ξr = 0, � = 0,
where � is computed using (3.20):

�(r) = 2τr2(r − 3M).

Since τ �= 0 on ˜K by (3.18), we see that � = 0 is equivalent to r = 3M . Now,
�r (3M) = 3M2(1 − 9�M2); therefore, Gr = − 27M2

(1−9�M2)
τ 2 for ξr = 0 and r = 3M

and we obtain (3.35). Next, by (3.9), we find

∂2
r Gr = −r2τ

�2
r
∂r�(r) = − 18

(1− 9�M2)2
τ 2 on ˜K .

Finally, we compute

∂τG = − 54M2

1− 9�M2 τ on ˜K ,

and (3.36) follows. ��
We next consider the case when� = 0 and a approaches the maximal rotation speed

M from below, calculating the expansion rates on two equators to show that the pinching
condition (1.12) is violated.

Proposition 3.9. Fix M and assume that

� = 0, a = M − ε, 0 < ε � 1.

Then ˜Ke, defined in (3.21), is the union of two conical sets

E± = {r = R±(ε), ξr = 0, ξϕ = F±(ε)τ, θ = π/2, ξθ = 0, τ �= 0},
where R+(ε), F+(ε) are smooth functions of ε, R−(ε), F−(ε) are smooth functions of√
ε, and (see Fig. 4)

R+(ε) = 4M + O(ε), F+(ε) = 7M + O(ε);
R−(ε) = M +

√

8εM/3 + O(ε), F−(ε) = −2M −√6εM + O(ε). (3.37)

Finally, the expansion rates ν̃ defined in (3.34) are given by (see also Fig. 2a in the
introduction)

ν̃ = 3
√

3

28M
+ O(ε) on E+; ν̃ =

√
ε/2M

M
+ O(ε) on E−. (3.38)
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Fig. 4. The graphs of r and ξϕ/τ on the trapped equators E±, as functions of a for � = 0

Proof. The set ˜Ke is defined by equations ξr = ξθ = 0, θ = π/2, and (see (3.17))

((r2 + a2)τ + aξϕ)
2 = �r (r)(aτ + ξϕ)

2,

4rτ�r (r) = ((r2 + a2)τ + aξϕ)∂r�r (r).
(3.39)

Recall that �r (r) = r2 + a2 − 2Mr . Putting A = (r2 + a2)τ + aξϕ and B = aτ + ξϕ ,
we rewrite these as

A2 = �r (r)B
2,

4(A − aB)�r (r) = Ar∂r�r (r).

The second equation can be written as (r2 + 2a2− 3Mr)A = 2a�r (r)B. Solving for B
and substituting into the first equation, we get

4a2�r (r)− (r2 + 2a2 − 3Mr)2 = 0. (3.40)

This is a fourth order polynomial equation in r with coefficients depending on ε and
with a root at r = 0; we will study the behavior of the other three roots as ε → 0. We
write (3.40) as

(r − M)2(r − 4M) = −8εM2 + O(ε2). (3.41)

By the implicit function theorem, for ε small enough, the equation (3.40) has a solution
R = R+(ε) = 4M + O(ε). We next identify the two roots lying near r = M ; they are
solutions to the equations

r − M = ±M

√

8 + O(ε)
4M − r

· √ε.

The solution with the negative sign lies to the left of r− > M , therefore we ignore it. The
solution with the positive sign, which we denote by R−(ε), exists for ε small enough by
the implicit function theorem and we find R−(ε) = M +

√
8εM/3 + O(ε).

To find the values of ξϕ/τ corresponding to r = R±(ε), we use the second equation
in (3.39); this completes the proof of (3.37). Finally, we calculate at r = R+(ε), ξϕ =
F+(ε)τ ,

�r = 9M2 + O(ε), ∂2
r G = −32

3
τ 2 + O(ε), ∂τG = −224

3
M2τ + O(ε),
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and at r = R−(ε), ξϕ = F−(ε)τ ,

�r = 2M

3
ε + O(ε2), ∂2

r G = −9M

ε
τ 2 + O(ε−1/2), ∂τG = −2

√

6M

ε
M2τ + O(1);

(3.38) follows. ��
We finally explain how to numerically compute the constant c

˜K from the Weyl law
of Theorem 3, defined in (2.16). We can parametrize ˜K ∩ {t = 0} ∩ {ξθ > 0} by the
variables τ, ξϕ, θ, ϕ—indeed, we can find r = r(τ, ξϕ) from the equation ∂r G = 0, and
find from the equation G = 0 that ξθ =

√

�(τ, ξϕ, θ, ϕ), where

� = (1 + α)2

�θ�r (r(τ, ξϕ))
((r(τ, ξϕ)

2 + a2)τ + aξϕ)
2 − (1 + α)2

�2
θ sin2 θ

(a sin2 θ τ + ξϕ)
2.

The domain of integration is {� > 0} ∩ {0 ≤ τ ≤ 1}. Then (using the symmetry
ξθ �→ −ξθ and fact that � does not depend on ϕ)

c
˜K = 4π

∫

{�>0}∩{0≤τ≤1}
dθ ∧ dξθ ∧ dξϕ = 2π

∫

{�>0}∩{0≤τ≤1}
∂τ�√
�

dθdξϕdτ.

Now, � is homogeneous of degree 2 in the (τ, ξϕ) variables; therefore, the integrand is
homogeneous of degree 0 and we make the change of variables ξϕ = sτ to get

c
˜K = π

∫

{�>0}∩{τ=1}
∂τ�√
�

dθdξϕ. (3.42)

We also note that we can compute ∂τ� without involving ∂τ r , since ∂r G = 0 on the
trapped set.

For a = 0, we put c0 = 3
√

3M√
1−9�M2 and compute (putting ξϕ = sc0 sin θ )

c
˜K = 2πc2

0

∫ π

0

∫ 1

−1

sin θ√
1− s2

dsdθ = 4π2c2
0.

3.4. Results for linear waves. In this section, we apply Theorem 4 in Sect. 2.4 and the
analysis of Sects. 3.1, 3.2 to obtain Theorems 1 and 2.

We start by formulating a well-posed problem for the wave equation on the Kerr–de
Sitter background. For that, we in particular need to shift the time variable, see [Dy11a,
Sect. 1] and [Dy12, Sect. 1.1]. Letμ be the defining function of the event horizons and/or
spatial infinity defined in (3.6) and fix a small constant δ1, used in Theorem 4 as well as
in (2.13). To continue the metric smoothly past the event horizons, we make the change
of variables

t = t∗ + Ft (r), ϕ = ϕ∗ + Fϕ(r), (3.43)

where Ft , Fϕ are smooth real-valued functions on (r−, r+) such that

• F ′t (r) = ± 1+α
�r (r)

(r2 + a2) + f±(r) and F ′ϕ(r) = ± 1+α
�r (r)

a near r = r±, where f± are
smooth functions (for the Kerr case � = 0, we only require this at r = r−)

• Ft (r) = Fϕ(r) = 0 near {μ ≥ δ1/10} (and also for r large enough in the Kerr case
� = 0);
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• the covector dt∗ is timelike everywhere; equivalently, the level surfaces of t∗ are
spacelike.

See for example [Va10, Sect. 6.1 and (6.15)] for how to construct such Ft , Fϕ . The metric
in the coordinates (t∗, r, θ, ϕ∗) continues smoothly through {r = r−} and {r = r+} (the
latter for � > 0), to an extension ˜X−δ1 := {μ > −δ1} of ˜X0 past the event horizons.
Since Ft = Fϕ = 0 near {μ ≥ δ1/10}, our change of variables does not affect the
arguments in Sect. 2.

The principal symbol of h2�g̃ in the new variables, denoted by p̃∗, is given by

p̃∗(r, θ, τ ∗, ξr , ξθ , ξϕ∗) = p̃(r, θ, τ ∗, ξr − ∂r Ft (r)τ
∗ − ∂r Fϕ(r)ξϕ∗, ξθ , ξϕ∗).

In particular, if ξθ = ξϕ∗ = 0, then for r close to r− or to r+ (the latter case for � > 0),

p̃∗=�r (ξr− f±(r)τ ∗)2 ∓ 2(1+α)(r2+a2)τ ∗(ξr− f±(r)τ ∗)+
(1+α)2a2 sin2 θ

�θ
(τ ∗)2.

Then in the new coordinates,

g̃−1(dr, dr) = −�r , g̃−1(dr, dt∗) = ±(1 + α)(r2 + a2) +�r f±(r). (3.44)

Therefore, the surfaces {r = r0} are timelike for μ(r0) > 0, lightlike for μ(r0) = 0, and
spacelike for μ(r0) < 0, and g̃−1(dμ, dt∗) < 0 near the event horizon(s). Moreover,
for � = 0 the d’Alembert–Beltrami operator

�g̃ = 1

ρ2 Dr (�r Dr ) +
1

ρ2 sin θ
Dθ (sin θDθ )

+
(a sin2 θ Dt + Dϕ)2

ρ2 sin2 θ
− ((r2 + a2)Dt + aDϕ)2

ρ2�r

belongs to Melrose’s scattering calculus on the space slices near r = ∞ (see [VaZw, Sect.
2]) in the sense that it is a polynomial in the differential operators Dt , Dr , r−1 Dθ , r−1 Dϕ
with coefficients smooth up to {r−1 = 0} in the r−1, θ, ϕ variables (where of course
θ, ϕ are replaced by a different coordinate system on S

2 near the poles {sin θ = 0}).
Consider the initial-value problem for the wave equation (here s ≥ 0 is integer)

�g̃u = 0, t∗ ≥ 0; u|t∗=0 = f0, ∂t∗u|t∗=0 = f1;
f0 ∈ Hs+1(X−δ1), f1 ∈ Hs(X−δ1).

(3.45)

This problem is well-posed, based on standard methods for hyperbolic equations [Tay,
Sect. 6.5] and the following crude energy estimate: if we consider functions on ˜X−δ1 as
functions of t∗ with values in functions on X−δ1 , then for t ′ ≥ 0,

‖u(t ′)‖Hs+1(X−δ1 ) + ‖∂t∗u(t
′)‖Hs (X−δ1 )

≤ CeCt ′(‖u(0)‖Hs+1(X−δ1 ) + ‖∂t∗u(0)‖Hs (X−δ1 ) + ‖e−Ct∗�g̃u‖Hs ((0,t ′)×X−δ1 )).

(3.46)

To prove (3.46) for s = 0, we use the standard energy estimate on� = ˜X−δ1∩{0 ≤ t∗ ≤
t ′} for hyperbolic equations (see [Tay, Sect. 2.8], [Dy11a, Proposition 1.1], or [Dy11b,
Sect. 1.1]), with the timelike vector field N equal to ∂t (a Killing field) for large r (in
the case � = 0) and to g̃−1(dt∗) close to the event horizon(s); by (3.44), the boundary
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∂� is spacelike and N points inside of � on {t∗ = 0} and outside of it elsewhere on
∂�. The higher order estimates are obtained from here as in [Tay, (6.5.14)], commuting
with differential operators in the scattering calculus.

We now assume that f0 = f0(h), f1 = f1(h) are such that ‖ f0‖H1(X−δ1 ) +

‖ f1‖L2(X−δ1 ) is bounded polynomially in h and f0, f1 are localized at frequencies∼ h−1,
namely (see the discussion in Sect. 2.1)

WFh( f0) ∪WFh( f1) ⊂ T ∗X−δ1\0.
Let u be the corresponding solution to (3.45) and assume that it is extended to small
negative times (which can be done by taking a smaller δ1 and using the local existence
result backwards in time). By (3.46), we see that u is h-tempered uniformly for t∗ ∈
[0, T log(1/h)]. Similarly to (2.18), W̃Fh(u) ⊂ { p̃∗ = 0}. Moreover, using standard
microlocal analysis for hyperbolic equations, we get a pseudodifferential one-to-one
correspondence between ( f0, f1) and (u+(0), u−(0)), where u± are the components of
u microlocalized on C±, the positive and negative parts of the light cone, each solving
an equation of the form (h Dt + P±)u± = O(h∞) for some spatial pseudodifferential
operators P± (similarly to (2.28)). This gives

WFh(u) ∩ {t∗ = 0} ⊂ {(0, x, τ, ξ) | p̃∗(x, τ, ξ) = 0, (x, ξ) ∈ WFh( f0) ∪WFh( f1)}.
In particular, we get

WFh(u) ∩ {t∗ = 0} ⊂ T ∗˜X−δ1\0. (3.47)

By the same correspondence, if WFh(u) ∩ {t∗ = 0} is compact and covered by finitely
many open subsets of T ∗˜X−δ1\0, then we can apply the associated pseudodifferential
partition of unity to f0, f1 to split u into several solutions to the wave equation such that
the wavefront set of each solution at t∗ = 0 is contained in one of the covering sets. The
resulting solutions can then each be analysed separately.

We next assume that

supp f0 ∪ supp f1 ⊂ Xδ1 .

We obtain some restrictions on the microlocalization of u for large times. For that, we
need to consider the dynamics of the geodesic flow on the extended spacetime ˜Xδ1 .
Define the flow ϕ̂s similarly to (2.3), rescaling the geodesic flow so that the variable t∗
is growing with speed 1. Since t = t∗, ϕ = ϕ∗ on ˜Xδ1/10, the flow lines of ϕ̃s and ϕ̂s

coincide on ˜Xδ1/10. If γ (s) is a flow line of ϕ̂s such that γ (0) ∈ ˜Xδ1/10 and γ is not
trapped for positive times according to Definition 2.1, then either γ (s) escapes to the
Euclidean infinity (for � = 0) or γ (s) crosses one of the event horizons at some fixed
positive time s0, and μ(γ (s)) < 0 is strictly decreasing for s > s0 (see the discussion
following [Va10, (6.22)], verifying [Va10, (2.8)]); in the latter case, we say that γ escapes
through the event horizons.

The next statement makes nontrivial use of the structure of the infinite ends (in
particular, using [Me,VaZw,Da] for the asymptotically Euclidean end for � = 0) and
is the key step for obtaining control on the escaping parts of the solution for long times:

Proposition 3.10. Assume that all flow lines of ϕ̂s starting on WFh(u)∩{t∗ = 0} escape,
either to the spatial infinity or through the event horizons. Then there exists T0 > 0 such
that uniformly in t∗,

‖u(t∗)‖H1(Xδ1 )
+ ‖∂t∗u(t

∗)‖L2(Xδ1 )
= O(h∞), t∗ ∈ [T0, T log(1/h)]. (3.48)
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Proof. We first consider the case when WFh(u) ∩ {t∗ = 0} is contained in a small
neighborhood of some (x̃, ξ̃ ) ∈ T ∗Xδ1\0, and, for γ (s) = ϕ̂s(x̃, ξ̃ ), there exists T0 >

0 such that γ ([0, T0]) ⊂ ˜X−3δ1/4 and γ (T0) ∈ {μ < −δ1/2}. By propagation of
singularities for the wave equation (see for example [Dy15, Proposition 3.4]), we see
that WFh(u) ∩ {t∗ = T0} ⊂ {μ < −δ1/2}; it follows that

‖u(T0)‖H1(X−δ1/2) + ‖∂t∗u(T0)‖L2(X−δ1/2) = O(h∞).

Then the same bound holds for t∗ ≥ T0 in place of T0 by (3.46) (replacing δ1 by δ1/2).
For the remainder of this proof, we consider the opposite case, when � = 0 and

each flow line of ϕ̂s starting on WFh(u) ∩ {t∗ = 0} escapes to the spatial infinity. Fix
a large constant R1; we require in particular that Xδ1 ⊂ {r < R1}. By propagation
of singularities, similarly to the previous paragraph, we may shift the time parameter
and assume that WFh(u) ∩ {t∗ = 0} is contained in a small neighborhood of some
(x̃0, ξ̃0) ∈ T ∗˜X0\0, where r0 > R1, ∂sμ(ϕ̂

s(x̃0, ξ̃0))|s=0 < 0. In fact, by (3.46) and
finite speed of propagation, we may assume that for t∗ near 0, the support of u in x is
contained in a compact subset of {r > R1}. Without loss of generality, we assume that
τ0 < 0. The trajectory ϕ̂s(x̃0, ξ̃0) does not intersect {r ≤ R1} for s ≥ 0.

We replace the Kerr spacetime (˜X0, g̃) with a different spacetime (Rt ×R
3
r,θ,ϕ, g̃1),

where (r, θ, ϕ) are the spherical coordinates on R
3 and g̃1 is the stationary Lorentzian

metric defined on R
4 by

g̃−1
1 := χ1(r)g̃

−1
0 + (1− χ1(r))g̃

−1,

where g̃−1
0 = τ 2 − ξ2

r − ξ2
θ /r2 − ξ2

ϕ/(r
2 sin2 θ) is the Minkowski metric on R

4, χ1 ∈
C∞0 ([0, R1)), 0 ≤ χ1 ≤ 1 everywhere, and χ1 = 1 on [0, R1/2]. The dual metrics g̃−1

and g̃−1
0 are close to each other for large r in the sense of scattering metrics, that is, as

quadratic forms in τ, ξr , r−1ξθ , r−1ξϕ , therefore for R1 large enough, g̃−1
1 is the dual to

a Lorentzian metric, the surfaces {t = const} are spacelike, and ∂t is a timelike vector
field. Note that the new spacetime no longer contains an event horizon.

We now show that g̃−1
1 is nontrapping for large R1 and a correct choice of χ1, that is,

each lightlike geodesic escapes to the spatial infinity in both time directions. It suffices
to prove that if p̃1(x̃, ξ̃ ) = −g̃−1

1,x̃ (ξ̃ , ξ̃ ), then (compare with assumption (4) in Sect. 2.2)

r > 0, p̃1 = 0, ξ̃ �= 0, Hp̃1r(x̃, ξ̃ ) = 0 �⇒ H2
p̃1

r(x̃, ξ̃ ) > 0.

Indeed,

Hp̃1r = 2ξr (χ1(r) + (1− χ1(r))�r/ρ
2);

therefore, Hp̃1r = 0 implies ξr = 0 and H2
p̃1

r has the same sign as

−∂r p̃1 = −χ ′1(r)( p̃0 − p̃)− χ1(r)∂r p̃0 − (1− χ1(r))∂r p̃;
it remains to note that we can take rχ ′1(r) bounded by 3, p̃0− p̃ is small for large r in the
sense of scattering metrics, and both r∂r p̃0 and r∂r p̃ are homogeneous of degree 2 in ξ̃
and bounded from above by a negative constant on {τ 2 + r−2ξ2

θ + r−2ξ2
ϕ = 1} ∩ { p̃1 =

ξr = 0}, uniformly in r−1 ≥ 0 for ∂r p̃0 and uniformly in r−1 ∈ [0, δ1) for ∂r p̃.
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Let u1 be the solution to the wave equation on the new spacetime (R4, g̃1) such that
u1|t=0 = u|t∗=0, ∂t u1|t=0 = ∂t∗u|t∗=0. It is enough to prove that, with W̃Fh(u1) defined
in Sect. 2.1,

W̃Fh(u1) ∩ {r < R1} = ∅, 0 ≤ t ≤ T log(1/h). (3.49)

Indeed, in this case �g̃((1 − χ1(r))u1) = O(h∞)C∞ ; by (3.46), we have W̃Fh(u1) =
W̃Fh(u) for t ∈ [0, T log(1/h)], and (3.48) follows since Xδ1 ⊂ {r < R1}.

To show (3.49), we use the Fourier transform in time,

û1(λ) =
∫

R

eiλtψ1(t)u1(t) dt, Im λ > 0.

Here ψ1(t) is supported in [−δ,∞) and is equal to 1 on [δ,∞), for some small fixed
δ > 0. The integral converges, as ‖u1(t)‖H2(R3) ≤ Ceεt for each ε > 0, as follows from
the standard energy estimate for the wave equation (see the paragraph following (3.46))
applied for the timelike Killing vector field ∂t .

Let ̂P(λ)be the stationary d’Alembert–Beltrami operator for the metric ĝ, constructed
by replacing Dt by−λ in the operator �ĝ; the semiclassical version defined in Sect. 2.3
is given by the relation ̂Ph(ω) = h2

̂P(h−1ω). Then

̂P(λ)û1(λ) = f̂1(λ), Im λ > 0,

where f1 = [�ĝ, ψ1(t)]u1(t). We note that WFh( f1) is contained in a small neigh-

borhood of (x̃0, ξ̃0) and f1 is compactly supported; therefore, f̂1(h−1ω + i E) =
O(h∞)SωC∞0 (R3) forω outside of a small neighborhood of−τ0 > 0, and WFh( f̂1(h−1ω+
i E)) lies in a small neighborhood of (x0, ξ0) for all ω.

We now apply the results of [Me,VaZw,Da]. For this, note that for any fixed λ, the
operator ̂P(λ) lies in Melrose’s scattering calculus on the radially compactified R

3,
and for Im λ > 0, the operator ̂P(λ) is elliptic in this calculus in the microlocal sense
(that is, elliptic as ξ and/or r go to infinity)—in fact, near r = ∞ the operator ̂P(λ) is
close to�0 − λ2, where�0 is the flat Laplacian on R

3. Moreover, ̂P(λ) is a symmetric
operator when λ ∈ R. This implies that the proofs of [VaZw,Da] apply. Similarly
to [Me, Theorem 2], for Im λ > 0, the operator ̂P(λ) is Fredholm H2(R3)→ L2(R3)

and invertible for λ outside of a discrete set; we can then fix E > 0 such that ̂P(λ + i E)
is invertible for all λ ∈ R.

Next, the Hamiltonian flow of the principal symbol p̂(ω) of ̂Ph(ω) corresponds to
lightlike geodesics of the metric ĝ, similarly to (2.14). Therefore, this flow is nontrapping
at all energies ω �= 0. By [VaZw], we get for each χ0 ∈ C∞0 (R3),

‖χ0 ̂P(λ + i E)−1χ0‖L2→L2 ≤ C〈λ〉−1, λ ∈ R; (3.50)

in fact, the constant in the estimate is bounded as E → 0, but we do not use this here.
Finally, by [Da, Lemma 2], we see that ̂Ph(ω + ihE)−1 is semiclassically outgoing for
ω near −τ0, that is, the wavefront set of û1(h−1ω + i E) is contained in the union of
WFh( f̂1(h−1ω+i E)) and all Hamiltonian flow lines of p̂(ω) starting on WFh( f̂1(h−1ω+
i E)) ∩ {p̂(ω) = 0}. Since no geodesic starting near (x̃0, ξ̃0) intersects {r ≤ R1} for
positive times, we get WFh(û1(h−1ω + i E)) ∩ T

∗
Xδ1 = ∅ for ω in a neighborhood of

−τ0. For ω outside of this neighborhood, we use the rapid decay of f̂1(ω) established
before, together with (3.50), to get

û1(λ + i E) = O(h∞〈λ〉−∞)C∞({r<R1}).
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It remains to use the Fourier inversion formula

u1(t) = 1

2π

∫

R

e−i(λ+i E)t û1(λ + i E) dλ

to get (3.49). ��
Any solution satisfying (3.48) is trivial from the point of view of Theorems 1 and 2

(putting u� = 0). Therefore, we may assume that WFh(u) ∩ {t∗ = 0} is contained
in a small neighborhood of some (x̃, ξ̃ ) such that the corresponding geodesic does not
escape. By assumption (5) in Sect. 2.2, see also Lemma 2.2, we may assume that

WFh(u) ∩ {t∗ = 0} ⊂ (C+ ∩ {τ < 0}) ∪ (C− ∩ {τ > 0}),
here C± are defined in (2.6). We can reduce the case WF(u) ∩ {t∗ = 0} ⊂ C− to the
case WFh(u) ∩ {t∗ = 0} ⊂ C+ by taking the complex conjugate of u, and take a dyadic
partition of unity together with the natural rescaling of the problem ξ̃ �→ sξ̃ , h �→ sh,
to reduce to the case

WFh(u) ∩ {t∗ = 0} ⊂ C+ ∩ {|1 + τ | < δ1/8}. (3.51)

Proposition 3.11. For W̃Fh(u) defined in Sect. 2.1, we have

W̃Fh(u) ⊂ {|1 + τ | < δ1/4}. (3.52)

Proof. Consider a function ψ ∈ C∞0 (−1 − δ1/2,−1 + δ1/2) such that ψ = 1 near
[−1− δ1/4,−1 + δ1/4]. If u solves the wave equation on (−δ,∞), then we extend it to
a function on the whole ˜X−δ1 smoothly and so that supp u ⊂ {t∗ > −2δ}. Define

u′ := (1− ψ(h Dt∗))u,

then, since the metric is stationary,�g̃u′ = (1−ψ(h Dt∗))�g̃u = O(h∞)S (˜X−δ1∩{t∗≥−δ/2}).
By (3.51), we get WFh(u′)∩ {t∗ = 0} = ∅. Then by the energy estimate (3.46), applied
to u′, we get W̃Fh(u′) = ∅, uniformly in t∗ ∈ [0, T log(1/h)]. It remains to note that
W̃Fh(ψ(h Dt∗)u) ⊂ {|1 + τ | < δ1/4}. ��
We can now give

Proofs of Theorems 1 and 2. Without loss of generality (replacing δ1 by δ1/3) we may
assume that supp f0 ∪ supp f1 ⊂ X3δ1 .

Choose small tε > 0 and a cutoff function χ = χ(μ), with suppχ ⊂ {μ > 2δ1} and
χ = 1 near {μ ≥ 3δ1}, such that, with the flow ϕ̃t defined in (2.3),

(x̃, ξ̃ ) ∈ suppχ, ϕ̃tε (x̃, ξ̃ ) ∈ supp(1−χ), ξ̃ �= 0 �⇒ Hp̃

∂τ p̃
μ(ϕ̃tε (x̃, ξ̃ )) < 0. (3.53)

The existence of such χ and tε follows from Proposition 3.1, see the proof of [DyGu,
Lemma 5.5(1)].

Take N (h) = $T log(1/h)/tε% and consider the functions u(0) := u and

u( j) ∈ C∞(˜X−δ1 ∩ {t∗ ≥ j tε}), 1 ≤ j ≤ N (h),
�g̃u( j) = 0, u( j)( j tε) = χu( j−1)( j tε), ∂t∗u( j)( j tε) = χ∂t∗u( j−1)( j tε).
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By (3.46), u( j) are h-tempered uniformly in j and in t∗ ∈ [ j tε, T log(1/h) + 2].
Moreover, similarly to Proposition 3.11, we get W̃Fh(u( j)) ⊂ {|1 + τ | < δ1/4} uni-
formly in j . Then, u( j) − u( j−1) are solutions to the wave equation with initial data
(1− χ)(u( j−1)( j tε), ∂t∗u( j−1)( j tε)), therefore by (3.53)

WFh(u
( j) − u( j−1)) ∩ {t∗ = j tε} ⊂ {|1 + τ | < δ1/4} ∩ {μ > δ1} ∩

{

Hp̃

∂τ p̃
μ < 0

}

.

Then all the trajectories of ϕ̂s starting on WFh(u( j) − u( j−1)) ∩ {t∗ = j tε} escape as
s → +∞; by Proposition 3.10, we see that

W̃Fh(u
( j) − u( j−1)) ∩ {μ > δ1} = ∅, t∗ ∈ [ j tε + T0, T log(1/h)],

uniformly in j , where T0 is a fixed large constant. Adding these up, we get

W̃Fh(u
( j) − u) ∩ {μ > δ1} = ∅, t∗ ∈ [ j tε + T0, T log(1/h)]. (3.54)

By propagation of singularities for the wave equation and using that WFh(u( j))∩ {t∗ =
j tε} ⊂ {μ > 2δ1}, we see, uniformly in j ,

WFh(u) ∩ {δ1 ≤ μ ≤ 2δ1} ∩ { j tε ≤ t∗ − T0 ≤ ( j + 1)tε} ⊂ {|1 + τ | < δ1/4}
∩

{

Hp̃

∂τ p̃
μ < 0

}

.

Combining this with (3.54) (and another application of propagation of singularities for
times up to T0), we get uniformly in t∗ ∈ [0, T log(1/h)],

W̃Fh(u) ∩ {δ1 ≤ μ ≤ 2δ1} ⊂ {|1 + τ | < δ1/4} ∩
{

Hp̃

∂τ p̃
μ < 0

}

. (3.55)

This implies that for any bounded fixed T1, the semiclassical singularities of u(t + T1) in
Xδ1 come via propagation of singularities from the semiclassical singularities of u(t) in
Xδ1 —that is, no new singularities arrive from the outside. We can then apply propagation
of singularities to see that W̃Fh(u)∩{μ > δ1} ⊂W uniformly in t∗ ∈ [T0, T log(1/h)],
where W ⊂ C+ is constructed in Lemma 2.2; indeed, every trajectory of ϕ̃s starting on
{|1 + τ | < δ1/4} ∩ {μ > δ1} \W escapes as s → +∞. Together with (3.52) and (3.55),
this implies that for t ≥ T0, u satisfies the outgoing condition of Definition 2.3.

We can finally apply Theorem 4 in Sect. 2.4, giving Theorem 2 and additionally the
bounds (the first one of which is a combination of (2.22), (2.23), and (2.25))

‖u(t)‖E ≤ C(h−1/2e−(νmin−ε)t/2 + h−1e−(νmin−ε)t + hN )‖u(0)‖E ,
‖u(t)‖E ≤ Ceεt‖u(0)‖E .

The first of these bounds gives Theorem 1 for (νmin − ε)t ≥ log(1/h); the second one
gives

‖u(t)‖E ≤ Ch−1/2e−(νmin−3ε)t/2‖u(0)‖E , (νmin − ε)t ≤ log(1/h),

which is the bound of Theorem 1 with ε replaced by 3ε. ��
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3.5. Results for resonances. In this section, we use the results of [Dy15] together with
the analysis of Sects. 3.1, 3.2 to prove Theorem 3. As in the statement of this theorem,
we consider the Kerr–de Sitter case � > 0.

We first use [Va10, Sect. 6] to define resonances for Kerr–de Sitter and put them into
the framework of [Dy15, Sect. 4]. We use the change of variables (3.43); the metric in
the coordinates (t∗, r, θ, ϕ∗) continues smoothly through the event horizons to ˜X−δ1 ={μ > −δ1}, see [Va10, Sect. 6.1].

Following [Va10, Sect. 6.2] (but omitting the ρ2 factor), we consider the stationary
d’Alembert–Beltrami operator P(z), obtained by replacing Dt∗ by −z ∈ C in �g̃ . It is
an operator on the space slice X−δ1 = {μ > −δ1}r×S

2
θ,ϕ . We consider the semiclassical

version

Pg̃(ω) := h2 P(h−1ω),

where h → 0 is a small parameter; this definition agrees with the one used in Sect. 2.3.
Following [Va10, Sect. 6.5], we embed X−δ1 as an open set into a compact manifold

without boundary X , extend P(z) to a second order differential operator on X depending
holomorphically on z, and construct a complex absorbing operator Q(z) ∈ �2(X),
whose Schwartz kernel is supported inside the square of the nonphysical region {μ < 0}.
Then [Va10, Theorem 1.1] for Im z ≥ −C1 and s large enough depending on C1,
P(z)− i Q(z) is a holomorphic family of Fredholm operators X s → Hs−1(X), where

X s = {u ∈ Hs(X) | (P(0)− i Q(0))u ∈ Hs−1(X)},
and resonances are defined as the poles of its inverse. The semiclassical version is

P(ω) := Pg̃(ω)− h2 Q(h−1ω) : X s
h → Hs−1

h (X),

‖u‖X s
h
= ‖u‖Hs

h (X)
+ ‖(P(0)− i Q(0))u‖Hs−1

h (X).
(3.56)

We now claim that the operator P(ω) satisfies all the assumptions of [Dy15, Sects.
4.1, 5.1]. Most of these assumptions have already been verified in Sect. 2.3, relying on
the assumptions of Sect. 2.2 which in turn have been verified in Sects. 3.1, 3.2. Given
the definition of the spaces H1 := X s

h , H2 := Hs−1
h (X), and the Fredholm property

discussed above, it remains to verify assumptions (10) and (11) of [Dy15, Sect. 4.1],
namely the existence of an outgoing parametrix. This is done by modifying the proof
of [Va10, Theorem 2.15] exactly as at the end of [Dy15, Sect. 4.4].

Theorem 3 now follows directly by [Dy15, Theorems 1 and 2]; the constant c
˜K is

given by (2.16).

3.6. Stability. We finally discuss stability of Theorems 1–3, under perturbations of the
metric. We assume that (X̃0, g̃) is a Lorentzian manifold which is a small smooth metric
perturbation of the exact Kerr(–de Sitter) (as described in Sect. 3.1 and with M,�, a
in a small neighborhood of either (1.1) or (1.2)) and which is moreover stationary (that
is, ∂t is Killing). For perturbations of Kerr (� = 0) spacetime, we moreover assume
that our perturbation coincides with the exact metric for large r (this assumption can be
relaxed; in fact, all we need is for (3.46) and the analysis in Proposition 3.10 to apply, so
we may take a small perturbation in the class of scattering metrics). We also assume that
the perturbation continues smoothly across the event horizons in the coordinates (3.43).
The initial value problem (3.45) is then well-posed, as {μ = −δ1} is still spacelike. The
results of [Va10] still hold, as discussed in [Va10, Sect. 2.7].
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It remains to verify that the assumptions of Sect. 2.2 still hold for the perturbed metric.
Assumptions (1)–(3) are obviously true. Assumption (4) holds with the same function
μ, at least for μ(γ (s)) ∈ (δ, δ0), where δ0 is fixed and δ > 0 is small depending on
the size of the perturbation; we take a small enough perturbation so that δ � δ1, where
δ1 > 0 is the constant used in Theorem 4 in Sect. 2.4 and in (2.13). Then the trapped set
˜K for the perturbed metric is close to the original trapped set, which implies assumption
(5). Finally, the dynamical assumptions (6)–(8) still hold by the results of [HiPuSh] and
the semicontinuity of νmin, νmax, μmax, as discussed in [Dy15, Sect. 5.2].
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