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Abstract

Foodborne illness outbreaks impose enormous health and economic burdens in the US. Identifying the
origin of the contaminated food causing an outbreak is a challenging problem due to the complexity of the
food supply and the absence of coherent labeling and distribution records. Current investigative methods
are slow, resource intensive, and the overwhelming majority of investigations are unsuccessful in
identifying the location source of an outbreak. New tools and approaches that take advantage of modern
data and analytical techniques are needed to more quickly identify outbreak origins and prioritize
response efforts.

The practical objective of this work is to improve the food safety regulator's ability to efficiently locate
the source of an outbreak while contamination-caused illnesses are occurring, thereby resolving
investigations earlier and averting potential illnesses. This thesis develops new methods that leverage
currently unutilized or underutilized sources of information to identify the location source of an outbreak.
A novel, network-theoretic approach to source detection is developed that (1) immediately identifies all
feasible source locations, (2) ranks thefeasible locations by the likelihood that each one is the true source,
and (3) develops a decision model for guiding investigators to implement effective interventions. The
approach functions on food system network data, reported cases of illness at specific times and locations,
and a prior probability function over likely sources. The methodology is the first to be designed
specifically for tracing back outbreaks on food distribution networks.

A Monte Carlo simulation environment was developed to evaluate traceback performance and robustness
across a wide range of network structures and outbreak scenarios. When compared against existing
traceback methods, both those currently in practice and those in academic literature, this methodology
demonstrates significant improvements in accuracy, efficiency, and speed. Specific results suggest the
approach can provide substantial benefits to the investigation process by identifying the source early
enough in an outbreak's progression that a substantial fraction of cases of illness can be averted. These
computational results serve as a powerful first step towards validating the accuracy and applicability of
the approach. The immediate next step will be to demonstrate accuracy when applied to real food
distribution networks. While acquiring representative network data for this purpose presents significant
practical challenges, an additional contribution of this work is the identification of a representative
network model that can be integrated with the source identification methodology, forming a holistic
tracebackframework.

Thesis Supervisor: Richard C. Larson
Title: Mitsui Professor, Data, Systems, and Society
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Executive Summary

The impact of large-scale, multi-state outbreaks of foodborne disease
The complexity and globalization of food production have made foodborne disease a widespread public
health problem in both developed and developing countries. The Center for Disease Control (CDC)
estimates that each year in the U.S. 48 million illnesses, 128,000 hospitalizations, and 3000 deaths result
from foodborne disease, at an estimated annual loss of $152 billion (Osterholm 2011). Due to
underreporting or unknown agents, these numbers are potentially much higher (Batz 2005, Batz and
Morris 2012, Scallan et al. 2011). Most foodborne outbreaks involve a source of contamination at the
point of preparation or sale and affect a small group of people in a localized area. However a small but
worrisome minority of outbreaks are generated by a contamination originating at the site of production or
processing, generating a widespread diffusion of contamination through the supply chain and affecting a
potentially much greater number of people across geographically distributed locations. As recent trends
continue, including large-scale production practices and distribution over ever-larger distances, both the
prevalence and the severity of consequences of these major outbreaks are increasing. From 2005 - 2014,
nearly 200 multi-state outbreaks were identified and investigated in the US as compared with 85 over the
years 1995 - 2004; these multi-state outbreaks accounted for 3% of total outbreaks, but were responsible
for 34% of hospitalizations and 56% of deaths (Crowe et al. 2015). Since the probability of any given
food generating a large, multi-state outbreak is extremely low but the impact is potential very great, these
are classic low-probability, high-consequence events.

Current research efforts and federal initiatives to mitigate the impact of foodborne disease outbreaks,
including the landmark 2012 Food Safety Modernization Act (FSMA), have focused largely on
addressing the causes of outbreaks (Nuzzo 2013). While these efforts are essential to minimizing the risk
of illness associated with the consumption of contaminated produce, they do not provide the tactical
support necessary for response to foodborne illness outbreaks that occur when such preventive efforts
have failed (IOM 2010). As a result, despite the dedicated efforts of food safety officials across the
country, our current capacity to identify the origin of illness in multi-state outbreaks is characterized by
typical timelines of 1-2 months. Investigations are completed in many cases after the outbreak has ended
and the contamination has made its way through the supply chain, meaning that no cases of illness are
averted as a result. Furthermore, the majority of outbreaks remain unsolved, meaning that the food and/or
location sources of the outbreak are never identified and measures to reduce the impact of the outbreak
could not be implemented (Wilkins et al. 2015, McEntire and Bhatt 2013). In the 13,352 foodborne
disease outbreaks (causing 271,974 illnesses) documented by the CDC during 1998-2008, only 4,887
(37%) were traced back to a single food vehicle and pathogenic source, with less than 15% of these to a
specific contamination point (Painter et al. 2013).

Tactical response to large-scale outbreaks
This thesis focuses on improving the response to large-scale, multi-state outbreaks. There are three
standard components to the outbreak response and investigation process, beginning from the time the first
case presents symptoms and ending when the contaminated product has been conclusively identified: (i)
detecting that an outbreak is occurring, (ii) identifying the food vector causing the outbreak, and (iii)
identifying the location source of the outbreak at a farm or processing center. There are multiple
opportunities for improving each component of the outbreak investigation process that can have positive
and meaningful impacts on public health. Novel strategies facilitated both by new tools (e.g., "next
generation sequencing") and the revolutionary availability of digital sources of data related to food sales
and consumption trends are being developed to contribute to the ability to (i) detect outbreaks and (ii)
implicate the food vector causing the disease. However, methodologies that harness these new tools and
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data sources to contribute to solving part (iii) of the outbreak investigation, localizing the source, have not
been brought to bear on the problem, despite the availability of a large amount of relevant system
information, as we discuss below.

To fill this gap, this thesis develops novel methods that leverage currently unutilized or underutilized
sources of information to contribute to the ability to identify the location source of an outbreak. If public
health officials can more quickly and successfully identify the location source of contamination, the
outbreak can be stopped from spreading, the number of people who get ill can be reduced, and unmerited
damages to the food industry can be avoided. This thesis therefore takes a deep look into the question,
how can we locate the source of contamination with greater accuracy, certainty, and speed?

Beyond its immediate and clear public health relevance, improving the ability to locate the outbreak
source has real application to a current federal-level policy debate. Among the many provisions of the
landmark 2011 Food Safety Modernization Act (FSMA) is an extension of traceability requirements.
Specifically, FSMA extends the authority of the FDA to establish, as appropriate, "a product tracing
system to receive information that improves the capacity to effectively and rapidly track and trace food
that is in the United States or offered for import into the United States." The Act does not include specific
provisions for implementing the law, and the regulatory timeline for determining the requirements is still
developing. We suggest that the source localization framework developed in this thesis presents a viable
approach to improving the capacity to "effectively and rapidly track and trace food."

Regulalory approach to source localization
The current regulatory approach generally involves "triangulation," or tracing back the unique distribution
paths of products from several locations to determine if there is a common point of convergence in the
supply chain, such as a common date and location of harvest or place of manufacture (FDA 2001, Wilkins
et al. 2015). Investigators will choose cases that are part of distinct sub-clusters of contamination
emerging at different restaurants or retailers, ideally starting from locations that are geographically distant
from one another, e.g. a case in Los Angeles, Houston, and Boston. For each case, investigators will start
from the retail establishment where the offending product is known to have been purchased or consumed,
and trace the product back through each step of the supply chain, first determining the set of logistic
service providers who could have brought the product to the retailer, then the set of processors who
supplied to those logistic service providers, and so on, until the set of raw food production locations have
been identified. They will then compare the supply chain actors uncovered as being potentially connected
to each traced-back case, looking for commonalities. Because of the complexity of the supply chain and
the large number of possible pathways to collect data for, the process is time and resource intensive.
According to an estimate provided by investigators with the Minnesota Department of Public Health, 8 to
24 person hours are required to collect paperwork and create a product trace diagram for I to 2
contamination cases (Smith 2015).

The triangulation approach is fundamentally limited by its inability to leverage available information that
can be contribute to identifying the location source of an outbreak. Because of the logistical limitations,
investigators are only able to make use of a small subset of the reported cases of illness - data that serves
as evidence in the source location problem. With only a few pieces of evidence, the time consuming
traceback will often be unsuccessful in narrowing down the problem significantly. Furthermore, the
process considers only supply chain structural information, that is, whether a link exists between different
supply chain actors, while missing other dimensions of supply chain data that can help to differentiate
between possible sources.

9



Moreover, triangulation represents a missed opportunity to utilize valuable system information to solve
the source localization problem. When each supply chain pathway is considered individually, the greater
food distribution system that these pathways and their related supply chain actors are a part of is ignored.

Network approach to source identification
Food distribution is a complex system that can be seen as a network of trade flows connecting supply
chain actors. Identifying the source of an outbreak of contamination distributed across a network can best
be solved by considering this network structure and the dimensions of information it contains. The
approach proposed and developed in this thesis is built upon the fundamental concept that we can utilize
this network structure and its multiple dimensions of information better solve the problem of tracing the
source of large-scale outbreaks.

While the exact parameters will vary from product to product, all food distribution systems can ultimately
be represented by the same layered, directed network structure (Figure 1). The distribution network is
made up of multiple stages of production, distribution, storage, and consumption, where each stage
represents a specific class of supply chain actors. Food is created in the first stage, which represents the
point of production at a farm or other type of producer, and is distributed along links by logistic service
providers (represented by links) to interior stage nodes until it reaches the final stage, representing point
of sale at retail or food service establishment. The interior stages may be involved with storage,
collection, or further processing of the commodity. The network in Figure 1 is composed of 17 producers,
7 processors, 7 distributors, and 21 retailers. The source of a large-scale, multi-state outbreak will
originate at a high stage of the network, e.g. in the producing or processing stages; only nodes in these
stages are able to reach downstream nodes in geographically distributed locations. Case reports of illness
are associated with the retail node at which the offending product was purchased.

Producers

4, aProcessors

SADistributors

Retailers

Figure 1. Illustration of a layered, directed food distribution network.

With this structure fully mapped, it is straightforward to utilize all case data (i.e. evidence) available
during an event to identify the set offeasible sources of contamination. The feasible sources can thus be
identified as the set of nodes in the producing or processing stage that share at least one network path to
all contaminated retailer nodes. The set of feasible sources resulting from utilizing all case report evidence
will be smaller than that resulting from the subset considered in triangulation.

Network structural information provides a first cut into the source identification problem, enabling us to
identify the feasible sources of contamination. To differentiate between the feasible sources, we can
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leverage further dimensions of information available within the network. First, each link contains
information about the quantity or volume of goods traded between supply chain actors. Second, time
dynamics along the links provide additional information. Each network path, or collection of directed
links and nodes from origination to point of sale, contains information about the distribution of time that a
contaminated product could have taken to travel these steps. Combining information from the volume
along links and the resulting temporal distribution along paths provides insight into who is more likely to
have transmitted to whom. This insight can help us to discriminate among the feasible sources.

How is this information being leveraged by existing approaches in the research literature? Most work
involving networks and outbreaks of contamination has been focused on the forward problem of
understanding and forecasting the spreading process and its dependence on the structure of the underlying
network. A portion of this research has been specific to the case of foodborne disease outbreaks on food
distribution networks. In recent years, we have seen some work on the inverse problem of identifying the
source of general outbreaks. Nonetheless, none of these studies have been specific to the case of
foodborne disease. The network structure assumed in all existing work is a general, undirected network in
which any node can be the source and any node can be contaminated, which is not the case for food
distribution networks. Furthermore, the approaches can be categorized as utilizing either network
structure and volume information or network structure and temporal information, but not a combination of
the two.

This thesis proposes that we can do better by tailoring an approach to the specific layered network
structure of food distribution networks that leverages all dimensions of information available for solving
this problem.

Owr approach: Baves'.ian, network-theoretic source identification
In this thesis we develop a traceback approach built on the following core principles:

" Utilize the network structure - Design an approach specific to the directed, layered structure of the
food distribution network

" Utilize all available information - Use information from all case reports, network trade flow
volumes, and the temporal distribution of goods along network paths

" Incorporate prior information - Incorporate information external to the network, such as known
risk factors and expert opinions if available

Based on these core principles, a source identification methodology has been developed that (1)
immediately identifies all.feasible source locations, (2) ranks the feasible locations by the likelihood that
each one is the true source, (3) uses the ordered ranking to create systematic investigation strategies.
When evaluated against existing methods in traceback, both those currently in practice and those
proposed in academic literature, this methodology demonstrates significant benefits in accuracy, certainty
and speed. Furthermore, these benefits are possible at low financial and opportunity cost to implement:
low financial cost because the traceback system would function on a computer model at very low cost to
implement and no cost to operate; low opportunity cost because generation of investigation strategies
come at no exclusion of existing approaches.

Network traf-chack mnethodology
A source identification algorithm was designed to accomplish steps (1) and (2) above. The source
localization algorithm requires the following input data:

* Food supply chain network information
o Identity of supply chain nodes and location in geography
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o The existence of trade links between supply chain nodes and volume traded
o Time dynamics of how contamination spreads across the network

* Case report data:
o Location in the network
o Time of occurrence, according to patient's recalled time of illness onset

The algorithm first performs a "preprocessing" step, using the network structure to determine the feasible
sources as the set of processing or producing stage nodes that share at least one network path to all
contaminated nodes. For any given instantiation of the algorithm, the source must be assumed to be in
either the processing or producing stage.

With the feasible set identified, the algorithm then determines the probability that each feasible source is
the true source, given the observations of illness at specific node locations and times. To determine this
probability, a derivation is provided in the thesis that factors out the volume-based probability
contribution, decomposing the probability of being the true source into a volume component and a
temporal component. The result is that the posterior probability of being the true source is the product of
the Bayesian prior probability, a volume-based probability factor, and a temporal probability factor
(Figure 2). An approach to efficiently estimate the volume and temporal probability factors, accounting
for the computational constraints of operations on networks, is designed in the thesis.

Network Traceback Algorithm
- Use network structure to determinefeasible source set s e Q

- Determine the probability that any feasible source s e Q is the true source s*
given the observations of illness 0

P(s* = slo)
Probability feasible source s is the Set of observed illnesses at

true source s node oi and time t

- Main result: Probability of being true source is the product of
prior, volume-based, temporal probability

P(s* = s|O) = P(s* = s ( s ti st ,rax)

FPrior Vume Time

Figure 2. Overview of the Network Traceback Algorithm developed in this thesis.

The methodology determines the probability factors for prior, volume, and time, applying the same
process for each feasible source node individually. As mentioned above, the prior probability is
informed by information external to the network structure. If information on known risk factors or expert
opinion is not available, the relative production quantity at each feasible node is used, assuming that any
product produced is equally likely to generate contamination a priori. The volume contribution
quantifies the probability that a feasible source node could have reached all contaminated nodes. Here,
we are essentially assuming that the (relative) total volume of goods flowing from the source to all

contaminated nodes is as a proxy for this probability. We calculate this term using the weighted
adjacency matrix representing the network. The temporal contribution quantifies the probability that the

feasible source generated the observed illness times, given what we know about the time dynamics from
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contamination origination to observation. In other words, this is the probability that the feasible source
node can "explain" all of the observed contamination times. To determine this probability we first
identify the set of highest probability paths from the feasible source to each contaminated node. We then
find the start time that maximizes the likelihood of the observation times - and record the associated
probability, which is the area under the likelihood curve within a small "uncertainty window" around the
observed contamination times.

Once each probability factor has been determined for a feasible source node, we multiply these
probabilities together to determine the posterior probability that node is the true source. We do this for
each feasible source node, normalizing the resulting set to define a posterior probability mass function
(PMF) representing the probability-ordered ranking over the set of feasible sources. An illustrative PMF
and ordered ranking is depicted in Figure 3.

0.300

0.200

0.100

0.000
o5 3 15 9 8 4 1 13 12 11 2 6 10 7 14

Source ID

Figure 3. Illustrative Probability Mass Function (PMF) and ordered ranking of feasible sources resulting
from applying the Network Traceback Algorithm to traceback an outbreak of foodborne disease.

Source identification methodology performance
We have subjected the methodology to an extensive performance evaluation. The primary goals of this
performance evaluation study were to (i) establish the accuracy of the methodology, (ii) determine how
the accuracy compares with existing traceback approaches, and (iii) ensure that these results are robust
across many different network structures. A secondary objective was to explore the relationship of
traceback accuracy on specific network parameters.

A Monte Carlo (MC) simulation environment was developed to measure traceback performance across a
wide range of network structures and outbreak scenarios. Underlying this framework is a set of network
structural models and contamination simulation model. We developed two types a network generating
models: a "stylized" model and a geographically accurate model. The stylized model allowed us to
generate networks according to a set of 10 variables determining the food distribution structural, volume,
and temporal parameters. The regionally accurate generating model was implemented to produce
networks representing the supply structure for tomatoes and lettuce grown in the US (Figure 4), informed
by data from a combination of sources including the USDA, publically available retailer data, and the
research literature. These realistic models represent various features of the real distribution system,
featuring in particular the extreme clustering of production or cultivation in specific regional areas. As
indicated in the figures, the model represents 13 clusters of tomato production across the country - this
accounts for 80% of US tomato consumption, while lettuce production is even more aggregated - our
network model represents 98% of US consumption by featuring only 3 growing locations.

13



Tomatoes Lettuce

IlIt

13 production clusters 3 production 4usters

Figure 4. Visualization of an outbreak occurring in the tomato and lettuce network models. Supply
chain nodes are represented in green. Locations reporting contamination are represented in red, with
vertical red lines signifying the density of contamination reports at that location.

For any given network structure, the MC simulation model was used to generate outbreaks, trajectories of
contamination through the supply chain, and reports of illness at specific times and node locations. At a
slice in time in the outbreak's progression, the traceback algorithm was applied and a PMF over the
feasible sources is constructed. The feasible sources are then rank-ordered according to their probability
values. This process was repeated at various intervals as the contamination event progresses and illnesses
continue to present to generate a series of rankings as a function of time or case development. To assess
the traceback performance for a particular network structure, multiple contamination events were
generated and traced back, and the cumulative results assessed according to a set of accuracy metrics
including:

" Traceback Accuracy, the percentage of times the true source is accurately identified
" Rank of True Source, the position of true source within the ordered ranking
" Distancefrom True Source, the geographical distance between the top ranked source and the true

source

The computational results presented in the thesis serve as a powerful first step towards validation of the
accuracy and applicability of our approach. For stylized and realistic networks, the method performs well
and follows expected properties, increasing with data on the number of contamination reports. We find
that we can make very good inferences about the source location after only a limited number of illnesses
have been reported, and very accurate inferences if we wait a bit longer. These conclusions apply both to
locating the source location at a network node and on the map, with traceback accuracy ranging between
80 - 95% and the distance from the true source ranging from 5 - 15 miles, for the specific networks
considered. These performance results suggest that our traceback approach provides an effective
framework for identifying the source of large-scale outbreaks of foodborne disease.

We go on to demonstrate the benefits of our approach in comparison with existing approaches to
traceback. We implement the FDA Heuristic, which models the existing regulatory traceback approach of
triangulation; the Network Baseline, which uses network structure and the full set of case reports to
identify feasible sources but does not distinguish between these sources probabilistically; and a best-in-
class method presented in the literature (Brockmann and Helbing 2013) from the category of approaches
using network structure and volume (but not temporal) information. We compare these approaches to our
method, which combines network structural, prior, volume, and temporal information to distinguish
between sources. In results from tracing back the source of multiple simulated outbreaks generated across
a large set of network structures, we consistently observe that the following set of relationships hold:

* Considering the network structure and the full available set of case data improves upon the narrow
view afforded by the triangulation method currently applied in investigations.
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I
. Using what is known about the volume of food flows through the distribution structure to

differentiate between feasible sources substantially improves upon the resulting accuracy.
- Designing the approach specifically for the layered structure of food distribution networks and

incorporating prior, volume, and temporal information further improves upon the volume only,
general network approach.

This series of increasing relationships is visible in the two examples depicted in Figure 5. Each example
illustrates traceback accuracy as a function of the number of reported cases of illness for a different
stylized network structure. Compared with the current regulatory approach of triangulation (light green),
the improvement in accuracy with our approach (blue) is always significant, exceeding 80% accuracy in
all cases evaluated. This improvement in accuracy suggests that our network-theoretical approach to
source identification can contribute substantially to the existing traceback investigation process.

Because the traceback results are dependent on the parameters of the network structure, the magnitude of
the jumps in accuracy will vary. As can be seen in the Figure 5 examples, when compared to the existing
approach in the literature (in red) the improvement in accuracy possible with our methodology can range
from extreme (85% with stylized network - high variance) to more moderate (10% with stylized network
- zero variance), but is observable in all cases evaluated. This improvement demonstrates the theoretical
value of designing a traceback methodology specific to the problem of foodborne disease outbreaks on
food distribution networks.

Traceback Accuracy
Comparison:

Stylized Network - High Variance
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Figure 5. Performance of our approach to traceback (in blue) compared with existing approaches: the
FDA Heuristic (light green), the Network Baseline (dark green), and a network structure and volume
utilization approach from the research literature (red). Each figure presents the traceback accuracy as a
function of the number of reported cases of illness for a different stylized network structure.

Implications for traceback response
The performance evaluation suggests that our traceback approach may provide substantial benefits to
investigators during traceback investigations. The next step is to develop a decision-making framework to

guide investigators at the tactical level to make the most effective interventions to solve an investigation

and stem impact on the public.
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We can use the cumulative output from multiple traceback results from simulation to quantify the
variability of detection performance. The variability can be understood as the range of positions taken by
the true source within the resulting ordered ranking. For example, considering the tomato network and
applying traceback after the first 10 reports of illness, the true source is identified in first ranked position
in -70% of simulations, within the first 2 positions in -80% of simulations, and within the first 5
positions in 95% of results. Quantifying variability thus allows us to say that we can expect to identify the
true source within a specific number of high probability (or top-ranked) candidates with a specific level of
accuracy. For practical purposes, the size of this bounded set effectively quantifies the number of'source
candidates necessary to investigate to identify the true source.

The size of the bounded set also quantifies the improvement over time. As the number of case reports
increase and the accuracy improves, the variability decreases. Accordingly, the number of source
candidates necessary to investigate to identify the true source will be reduced. Continuing with the tomato
network example above but applying traceback after 30 reports of illness, the true source is identified in
first position in 90% of simulations and within the top 2 positions in 95% of simulations. This reveals an
important tradeoff for investigators: wait for a certain number of illnesses to accrue until the source can be
uniquely identified with very high accuracy, or act early to prevent further illnesses but at a greater cost.

These insights inform decision making strategies for investigation interventions, including when and to
which facilities to send investigators, and when and which facilities to target in public service messaging.
In the thesis we develop a framework that investigators can apply to identify and compare various
investigation intervention strategies. This framework is based on a set of performance attributes:

" Accuracy, the precision in correctly identifying the source within a specific number of top-ranked
predictions

" Specificity, the number facilities to deploy to / implicate in message
* Benefit to Public Health, the number of illnesses potentially averted

These performance attributes allow investigators to specify their desired accuracy level (i.e. the level of
risk they are willing to take on) and available budget, then to determine the expected number of illnesses
that can be averted for these values. Conversely, the attributes allow quantifying the cost of reducing more
illnesses. For example, in computational results demonstrated for the tomato network discussed above, we
observe that with 2 investigators and 95% accuracy required, 42% of the total cases resulting from the
outbreak can be averted. With 3 investigators and the same accuracy requirement, the investigation can be
launched earlier and 50% of cases can be averted, and when 4 investigators are available, 60% of cases
can be averted.

Beyond demonstrating the value a systematic framework for investigation response, these results
highlight a more fundamental takeaway: that the traceback methodology developed this thesis
demonstrates the potential to identify the true source early enough in an outbreak's progression that a
substantial fraction of the illnesses can be averted. While the actual number of illnesses that can be
averted will depend on the particular outbreak scenario, the fact that cases can be averted is a huge result
in itself.

Conclusions and next steps
In summary, this thesis develops a novel network approach to traceback of foodborne disease, a novel
traceback methodology that is specific to the case of food distribution networks and foodborne disease,
and a recommended approach for investigators or emergency responders to act on this information.
Computational results suggest this set of methodologies can contribute major improvements to outbreak
response on three important dimensions:

16



1. Outperform current triangulation methods: The true source was identified with >80% greater
accuracy

2. Successfully resolve many more investigations: The true source was identified with 95%
accuracy using the evidence from only 10 - 30 cases of illness

3. Resolve investigations early enough that cases can be averted: 40 - 60% of illnesses averted in
simulated interventions

These computational results are very promising. However it is important to stress that these benefits are
estimated on the basis of results of simulation; live use of these techniques may demonstrate features of
the real problem not incorporated into these research and modeling efforts. There are multiple challenges
to real-time implementation of the methodology including the delay in case reporting and the
underreporting of cases; the uncertainty in network distribution times; and the imprecision of patient-
recalled time of illness onset. There is the additional fundamental challenge of constructing a database of
network models for various foods so that the methodology is ready to be deployed in real-time in the
event of an outbreak. The implementability of the traceback methodology ultimately depends on access to
representative network models. However, acquiring and organizing this information presents three major
challenges. First, food distribution networks are markets characterized by inherent stochasticity, which
can be challenging to model. Second, network models require aggregated food distribution data that is not
readily available for public use or not systematically recorded. Third, collection and organization of
available data present extensive practical data-management challenges. Foods of today are complex and
outbreaks can occur in foods containing dozens of ingredients. Hugely complex trade network would
result from the consideration of all supply chain actors, big and small, and characterizing all commodity
flows as well as external trade relations with different producers in the industry.

There is strong potential that a recently developed food distribution network model developed by
researchers at Kfhne Logistics University (KLU) and the Technical University of Darmstadt in Germany
can be used to overcome these challenges (Friedrich 2010, Balster and Friedrich 2016). Their model
utilizes only existing, readily available data sources coming from public authorities, food-related
associations, and professional data providers. It covers the supply of 50 different foods across Germany's
food industry, accounting for interactions between these foods, making it extendable to tracing processed
foods containing dozens of individual ingredients.

The next step will be to deploy our traceback methodology with the KLU food distribution network
model. We will work together with researchers at the KLU to integrate their network model with our
traceback methodology to form a holistic tracebackframework. Using this combined model and method
approach, we will seek to demonstrate the ability to identify the origin of recent outbreaks that have
occurred in Germany. Success in correctly identifying the source of these outbreaks will be an important
step in validating the accuracy and effectiveness of our methodology for identifying the source of large-
scale outbreaks of foodbome disease.
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Chapter 1:
Introduction

Foodborne illness outbreaks impose enormous health and economic burdens in the US. Identifying the
spatial origin of the contaminated food causing an outbreak is a challenging problem due to the
complexity of the food supply and the absence of coherent labeling and distribution records. Current
investigative methods are slow, resource intensive, and the overwhelming majority of investigations are
unsuccessful in identifying the location source of an outbreak. New tools and approaches that take
advantage of modem data and analytical techniques are needed to more quickly identify outbreak origins
and prioritize response efforts.

The practical objective of this thesis is to contribute to the ability to efficiently locate the source of large-
scale outbreak while contamination-caused illnesses are occurring, thereby resolving investigations earlier
and averting potential illnesses. To this effect, our primary contribution is the development of a holistic
system for rapid identification of the source within the constraints of available or acquirable data and
resources. The system is based on a novel, network-theoretic approach for outbreak detection that
functions on current domestic food systems network data, reported cases of illness and a prior probability
function over likely sources. The traceback framework outputs a set of feasible sources of contamination
and their relative probability of being the true source, producing an ordered ranking over the feasible
sources. This source data forms the basis of a decision model for investigation interventions, which
provides investigators with a set of recommendations for two distinct options for action: (i) where to send
on-the-ground investigators and (ii) when and what to message to the general public about potential
contaminated foods. The development and review of this holistic framework is provided in the four main
chapters of this thesis and a future plan for practical validation is provided in the conclusion.

In this chapter, we discuss the problem of tracing back large-scale, multi-state outbreaks of foodbome
disease. In Section 1.1, we describe the growing impact and prevalence of these outbreaks. In Section 1.2,
we overview current regulatory approaches to outbreak investigation and response, highlighting the major
sources of delay and opportunities for improvement. In Section 1.3, we describe existing interventions
and efforts to improve foodbome disease investigations and identify outbreak origins through
development of technologies and legislation. We then review approaches to contribute to this problem in
the existing literature, namely (i) risk-based and (ii) tactical approaches to traceback. In Section 1.4, we
present the main contribution of this thesis: the development of novel, integrated system for rapid
identification of the source.

1.1. The Growing Impact of Large-Scale, Multi-State Outbreaks of
Foodborne Disease

The complexity and globalization of food production have made foodbome disease a widespread public
health problem in both developed and developing countries. The Center for Disease Control (CDC)
estimates that each year in the U.S. 48 million illnesses, 128,000 hospitalizations, and 3000 deaths result
from foodborne disease, at an estimated annual loss of $152 billion (Osterholm 2011). Due to
underreporting or unknown agents, these numbers are potentially much higher (Batz 2005, Batz and
Morris 2012, Scallan et al. 2011).
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Most foodbome outbreaks involve small groups of people in a localized area. Although the probability of
any given food generating a large, multi-state outbreak is extremely low, low probability events do
happen and may have massive impact. In the summer of 2011, an outbreak of E. coli 0104:H4 from
sprouts grown in Germany caused 55 deaths and 4,075 illnesses in 16 countries in the five-week period it
took investigators to identify the source of contamination (WHO 2011). Earlier that year, an outbreak of
listeria linked to cantaloupes grown in Colorado ravaged across the country. Over a timeline of almost
three months, it took 30 lives and infected 146 people across 28 states (CDC 2011). As recent trends
continue, including large-scale production practices and distribution over ever-larger distances, these
major outbreaks are increasing in both prevalence and in the severity of consequences. From 2005 - 2014,
nearly 200 multi-state outbreaks were identified and investigated in the US as compared with 85 over the
years 1995 - 2004; these multi-state outbreaks accounted for 3% of total outbreaks, but were responsible
for 34% of hospitalizations and 56% of deaths (Crowe et al. 2015).

Furthermore, this streamlining in the mass production of food also represents vulnerabilities to attacks by
deliberate contamination, i.e. biological or chemical terrorism. While cases of intentional contamination
have been infrequent, there is a growing concern among the U.S. intelligence agencies that these
vulnerabilities, together with changes to the threat environment, have made agroterrorism a more viable
and attractive approach for adversaries (Decker 2014, FDA 2013a, Olson 2012).

Recognizing when outbreaks occur, moving swiftly to respond, and obtaining information to prevent
future outbreaks are critical parts of maintaining a safe food supply. Current research efforts and federal
initiatives to mitigate the impact of foodborne disease outbreaks, including the landmark 2012 Food
Safety Modernization Act (FSMA), have focused largely on addressing the causes of outbreaks (Nuzzo
2013). While these efforts are essential to minimizing the risk of illness associated with the consumption
of contaminated produce, they do not provide the tactical support necessary for response to foodborne
illness outbreaks that occur when such preventive efforts have failed (IOM 2010).

When people begin to fall ill during an outbreak, time is of the essence. Yet complex market behaviors
including uncertainty in sourcing and complicated distribution chains make it especially difficult to
establish provenance of our food supply. The complexity, dynamics, and massive size of food supply
chains means there are a huge number of potential sources of outbreaks and it is not feasible to test them
all, or even a meaningful fraction of them, in a short period of time. As an example, consider the source of
the seven main ingredients that compose a single loaf of Sara Lee Bread. Not even considering foreign
farms and processing sites, these ingredients can originate from 2.1 million farms, pass through 30,000
processing facilities and 19,000 (re)packers, to end up at over 1.1 million retail food stores and outlets, as
illustrated in a New York Times article in 2007 (Schoenfeld 2007). In addition, delays and inefficiencies
in the foodborne disease investigation process limit our national ability to identify the origin of foodbome
illness outbreaks in a timely manner. Current practices are time consuming, resource intensive, and
outdated in methods that do not take advantage of modem data and analytical techniques or methods.

As a result, despite the dedicated efforts of food safety officials across the country, our current capacity to
identify the origin of illness in multi-state outbreaks is characterized by typical timelines of 1-2 months,
completed in many cases after the outbreak is almost over - and these are the minority of outbreaks for
which the traceback is successful (Wilkins et al. 2015, McEntire and Bhatt 2013). In the 13,352
foodborne disease outbreaks (causing 271,974 illnesses) documented by the CDC during 1998-2008, only
4,887 (37%) were traced back to a single food vehicle and pathogenic source, with less than 15% of these
to a specific contamination point (Painter et al. 2013).
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1.2. Background on Foodborne Disease Outbreaks and Traceback
Investigations

A foodborne disease outbreak investigation begins from the time the first case presents symptoms and
ends when the contaminated product has been conclusively identified. The investigation is a multi-
disciplinary task that requires information from many sources including laboratory work, patient
interviews, environmental and food preparation reviews, and collection of distribution records or
traceability data, when available.

There are three standard components to the outbreak response and investigation process, beginning from
the time the first case presents symptoms and ending when the contaminated product has been
conclusively identified: (i) detecting that an outbreak is occurring, (ii) identifying the food vector causing
the outbreak, and (iii) identifying the location source of the outbreak at a farm or processing center. There
is no general procedure for foodborne disease outbreak response that fits every event perfectly, and these
three components are not necessarily conducted sequentially. To detect the outbreak, an unusual
accumulation of disease reports has to be identified and confirmed as pertaining to the same strain. This
involves laboratory tests to specify the pathogen and corresponding microbiological "fingerprinting" or
genetic sequencing of strains to verify case relatedness. After the outbreak has been confirmed, the
investigation to identify the transmission vehicle and location source of contamination begins. The
vehicle is identified through a standard epidemiological process of interviewing cases to identify common
foods consumed, combining this with microbiological sampling of culprit foods and food surfaces. After
the food source is identified, or concurrently with that investigation, an analysis is undertaken to
determine the location origin of the outbreak. The current regulatory approach generally involves
"triangulation," or tracing back the distribution paths of products from several locations to determine if
there is a common point of convergence in the supply chain, for example a common date and location of
harvest or place of manufacture. If identified, the contaminated foods can be traced forward from the
contamination origin to determine transmission routes and identify products and consumers at risk. A
final stage, which may occur well after any preventive action can be taken to limit the number of illnesses
in some investigations, is the evaluation of the specific practices at the farm, transportation, or other
facility that may have caused outbreak. (FDA 2001, Wilkins et al. 2015, WHO 2008).

Tracing the source of foodborne illnesses is very complicated, especially for fresh produce items that have
no bar codes, no packages, and are quickly consumed, often with other produce. The challenges of a fresh
produce traceback investigation include the complexity of distribution systems and multiple sources of
product at the point of sale, underreporting and significant time lags in the effects of contaminated food,
and inconsistencies and gaps in labeling and distribution records. In addition to these many inherent
challenges to the traceback problem, limitations to the foodborne disease investigation process make it
difficult to improve our national capacity for detecting the origins of foodborne illness in a timely manner.
We now provide a more detailed look at the essential elements of the investigation process, highlighting
the major sources of delay and opportunities for improvement.

Identifying an Outbreak
Traceback investigations are not initiated until a critical cluster of cases have been identified and linked to
a single outbreak strain by PulseNet, the national network of public health and food regulatory agency
laboratories coordinated by the CDC that perform standardized molecular subtyping ("DNA
fingerprinting") of foodborne disease-causing bacteria to distinguish strains at the DNA level (CDC
2015a). The second line of Figure 1.1 (red boxes) represents the case reporting timeline, which runs from
the time a patient begins to experience symptoms of illness after eating a contaminated food, to the
pursuit of medical attention, the laboratory tests to diagnose the causative agent, and the final
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confirmation through PulseNet that the case is part of an outbreak. The timeline for case reporting is 
presented in further detail in Appendix I . I. This timeline can range from days to months, and means there 
can be a substantial delay between the start of illness and confirmation that a patient is part of an 
outbreak. 

I 
I Typically 1 - 5 days 
l T1 = Notification to 
I healthcare or other outlets 
I 

I 
1 Investigation solved; T2 = Outbreak confirmed; 
1 Public health messaging Investigation begins I 

: _ _ _ ___ _I~'!''!!' f.l"!_el!_ne;_ Typl~!!! !:!. "'!."f!s_ _ _ _ ~ 

m1111m 
Case marked in Epi 

curve as day 
symptoms began 

Figure 1.1. Graphic representation of timeline of foodbome disease contamination dispersion, case 
reporting (characteristic of E. coli 0157:H7), and investigation. Data sources: (CDC 2015a-b, FDA 
2001, Wilkins et al. 2015, WHO 2008). 

A "critical cluster" is defined by the CDC to be a larger number of people having the same illness in a 
given time period than expected from long-term surveillance (CDC 20 l 5d). While no statistical measure 
is used here, the number of cases that is large enough to distinguish the set as 'critical' will depend on 
multiple variables, including the nature of the outbreak - its size and dispersion, the virulence of the 
pathogen, and the time of year the outbreak occurs. This can be illustrated by considering a specific 
example, the 2013 outbreak of Cyclospora in fresh cilantro, analyzed in detail in Section 3. Table I 
depicts confirmed cyclosporiasis cases by week of illness onset for the 2013 outbreak compared to the 
long-term weekly mean for that time of the year (CDC 2013). The earliest this set of cases would start to 
look like an outbreak would be week n = I of the outbreak, the week of June 2, when the count of 12 
cases is noticeably greater than the weekly average count of 6.8. Notably, June is the month of the year 
with the highest number of outbreak cases; if the outbreak occurred earlier in the year, fewer cases would 
be necessary to show a significant rise above the mean. 
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Week n Week of Onset Number of Cases 5-Year Weekly Mean
0 May 26-Jun 1 10 7.6
I Jun 2-Jun 8 12 6.8
2 Jun 9-Jun 15 34 6.2
3 Jun 16-Jun 22 40 5.6
4 Jun 23-Jun 29 99 4.8
5 Jun 30-Jul 6 69 2.2
6 Jul 7-Jul 13 57 3.8
7 Jul 14-Jul 20 46 1.4
8 Jul 21-Jul 27 18 1.4
9 Jul 28-Aug 3 10 1.6
10 Aug 4-Aug 10 5 0.8
11 Aug 1 I-Aug 17 3 1.8
12 Aug 18-Aug 24 2 0.8

Table 1.1. Confirmed cyclosporiasis cases by week of illness onset compared to the 5-year weekly mean. Data
source: (CDC 2013).

Because of delays in case reporting for a cluster of cases, and in particular the series of tests at both local
diagnostic laboratories and PulseNet facilities, it is typically several weeks before health agencies confirm
that an outbreak is occurring and react in the form of a traceback. While DNA fingerprinting is a vital step
to establishing with certainty the link between nationwide cases of infection to a common outbreak, this
convention poses a major limitation on the timeline of an outbreak investigation (Wilkins et al. 2015).

Identifying the outbreak source
Once the outbreak has been confirmed, the second and third stages of the investigation to identify the
food and location source of contamination can begin. A typical large-scale nationwide foodborne disease
investigation will first implicate the (set of) food product(s) responsible for the outbreak. As the very first
step, an epidemiological investigation is conducted to implicate potential commodities by interviewing
initial cases with regard to common factors and sampling food specimens as potential sources of
contamination. A case definition is often established to identify further outbreak related cases and to
collect information in a standardized survey. Using this data, analytical investigations, such as case-
control and cohort studies, are performed to test hypotheses about the transmission vehicle. Ideally, a
single food item is implicated and the second stage of the traceback is begun to trace the outbreak to its
specific source location. In many cases, the combination of a small and slowly growing number of
confirmed cases of illness, inaccuracies in individuals' recollections, and the common consumption of
bundled foods (i.e. salsas, burritos, salads) make it impossible to statistically narrow down the search to a
single item (McEntire and Bhatt 2013). In these situations, the two stages of the investigation may be
conducted in parallel.

Following that identification, investigators will trace back the distribution of the implicated product and
determine the source location (FDA 2001, Wilkins et al. 2015, WHO 2008). This stage of the
investigation generally involves "triangulation," or tracing back the distribution paths of products from
several locations to determine if there is a common point of convergence in the supply chain, for example
a common date and location of harvest or place of manufacture (FDA 2001, Wilkins et al. 2015). To
prioritize leads for the analysis, investigators consult with colleagues at state public health agencies, at
university agricultural research institutions, and in industry to prioritize commodity sources. Notably,
however, a systematic method for prioritizing sources does not currently exist (S. McGarry, personal
communication, December 20, 2012).
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Minnesota Resident Salmonella Saintpaul Cases, Feb. - April 2009
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Figure 1.2. Example of a product trace diagram illustrating exposure distribution pathways
documented during the traceback of an outbreak of salmonellosis associated with alfalfa sprout
consumption conducted by the Minnesota Department of Agriculture (Smith et al. 2015). Convergence
points are indicated by boxes outlined in the same color.

Triangulation requires inspection of common distribution sites, processors, or growers through interviews,
observations, and record collections. An example of a product trace diagram illustrating exposure
distribution pathways and convergence points documented during the traceback of an outbreak of
salmonellosis associated with alfalfa sprout consumption conducted by the Minnesota Department of
Agriculture is depicted in Figure 1.2 (Smith et al. 2015). Points of convergence are indicated by boxes
outlined in the same color.

This data collection is both resource and time intensive. The food system is complex with many possible
supply chain pathways leading to each chosen location, all of which must be traced independently along
the supply chain. Furthermore, collecting this data along each step poses a delay due to the many
inconsistences and gaps in recordkeeping data. While many producers, manufacturers and retailers have
product tracing systems in place, these systems vary greatly depending on the amount of information
recorded, how far forward or backwards in the supply chain the system tracks, technologies used to
maintain records, and the precision with which a system can pinpoint a product's movement (Golan et al.,
2004; Wu et al., 2011, Storoy et al., 2013). The only legal requirement concerning product traceability in
food supply chains is so-called "one-up, one back" recordkeeping, mandated by the Bioterrorism Act of
2002. The 2011 Food Safety Modernization Act (FSMA) now requires some additional recordkeeping for
high risk foods (the BT Act, H.R. 3448; FSMA 2011). Requirements based on the Bioterrorism Act
include having firms know who they received products from and to whom they were sent ("one up, one
back" tracing), however some supply chain members, such as restaurants and farms, are exempt. The
level of detail and the specific types of information required to be maintained depend on the role of the
firm in the supply chain. Furthermore, FDA is often only provided access to proprietary information on
trade flows when responding to an emergency incident, and only then when there is "~reasonable cause" to
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make inquiries into the traceback information for a particular company; thus, this information is not
organized in advance of a contamination event.

The challenges of triangulation pose a major limitation on the speed of the investigation, and thus the time
it will take to identify the location source. According to an estimate provided by investigators with the
Minnesota Department of Public Health, 8 to 24 person hours are required to collect paperwork and create
a product trace diagram for I to 2 contamination cases (Smith 2015). As a result, our current capacity to
traceback the sources of illness in multi-state outbreaks is characterized by typical timelines of 1-2
months, completed in many cases after the outbreak is almost over - and as discussed above, these are the
minority of outbreaks for which the traceback is successful (Wilkins et al. 2015, McEntire and Bhatt
2013).

1.3. Opportunities to improve outbreak investigations

If public health officials can more quickly and successfully recognize when a foodborne illness outbreak
has occurred and identify the food and location source of contamination, lives can be saved and economic
losses averted. To achieve these goals, new tools, technologies, and the availability of digital sources of
data are facilitating the development of novel strategies to contribute to the three stages of the outbreak
investigation process. In this section, we overview existing efforts to improve traceback investigations. In
particular, we highlight the need for improving efforts to contribute to the ability to identfy the location
source of an outbreak. Given this need, we propose a novel, network-theoretic approach to traceback.
Developing this approach is the focus of this thesis.

xIs EIfort to Improve liOdbfoorne Diseasc o0 brea k I nvestioation
Detecting an outbreak using Next Generating Sequencing and Digital Disease Detection
The time until a common outbreak strain is identified and thus an outbreak is detected is rapidly
decreasing as the use of whole genome sequencing technologies, commonly referred to as "next
generation sequencing" (NGS), become pervasive. These technologies can sequence in one step and
almost real-time what it takes current strain subtyping methods (i.e. "DNA fingerprinting") two to three
laboratory tests conducted typically over several weeks perform with less precision. NGS technologies
have been developing over the past decade but it is only now that they are becoming affordable enough to
introduce at scale by the CDC-directed national network of state laboratories.

Digital Disease Detection (DDD) methods are being introduced to gather additional, publically-available
data that can be applied to further decrease the time to detect an outbreak. While foodborne illness is
notoriously under-reported, online illness reports have been shown to supplement traditional surveillance
systems in detecting individual cases linked to known outbreaks or otherwise undocumented outbreaks by
capturing reports from those who do not contact a health department (Nsoesie et al. 2014, Harris et al.
2014, Harrison et al. 2014). For this purpose, consumer self-reported concerns regarding foodborne
illness, implicated foods, and consumption location can be crowdsourced from various popular social
networking sites (e.g. Twitter, Facebook, GrubHub, Foursquare, and Yelp). Furthermore, dedicated
resources such the website IWasPoisoned.com allow consumers to directly communicate their adverse
food safety events on the public domain, information which is increasingly being picked up by public
health departments and other food safety regulators. The real time identification of a greater sample of
cases can accelerate the traceback timeline by contributing to identifying outbreaks earlier (as well as to
improving the source localization process, as we will describe in later chapters). The development of
surveillance tools that aggregate online information to contribute to these goals face challenges pertaining
to inaccurate or noisy information, required participation levels, and privacy concerns. Still, these
methods demonstrate great promise in accelerating the outbreak detection process.
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Identifying the food source using retail sales data
Methods are being developed to use readily available data to supplement the existing regulatory approach
to identifying the food vector carrying a contamination. Doerr et al. (2012) introduce a likelihood-based
method to compare the distribution of sales data for a dataset of finished food products with the
distribution of public health case reports in order to determine the product most likely to be associated
with a foodborne disease outbreak. The approach leverages readily available product sales data already
collected as part of routine business practices by retailers and distributors. The likelihood approach is
evaluated in Kaufman et al. (2014), demonstrating high performance accuracy in identifying the culprit
food product across a large set of simulated contamination scenarios. These methods are ultimately
limited by the extensiveness and temporal relevance of the available food product dataset. However the
success of simulation results demonstrated in Kaufman et al. (2014) suggest that the approach can provide
public health investigators with better information than currently exists on which food products might be
causing an outbreak.

Identifying the location source using technology enabled traceability systems
The use of technology-enabled systems to follow the movement of products through the supply chain can
facilitate immediate traceback capabilities (Business Insights 2010, Wu et al. 2011, Storoy et al. 2013,
McEntire and Bhatt 2013). A software enabled full-chain traceability system can capture the movement of
each parcel or piece of food during its entire journey through the supply chain using electronic tags in the
form of a barcode or radio frequency identification (RFID) chip. This information can be used to track
and identify the real-time location of a food product no matter the complexity of the supply chain (Wu et
al. 2011).

However even as the industry gradually moves towards a sensor-based future, full supply chain
traceability, which requires all members of the supply chain to participate and pay, is a distant reality.
Furthermore, there are limits to the power of technology-enabled traceability systems. Many food
products have yet to become technologically traceable, and are unlikely candidates due to cost
considerations or the nature of the product (Golan et al. 2004). And even if traceability data is
systematized by individual businesses, tracking products across companies would still be the primary
challenge. Golan et al. point out that while firms have an incentive to create systems that identify and
isolate unsafe foods and remove them from their own supply chains, they are not incentivized to create a
traceability system that tracks food beyond those borders. Furthermore, many firms find value in some
level of anonymity. The desire for anonymity can be explained in that traceability systems increase the
probability that a firm will be identified and exposed to liability in the case of food safety problems
(Golan et al. 2004, Pouliot and Sumner 2008). Since the FDA is only provided access to proprietary
information on trade flows when responding to an incident, and only then when there is "reasonable
cause" to make inquiries into the traceback information for a particular company, this information cannot
be organized in advance of a contamination event. Connecting the dots between companies can require
considerable time and resources, delaying the traceback process (McEntire and Bhatt 2013).

1.3.2. Opportunities for improvement
This thesis focuses on improving the response to large-scale, multi-state outbreaks. There are multiple
opportunities for improving each component of the outbreak investigation process that can have positive
and meaningful impacts on public health. Novel strategies facilitated both by new tools (e.g., "next
generation sequencing") and the revolutionary availability of digital sources of data related to food sales
and consumption trends are being developed to contribute to the ability to (i) detect outbreaks and (ii)
implicate the food vector causing the disease. However, methodologies that harness these new tools and
data sources to contribute to solving part (iii) of the outbreak investigation, localizing the source, have not
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been brought to bear on the problem, despite the availability of a large amount of relevant system
information, as we discuss below.

To fill this gap, this thesis develops novel methods that leverage currently unutilized or underutilized
sources of information to contribute to the food safety regulator's ability to identify the location source of
an outbreak. If public health officials can more quickly and successfully identify the location source of
contamination, the outbreak can be stopped from spreading, the number of people who get ill can be
reduced, and unmerited damages to the food industry can be avoided. This work therefore takes a deep
look into the question, how can we locate the source of contamination with greater accuracy, certainty,
and speed?

We see the opportunity to significantly decrease the time until source detection through working on two
limitations: (1) deferring the investigation until confirmation of an outbreak has been established through
PulseNet, and (2) failing to utilize all of the data available to contribute to solving the problem - and by
association, developing methods to harness this data. Regarding (1), we acknowledge that this
confirmation is a vital step to ultimately establishing with certainty the link between a case and an
epidemic strain. However for the reasons discussed above, public health authorities will have access to
these possible cases of illness as soon as a preliminary diagnosis is received at the site of medical care,
which can be a few days to 3+ weeks before PulseNet confirmation. Furthermore, these initial, "tentative"
cases could be supplemented by using case reports identified using Digital Disease Detection methods as
mentioned above. We propose leveraging these initial case diagnoses to enable an earlier investigation of
convergent sources of contamination.

Cases Averted with Earlier Traceback
180

160

140

120 -

100 - Number of Onsets (Epi Curve)

-Total Cases

' With Traceback (LB)

60 With Traceback (UB)

40 With Traceback (Avg)

20

Date

Figure 1.3. Representation of cases of illness potentially avoided if the traceback investigation had
begun as soon as 10 cases had been identified as cases of E. coli 0157:H7. The "Number of Onsets"
and the "Total Cases" represent the actual outbreak data while the "With Traceback (LB, UB, Avg)"
represent the lower bound, upper bound, and average number of cases avoided with a more timely
recall. Source of data: (CDC 2006).

The value of an earlier start can be illustrated by examining the timeline of the foodborne disease
investigation involving the 2006 outbreak of E. coli 0157:H7 in fresh spinach, which caused 206 reported
infections and 4 deaths across 26 states (CDC 2006, CDPH 2007). Based on the range of dates given in
the timeline of case reporting (Figure 1.1 and Appendix 1.1) and the disease incubation period for E. coli
01 57:H7 (FDA 2016), Figure 1.3 represents the lower bound, upper bound, and average number of
illnesses that may be have been avoided - 110, 19, and 34, respectively - if the traceback investigation
had commenced by the time a cluster of 10 cases of E. coli had been preliminarily identified (T in Figure
1.3) instead of waiting for confirmation of the cluster by PulseNet (T2 in Figure 1.3). In reality, the
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regulatory traceback investigation did not begin until PulseNet confirmed the link between the outbreak
and the cases, which turned out to be well after the epidemic curve had peaked (CDC 2006).

Regarding (2), we start off by noting that the triangulation approach to source identification mentioned
above is fundamentally limited by its inability to leverage available information that can be contribute to
identifying the location source of an outbreak. Because of the logistical limitations, investigators are only
able to make use of a small subset of the reported cases of illness - data that serves as evidence in the
source location problem. With only a few pieces of evidence, the time consuming traceback will often be
unsuccessful in narrowing down the problem significantly. Furthermore, the process considers only
supply chain structural information, that is, whether a link exists between different supply chain actors,
while missing other dimensions of supply chain data that can help to differentiate between possible
sources.

Moreover, triangulation represents a missed opportunity to utilize other valuable system information to
solve the source localization problem. When each supply chain pathway is considered individually, the
greater food distribution system that these pathways and their related supply chain actors are a part of is
ignored.

1.3.3. A network approach to traceback
Food distribution is a complex system that can be seen as a network of trade flows connecting supply
chain actors. Identifying the source of an outbreak of contamination distributed across a network can best
be solved by considering this network structure and the dimensions of information it contains. The
approach proposed and developed in this thesis is built upon the fundamental concept that we can utilize
this network structure and its multiple dimensions of information better solve the problem of tracing the
source of large-scale outbreaks.

While the exact parameters will vary from product to product, all food distribution systems can ultimately
be represented by the same layered, directed network structure, as described in Chapter 2. The distribution
network is made up of multiple stages of production, distribution, storage, and consumption, where each
stage represents a specific class of supply chain actors. Food is created in the first stage, which represents
the point of production at a farm or other type of producer, and is distributed along links by logistic
service providers (represented by links) to interior stage nodes until it reaches the final stage, representing
point of sale at retail or food service establishment. The interior stages may be involved with storage,
collection, or further processing of the commodity. The source of a large-scale, multi-state outbreak will
originate at a high stage of the network, e.g. in the producing or processing stages; only nodes in these
stages are able to reach downstream nodes in geographically distributed locations. Case reports of illness
are associated with the retail node at which the offending product was purchased.

With this structure fully mapped, it is straightforward to utilize all case data (i.e. evidence) available
during an event to identify the set offeasible sources of contamination. The feasible sources can thus be
identified as the set of nodes in the producing or processing stage that share at least one network path to
all contaminated retailer nodes. The set of feasible sources resulting from utilizing all case report evidence
will be smaller than that resulting from the subset considered in triangulation.

Network structural information provides a first cut into the source identification problem, enabling us to
identify the feasible sources of contamination. To differentiate between the feasible sources, we can
leverage further dimensions of information available within the network. First, each link contains
information about the quantity or volume of goods traded between supply chain actors. Second, time
dynamics along the links provide additional information. Each network path, or collection of directed
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links and nodes from origination to point of sale, contains information about the distribution of time that a
contaminated product could have taken to travel these steps. Combining information from the volume
along links and the resulting temporal distribution along paths provides insight into who is more likely to
have transmitted to whom. This insight can help us to discriminate among the feasible sources.

Producers

Processors

Z ~ 1A . fyA ' Distributors

Retailers

Figure 1. Illustration of a layered, directed food distribution network.

Our proposal
In this thesis, we develop a novel, network-theoretic approach to traceback that leverages all dimensions
of information available for solving this problem. This approach can be used to supplement existing
methods in outbreak investigation. We propose utilizing initial case diagnoses to enable an earlier
investigation of convergent sources of contamination. In advance of sending out investigators and the
onerous process of collecting official records to document product pathways, a low-cost, low-
commitment computer model could be used to guide investigators specifically to the highest probability
source locations while eliminating other locations as infeasible. This supplemental investigation would
help to prioritize leads early on, potentially leading to faster resolution of the investigation.

A network approach to traceback presents important advantages in comparison with the current regulatory
approach to traceback:

" Immediate identification offeasible source locations
* Ranking offeasible sources by likelihood each one is true source
* Straightforward use of ordered ranking to develop systematic investigation strategies
" Low financial and opportunity cost to implement

o Low financial cost since the traceback system would function on a computer model at very
low cost to implement and no cost to operate.

o Low opportunity cost because generation of investigation recommendations can be done at
no exclusion of other approaches

* Leverages all data available:
o All case reports, including initial or "tentative" cases; Comprehensive system network data

Due to these advantages, the proposed approach can offer significant improvements to the outbreak
response process, such as the ability to

* Outperform current triangulation methods
* Successfully resolve many more investigations
* Resolve investigations early enough that cases can be averted
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This thesis demonstrates these benefits, quantifying the specific improvement observed in computational
results.

The communities we believe will benefit from the Traceback Tool are food-safety and public-health
agencies, emergency preparedness officials, and other risk assessment bodies who are in need of
improved methods for rapidly identifying the source of foodborne diseases. Sherri McGarry, the
Foodborne Outbreak Coordinator in the Office of Compliance, Center for Food Safety and Applied
Nutrition at FDA Headquarters and Erica Pomeroy, Consumer Safety Officer at the FDA San Francisco
District Office, have emphasized the need for scientifically sound approaches to guide investigation and
control measures. Mrs. McGarry has asserted that the most difficult time of the outbreak investigation is
during the early stages "when there are many different potential suppliers who all fall into the same time
frame, but no way of knowing who is implicated until commonalities start to appear.. .Any measure that
will help to determine where we should focus our attention and give leads on the investigation would have
a lot of application and utility for public health, and for business as the longer the outbreak the greater the
impact on industry" (S. McGarry, personal communication, December 20, 2012). Furthermore,
"messaging could be more targeted because we would be able to narrow down more quickly where the
product is not coming from...This could really make a difference early on!" Ms. Pomeroy, a boots-on-the-
ground outbreak investigator, believes our methodology would help her to direct an investigation: "If I
could potentially have some model that could leverage risk factors ahead of time, and to combine this
with whatever information exists about the nature of the distribution and exposure point, that would
provide a great value" (Erica Pomeroy, personal communication, January 3, 2013).

Beyond its immediate and clear public health relevance, improving the ability to locate the outbreak
source has real application to a current federal-level policy debate. In 2011, the landmark Food Safety
Modernization Act (FSMA), the first major reform to food safety in 70 years, was signed into law.
Among the Act's many provisions is an extension of traceability requirements. Specifically, FSMA
extends the authority of the FDA to establish, as appropriate, "a product tracing system to receive
information that improves the capacity to effectively and rapidly track and trace food that is in the United
States or offered for import into the United States." The Act does not include specific provisions for
implementing the law, and the regulatory timeline for determining the requirements is still developing.
We suggest that the source localization framework developed in this thesis presents a viable approach to
improving the capacity to "effectively and rapidly track and trace food."

1.4. Existing network approaches to traceback
We now consider how network information is leveraged by existing studies in the research literature to
approach the problem of outbreak detection. Most work involving networks and outbreaks of
contamination has been focused on the forward problem of understanding and forecasting the spreading
process and its dependence on the structure of the underlying network. A portion of this research has been
specific to the case of foodborne disease outbreaks on food distribution networks. In recent years, we have
seen some work on the inverse problem of identifying the source of general outbreaks. Nonetheless, none
of these studies have been specific to the case of foodborne disease. In the following, we review both
forward contamination-spreading studies and inverse problems, focusing on the latter. We show that none
of the existing approaches are designed specifically for tracing back the source of outbreaks on the unique
structure of food distribution networks, highlighting how this makes them less effective in solving the
problem.

1.4.L. Forward spreading problem
Recent years have seen the advent of epidemiological and network-theoretical approaches to the problem
of identifying the geographical origin of large-scale outbreaks of disease. The first type of approach

30



11
involves methods developed to determine the risk and characterize the impact of outbreaks. Computer and
mathematical models are being used to simulate spreading dynamics in order to understand the potential
impact of foodborne disease outbreaks on consumers. At the urging of the FDA commissioner in response
to 9/11, Harlander and Sholl (2007) of BT Safety, LLC, created a simulation system to demonstrate the
potential magnitude of public health and economic consequences of a specific contamination scenario,
e.g., introduction of botulinum toxin into specialty ice cream production. More recent studies have used
GIS (Geographical Information System) based spatial analysis of road networks to identify vulnerabilities
and measure risks associated with contaminated food (Beni et al. 2011; Hashemi et al. 2012). Some
modeling approaches have focused on the role of supply chain structure in determining spreading
dynamics. Wein and Liu (2005) developed a mathematical model of a cows-to-consumers supply chain
associated with a single milk processing facility that is the victim of a deliberate release of botulinum
toxin. Their model evaluates the dispersion of contaminant and subsequent impact on consumers resulting
from various types of flows and supply structures. Pinior et al. (2012) used simulation to explore the
extent to which inter-dairy connections influence the spatial spread of contaminated milk and resulting
contamination risk. Conrad et al. (2012) present a general methodology for the stochastic mapping of
fresh produce distribution networks and illustrate an application to a small-scale supply chain case study.
This study is the first to introduce the idea that mapping network structure can help to determine the
sources of a contamination through backward tracing.

1.4.2. Source identification problem
The second type of approach involves methods for tracing back outbreaks to the source; these can be used
to supplement or assist investigators in identifying and narrowing down potential sources of
contamination. Attention to understanding and tracing back foodborne disease outbreaks has emerged in
academic research communities only very recently, but there has been significant effort in studying the
dynamics of outbreaks on networks more generally over the past couple decades (Moore and Newman
2000; Pastor-Santorras and Vespignani 2001; Newman 2002; Keeling and Eames 2005; Riley 2007; Lind
et al. 2007; Brockmann et al. 2009). This research has focused on the forward problem of understanding
and forecasting the diffusion process and its dependence on the structure of the underlying network. Very
little work has been done on the backward-tracing problem of identifying the source of an epidemic. Shah
and Zaman (2012) developed a maximum likelihood detection estimator for inference of the unknown
source for general graphs, which assumes a fully specified transmission network with precise
transmission times. Pinto at al. (2012) built upon this approach, assuming only a small fraction the nodes
in the transmission network can be observed. Their approach relies on the precise transmission timing at
the observed nodes to fill in the unknown components of the infection graph. Farajtabar et al. (2015)
introduce a new approach that improves upon the detection ability of Pinto et al. by developing a model
that represents a given outbreak scenario with more specificity. Their approach is based on a two stages,
the first of which is to fit a model of contamination diffusion to a set of multiple historical outbreak
datasets. Second, they identify the source as the node that maximizes the likelihood of the observation
times and locations associated with an ongoing outbreak according to the learned diffusion model. Comin
and da Fontoura Costa (2012) demonstrated the relationship between network centrality measures -
standard degree, betweenness, closeness, and eigenvector centrality, and the source of spreading.
Centrality is also key to the methods used by Prakash et al. (2014) and Fioriti and Chinnici (2012), who
developed spectral techniques to identify a set (not a single source) of origin nodes.

Whether it be disease in human contact networks, rumor outbreaks in social media, or viruses in computer
networks, these studies all assume knowledge that would not be available during actual epidemic
outbreaks of foodborne disease. First, all approaches assume that contamination observations are available
as scattered throughout the entire cascade process, with transmissions observed both close and far
removed from the source (in network hops) and make use of this information to zero-in on the
contamination start time and location. The information assumed is good enough either to form or to
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estimate the exact transmission network/tree of who passed the contamination on to whom. However in
outbreaks of foodborne disease, the only temporal data available to bound the determination of when the
contamination passed through certain network points is at the very end of the trajectory. This is because a
contamination is only observed when a consumer reports an illness, whereas the contamination will
traverse multiple network steps through supply chain nodes before finally making it to that downstream
consumer. Temporal data available only at the very end of a contamination's trajectory does not provide
enough information to reconstruct the transmission tree/network. Methods assuming distributed
transmission time data thus cannot be applied to the case of foodborne disease. Additionally, even if the
temporal data on case reports is available as scattered throughout the contamination cascade as is the case
of outbreaks of infectious disease spreading from human to human, the assumption that the temporal
information available will be good enough to assemble the transmission tree is rarely the case in practice.
Real outbreaks are characterized by significant underreporting, with CDC estimates of underreporting
varying from 10 to 75 times for different pathogens (Scallan et al. 2011). Application of these methods to
traceback the source of these outbreaks in real-time, given knowledge about the diffusion network
available at the time of the emerging event, have yet to be seen.

However while the temporal data may be reduced in the case of foodborne disease, other information is
available: the relative amounts of commodity volume traded across the links of the weighted distribution
network. A single approach to apply network-theoretic methods to identifying the location origin of an
outbreak of foodborne disease, which accounts for the unique elements of food distribution networks, is
presented in Brockmann and Helbing (2013) and Manitz et al. (2014). These studies apply a network-
theoretical method for source localization in general complex networks to the context of foodborne
disease, demonstrating the ability to resolve the source of the application to the 2011 E.coli outbreak in
Germany (WHO 2011). A spatial transport network representing travel paths between geographical
districts underlies their approach, which is focused on identifying the geo-spatial location of outbreak
origin rather than its location within the supply chain. Their method, called the "effective distance,"
leverages the observation that while a contaminant can travel a multitude of paths to any other node, the
dynamics of transmission are dominated by (i) the shortest paths and (ii) the highest probability paths;
correspondingly, longer, lower probability paths are penalized (Brockmann and Helbing 2013). Its
application requires only information on case reports collected by public health institutions rather than a
detailed history of transmission. Applied to the historical case, the effective distance method is able to
localize the outbreak source within a narrow geographical area, dramatically reducing the set of possible
origin locations. While the traceback resolution is promising, the method focuses only on the network-
spatial predictive component and does not leverage predictive information to be gained from considering
the times of illness reports or contribute to the problem of identifying the start time of the epidemic. In
addition, it is ultimately limited by the specificity and resolution of the underlying network, which models
general transport systems and does not differentiate between supply chain actors, allowing any node in the
network to be a possible source of spreading. The features of the multi-scale structure of transport
networks for which the method is designed - great heterogeneity in degree distribution and length of
paths travelled by contaminations - are not typical of many supply chain networks; multi-partite networks
for which the length of all network paths from source node to contamination point are equal or close to
the same number of steps, differing at most by the number of layers in the network.

To summarize, multiple practical constraints distinguish this problem from source identification in other
network contexts: (i) that only a small fraction of illnesses are reported, (ii) that the reported times are
imprecise, and (iii) that the presence of contamination at locations within the distribution network is
unknown or hidden; thus, the source of contamination can be recovered only from the information
associated with the reported illnesses. Any methodological approach to this problem should be developed
around these constraints. Furthermore, multiple dimensions of information are available to the foodborne
disease outbreak detection problem, and these should be leveraged: directed, layered network structure;
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the temporal dynamics of how contamination spreads; and weighting information provided by volumes of
commodity traded. While many successes have been presented in the literature, an approach has not been
developed that is (i) specific to the context of foodborne disease and (ii) leverages and combines the
multiple sources of data available to this problem. The network structure assumed in all existing work is a
general, undirected network in which any node can be the source and any node can be contaminated,
which is not the case for food distribution networks. Furthermore, the approaches can be categorized as
utilizing either network structure and volume information or network structure and temporal information,
but not a combination of the two.

1.4.3. Network Structure and Traceback Accuracy
Network structure is a key determinant in spreading dynamics (Newman 2002; Pastor-Satorras and
Vespignani 2001; Gonzalez et al. 2009; Onnela et al. 2011; Grady et al. 2011), and it should likewise be a
determining factor in backward tracing. One can easily imagine that for a network composed of vertically
integrated supply chains, any observation of contamination can be correctly traced back to the original
source. On the other hand, if there are a lot of cross distribution links among entities in the chain, the
uncertainties of source contamination can be extremely complex, e.g., if tracing is investigated on the
Sara Lee Bread supply network discussed above. The more cases showing contamination, the fewer
locations are suspect due to the topological properties of the network. That is, only so many farms could
have caused contamination at precisely this set of contaminated retailer locations. Understanding the role
of network structural parameters in affecting the ability to identify the source has important practical
implications, helping to develop an understanding of how and in for what situations we expect to achieve
accurate results. While this is an important area of research, our review has not identified any studies that
systematically explore the role of network structural properties in determining the ability to identify the
source of spreading phenomena for complex networks in general, let alone food distribution networks.

1.5. Research Objectives
This thesis aims to develop an implementable framework and set of methods for real-time source
detection that is specific to the context of foodborne disease, filling the literature gap identified above.
Specifically, this research seeks to address the two following objectives:

(1) Develop a framework and approximate inference approach for solving the constrained
foodborne disease source identification problem. We design a solution that is specific to the
problem context. We assume an accurate representation of the supply chain network structure as a
directed, layered network from farm through processing, packaging, and distribution, to retail,
where only certain node types can be considered as the source (e.g. farms or processors), and only
consumer nodes can report infection. In addition to network structural information, the approach
leverages the spatial and temporal dimensions of problem while explicitly incorporating the
uncertainty intrinsic to the evidence available to investigators at the time of an outbreak.

(2) Explore how the structural properties of food distribution networks affect the ability to
accurately identify the source of contamination, ultimately enabling us to determine for what
combination of structural features and thus what food types our methodology is likely to provide
the greatest benefit. We identify specific features of food distribution networks that play a greater
role in determining the traceability of an outbreak. We build a modeling framework that
incorporates these features, coming at the problem from two ends. We develop models
representing stylized versions of the problem; these will help us to derive new, general insights
regarding how structural properties of food distribution networks affect the ability to infer the
source of a contamination. From the other direction, we develop geographically and structurally
realistic regional models that include true system complexity, which will allow us to validate and
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test robustness of stylized results, to quantify the potential benefits of the investigation strategies
being developed. This analysis will help us to determine the data requirements of the framework,
considering the level of detail in in modeling and data necessary to achieve high traceback
performance without oversupplying it.

(3) Develop investigation interventions to guide investigators at the tactical level in applying
their search effort to solve an investigation and minimize impact on public health.
Mechanisms are developed to support investigators in deciding (i) when and where to deploy
investigators and (ii) when to message the public implicating the likely outbreak source(s) and
what locations it should include. The procedures involve investigators predetermining a desired
accuracy level and allocating a non-monetary "budget" of resources to the investigation.

1.6. Thesis Contributions and Organization

1.6.1. Holistic source detection sy'stem
The practical objective of this thesis is to contribute to the food safety regulator's ability to efficiently
locate the source of large-scale outbreaks while contamination-caused illnesses are occurring, thereby
resolving investigations earlier and averting potential illnesses. To this effect, the primary contribution of
this thesis is the development of a holistic system for rapid identification of the source within the
constraints of available or acquirable resources. In advance of sending out investigators and the onerous
process of collecting official records to document product pathways, this system would be applied to
effectively prioritize investigation leads. It would be used to definitively identify feasible source
locations, and would narrow the true source to within a small, bounded set of high probability candidates
with a quantified accuracy. This bounded set of candidates would inform specific recommendations
regarding when and to which facilities to implicate in public service messaging and to deploy
investigators to confirm predictions. It would be accomplishable at marginal cost, since the traceback
system would function on a computer model at low cost to implement and no cost to operate.

On a high-level, the system is based on a network-theoretic, spatio-temporal framework for outbreak
detection that functions on current domestic food systems network data, reported cases of illness and a
prior probability function over likely sources. The traceback framework outputs a set of feasible sources
of contamination and their relative probability of being the true source, producing an ordered ranking over
the feasible candidates. This source data is input into a decision model for investigation interventions,
which provides investigators with a set of recommendations for two distinct options for action: (i) where
to send on-the-ground investigators and (ii) when and what to message to the general public about
potential contaminated foods. The development and review of this holistic framework is provided in the
four main chapters of this thesis and a future plan for practical validation is provided in the conclusion.

Figure 1.4 provides a stylized flow diagram of the holistic framework, broken into 8 stages. Stages 1 -
6 follow a linear flow, starting with the necessary externally generated data inputs and finishing with
dual-decision making recommendations for food-safety regulators. Stages 7 and 8 are a data
generation and feedback cycle that updates the accuracy of traceback and recommendation. Stages 1
- 3 are addressed in Chapter 2; the accuracy of Stage 4 is addressed in Chapter 3; Stages 5 - 8 are the
focus of Chapter 4; how to implement the entire framework is addressed in Chapter 5.
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Figure 1.4. Flow diagram of holistic source traceback system.

1.6.2. Challenges and Limitations
Vital to using the traceback framework during actual contamination events is a real-world supply chain
network model for any food involved in a contamination event. Furthermore, the ultimate accuracy of the
combined model-and-method approach will depend on the fidelity of the network data. The network
model must take a systemic view for a given commodity, since the national food supply is a coherent
system; products, regions, and actors are connected and are often interdependent. To implement the
traceback methodology in an emergency, a database of network models for various food types would need
to be constructed in advance so that the methodology is ready to launch immediately. However as
addressed in Section 1.2, data on structures of aggregated distribution networks is not readily available
from publically held sources, nor does it exist in any database in an organized form. Acquiring and

organizing this information at this level of detail presents three major challenges. First, food distribution
networks are markets characterized by inherent stochasticity. Some trade relationships are enduring while
others may be based on transitory spot-markets. Second is the challenge of acquiring and organizing the
information. Trade relationships are proprietary information that businesses are often reluctant to share,
since they constitute competitive information that presents advantages in the low-margin retail food
industry. While each facility must participate with at least the "one-up, one-back" recordkeeping
mandated by the Bioterrorism Act of 2002, this data is proprietary and must be shared with FDA only
when responding to an incident. Third is that even if this information is made available to regulators,

collecting and organizing the data in a well-maintained system would present extensive practical data-
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management challenges. Foods of today are complex and outbreaks can occur in foods containing dozens
of ingredients.

In Chapter 5 we consider these challenges in detail and ultimately posit an implementable traceback
system that would have limitations in its granularity. For the purposes of developing our methods we
assume in Chapters 2 - 4 that we have access to well-characterized food distribution data.

1.6.3. Thesis organization
Chapter 2 is the main theoretical contribution of this thesis. We present a network-theoretical framework
for source localization during foodborne contamination events. As discussed in the previous section,
multiple practical constraints distinguish this problem from source identification in other network
contexts. We develop an approach that is specific to the problem of foodborne disease, accounting for the
complexities distinguishing it from source identification in other network contexts.

We introduce an approximate inference algorithm for solving the constrained foodborne disease source
identification problem, called Spatio-Temporal Traceback (STT). Given the distribution and timing of
outbreak-related cases and knowledge of the distribution network, characterized by volume flow
proportions between nodes at known geographic locations, the inference algorithm uses probabilistic
induction and network analysis to determine the probability that any location is the outbreak source. It
returns a probability mass function (PMF) representing the posterior probability that any feasible
candidate is the true outbreak source, and an estimate of the outbreak initiation time. Due to topological
properties of the network, the greater the number and dispersion of cases, the fewer locations are suspect;
the greater the homogeneity of the network structure, the more differentiated the resulting probabilities
will be. The feasible set is rank-ordered according to their probability values, identifying the estimate for
the likeliest source or set of sources. Underlying the method is an assumed structural model of the
distribution network and a diffusion model of contamination. Given the network and diffusion model, the
method utilizes information from both the location and time of each illness report to determine (i) its most
likely trajectory through the network and (ii) the aggregate probability across all possible trajectories, for
each feasible source node. It then proposes a "two for the price of one" solution, which simultaneously
identifies the most likely contamination source and its initiation time by maximizing the likelihood of the
observed contamination times and aggregate path probabilities.

We develop a simulation-based evaluation framework and set of accuracy metrics that enable us to
measure the success of the traceback methodology across a wide range of network structures and outbreak
scenarios. We then present an initial performance evaluation study, applying the techniques illustrative
numerical examples in order to provide (i) an indication of the accuracy and applicability of the method
and (ii) a first step towards understanding how the accuracy of detection depends on the structural
property of heterogeneity of a network and on the stochastic evolution of the disease trajectory. These
analyses provide insights derived from this initial evaluation and the implications for practice.

The contributions of Chapter 2 fall into four categories:
i. We formulate an original network-theoretical framework for identifying the location and initiation

time of the source of a large-scale outbreak of foodborne disease, which is specific to the unique
complexities distinguishing this problem from source identification in other network contexts.

ii. We develop an approximate solution algorithm that exploits the temporal and structural
dimensions of this problem.

iii. Through illustrative numerical examples, we provide an indication of the accuracy and
applicability of the method and show that it follows intuitive properties.
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iv. We demonstrate that the algorithm's convergence process depends only on the network topology
and is independent of initial conditions, i.e., does not depend to the choice of prior distribution
over the sources.

Our ultimate objective is to evaluate the utility of these methods in real-world scenarios, and in
comparison to existing methods in outbreak investigation. Chapter 3 provides a first step towards
validating the accuracy and applicability of the traceback methodology in real-world scenarios. First, a
generalizable modeling framework representing key structural and spatial features characterizing real
distribution networks is developed and implemented to model the distribution of two specific
commodities in the US: tomatoes and lettuce. We evaluate the performance of the traceback methodology
applied to these two realistic structures, demonstrating high accuracy in both identifying and localizing
the outbreak source. We analyze results to provide an understanding of how the successful resolution of
an outbreak depends on the structure of a network, and the robustness of results for food distribution
networks in general. We then develop a framework for quantifying benefits in comparison to existing
approaches to foodborne disease outbreak source detection: to a practical baseline meant to demonstrate
current methods applied in practice during outbreak investigations, and furthermore, and to a best-in-class
method presented in the literature (Brockmann and Helbing 2013). Our method significantly outperforms
both heuristics and the state of the art theoretical method across a wide range of outbreak structures.
Theoretically, these results demonstrate the suitability of our specific methodological approach to the
problem of localizing the source of foodborne disease outbreaks. Practically, they suggest that our method
can contribute to the traceback investigation process; a conclusion that will ultimately need to be
validated beyond the simulation results presented here.

The contributions of Chapter 3 fall into four categories:
i. We identify key structural and spatial features characterizing real distribution networks and

develop a generalizable modeling framework representing these features utilizing available data.
ii. We show the traceback methodology robustly identifies and localizes the outbreak source when

applied to realistic network structures; these results serve as a first step in validating its application
in practice.

iii. We derive generalizable conclusions regarding the dependence of traceback accuracy on network
structural features.

iv. We show that the method can result in significant benefits in accuracy and efficiency when
compared with existing approaches in foodborne disease outbreak source detection: a practical
heuristic meant to model current methods applied in practice, and a best-in-class method presented
in the literature. These results demonstrate the suitability of our solution to the problem of
localizing the source of foodborne disease outbreaks.

The algorithm output can form the basis of a decision-making tool enabling public health and emergency
preparedness officials to facilitate a probabilistic analysis of the source of an ongoing outbreak, and to
more effectively allocate investigative and communication resources. In Chapter 4, we develop strategies
for real-time investigation response based on the traceback inference methodology, which include
determining (i) when to message the public about the outbreak source and how to frame the statement,
and (ii) when and to which potential source candidates to send out investigators to confirm predictions.
We quantify potential benefits to public health, industry, and investigators by implementing the traceback
methodology together with this decision model. These benefits are quantified according to the
improvement in accuracy, certainty, and speed of the traceback analysis and the resulting reduction in the
number of illnesses, cost of investigation, and the impact on the industry.

The contributions of Chapter 4 fall under four categories:

37



i. We define the attributes accuracy, benefit to public health, and cost to regulators or industry as
characterizing the performance of investigation interventions; these performance measures allow
us to define an framework for enumerating, quantifying, and comparing intervention options.

ii. We propose mechanisms based on the traceback methodology of this thesis for deciding when and
where to deploy investigators and when and what to message to the public given an allowable
level of risk and the resources available.

iii. We quantify the potential benefits to public health possible if interventions based on these
mechanisms are implemented, measured in terms of illnesses averted.

iv. We show from computational results that these methods demonstrate great potential to improve
upon current methods in outbreak response, recommending whether, when, and with what to
respond during an outbreak.

To implement the traceback methodology in an emergency, a database of network models for various
food types would need to be constructed in advance so that the methodology is ready to launch
immediately. The feasibility of implementing the traceback methodology and the performance of the
combined model-and-method approach will ultimately depend on the properties of the underlying network
model and the data informing them. In Chapter 5 we consider multiple approaches for modeling the
supply chain network and implementing the bank of network maps. We examine the potential accuracy of
each alternative, considering in particular the level of detail necessary to achieve high traceback
performance without oversupplying it. We suggest a means to collect the necessary data and discuss the
feasibility of its implementation. On the basis of these analyses, we recommend a combined model-and-
method approach that would form an implementable system for real-time source detection and suggest
next steps in its evaluation and implementation.

The contributions of Chapter 5 fall in four categories:
i. We specify the requirements of the underlying system-wide supply chain network model and

propose four approaches for modeling the structure meeting the necessary requirements.
ii. We examine the potential accuracy of each alternative, considering in particular the level of detail

necessary to achieve high traceback performance without oversupplying it.
iii. We suggest a means to collect the necessary data and discuss the feasibility of its implementation.
iv. On the basis of these analyses, we recommend a combined model-and-method approach that

would form a ready-to-implement system for real-time source detection and suggest next steps in
its evaluation and implementation.

It is important to stress that the results derived and benefits quantified in this thesis are estimated from
simulation; live use of these techniques has yet to occur and may demonstrate features of the real problem
inadvertently omitted from the modeling. Extensive testing of the methodology will be necessary to
determine the utility to public health, measured in terms of how much earlier an investigation can be
resolved and how many illnesses averted as a result. In Chapter 6, we conclude the thesis by
summarizing the results of research and recommending a specific, rigorous, two-stage evaluation the
traceback methodology. The first step will be to demonstrate the ability to correctly localize the origin of
historical outbreaks. A research project undertaken this activity has been planned for October - December
2016, described in detail in the Conclusion. This is one step towards validation, but still within the
confines of research. The data available post-fact will always be better than what would be available at the
time of an outbreak, due to the delays and inaccuracies in case reporting. Real-time application of the tool
during outbreak emergencies will ultimately be necessary. Upon the success of the theoretical application
to historical cases, follow-on studies should be conducted to expand the validation process in live
experiment. We are hopeful this approach can significantly improve upon current methods and thus
increase the capability of investigators to quickly and efficiently respond to food safety problems.
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Appendix 1.1
Timeline for Case Reporting

Timeline for reporting cases: Typically 1 month

Typically 1-S days Typically 1 - 3 days Typically 0 - 7 days Typically 1-JO days
Disease identified Isolates, case report Case confirmed;

healthcare or other outlets received by PulseNet; added to Epi curve
public health agencies

Figure AL.L. Timeline for Reporting Cases. Data sources: (CDC 2015a-b, FDA 2001, Wilkins et al. 2015, WHO
2008).

After a patient begins to experience symptoms, a series of events must occur before public health officials
can confirm that the patient is part of an outbreak. These events, known together as the Timeline for
Reporting Cases, mean there can be a substantial delay between the start of illness and confirmation that a
patient is part of an outbreak. The timeline is as follows (CDC 2012):

The time to healthcare is time from the first symptom until the person seeks medical care, when
a stool sample is collected for laboratory testing. This time will depend on the intensity and the
duration of symptoms and is typically 1-5 days, but can be longer.
The time to diagnosis is the time from when a person provides a sample to when the result is
obtained from a laboratory, either off-site on-site at the location of medical care. This may be 1-3
days from the time the sample is received in the laboratory.
The time to ship to PulseNet is the time required to ship the isolated pathogen from the
diagnostic laboratory to PulseNet, the national network of public health and food regulatory
agency laboratories coordinated by the CDC that perform serotyping and standardized molecular
subtyping ("DNA fingerprinting") of foodborne disease-causing bacteria to distinguish strains at
the DNA level. This can take between 0-7 days depending on transportation arrangements within a
state and the distance between the clinical laboratory and the closest PulseNet laboratory.
Diagnostic laboratories are not required by law to forward isolates to PulseNet labs, however.
The time to serotyping and "DNA fingerprinting" is the time required for PulseNet to serotype
and to perform "DNA fingerprinting" on the isolate and compare it with the outbreak pattern.
Serotyping may take up to 3 days and "DNA fingerprinting" can be accomplished in 24 hours,
however in practice this process may take 1-10 days. If a match is found, then it is at this stage
that the patient is confirmed as part of an outbreak and the case is added to the count of cases,
known as the epidemiological curve or epi curve. Each case is identified in the epi curve according
to the patient's recalled date of symptom onset.

As a result, the delay due to the timeline for reporting cases can range from three days to three weeks.
Case counts in the midst of an outbreak investigation are therefore always preliminary and must be
interpreted within this context.

40



41



Chapter 2:
Traceback Methodology

In this Chapter, we develop a framework and approximate inference approach for solving the source
identification problem, given knowledge of the underlying distribution network and the set of observed
illnesses at specific network locations and reported times. As discussed in Chapter 1, multiple
complexities distinguish this problem from source identification in other network contexts: (i) that only a
small fraction of illnesses are reported, (ii) that the reported times are imprecise, and (iii) that the presence
of contamination at locations within the distribution network is unknown or hidden; thus, the source of
contamination can be recovered only from the information associated with the reported illnesses. Any
approach to this problem should be developed around these complexities. Another feature distinguishing
this problem and that can be exploited in its solution is the observation, discussed in more detail in
Chapter 3, is that real food distribution network structures often exhibit considerable variability in the
distribution of links and the flow proportions. A solution designed for this condition, without loss of
generalizability to cases when differentiation is less pronounced, will perform better across a greater
variety of scenarios that might present in practice.

There are multiple ways to approach the constrained foodborne disease traceback problem. Our work
developed and investigated two novel methods: Bayesian Network Traceback (BNT) and Spatio-
Temporal Traceback (STT). In BNT, a time-independent approach is taken to identify the source based on
the structure of the distribution network and the reported locations of contamination. The key idea is to
view the problem from the perspective of a probabilistic graphical model, with a random variable that
represents, for each node, whether the contamination has passed through that site (of food production,
distribution, or retail). The graphical model characterizes, through a set of conditional probability
distributions, how the observation of a contamination at a given node increases the probability that the
contamination has traveled through adjacent upstream and downstream nodes. Each random variable is
binary, meaning a node can represent one of two statuses: contaminated or not contaminated; thus, BNT
leverages "negative" information from nodes known not to present the contamination, but does not
incorporate extra information from multiple illnesses at the same node. A formulation is constructed that
uses the graphical model to identify the source of contamination as the node that maximizes the joint
likelihood of the set of reported nodes. Spatio-Temporal Traceback utilizes information from both the
location and time of each illness report individually, assuming the report times are accurate within a given
uncertainty. An underlying contamination diffusion model is assumed, and the most likely source and
initiation time are identified by maximizing the likelihood of the time delay densities of the observations
given the diffusion model.

After implementing both methods and evaluating their performance in a variety of sensitivity tests, we
find that unambiguously, STT performs better in two important dimensions: accuracy and computational
scalability. Despite the theoretically accurate probability formulation modeled in BNT, STT achieves
better accuracy by leveraging additional information. First, it incorporates temporal information from the
observations, which despite the imprecision in their measurements, should not be disregarded. Second, it
considers multiple cases of illness at each retailer, weighting pathways between source and observation
node in proportion to the number of occurrences. Given its clear superiority, this thesis will focus on STT
and its ability to localize the source to a well-defined region or a single node. A theoretical explanation of
BNT can be found in Appendix 2.1.
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The contributions of this chapter fall into four categories:
- We formulate an original network-theoretical framework for identifying the location and initiation

time of the source of a large-scale outbreak of foodborne disease, which is specific to the unique
complexities distinguishing this problem from source identification in other network contexts.

" We develop an approximate solution algorithm that exploits the temporal and structural
dimensions of this problem.

- Through illustrative numerical examples, we provide an indication of the accuracy and
applicability of the method and show that it follows intuitive properties.

" We demonstrate that the algorithm's convergence process depends strongly on the network
structure and much less strongly on initial conditions, i.e., on the choice of prior distribution over
the sources.

The chapter is organized as follows. In Section 2.1, we formulate the spatio-temporal framework and
approximate algorithm for solving the source identification problem. In Section 2.2, a probabilistic
simulation approach involving generalized food distribution network models and diffusion models of
contamination is developed to evaluate the performance of the methodology. In Section 2.3, we subject
the technique to an initial performance evaluation study. Section 2.4 concludes.

2.1. Spatio-Temporal Traceback Framework

2-1.1. Method Overview
In this section, we introduce the Spatio-Temporal Traceback framework and inference algorithm for
solving the foodborne disease source identification problem. The framework requires the following input
data:

0 Food supply chain network information
o Identity of supply chain nodes and location in geography
o The existence of trade links between supply chain nodes and volume traded
o Time dynamics of how contamination spreads across the network

* Case report data:
o Location in the network
o Time of occurrence, according to patient's recalled time of illness onset

This input data provides multiple dimensions of information that can be used to solve the source
identification problem: the network structure, volume, and temporal dynamics.

The algorithm first performs a "preprocessing" step, using the network structure to determine the feasible
sources as the set of processing or producing stage nodes that share at least one network path to all
contaminated nodes. For any given instantiation of the algorithm, the source must be assumed to be in
either the processing or producing stage.

With the feasible set identified, the algorithm then determines the probability that each feasible source is
the true source, given the observations of illness at specific node locations and times. To determine this
probability, this chapter provides a derivation that factors out the volume-based probability contribution,
decomposing the probability of being the true source into a volume component and a temporal
component. The result is that the posterior probability of being the true source is the product of the
Bayesian prior probability, a volume-based probability factor, and a temporal probability factor (Figure
2). An approach to efficiently estimate the volume and temporal probability factors, accounting for the
computational constraints of operations on networks, is designed in the following sections.
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The methodology determines the probability factors for prior, volume, and time, applying the same
process for each feasible source node individually. The prior probability is informed by information
external to the network structure. If information on known risk factors or expert opinion is not available,
the relative production quantity at each feasible node is used, assuming that any product produced is
equally likely to generate contamination a priori. The volume contribution quantifies the probability that
a feasible source node could have reached all contaminated nodes. Here, we are essentially assuming that
the (relative) total volume of goods flowing from the source to all contaminated nodes is as a proxy for
this probability. We calculate this term using the weighted adjacency matrix representing the network.
The temporal contribution quantifies the probability that the feasible source generated the observed
illness times, given what we know about the time dynamics from contamination origination to
observation. In other words, this is the probability that the feasible source node can "explain" all of the
observed contamination times. To determine this probability we first identify the set of highest
probability paths from the feasible source to each contaminated node. We then find the start time that
maximizes the likelihood of the observation times - and record the associated probability, which is the
area under the likelihood curve within a small "uncertainty window" around the observed contamination
times.

Once each probability factor has been determined for a feasible source node, we multiply these
probabilities together to determine the posterior probability that node is the true source. We do this for
each feasible source node, normalizing the resulting set to define a posterior probability mass function
(PMF) representing the probability-ordered ranking over the set of feasible sources. An illustrative PMF
and ordered ranking is depicted in Figure 3. It also returns an estimate of the outbreak initiation time. Due
to topological properties of the network, the greater the number and dispersion of cases, the fewer
locations are suspect; the greater the variance in the network structural parameters (e.g. the number of
other nodes each node is connected to; the distribution of volume along links) the more differentiated the
resulting probabilities will be.

Underlying the method is an assumed structural model of the distribution network and a diffusion model
of contamination. In the following, we develop the underlying network and outbreak contamination
models, and then present the STT approach to source detection.

2.1.2. Network Model
Below, we develop the food distribution network model that serves as the foundation for the traceback
methodology. A more thorough description of the key features and structural components of food
distribution networks is provided in Chapter 3.

Food distribution networks
Farmers

t.) 7-17 _Q17 4 * Processors

D istribution Centers

®#~~ ~,L~ etilers

Figure 2.1. Illustration of a food distribution network with of 4 stages, or groups of supply chain actors,
categorized into Farmers, Processors, Distribution Centers, and Retailers. This network consists of 17
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Farmers, 7 Processors, 7 Distribution Centers, and 21 Retailers. Food is created by the Farmers, turned
into products by the Processors, stored at Distribution Centers, and sold at Retailer nodes. Products are
distributed from Processors to Distribution Centers and Distribution Centers to Retailers by logistic
service providers (represented by links).

A food distribution network represents the aggregated (i.e. multi-company) distribution chain for a given
commodity. A visual example of the structure of a food distribution network is provided in Figure 2.1.
The network is made up of multiple stages of production, distribution, and storage or consumption, where
each stage represents a specific class of supply chain actors. Food is created in the first stage, which
represents the point of production at a Farm or other type of Producer, and is distributed along links by
logistic service providers (represented by links) to interior stage nodes until it reaches the final stage,
representing point of sale at Retail or Food Service. The interior stages can be involved with storage,
collection, or further processing of the commodity. The network in Figure 1 is composed of 17 Farms, 7
Processors, 7 Distribution Centers or Warehouses, and 21 Retailers. We note that while supply chain
actors within a stage generally trade only with actors in another stage, flows of product within stages and
across multiple stages can occur. We do not explicitly account for these cases in our modeling analysis,
but we note that the methodology developed here can represent these structures without any
modifications. (Hashemi Beni et al. 2012, LeBlanc et al. 2015, Pinior et al. 2012, 2014).

Network model
We model the food distribution network as a directed, acyclic, N-partite graph G{V,E,N}. G is assumed

to be known, though information on the status of edges may be missing. Let V(n) denote the set of nodes

u in stage n = 1,...,N. Directed edges of the form(u,v) in E may exist only between some u e V(n) and

some v e V(n+ 1). The volume of food created per unit time at nodesu e V(l), normalized across all u, is

denoted by fi,. Fo is then a matrix of dimension is x~s| with diagonal elements equal to the normalized

initial volumesf;, . The flow f,, quantifies the average proportion of food sent from u to v per unit time,
normalized across all outgoing links from u, along distance d. F is a transition probability matrix of

dimension lVi xlVi composed of the normalized flow proportions fu, such that[F]U' = fu. D is a matrix of

the same dimension composed of the distances d,. Elements along the diagonal of F correspond to self
loops and are thus equal to 0, with the exception of the flows corresponding to the retailer nodes
w e V(N), which are represented in F as absorbing states with probability 1. F is thus a proper right

stochastic matrix, with each row summing to 1. The aggregate proportion of food fsgg sent from

producing node u in stage V(1) along all possible network paths to w in stage V(n) can be found as:

agg = [()F) ' ]. (2.1)

Though we assume that flows are strictly bipartite, both the network model and traceback framework
presented here can accommodate flows across multiple stages. Extensions of the method to networks with
inter-stage links can also be made.

In sum, the food distribution network G{V,E,N} is fully characterized by the normalized initial volume

matrix Fo, a square transition probability matrix F composed of the normalized flow proportions fu
between any adjacent nodes u and v, and a matrix of the same dimension D representing the distances d,,,
between adjacent nodes.
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2.1.3. Contamination diffusion model
Key Assumptions
We assume that at the source, contaminated product is subdivided into many individual batches. At time
ts , multiple truckloads conveying batches containing contaminated product will depart from

contaminated source nodes, heading along out-going edges to nodes u E V(2). Each truck departure
entails a direction and transport time chosen independently, such that multiple trucks may travel
separately but in the same direction. At infected downstream nodes, batches of contaminated product will
be separated and then re-aggregated with other batches, contaminated or not contaminated, into new
transportation units. The process will then continue, with the contaminated units being distributed
stochastically to downstream nodes. In practice, we can reasonably expect this condition to be validated,
since due to the small fraction yet widespread distribution of case reporting, many more items leading to
contamination will travel separately than will share batches.

We also assume that the total initial volume of contaminated product is conserved, meaning that once the
contamination enters the supply chain it will not spread or grow, a conservative assumption in practice as
the concentration of contamination will likely decay during its journey through the supply chain (LeBlanc
et al. 2015; McKellar et. al 2014). We emphasize two characteristics that distinguish this model from a
contagion model of contamination spreading as a result of this assumption. First, the contamination is not
necessarily dispersed to all downstream nodes; the span of downstream nodes receiving contaminated
product will depend on the size of the initial contamination and the particular day's logistics. Second,
while in the following we refer to any node v receiving contaminated product as -contaminated" or
"infected," this implies only that at least one batch of contaminated product took a tour through v and not
that all of the product at node v has become contaminated.

Diffusion Model
We can now take the perspective of an individual contaminated item i traveling within a single batch as it
makes its journey through the supply chain to an eventual illness observation at contamination time ti .

The diffusion process is initiated by the contaminated source node s* e V(l) at an unknown time t = ts.
V(l) can represent any (upstream) class of supply chain actors, though is most often a Farm or Processor.

We model s as a random variable (RV) with a predefined prior probability distribution,

P(s* = s)= Ip, s e V(1) }. (2.2)

In the absence of any prior information external to the distribution network, the prior probabilities are
determined from the proportion of food originating at each node s e V(1), such that p, = f.

From s* , i departs for a downstream node u e V(2) , chosen randomly according to transmission

probabilities p, = f,. This process continues across the stages of the supply chain until i reaches a retailer

node o, in stage N, generating a unique path y, defined by a set of nodes in each stage, y, {s,u,...,o,}.
Transportation times between supply chain nodes u and v are drawn from a distribution Du,, = p+u, ,
where yu, is a deterministic component relating to the distance d,, , and Qu, is a random delay variable

centered on the origin. A second type of random delay is associated with storage at each supply chain
node u is chosen from a non-zero random variable Ou. From here, i is stored at retail until it is purchased,

consumed, and finally, after an incubation period, results in an infection reported at time ti, according to a
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patient's recalled time of illness onset. Due to the inaccuracy inherent in this patient-estimated onset time,
we model ti as being distributed uniformly over an uncertainty window equal to [t ir]. Finally, a third
type of random delay associated with storage at retail, storage at point of consumption, and incubation
time, is chosen from a non-zero random variable 0 ,,, parameterized by the type of food a, determining

the storage time, and pathogen # , determining the incubation time. Each infection time t, is associated
with the retail node oi e V(N) from which the offending product was purchased. The total delay density

Tg from t, to illness at ti is thus distributed as Ti = : D,,+ Qja +6..

An important feature of our model is that due to the independence of departures from s*, the direction and
time of transmission between nodes are independent, as are the path probabilities and total delay densities.
By the central limit theorem, the transmission density T, is well approximated by a Gaussian RV, even
for differently distributed delays Oj , providing these random variables have finite variances. This

condition is always met in practice, as all food items have a finite lifetime.

By some time tw , an observation window cutoff, a set 0 of K observations of illness will have been
recorded and linked to the set of associated retailer nodes H c V(N). Each observation i e 0 is composed

of the time ti and location oi of contamination, o e H , such that 0 {(t,,o,)= . Note that the o, are not

necessarily unique and |H K , since a node o, may be linked to multiple cases of illness reached by
independent paths and reported at different times.

2.1.4. Source detection
Our goal is to find the source s* from the K contamination times {t, },i linked to infected retailer nodes H.

We introduce a maximum a posteriori probability criterion S that selects the source node s = s that
maximizes the likelihood of the observations, and the prior distribution for s*:

s=argmaxP(s* =s)P({t}iE0Is* =s), (2.3)
sE'Q

where s e Q is the set of feasible source nodes; that is, the set of nodes in V(1) that have at least one path to
all contaminated nodes H. Since the probability of the observation times depends on the unknown start
time t, , we rewrite the likelihood as:

P({t1 }.01s) = max P({t1}js,ts). (2.4)

The source detection approach is to first find, for each possible sources , the value for t, that maximizes

the probability of the observations P({ti}s,t,) by varying t, over feasible times, t, E (-0, min{t,} 0 )

. After finding a value for t, and its associated likelihood P({t, },Is,t,) , we chooses with the maximum

a posteriori probability. The initiation time is left over, for free! A strategy for optimizing the objective in

(4) is developed below.

Approximate objective function
Maximizing t, corresponds to solving:

t = max P({t }, 01s,t5) = max max P({t}.E JIs,t, ,s)P(;rss) (2.5)
is XEFs&E ts
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where r, {y ,,}, denotes the collection of paths from s to all observations i e 0 , which we call a
cascade, and H, is the set of all possible cascades. By factoring the probability of the cascade 7, out of
the start time likelihood, we isolate the problem into a the temporal component and a volume component:

The first term to the right of the maximization represents the likelihood that the observation times {t, }L
are observed given the cascade r,, a probability density over time. The second term represents the
probability that the particular set of paths in the cascade 7r, is taken by contaminants i e 0, determined by
the transmission probabilities p, = f, , representing the relative volume of commodity traded.

Equation (2.5) decomposes the start time maximization problem into the sub-problem of computing and
comparing the maximum probability initiation time of each possible cascade 7, e H, . Due to the
combinatorial nature of H, however, the complexity of (2.5) grows exponentially and is therefore
intractable. To solve (2.5), we introduce an approximation. First, we assume that the actual diffusion
cascade is the maximum probability cascade, 7r'. Due to the independent path assumption, 7r' is the
collection of maximum probability paths y' from source s to all observation nodes:

Yi = max P(y,,Is)= max (1 puE (2.6)
Ysicfs. 7siErs ,v)y

where Fsi is the set of all possible paths from s to i . The resulting objective can be written as

t = ma (2.7)

Improved approximate objective function
We now consider the implications of the maximum probability cascade assumption. For heterogeneous
network structures in which there is considerable variance in both path lengths and the distribution of
links and flows, the paths traveled by contaminated product being distributed stochastically through the
distribution network will be dominated by the largest flow probabilities (Grady et al. 2011; Brockmann
and Helbing 2013). The highest probability paths will accumulate a greater fraction of the overall
transmission of contamination, and Equation (2.7) will model the actual paths traveled by a larger fraction
of observed contaminants. However many food distribution networks exhibit more homogeneous
structure, with equal or close to equal path lengths and degree distributions with lower variance. The less
differentiated the path probabilities, the likelier it is that contaminated product will take multiple paths
from s to i, and the less Equation (2.7) will be capturing the actual paths travelled by the observed
contaminants. In the extreme, when multiple paths of equivalent probability exist, Equation (2.7) will still
consider only one, and will considerably undercount the total transmission probability of s to i along all
possible paths. To avoid this error and design our method for the network structure characteristic to the
problem at hand, we improve upon our first approximation by replacing the maximum cascade probability

in Equation (2.7) with the aggregate probability P( sra 's), the cumulative probability of flows from s to

i e 0 along all possible network paths. P( 7" ais) is found as

p~ ~ f f7ag S agg
P(yr"""|s) = ie Si' ,

where fagg is defined in (1). The resulting objective can be written as
=rnx ({ 1 . 1st5 =max P(t 7~OS~r m )P(ragg1s) , (2.8)

ts = mhax P({tiErO s'ts (1tErO EtS S S n g

where the first term to the right of the maximization represents the likelihood that the observation times

{ t },L are observed given the set of maximum probability paths are traveled to each i, and the second
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term represents the total transmission probability from s to i along all possible paths.

Initiation time maximization problem
With the approximate objective fully specified, we now develop a solution to the optimization problem,

max P({t,}s0 1,t g,,t '"), (2.9)

where the transmission probability component in Equation (2.8) has been left out because it does not
depend on time.

The goal of Equation (2.9) is to find the start time that maximizes the observed contamination times,
assuming the contaminated items leading to those observations traveled along the highest probability
paths, and according to the diffusion model of Section 2.1.2. An important implication of the
independence assumption of the underlying diffusion model is that all products departing at the same time
from s are modeled as traveling independently from s to i, even if links along that path are shared. In the

context of the start time maximization problem, this entails that the time delay density P(tIS,t,,7 ,') for

each observation i e O are independent and can be considered individually. Thus, we can factorize the
likelihood in (2.9) as

P({t},,,s~t,") P t ls't,,ysi
iEO

where for each infected node, the above term can be further written as
P(t Is,t,,y ')= P(t+ T"ls,t,,y e [t r]) f (T|Is,t,, m7dt, (2.10)

given the inherent uncertainty T around the contamination time. As defined in Section 2.1.2, the
propagation delay T;" follows a Gaussian distribution N(psi,a ) with parameter values

a 2 2 +qa 2

(UV)e:y (UV)EY

The resulting maximization can be computed efficiently using line search methods. The optimization will
perform best when the variance of these distributions is low, meaning the travel and storage delays are
well understood, and when there is significant displacement between their means, meaning each
distribution is clearly associated with a particular path traveled.

A graphic interpretation of the start time maximization problem involving three observations is provided
in Figure 2.2. For a given candidate source node s e K, we determine the shape of the delay density

distribution P(tiJs,t,,irm) for the highest probability path to each observation i e = {(t,o,) . Each

delay density distribution is a function of the contamination initiation time t, . For an assumed value of t, ,
we calculate the probability that each observation time t,, padded by its uncertainty window r, falls

within the delay density distribution. These probabilities are equal to area within [t +r] falling under

each the density curve, as depicted by the shaded region under each curve. One can imagine moving t, ,

and with it the delay densities Tm, forward or backward in time so that the areas in the shaded regions
grow or shrink. To compute the joint likelihood across all observations i that node s is the true source,
given the assumed value t, , by independence these probabilities are multiplied, forming

11P(t, s,t,,,rM). After varying t, extensively through line search optimization methods, the start time
iEO

estimate t. is ultimately chosen as the value oft, that maximizes the joint likelihood. The more peaked the
delay densities and the greater the displacement between them; that is, the lower the variance and the
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greater the difference
resulting estimate.

in their means, the more distinguished the optimal solution will be and the better the
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Figure 2.2. Graphic representation of the initiation time maximization problem for 3 observations.

Identifying the most likely source
We now have all the pieces necessary to solve the approximate objective function, which can be written:

s = argmax P(s)max P({t1, } s,t,,K,"')P(7rj. s), (2.11)

whereP(s) is the prior distribution fors, the first term to the right of the start time maximization

represents the likelihood that the observation times {ti },, are observed given the set of maximum

probability paths are traveled to each i, and the second term represents the total transmission probability
from s to i along all possible paths. Finally, the posterior probability is determined for source s through
Bayesian updating the likelihood of the observations given s with the prior probability for s.

Equation (2.11) chooses the maximum probability source according to the approximate objective

function. A posterior probability can be constructed for each feasible source s e Q . By normalizing the a
posteriori probabilities, we can form a probability mass function (PMF),

P(s* = S {ti} ) (2.12)

over the set s e Q . The resulting PMF can be used to identify a set of the most probable sources.

We summarize the algorithm in Table 2.1.

2...Discussion
Key features and contributions
In this section, we presented an original formulation of and solution to the problem of locating the source
of an outbreak of foodborne disease. The model and algorithm presented leverages the structural, volume,
and temporal dimensions of the problem while accounting for inherent uncertainties. In particular, there
are multiple sources of uncertainty in the temporal dimension: the inherent inaccuracy in the times
themselves, recorded according to a patient's recalled day of illness onset, and the uncertainties
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accumulating across each distribution modeling delays in travel or storage through the supply chain. The
temporal component will perform best when the variance of these distributions is low, meaning the travel
and storage delays are well understood, and when there is significant displacement between their means,
meaning each distribution is clearly associated with a particular path traveled. To capture the predictive
information contributed by the temporal dimension when these conditions are met while accounting for
those cases when they are not, our solution balances the temporal contribution with the spatial
contribution, weighting the likelihood of the maximum probability time with the transmission probability
to form the total likelihood for s.

Inputs:
. G{V,E,N} food distribution network with initial volume, flow, and distance matrices FO, F, and D

. si and Qsi , parameters for the Gaussian propagation delay density k , specific to G, commodity a and
pathogen /3

. P(s* = s), prior distribution

. , illness observation set at time tw
- T, contamination time uncertainty

For uE V(1):

If u reaches all observed contamination nodes o E H , add to feasible source set s e 2

For S E Q:
For oe E- H:

Determine y' , the maximum probability path from s , using Equation (6)

Find t = max P({t, } Is,t S) using Equations (8-9), and line search optimization

Return

s = arg maxP(s)max P({t, }iOIs't, P s
seQ t'

Table 2.1. Contamination Time Source Detection Algorithm

A further contribution of this solution is its specificity to the problem context, tailored to the variability
often characteristic of distribution network structures, without loss of generalizability to cases when
differentiation is less pronounced. This is achieved through a second system of balances: the combination
of an aggregate probability term in the transmission probability with a maximum probability term in the
delay likelihood. The maximum probability term will perform best when there is greatest heterogeneity in
the structure and flows. The aggregate probability term will provide a greater advantage in homogeneous
networks while not penalizing the heterogeneous case.

The toy example in Figure 2.3 illustrates the method in application and demonstrates its advantages.
Figure 2.3a is a completely homogeneous network, where all nodes are connected to the same number of
nodes, and all flows are equal. Figure 2.3b exhibits the same structure but non-identical flow probabilities
and therefore represents a slightly more heterogeneous case. We apply the traceback algorithm to predict
the source of contamination for the two network structures, given a scenario in which two contaminations
have been observed and two feasible sources exist. The example demonstrates that the algorithm performs
best when there is variability in the distribution of links and flows, but that even when links and flows are
identically distributed as in the homogeneous case, our method is able to distinguish between the two
sources.
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We apply the traceback algorithm to predict the source of contamination for the two network structures.
First, we determine the set of feasible sources, the first stage nodes sharing at least one path to both K and
0, to be 0 = {D,E}. Now we find the probability that D and E are the true source, starting with D. We

see that D reaches K along one path, YDK ={D,J,K}, and 0 through two paths, y ={D,I,O} and

yD, ={D,J,0}. To determine the transmission probability term, we calculate the aggregate probability

from D to both observations, summing over the probabilities of the three paths P(YD,KID), P(yDOID),

and P(yeD). In the case of the homogeneous network in Figure 3a, the three paths are of equal

probability 0.25, for a total aggregated probability P(Irs"MD) = 0.75 . In the case of the more

heterogeneous network in Figure 3b, the paths are of differing probabilities P(YD,KID)=0.45

P(yloID) = 0.05, and P(Yr, ID) = 0.45, for a total aggregate of P(Kagg ID) = 0.95.

To perform the start time maximization, we choose the highest probability path from D to each
observation K and 0, determine the shape of the delay distribution for each of the two paths, and perform

the maximization according to the process in Figure 2.2 to determine tD = max P({tK tOl D,tD ,rm). For

the heterogeneous network in 2.3b, the path yl. is the clear higher probability choice for the algorithm.

Since there is a 9 times greater probability that the contamination actually traveled to 0 via this path,
there is a correspondingly greater chance that the resulting time maximization will perform well. In
contrast, both paths to 0 in the homogeneous network are of equal probability and so the algorithm
chooses one at random; if the actual path traveled is not the one chosen by the algorithm, the start time
estimate will likely result in greater error, though this will ultimately depend on how uncertain and
similarly distributed the delay densities are.

To determine the posterior probability P(s* = DI{tK ,tO}) that that D is the source, we multiply the

probability component from the time maximization, P({tK 'tOt} D1Yrnm) , with the aggregate path

probability P("""|D)=0.75, and combine with the prior probability P(s*= D). We now repeat the

process for the other feasible source E. E connects to both K and 0 along only one path each,

YE,K ={E,J,K} and YEO = {E,J,0}, so no differentiation is necessary to perform the start time

maximization. The aggregate probability term is the same for both networks, equal to P(7rs" E)=0.5.

Finally, we compare the resulting posterior probabilities to choose between D and E as our prediction for
the true source. Focusing on the contribution of the aggregate probability term to the prediction, D is
clearly established as the likelier source for both cases, though the result is more pronounced for the

heterogeneous network, where P( ra"D)=0.95 > P(7ra""jE)=0.5, compared with the homogeneous

case, where P(c"gg|D)=0.75 > P(7ra"""E)=0.5. The prediction may be further improved with the

probability contribution from the start time maximization, especially in the case of the heterogeneous
network, though again this will ultimately depend on the uncertainty in the delay densities. Thus, our
solution is able to benefit from the signal sent by the variability in the heterogeneous case, while still
being able to differentiate between the two sources when links and flows are identically distributed.
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In the initial evaluation presented in Section 2.3 and the more extensive results in Chapter 3 we will
demonstrate this behavior on a larger scale, demonstrating the high performance of our methodology
across a variety of distribution network structures.

Critical assumptions
The major assumption of this derivation is that contaminated items leading to observations of illness
travel independently through the supply chain. As asserted above, this assumption is reasonably expected
to be validated in practice, since the small fraction yet widespread distribution of case reporting observed
for large-scale, multi-state foodborne disease outbreaks means that many more items leading to
contamination will travel separately than will share batches. Of course, it is possible that food items
resulting in contamination might travel in a batch, sharing multiple steps of their tour through the supply
chain. In these cases, the optimal solution to the time maximization problem would be found in a two-
stage approach, first determining the most likely start time at the most recent shared node, and second
determining the start time by optimizing over those interior solutions. Since interior nodes are fewer steps
away from the source node, there will be a tighter bound on the uncertainty in the estimate. In this
particular problem context, however, optimizing the arrival time at intermediate nodes would contribute
only marginal improvement, if any, for three reasons: (i) there is already great uncertainty in the time
estimates, both from the inherent inaccuracy in the
across each network travel and storage delay, (ii)
available, when items leading to contamination have
that items have traveled separately than have shared
better reflects the situation in practice.

C0 0
0.5 0.5

rs OLS

J 0.

date recorded, and in the uncertainties accumulating
it is not possible to determine, based on the data
traveled in the same batch, and (iii) it is more likely
batches. As a result, we have adopted a solution that

A B C

F G H Z

L M N

Figure 2.3: Illustration of the traceback method in
well for various network structures. Figure 2.3a
where all nodes are connected to the same number

application and demonstration of its ability to perform
(left) pictures a completely homogeneous network,
of nodes, and all flows are equal. Figure 2.3b (right)

exhibits the same structure but non-identical flow probabilities and therefore represents a slightly more
heterogeneous case. Both figures depict the same scenario in which node K and 0 have been
contaminated, with one observation each.
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2.2. Performance Evaluation Framework

2.2.1. Overview
In the remainder of this chapter, we subject the Spatio-temporal Traceback technique to initial studies to
evaluate its performance. First, we develop a simulation-based evaluation framework that allows us to
measure the success of the algorithm across a wide range of outbreak scenarios and network structures.
Underlying this framework are a network structural model and contamination simulation model. The
contamination model is used to generate contamination events in the food distribution network, creating
cascades of contamination through a network that eventually lead to reports of illness at specific times and
node locations. At a slice in time in the outbreak's progression, the traceback algorithm is applied and a
PMF over the feasible sources is constructed using Equation (2.12). The feasible sources are then rank-
ordered according to their probability values. To assess the traceback accuracy of this particular network
structure, multiple contamination events are generated and the cumulative results assessed using the
accuracy metrics described below. This process can be repeated at various intervals as the contamination
event progresses and illnesses continue to present, generating a series of rankings as a function of time or
case development.

In the following, we summarize the key properties, features, and parameters of the outbreak
contamination model (2.2.2) and the network generating model (2.2.3). We then describe the experimental
setting and accuracy metrics we use for determining success (2.2.4).

2.22. Outbreak contamination sim ulation model
Outbreak contamination simulation model overview
A Monte Carlo discrete event simulation model was built to generate outbreaks, trajectories of
contamination through the supply chain, and reports of illness. The model systematizes and parameterizes
each component of the contamination event, spreading, and reporting system. A contamination initiation
event is generated according to a set of parameters defining the initial conditions defining an outbreak and
its mode of dispersion through the network. Once the contamination event has been generated, a set of
probability distributions defines the dynamics of the contamination spreading process, from distribution
between and storage at supply chain nodes, to purchase and storage at destination (home or restaurant)
before consumption, to disease incubation period after the contaminated product has been consumed, until
symptoms present and medical attention is sought. A graphic overview of the contamination spreading
process is provided in Figure 2.4. Multiple reports of illness are generated across time, which are
assembled into a simulated epidemic curve according to the date of illness onset. The parameterization of
the initial conditions allows for a combinatorially large set of possible outbreak scenarios to be generated,
while the stochasticity of the dynamical contagion process allows that each epidemic resulting from the
same initial conditions to take a different form.
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Figure 2.4. Graphic overview of the contamination spreading process. Once a product has been
contaminated, a set of probability distributions defines the dynamics of the contamination spreading
process, from distribution between and storage at supply chain nodes, to purchase and storage at
destination before consumption, to disease incubation period after the contaminated product has been
consumed, until symptoms present and medical attention is sought. Multiple reports of illness are
generated across time, which are assembled into a simulated epidemic curve according to the date of
illness onset.

Data Sources
The distributions and parameters representing supply chain dynamics are informed by models and data in
the published literature, overviewed below. Real data and expert elicitation were used to "reality check"
and tweak resulting modeling choices. Further details on the specific distributions and parameters
provided by these sources are found in Appendix 2.2. The incubation period for foodborne diseases are
estimated from the range of values documented by the FDA (FDA 2016).

Existing work presenting stochastic models of supply chain transport and storage dynamics is limited, and
the distributions chosen here were derived primarily from two references, one of which is a review
presenting models used in four different studies. Because the distributional parameters will vary for
different foods, we also reviewed field studies presenting raw data not fit to distributions in order to
compare results and estimate ranges for parameter values. The general shape of probability distributions
were informed by stochastic models presented in Laguerre et al. (2013) and Poulliot et al. (2010).
Laguerre et al. (2013) present a review of stochastic models derived from field studies measuring the time
a commodity spends at various stages in the supply chain. The probability distributions reported there are
used to inform the distribution for time spent in storage at processor, warehouse, and retail, as well as
storage at destination before consumption. Poulliot et al. (2010) derive survival distributions for the time
various types of food spend in home storage using consumer survey data. Their distributions were similar
to those presented in Laguerre et al. (2013). A review of the existing literature reporting supply chain
transport and storage time data recorded in field studies or used in non-parametric simulation models
helped to determine ranges of parameters. McKellar et al. (2014) measured residence times in a retail
supply chain from a processing facility to retail storage for lettuce in both winter and summer months.
Using the storage and delay times reported by McKellar et al. (2014), Hashemi Beni et al. (2011, 2012)
and LeBlanc et al. (2015) created a simulation model of the contamination spreading process in the
bagged lettuce retail supply chain in Canada. Dallaire et al. present a small case study tracking broccoli
through a supply chain involving 2 growers, I wholesaler, 4 retailers in same geographical area,
measuring time spent in each transit and each storage point. Finally, data previously collected and used in
an FDA food safety consequence management system (BT Safety, LLC) and anonymized shipping data
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shared by a large foodservice distributor and two national lettuce producers were used to "reality-check"
distribution and parameter choices (See Appendix 2.2).

Outbreak Contamination Model
First, a contamination event is generated at t* = 0. We assume the contamination originates at a single

node, and that this node is in stage n = 1. The source node s* is chosen probabilistically, according to the
proportion of total initial volume f, at each node S e V(l) , thus enforcing an assumption that

contaminations will originate more frequently for larger volumes handled. The volume of contamination
c* is specified by a parameter.

Multiple dispersion modes can be chosen to simulate the path of contaminated items traveling through the
supply chain. In standard dispersion, the contaminated product is separated into pallets, standardized
crates of 40 boxes of produce, which move as independent, identically distributed (lID) units through the
supply chain. This mode models even mixing at supply chain nodes, which can reasonably be assumed to
be validated in practice, and is thus implemented as the default mode. In minimum dispersion, bulk truck
loads carrying 24 pallets are the (also IID) unit of analysis. This mode assumes that pallets are sorted into
truck loads at the origin node, and that these loads remain unchanged as they travel through each stage of
the network. The maximum number of possible paths forward will be limited to the number of truck loads
of contaminated product, which for a day's worth of production from an average size farm, consists of 10
trucks. This mode is therefore meant to model a lower bound on the minimum dispersion of contaminated
product. Individual boxes considered as the unit of analysis will model an upper bound on the maximum
dispersion of contaminated product.

In any dispersion mode, a unique path through the network and associated time will be sampled for each
unit of analysis. Each path will be randomly sampled according to the flow probabilities f,, along the
links, until all the capacity along a link has been met. At the final stage of retail nodes, each unit of
analysis is disaggregated from bulk load or pallet to individual consumer retail-sized volume.

Following disaggregation and purchase at retail, a path to consumption, contamination, and potential
illness is sampled for each individual contaminated produce item:

Each unit will be purchased at the retailer node.
Each unit will be consumed by between 1 - 4 people, randomly selected.
Each person has a probability of developing an illness from the contaminated food according to
the virulence of the outbreak strain, called the infectivity, V .
Each person developing symptoms has a probability g of reporting their illness through the
medical system.

Once a path through the supply chain has been selected for each unit of analysis, distribution times along
links and residence times at nodes are sampled from random variables informed by the literature:

Transportation times between supply chain nodes u and v are drawn from a Gaussian distribution
D ~ ,. with , = du/v , where vay is the average velocity of food transport travel,

and consider the variance of Duv to be proportional to the mean Pu, such that aU =(.5p . D s
truncated for some maximum and minimum transport velocity, to ensure that it does not take on
infeasible values.
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- Storage times at supply chain nodes according to an exponential distribution S - Exp(L) , where
parameter A, is specific to the stage n of the node

- Storage time by consumer (e.g. at home) before consumption, also according to an exponential
distribution S ~ Exp(Ac )

- Incubation period 6 for the V - consumers that develop and report an illness, whose functional

form will vary by pathogen type #

Since fresh produce has a limited shelf life, any produce item not consumed within a specified shelf life
Ta for commodity a is discarded. Shelf life begins ticking from the moment of departure from the source
node.

Illnesses i e 0 are reported at a time t, and node o0 of contamination, o e H , forming a set of ordered

pairs 0 A {(to 1) K, as defined in section 2.1.2. The outbreak model generates full trajectories of

pathways travelled by each contaminated item and can therefore also be used to extract other results such
as time of consumption of contaminated food and time of contamination at intermediary nodes along the
pathway.

Outbreak scenario baseline parameter specifications
In all analyses presented in this chapter, outbreaks are generated according to the following "baseline"
scenario. The parameter (or distributional) specifications summarized in Table 2.2. We note that we
choose E.coli for the baseline scenario because the incubation period ranges over a longer timeframe than
other common foodborne diseases (Salmonella, Listeria), thus modeling an upper bound on the amount of
uncertainty introduced by this factor.

Baseline outbreak contamination scenario parameter specifications

C * Initial contamination volume I day of production volume

Dispersion mode "Average"

Pathogen E. coli

V Infectivity 1/50
G Reporting rate 1/25

Vavg Average transport speed 60 miles per hour

Vma Maximum transport speed 100 miles per hour

vm Minimum transport speed 10 miles per hour
A, Parameter for storage time at supply chain nodes, 1 /2A = I day for all stages n

for nodes in stage n

Ac Parameter for storage time after purchase before 1 / Ac =3 days
consumption

60 Incubation period distribution, for pathogen type #3 6~ Weibull (A,ic) with scale parameter

A = 4 and shape parameter K = 1.5 (E. coli)
Ta Shelf life 30 days

Table 2.2. Baseline outbreak contamination scenario parameter specifications.
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22.3. Network generatino model
As detailed in the introduction, data on structures of aggregated distribution networks is not publicly
available. Furthermore, a modeling framework capable of representing these structures does not currently
exist. Through a review of the (limited) research efforts documenting specific examples of aggregated
distribution structure (Section 2.1.1 and Section 3.1), we are able to learn about the relevant features and
parameters of these network structures. We find that these networks have particular structural properties
that are not fit by standard network generating models (scale-free, small-world, ERGM, etc.). Therefore
we develop a foodborne distribution network modeling framework. Our goal in designing this framework
is two-fold: (1) to create a parameterized modeling framework that allows us to perform specific
sensitivity and scenario analyses that explore the dependence of traceback accuracy on network structure;
and (2) to represent the essential components of this structure, and with enough accuracy to be able to
realistically evaluate our traceback approach.

In order to achieve our two goals, we develop two network generating models. Random Layered Graph
(RLG) is a completely stylized generating model that represents the specific multi-partite structure found
in food distribution networks, parameterizing many of the variables characterizing these particular
structures. This model incorporates the structural features of distribution networks but is not otherwise
informed by real network data. Regional Network (RN), the second class of model, realistically represents
structural, spatial, and temporal properties of foodborne disease networks in the US. This generating
model is informed by data on network structure, transport times, and locations and volumes of food
production in the US for various food types, and is used to gain insight into the traceback accuracy
achievable across these foods.

This chapter focuses solely on results from analysis of stylized network structures generated using RLG,
which was designed for the purpose of performing specific traceback accuracy sensitivity analyses.

Summary of network structural model features
RLG exhibits the same essential food distribution network structural features described in the Section
2.1.1, so we adopt the same notational conventions: Food distribution networks are directed, acyclic, N-
partite graphs G{V,E,N} which can be represented by a normalized initial volume matrix Fo, a square
transition probability matrix F composed of the normalized flow proportions f,,, between any adjacent
nodes u and v, and a matrix of the same dimension D representing the distances d,1v between adjacent
nodes. Fo can be seen as the initial condition defining the volume of flux along the structural matrix F.

RLG defines and parameterizes multiple variables to specify the structure and distribution of the resulting
structural matrix F and initial condition matrix Fo. In the sensitivity analyses presented in this Chapter, we
focus on the effect on detection performance of varying the variables with the ranges summarized in
Table 2.3.

Network structural variable and distributions varied in Chapter 3 analyses
Name Variable / Parameter Description Range of values or distributions

varied in Chapter 3
Structural Variables determining F

n Number of stages n e [2,6]
vn Number of nodes in stage n V, El l0,25,50,75,100,150}

Xt Distribution of out-degree links for nodes in stage n XO= (Deterministic) or

XO ~Geom( ) (Geometric)
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P Average degree for out-degree distribution Xu [
Distribution of flow volume across outgoing links from a node Flow volumes are equal

Initial Conditions determining F
F,(s) Distribution of initial volume across first stage nodes v, F (s) (Deterministic) or

F,(s) - Geom(1/AFV1) (Geometric)

Parameter governing the spread of F,(s) , = 5

Table 2.3. Network structural variable and distributions determining the structural matrix F and the initial
conditions F . The ranges of values or distributions varied in the robustness analyses of Chapter 3 are presented.

Heterogenity in network structures
Importantly, we are interested in the role of heterogeneity in network structure, which can be modeled by
(i) the distribution of the number of links leaving each node across all nodes in a stage, or the out-degree
distribution, and (ii) the distribution of flow volumes across the links leaving a single node, or the flow
distribution. In this Chapter, we will often make comparisons between networks with and without
variability in the out-degree distribution, but with otherwise identical in parameter specifications,
referring to these as the High Variance and the Zero Variance networks. All nodes in the Zero Variance
network are linked to exactly the same number of other nodes, while in the High Variance network the
number of out-degrees will vary stochastically. An example of Zero Variance and High Variance
networks that exhibit otherwise identical distributions and parameter values is pictured in Figure 2.5. The
distribution of flow volume across outgoing links from a node is not studied in this chapter.

Heterogeneity may also be introduced in the volume distribution Fe(s) across first stage nodes v, . We

study the effect of heterogeneity introduced in the initial conditions in a specific sensitivity test in Section

2.3.2. In all other studies, we define an initial volume distribution that is equal over the node setV(1) in

order to isolate the effect of network structural parameters on detection performance.

Node location assignment
In the analyses presented in this chapter, the matrix D is generated according to the same (random)
process for each network. The essential idea behind the distance assignment is to allocate nodes to
locations across a rectangular grid according to a set of simple assumptions about the geographical
structure of food distribution networks: nodes in the first and last stages are located at random across the
grid, and nodes in interior stages are located at the midpoint of incoming or outgoing nodes. The
rectangular grid is 2500 x 1500 units, roughly similar in mileage to a rectangle inscribing the United
States. Distances are determined by computing the spatial distance between adjacent nodes. This result of
this assignment is a distribution pattern in which interior nodes cluster in the center of the grid, and nodes
in the first and last stages are distributed equidistantly, on average, from the center. Because all nodes of
the same type are distributed similarly within the grid, all network paths from source to contamination
node are, on average, of a similar total distance. This in effect means that for networks generated by RLG,
the geographic distribution of nodes will have little to no role in detection performance. We study the role
of heterogeneity in geographic distribution on detection performance in Chapter 4 with the RN model.

2.2.4. Implementing the Algorithm
With the key properties, features, and parameters of the outbreak contamination simulation model and the
network generating model developed, we now describe the experimental setting and accuracy metrics we
use for evaluating the performance of the traceback methodology.
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Experimental setting overview
Simulation experiments are performed to determine the accuracy of the traceback algorithm applied to a
networkG{V,E,N}with structural, initial condition, and distance matricesF,FJ, andD and a specific
outbreak contamination scenario.

In each experiment, we generate 100 contamination events from randomly selected outbreak sources.
Each contamination event generates an outbreak source s* and a set of illness observations 0 as a function
of time and location. The set 0 can be sorted into intervals of size 0) across multiple dimensions: time
observation window t , number of illnesses KW, or number of contaminated nodes H., forming sets 0,.
An epidemic curve E can be formed by plotting the cases 0 . according to their frequency of occurrence.
At a desired interval I the traceback algorithm is applied.

We then evaluate the performance of the algorithm applied to these 100 outbreak events, at equivalent
incrementso)(. The source localization performance is quantified according to two metrics: Traceback
Accuracy and Rank of True Source. The accuracy of the start time estimation is also assessed.

Accuracy Metrics

Traceback Accuracy (TA)
Traceback Accuracy is defined in this study as the percentage of outbreak events for which the true source
is correctly identified; that is, for which s = s* . TA equal to 1 indicates perfect performance.

Rank of True Source

The traceback algorithm returns a PMF P(s* = s {t, }. ) over the set of feasible sources s e Q. The

feasible set is rank-ordered according to their probability values, such that the most likely source is ranked
in first position. The Rank of True Source metric records the position of the true source node s* within the
ranking, averaging across all outbreak events.

Start Time Estimation Error
Since each simulated outbreak begins at t* = 0, the mean of the absolute value of the start time estimate,

E[t5s, is used to characterize the error of the start time estimation.

Traceback system parameters
The traceback algorithm system parameters used in all studies presented in this chapter are summarized in
Table 2.4.

In addition to the network G and the contamination set 0, , the algorithm requires as inputs:

- Ps1 and Q1 , parameters for the Gaussian propagation delay density Tsi, which are specific to
network G
the uncertainty in the contamination time r , and

- the predefined prior distribution P(s* = s) .

The parameter Psi is further decomposed as PsI Puv + Pap , where /uv represents the mean of the
(u, V) .e St e

travel time from node u to v. We approximate the mean Yu,v as du~vlvg where du is the geographical
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distance between u and v, and Vag is the average velocity of food transport travel, which we set to 60
miles per hour.

Pap is the mean of the total delay density associated with storage at each specific supply chain node,
storage after purchase and before consumption (e.g. at the home), and incubation period, for commodity
a and pathogen P. To reflect the process modeled in baseline outbreak scenario where a is spinach and

is E.coli, the parameter Pao is modeled as 10 days, the sum of the means of each component as
informed by the literature in Section 2.2.2. This choice of parameter assumes that the delay distribution is
equivalent across all supply chain nodes within a given stage n.

M 6 2,1+o 2
The variance of T similarly decomposes as Ni = L d ao . We consider both terms to be

proportional to the mean by the same ratio of spread, such that = 1 ( )2 +(P2p) 2 .
(UVl)EY'S

We set r equal to I day, but note it could be fixed otherwise; we performed many sensitivity tests to

confirm results are robust to this value. We model the predefined prior probability P(s* = S)as being

determined from the proportion of food originating at each node s e V(l), F(s), assuming that without

further information, each food item is equally likely to get contaminated a priori. We note that this

assumption mimics the contamination model, which samples sources s* according to the initial volume
distribution. Here, it is important to point out that in addition to the a priori equality assumption above, we
are choosing the prior distribution in this way to deliberately enforce overfitting of the traceback system
to the contamination model; we will address our rational in Section 2.3.3, when we consider the
sensitivity of the algorithm to the choice of the prior. Furthermore, whenever we define an initial volume
distribution that is equal over the node set V(I), this overfitting will not apply.

Traceback algorithm system parameters for studies in Chapter 2
Vavg Average transport speed 60 miles per hour

p Mean of storage time delay at supply chain nodes, after 10 days
purchase before consumption, and incubation period
Contamination time uncertainty I day

P(s* = s) Prior probability P(s* = s)= F,(s)

Table 2.4. Traceback algorithm system parameters for studies in Chapter 2.

2.2.5. Summary
In this section, we have developed a simulation-based evaluation framework that will allow us to measure
the success of the algorithm across a wide range of outbreak scenarios and network structures. The
network generating model Random Layered Graph (RLG) is used to create stylized, multi-partite network

structures according to a set of parameter specifications. A probabilistic outbreak simulation model
generates outbreak cascades in the food distribution network that eventually lead to reports of illness at
specific times and node locations, according to a set of parameters governing the contamination event and
spreading process. To assess the detection performance of a particular network structure, multiple
outbreak cascades are generated and the cumulative results assessed using the metrics Traceback
Accuracy and Rank of True Source. In the following sections, this parameterized framework will be used
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to perform specific sensitivity and scenario analyses that explore the dependence of traceback accuracy on
network structure and outbreak parameters. Of the greatest importance is the ability to generate networks
for which the structure, determined by the number of links leaving nodes and the distribution of flows
across the links, and the initial condition imposed by the volume distribution across first stage nodes, are
either fixed to equality or determined stochastically; this will allow us to identify the role of specific types
of heterogeneity on detection performance. We are also interested in generating outbreak cascades that
result in epidemic characteristics that vary substantially. In Section 2.3, we present results that focus on
the specific role of variability in the relationship between detection performance and network topology,
and sensitivity to the prior distribution.

The case of simulation
Here, we comment on the features shared by the traceback methodology and the simulation case in order
to underscore important differences. Beyond the prior distribution, discussed above, the information
essential to the traceback methodology and assumed to be available to investigators is structural: the
topology and geography of the distribution network. There are, however, many features describing the
dynamics of the outbreak contamination process that cannot be assumed to be known, let alone
observable, to investigators at the time of an outbreak, and are thus not explicitly accounted for in the
traceback methodology. This applies to the parameters dictating the initial conditions of the outbreak
process: the initial contamination volume, dispersion mode, infectivity, and reporting rate. Still, some
values are shared by the traceback methodology and the simulation model (the mean of the delay
densities), and a degree of overfitting of the traceback algorithm to the simulation case may be occurring.
Thus, while in the following Section we will demonstrate that our methodology performs very well for
stylized networks and outbreak simulation cases, it will ultimately be necessary to demonstrate its
performance (i) when applied to network structures based on real data, as we shall demonstrate using the
Regional Network Model, and (ii) when applied to historical outbreak cases, as shall be discussed in
Chapter 5.

2.3. Applicability of Method: Numerical Examples

This section provides a first evaluation of the performance of the traceback methodology. We present
illustrative numerical examples that demonstrate the applicability of the method and serve as an initial
validation of expected or intuitive properties. We also evaluate the sensitivity of traceback performance to
the prior probability distribution, demonstrating an important result: that the traceback algorithm
converges to the same answer regardless of the initial conditions. This initial evaluation provides insights
and implications for practice. Furthermore, it provides a first step in understanding how the accuracy of
detection depends on the structure of a network and on the stochastic evolution of the disease trajectory.

2.3.1. Outbreak scenario and network structures
We consider two small yet dense network structures pictured in Figure 2.5: network constructed with out-
degree distribution demonstrating Zero Variance and High Variance. The networks are otherwise
constructed according to the identical variable and distribution specifications summarized in Table 2.5.
All nodes in the Zero Variance network are connected to exactly 4 other nodes, while the number of out-
degrees for each node in the High Variance is determined stochastically, according to a geometric PMF
with distribution X., -Geom(i), truncated to reflect the fact that any node can connect to maximally as
many nodes are in the subsequent stage. The number of nodes is identical for each stage, equal to v,, = 25;
that is, these are square layered structures. For the studies in Section 2.3.2, the initial volume distribution
is equal over the node set V(i) . For the analysis presented in Section 2.3.3., the initial volume distribution
is determined stochastically, sampling volumes from a geometric PMF with distribution
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F,(s) Geom(1/yFv1 ) where the spread parameter is equal to AX=5 . Detection performance is based on
100 outbreak simulations generated according to the baseline scenario specifications. For specificity, in
the following we refer to the two networks as Zero Variance-4 and High Variance-4.

,A,~A~~ , ,A,

AQAA~ ~bI4 ~A)'1A j ,A~A
4

~ ~ J~wAme'

~ ~Q*

'11 ?Air

41 I S A I

.1 _ J

Figure 2.5: Networks analyzed in the numerical example. (a) (left) Zero Variance-4 network, generated
with a out-degree for all nodes equal to 4, and (b) (right) High Variance-4 network, generated with the
geometric out-degree distribution X, ~Geom (t). The networks were generated from the Random

Layered Graph (RLG) generating model according to the parameters summarized in Table 2.5.

Structural variable and distributions defining networks studied in Section 2.3.
Name Variable / Parameter Description Range of values or distributions varied in

Section 2.3.
Structural Variables determining F
n Number of stages n=4
vn Number of nodes in stage n vn = 25 , for all stages

Xo Distribution of out-degree links for nodes in stage n Xu = 4 (Zero Variance) and

X, ~ Geom (*) (High Variance)

Average degree for out-degree distribution Xu= 4
Initial Conditions determining F,

F;,(s) Distribution of initial volume across first stage nodes v, F(s)= i (Section 2.3.2)

F, (s) - Geom(1/XEv,) (Section 2.3.3)

A, Parameter governing the spread of Fe(s) XF= 5

Table 2.5. Structural variable and distributions determining the structural matrix F and the initial
conditions determining F , for the Zero Variance -4 and High Variance-4 network studied in Section

2.3.2 and 2.3.3.

2.3.2. First Evaluation of Detection Performance

In this section, we demonstrate a first, comparative evaluation of the source detection methodology,
investigating the detection performance as a function of case development and the heterogeneity in link
connectivity, and the variance in output rankings. We report on (i) the Traceback Accuracy (TA) and the

estimation error of the start time t, as a function of K, , (ii) TA as a function of the time interval tA, and

the number of contaminated nodes H,, , and (iii) the distribution of results for Rank of True source at four

contamination intervals K, . We compare the performance measures across the Zero Variance and the

High Variance networks described above.
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Figure 2.6: (a) Traceback Accuracy (TA) and (b) Estimation Error of the Start Time t. as a function of

the number of illnesses K., for the Zero Variance (blue) and High Variance (green) networks. Results

are based on 100 simulations in the baseline scenario.

Source detection performs well, especially for networks with greater variance in link distribution

Figure 4 plots Traceback Accuracy (TA) and the estimation error of the start time t, for Zero Variance-4

and High Variance-4 as a function of the number of illnesses K,. The horizontal dashed line indicates

TA equal to 90%. The algorithm clearly performs well; though results vary slightly, accuracy as high as

96% is reached in both cases. The error in the estimation of the start time t, is almost identical for both

networks, decreasing almost linearly with the number of illnesses to as low as 1.3 days by 150.

As an initial validation of detection accuracy, these results demonstrate that we can make very good
inferences after only a limited number of illnesses have been reported, and almost-perfect inferences if we
wait a bit longer. Furthermore, we observe that the detection performance follows expected properties: as
the amount of case report data increases, TA increases. Intuitively, something is happening both
structurally and statistically to improve accuracy as the reports of illness accrue. Structurally, each node

added to the contamination set0, acts as an additional topological constraint, shrinking the set of source

node suspects Q that can reach all nodes in 0. and thus the possibility of error. Statistically, as the

number of illnesses K. (at not necessarily unique nodes) grows, an increasingly reliable proportion of the

contaminated product causing those illnesses will have traveled along the highest probability paths
leaving the source node; in other words, the signal sent by the source node will become clearer.

We now comment on differences in the detection performance between the two networks. The accuracy
increases very quickly between 0 and 50 illnesses for both networks then begins leveling off at different
rates, ultimately converging to peak accuracy at different times. TA improves noticeably faster for the
High Variance-4 network. As demonstrated by the dashed red line in Figure 2.6 a, the algorithm reaches
90% accuracy after 30 illnesses, and converges to peak accuracy of around 96% by 60 illnesses. A more
slow and steady increase in accuracy is observed for the Zero Variance-4 network, which reaches 90%
after 100 illnesses and peaks at 96% accuracy at 150 illnesses.

The superior detection performance observed for the High Variance-4 network follows our expectations.
Due to the variance in the distribution of links, the flow probabilities along the links will be more
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differentiated in this network than in the Zero Variance case. Links with larger flow probabilities will
dominate the paths traveled by contaminated product through the network, accumulating a greater fraction
of the overall transmission of contamination. Recall that the algorithm considers the aggregate probability
of travel between each feasible source and contamination node, choosing the source that maximizes the
aggregate probability. If these probabilities are more differentiated, the algorithm will be modeling the
actual paths traveled by a larger fraction of observed contaminants.

By similar reasoning, we might initially expect the start time estimate to be better for the High Variance
network. Since the start time likelihood objective is a function of the distance between a feasible source
and each node in the contaminated set along the maximum probability path only (rather than the aggregate
path probability), it would seem to have even more of an advantage when the maximum probability path
is clearly differentiated. These intuitions are sound; rather, the undifferentiated performance that we
observe is explained by the distance assignment in RLG. As described in Section 2.2.3, this assignment
results in all network paths from source to contamination node being, on average, of a similar total
distance. For this reason, the start time likelihood objective contributes little to the algorithm's detection
performance in the case of any network generated by the RLG model, though it does result in a high-
accuracy estimate of the start time itself.

I Traceback Accuracy vs. Number of Contaminated Nodes
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Figure 2.7: Traceback accuracy as a function of the number of contaminated nodes H., demonstrating a
strong linear relationship within the interval of 0 to around 17 nodes and 5 contaminated nodes, for the
Zero Variance-4 (blue) and High Variance-4 (green) networks, respectively. The horizontal dashed line
indicates TA equal to 90%.

Traceback Accuracy depends strongly on the number of contaminated nodes
Figure 2.7 presents TA as a function of the number of contaminated nodes H.), for the Zero Variance-4

and High Variance-4 networks. As above, the horizontal dashed line indicates TA equal to 90%. In line
with the observations above, we note that TA reaches the same peak value for both networks despite
many fewer nodes being contaminated, on average, in the case of the High Variance network.

We present these results to compare the dependence of detection performance on the number of
contaminated nodes with the dependence on the number of illnesses, as in Figure 2.6a. We observe that a
clear linear relationship is exhibited for both networks between TA and the number of contaminated
nodes within the interval of 0 to around 17 nodes and 5 contaminated nodes, for Zero Variance-4 and
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High Variance-4, respectively. The linear relationship demonstrates that detection performance depends
very strongly on the number of contaminated nodes. In comparison to the relationship between detection
performance and the number of illnesses, which exhibits a relationship that rises very quickly then levels
off, the dependence on the number of contaminated nodes is much more direct, within the respective
linear intervals.

It is also important to analyze the relationship between detection performance and number of
contaminated nodes beyond the linear interval. Here, the accuracy continues to improve, but at a less
regular rate, behavior that is in part attributable to "experimental" causes: there are fewer contamination
simulations for which the same number H. of nodes were eventually reached. More specifically, we note

that in the case of the Zero Variance-4 network, the TA curve increases directly vertically to reach its end
point at 96%. This vertical increase demonstrates that even after the maximum number of nodes has been
reached, the accuracy may continue to improve as additional cases accrue at already contaminated nodes.
This is also demonstrated by the monotonic increase of the TA curve with the number of illnesses in
Figure 2.6a.

Both of these observations: that detection performance depends strongly on the number of contaminated
nodes, but that it may still increase after the last contaminated node has been reached, are attributable to
the same structural and statistical reasoning provided above. The strong dependence on the number of
contaminated nodes further demonstrates the important topological constraint enforced by the
contamination set0, on the feasible source set Q , the second shrinking as the first grows. The continued

improvement in accuracy after the last node has been contaminated demonstrates that illnesses occurring
at already contaminated nodes will work to improve the probabilistic signal sent by the source node.
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Figure 2.8: Probability mass functions for Rank of True Source R, at intervals in number of illnesses
Hi = 20,50,100,150 for (a) Zero Variance-4 network, and (b) High Variance-4 network. Each column

demonstrates the Rank PMF at an interval H,, where the ascending colors demonstrate the frequency of

contamination events leading to traceback performance with rank r = 1,2,...r .

Variability in detection performance is low when accuracy is high and can be quantified
We now examine the Rank of the True Source metric in order to investigate the variability of the results
and quantify their specificity. First, we note that we can interpret the simulation results for Rank as the
result of a random variable, since it depends on the random location of the observations. Figure 2.8 plots
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the Rank as a random variable R, at intervals in number of illnesses H. = 20,50,100,150 , for (a) Zero
Variance-4 and (b) High Variance-4. Each column demonstrates the Rank PMF at an interval HW. The
ascending colors demonstrate the frequency of contamination events leading to traceback performance
with rank r = l,2,...r mx , where rm., is the maximum value taken by r.

The frequency plots help us to gain insight into the statistical variability of detection performance in the
simulation results. Already at 20 observations of illness, the bulk of the probability density is peaked at
r = 1 for both networks, though it extends to r,. = 9 for Zero Variance-4 and rmax = 6 for High Variance -
4. The maximum rank decreases considerably as the intervals increase, and in the case of the Zero
Variance network, rmax = 4 by and H, = 50, and rma = 2 by 150 illnesses. We can therefore say with a high
degree of certainty that, for this network, the true source will be within the top 5 predictions generated by
the algorithm after 50 illnesses have reported, even though the peak percentage of correct detections has
yet to be reached. We can also say with a high degree of certainty that if we wait for an additional 100
illnesses, the true source will be within the top 2 predictions. We conclude, therefore, that the specificity
of the ranking assignment can be quantified to a well-bounded number of possible sources, and that when
the Traceback Accuracy is high, this number is low. This is useful information for investigators, as it
presents an important tradeoff that we will consider in Chapter 4.

2.3.3. Sensitivity to Prior Probability Distribution

We now evaluate the sensitivity of traceback performance to the prior probability distribution P(s* =s).
Recall that we model the prior probability as being equal to the proportion of food F(s) originating at

each node s e V(l) , i.e. P(s* = s)= F (s) (see Section 2.2.3). This modeling choice mimics the

contamination simulation model, which samples sources s* according to the initial volume distribution.

In the following, we compare the accuracy of the algorithm with (i) the prior probability implemented as
described and (ii) a uniform prior over the set of sources s e V(1), i.e. any node in stage n = I is attributed
an equal a priori likelihood of being the source. To evaluate the impact of the prior distribution on the
algorithm's performance, it will therefore be necessary to define an initial volume distribution Fe(s) that is
not uniform across the setV(l). For this purpose, we implement the algorithm with (i) and (ii) as
described to the High Variance-4 network structure combined with a geometric initial volume distribution
F(, (s) Geom(1/AFvI) as indicated in Table 2.5. We again apply the performance evaluation framework
introduced in Section 2.2.

Figure 2.9 plots the Traceback Accuracy achieved with the prior probability set equal to the initial volume
distribution ("Prior," indicated by the dotted line), and a uniform prior ("No Prior," indicated by the solid
line). Since the prior distribution represents the actual outbreak generating behavior, we would expect its
inclusion in the Spatio-Temporal Traceback (STT) algorithm to improve detection performance. The
results are surprising. Despite the fact that the prior distribution models the way an outbreak is generated,
the algorithm converges to the same answer whether or not this information is incorporated into the
model. In other words, the convergence occurs in a way that is agnostic to the choice of prior.

That the algorithm's performance is comparable whether or not proxies to intuitive properties are included
demonstrates that the convergence process is dominated by the other dimensions influencing source
prediction: network structure, volume, and time. In extreme cases, for example if 90% of volume is
produced at one farm node with the remaining 10% distributed across all other farm nodes, we could
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expect to see a greater influence exerted by the prior, with accuracy much higher. However for situations
of the type implemented here, we observe that role of the network structure, volume, and time are more
important than are the initial conditions in determining the pathways traveled by contaminated products.
This insight has an important practical implication, which is that the initial volume distribution over
sources is not a necessary input to the traceback algorithm. In other words, the traceback methodology can
be implemented with less information to achieve the same accuracy.

Sensitivity to Prior
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Figure 2.9 Sensitivity of traceback accuracy to prior distribution.

2.3.4. Conclusions
This section presents illustrative performance results for the source detection methodology applied to
networks with Zero Variance and a High Variance in the distribution of link connectivity, but with
otherwise identical parameter specifications. Considering these two networks, we have derived four
important insights into the detection performance of our algorithm:

1. Traceback Accuracy performs well and follows expected properties, increasing with data both on
the number of contaminated nodes and number of illnesses at not necessarily unique nodes;

2. Detection performance is superior for networks with greater variance in link distribution;
3. Variability in detection performance is low when accuracy is high, i.e., the ranking assignment is

specific to a well-bounded number of possible sources, which can be quantified by the Rank PMF.
4. The algorithm's convergence process depends strongly on the network structure and much less

strongly on initial conditions, i.e., on the choice of prior distribution over the sources.is
independent of the initial conditions defining the outbreak contamination event.

These insights serve as an initial validation of the behavior and performance of the source detection
methodology, and demonstrate a few useful implications for practice. For the first point, we have
demonstrated that for these two networks, the detection accuracy performs very well, initially increasing
very quickly and becoming better and better as more illness report data is gathered. In particular, the
detection accuracy improves almost linearly with the number of contaminated nodes, though it will even
continue to improve as cases accrue at the same locations. This means that in many outbreak scenarios,
we will correctly identify the true source after only a very limited number of illnesses have presented, and
as the number of illnesses increases, we identify the true source almost with certainty. Second, we have
demonstrated that the detection performance is better, improving more quickly, for the High Variance

68



network, which differs from the Zero Variance network only in its stochastic distribution of links out of
each node. Since real food distribution network structures demonstrate great degrees of heterogeneity, not
only in link distribution but in all parameters including flow distribution and variability in number of
nodes per layer, our result provides both useful and positive information for practice. We might expect the
accuracy to improve with increasing degree of heterogeneity in network structure, and thus with
conditions observed if implemented in practice. Third, we have shown that it is possible to quantify the
variability in detection performance, and that this information is useful for making specific statements
bounding the accuracy of the algorithm's output. This reveals an important tradeoff for an investigator:
wait for a certain number of illnesses to accrue until the source can be uniquely identified with very high
accuracy, or act early to prevent further illnesses and implicate a greater, but still relatively small, and
importantly, well defined number of top ranked candidates. Finally, we have seen that the algorithm's
convergence process is independent of the prior probability assignment, even when that assignment
reflects what we know to be actual outbreak generating behavior. This insight has an important practical
implication, which is that the initial volume distribution over sources is not a necessary input to the
traceback algorithm. In other words, the traceback methodology can be implemented with less
information to achieve the same accuracy.

2.4. Conclusions

In this chapter, we formulated an original network-theoretical framework for identifying the location and
initiation time of the source of a large-scale outbreak of foodborne disease. This framework takes into
account the unique complexities that distinguish this problem from source identification in other network
contexts. It assumes knowledge of the underlying distribution network and the set of observed illnesses at
specific network locations and reported times. We developed an approximate inference algorithm for
solving the source identification problem that exploits the temporal and structural dimensions of this
problem.

We subjected the spatio-temporal traceback technique to initial studies to evaluate its performance. First,
we developed a simulation-based evaluation framework that allows us to measure the success of the
algorithm across a wide range of outbreak scenarios and network structures. We then applied this
performance evaluation framework to two illustrative numerical examples based on stylized network
structures. On first order, the results provide an indication of the accuracy and applicability of the method,
and serve as an initial validation of intuitive properties. The application also yielded several important
insights. As expected, detection performance is superior for networks with greater variance in degree
distribution (i.e. the connectedness of nodes); this structural feature was designed into the algorithm's
approach. Also unsurprisingly, variability in detection performance is low when accuracy is high.
Moreover, it is possible to quantify the variability in detection performance. This has important practical
implications, as it is useful for making specific statements that bound the accuracy of the algorithm's
output. A more surprising result is that the algorithm's convergence process is independent of the initial
conditions defining the outbreak contamination event, i.e., it does not depend to the choice of prior
distribution over the sources. This result highlights the importance of network structure in detection
performance. Furthermore, it means that the traceback methodology can achieve the same accuracy with
less required input data. Taken together, these insights provide a first step in understanding how the
accuracy of detection depends on the structure of a network and on the stochastic evolution of the disease
trajectory.

While promising great potential to accurately identify the source of large-scale outbreaks of foodborne
disease, the results reported in this chapter are based on stylized models and conclusions can only go so
far. In the following chapter, we demonstrate that the performance exhibited here is robust when applied
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to network structures informed by real data. Furthermore, we show that the method can result in
significant benefits in accuracy, specificity, and efficiency when compared with existing methods in
outbreak identification.
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Appendix 2.1.
Bayesian Network Traceback

In this appendix, we take a time-independent approach to identify the source based on the topology of the
distribution network and the reported locations of contamination. The key idea of this framework is to
view the problem from the perspective of a probabilistic graphical model (PGM), where each node is a
random variable denoting whether the contamination has passed through that site (of food production,
distribution, or retail). The PGM represents, through a set of conditional probability distributions, how the
observation of a contamination at a given node increases the probability that the contamination has
traveled through adjacent upstream and downstream nodes. The probabilistic model is used to identify the
source of contamination as the node that maximizes the joint likelihood of the set of reported nodes. We
start by introducing the process for generating the PGM from the distribution network G.

A1.1. Probabilistic contamination model
We introduce the directed probabilistic graphical model of contamination spreading, G', generated
through a transformation to the graph G{V,E,N}. Each node u e V is modeled by a binary random
variable, Xu , whose binary status, 1 or 0, represents whether the contamination has passed through node u.
Edges (u, v) e E thus become direct probabilistic dependencies between Xu and X,, representing how the
presence of the contamination at v is linked to the probability of the contamination at u. We say that
Xu e V(n) is a parent of X, e V(n + 1) if there is an edge (u,v) e E , and refer to (ov as the set of parents of

X, . We assume that XV depends only on its parents, and therefore that G' is Markovian. It is important to
note that even though each node takes on an "all or nothing" binary value, the model does not require that
contaminated product arriving at a node cross-contaminates all product at that node; rather, proportions of
contaminated product traveling from source to sink are propagated through the calculation of the
probability of a contamination cascade, made using the joint probability distribution introduced below.

Defining the probability distributions is the key step in transforming G into G'. First, each nodes e V() is

assigned an unconditional prior probability distribution P (X, = xI), representing the likelihood that s is
the contamination source. These distributions are set according to the predefined prior probability
distribution in (0), such that P(X, = 1)= p, and P(X, =0).=- pS .

A conditional probability distribution is defined for each node u in stages n > 1, given the values of its

parents, P(X, = xi{X, = x~r},,) . We assume that the (conditional) probability the contamination has

passed through v is equivalent to the proportion of(V), the time-average volume at v , sent from
contaminated parents:

Xx,(f.)f,~
P( X,=x X VJ =x, XUI W .EVV . (7)

To calculate the time-average volume (f,), we must first introduce F, a transition probability matrix of

dimension IVI xlVI composed of the normalized flow proportions fu, such that [F]U, = fu. Elements along

the diagonal of F correspond to self loops and are thus equal to 0, with the exception of the flows
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corresponding to the retailer nodes w e V(N) , which are represented in F as absorbing states with
probability 1. F is thus a proper right stochastic matrix, with each row summing to 1. We also define FO, a
matrix of dimension Is x~s with diagonal elements equal to the normalized initial volumesf, at nodes

s e V(1), and all other elements set to zero. Finally, the cumulative volume per unit time (f,)at v is found

as the sum down the vh column of the result:

If) [(F,)(F") . (8
ueV(I)

After the initial and conditional probability distributions have been defined, the joint probability
distribution over all the variables X, e G' can be determined. Due to the Markov property, the joint
probability distribution factorizes into a compact representation, computed using the formula:

P = x}XEG') f v (x XU = XU (9)
XUEG'

This joint distribution allows the evaluation of inference questions by marginalization, or summing out
the unused variables. The transformation of a food distribution network G into G' is illustrated using a toy
example in Figure 3.

A1.2. Probabilistic source identification problem
In the event of an outbreak of foodborne contamination and observations of illness i e 0 , our aim is to
use the joint probability distribution in (9) to identify the source of contamination, s We assume the
same contamination diffusion and source reporting processes as introduced in 2.1, with the following
caveats. First, we ignore the contamination times and only look at the contaminated retailer nodes i e H ,
with distributions X, . Second, when X, = 1 , all nodes u e 92 \ s by necessity take on the value 0, i.e.

{ X. = 0 . Thus, we aim to solve:

s= argmaxP X, = 1,{XU = O}UEV)\S ,{X = lbH, (10)

which can be calculated from the joint probability distribution in (9) by marginalizing out the unused
variables {X,}.G\HlQ over possible values{0,11, i.e.:

P XS = 1,{ XU = 0 }UEv()\s ,{ X 0 = ,EHl{ X O VEG\HU 9 s N UEV()\S ,{ XO .EH

(11)
The objective in (10) effectively models the bulk diffusion process, since the observation of
contamination at a given node is taken to increase the conditional probability that the contamination has
traveled through adjacent nodes. By tabulating over the probability of feasible transitions between nodes,
it considers the collection of all possible cascades from source s to observations H.

Finally, we can form a PMF over the possible sources,

P * = S {o}EH)={ S 9 XU UEV()\S X 0 = loEH fors } (12)

by normalizing the joint probabilities in (10) over the sets e .

Table 2. Bayesian Network Source Detection Algorithm
Inputs:

G{V,E,N}, food distribution network
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Figure 3. Transformation of a food distribution network into a probabilistic model. Consider the simple food
distribution network model made up of 2 Farmers, 2 Distribution Centers, and 2 Retailers. The conditional
probability tables are then computed using equation (7). The joint probability distribution for this model can be
written in factored form as:

P(A,B,C,D,X,Y)= P(A)P(BIA)P(CIA)P(D|A,B)P(X|C,D)P(YID).
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P(s* = s), prior distribution

0, observation set as of time tw
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For u e V(l):

Determine ifu reaches all observed contamination nodes oi e H , then return s e Q

Define graphical model G':
For s e Q :

SetJP(X, = i)= pandP(X, =0)= l-p,
For v e G \ H u Q :

Determine conditional probability distributions P X = x {X)
Return

s=armaxP X = l,{X, =0} ,(X = cpesgH

XU =X U x O using Equation (7)

, computed using (11).



Appendix 2.2:
References documenting residence times and

network structure

Data source / Paper Times / stages of the Relevant variables
supply chain included (Time spent, detail

on supply structure and
flows)

Compiled research on the head This data, collected on food in 26 product categories from multiple
lettuce supply chain, from farm industry partners, consists of shipping records and compiled results
to fork, compiled by BT Safety from expert elicitation. The expert elicitation is a compendium of
LLC 2005 interviews, research, and industry knowledge. The shipping records

document movement from origin to distribution center and
distribution center to retail warehouse for one large foodservice
company, as well as a set of retail-only packing/shipping records that
make up a subset of one large company's production. Because this
data is based on actual records of product inflow and outflow for a
compendium of companies, taken together, it unveils distribution
patterns.

Relevant parameters:
Industry averages:

o Time spent in field, on average
o Volume in field, on average **Match these to distributions from

Green Giant data
o Harvest size, on average
o Shelf life
o Average residence times at point of harvest, cold storage,

distribution center storage, at retail, and a good model for home
storage (see percentages; they used lognormal(avg = 1.3 days))

o Method for computing transportation times, based on long-haul
trucking service regulations

For one specific retailer:
o Specific volumes from origin nodes - distributors - customer

zipcode
o Degree distributions from origin zipcode to distributors

Pinior, Beate, Uwe Platz, Ulrike Study analyzing the structure of Relevant parameters:
Ahrens, Brigitte Petersen, Franz the aggregated trade network of - The number of nodes in the
Conraths, and Thomas Selhorst. the milk supply in Germany and supply chain (producers, dairies,
"The German milky way: trade the public health risk of consolidation companies,
structure of the milk industry and contamination. consumers/retailers)
possible consequences of a food The degree distributions
crisis." Journal on Chain and (distributions of links between
Network Science 12, no. I actors in the supply chain),
(2012): 25-39. 1 including max, min, and average
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degree
(Beate Pinior's PhD thesis Documents data sources for
provides further information on trade volumes but does not plot
this supply chain and her risk actual distributions
analyses)
Beni, Leila Hashemi, Sdbastien Study analyzing the structure of Data collected by authors (but
Villeneuve, Denyse 1. LeBlanc, the aggregated trade network of not provided in the paper):
and Pascal Delaquis. "A GIS- bagged lettuce in Canada and the Number of establishments
based Approach in Support of an public health risk of involved in the supply chain
Assessment of Food Safety contamination. Links between establishments
Risks." Transactions in GIS 15, Collected the data to model the Flows (quantities) of product
no. s 1 (2011): 95-108. aggregated geo-coded, time- moving between establishments

sensitive distribution chain for . Residence and transportation
ready-to-eat bagged salad in times
Canada
Created a simulation to model a
contamination spreading
through the food supply.

LeBlanc, Denyse I., Sebastien Extension of the above study; Relevant parameters:
Villeneuve, Leila Hashemi Beni, adds in temperature and - Provides probability
Ainsley Otten, Aamir Fazil, microbiological growth. distributions for residence and
Robin McKellar, and Pascal transportation times of lettuce
Delaquis. "A national produce through the supply chain
supply chain database for food - Also includes nodes per stage in
safety risk analysis." Journal of the network
Food Engineering 147 (2015):
24-38.
McKellar, Robin C., Denyse 1. - Study used to inform LeBlanc's Relevant parameters:
LeBlanc, Fernando Perez time distributions. - Storage and transportation at
Rodriguez, and Pascal Delaquis. - Measured residence times of Producer, Distribution Center,
"Comparative simulation of lettuce in winter and summer and Retail
Escherichia coli 0157: H7 months in a retail supply chain
behaviour in packaged fresh-cut from a processing facility to
lettuce distributed in a typical retail storage
Canadian supply chain in the
summer and winter." Food
Control 35, no. 1 (2014): 192-
199.
Danyluk, Michelle D., and - Monte Carlo simulation to Relevant parameters:
Donald W. Schaffner. model microbiological risks Time in field after contamination
"Quantitative assessment of the associated with the Retail storage time
microbial risk of leafy greens growth/decay of specific Home storage
from farm to consumption: pathogens in fresh-cut
preliminary framework, data, and lettuce/leafy greens throughout
risk estimates." Journal of Food supply chain
Protection 74, no. 5 (2011): 700- - A few distributions from data, a
708. few they made up
Pouillot, R6gis, Meryl B. Lubran, - Determined probability Relevant parameters: Home
Sheryl C. Cates, and Sherri distributions of time food spends storage time distributions for
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Dennis. "Estimating parametric in home storage by fitting bagged lettuce, soft cheeses
distributions of storage time and consumer survey data to survival
temperature of ready-to-eat foods distributions
for US households." Journal of Products: Many ready-to-eat
Food Protection® 73, no. 2 products including bagged salad
(2010): 312-321. and soft cheese
Laguerre, Or, H. M. Hoang, and Survey article of deterministic -Relevant parameters:
D. Flick. "Experimental and simulation methods for Parametric distributions for times
investigation and modelling in modeling relationship between spent in transport, storage, hub,
the food cold chain: Thermal and time-temperature and pathogen cold room, display cabinet,
quality evolution." Trends in growth throughout the cold chain transport by consumer, and at
Food Science & Technology 29, (for various foods) home (domestic refrigerator)
no. 2 (2013): 87-97.
Dallaire, R., D. 1. LeBlanc, C. C. -Product: Broccoli - Relevant parameters: Producer
Tranchant, L. Vasseur, P. -Small case study tracking storage, wholesaler storage,
Delaquis, and C. Beaulieu. broccoli through a supply chain retailer storage. In particular:
"Monitoring the microbial involving 2 growers, I Storage on farm after harvest:
populations and temperatures of wholesaler, 4 retailers in same 1.8 days avg., max 4 days
fresh broccoli from harvest to geographical area; measuring Storage at wholesaler: less
retail display." Journal ofFood microbial population, than 24 hours
Protection 69, no. 5 (2006): temperature, and time spent . Storage at retailer before
1118-1125. display: Min: few hours; max:

7 days; avg: 1-3 days for store
1 ,<l day for store 2
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Chapter 3:
Robustness and Benefits

In Chapter 2, we presented a network-theoretical framework for identifying the source of large-scale
outbreaks of foodborne disease. Through application to numerical examples, we demonstrated an initial
indication of the methodology's accuracy and a first step towards understanding how the accuracy of
detection depends on network structure. Our ultimate objective is to evaluate the utility of these methods
in real-world scenarios, and in comparison to existing methods in outbreak investigation. In this chapter,
we develop and apply the traceback methodology to (i) a set of network models representing key
structural and spatial properties of food distribution networks in the US and (ii) a framework for
quantifying benefits in comparison to existing approaches to foodbome disease outbreak source detection:
to a practical baseline meant to demonstrate current methods applied in practice during outbreak
investigations, and to a best-in-class method presented in the literature.

The contributions of this chapter fall into four categories:
- We identify key structural and spatial features characterizing food distribution networks and

develop a generalizable modeling framework that uses available data to represent these features.
* We show the traceback methodology robustly identifies and localizes the outbreak source when

applied to realistic network structures; these results serve as a first step in validating its application
in practice.

- We extract generalizable conclusions regarding the dependence of traceback accuracy on network
structural features.

- We show that the method can result in significant benefits in accuracy and efficiency when
compared with existing approaches in foodborne disease outbreak source detection.

The chapter is organized as follows. In Section 3.1, we develop the network modeling framework and
implement it to model the distribution of two specific commodities in the US: tomatoes and lettuce. In
Section 3.2, we evaluate the performance of the traceback methodology applied to these two realistic
structures. In Section 3.3, we quantify the benefits. Section 3.4 concludes.

3.1. Modeling Real Distribution Networks

Our objective is to validate the traceback framework through its successful application to real-world
distribution networks and outbreak scenarios. In Chapter 5, we propose a method for developing a live,
accurate distribution network model for specific foods from publicly available data sources. At the time of
preparing this dissertation, granular supply chain data representing distribution networks for various
commodities was not available. In the absence of exact data, our aim was to design a set of network
models representing at a high level the realistic spatial and structural features of distribution networks for
specific foods in the US. Through a review of the literature on food distribution networks, we identified
four key features characterizing real distribution networks: consolidation of the food industry in specific
clusters of production, spatial scale and long-ranging distribution links, heterogeneity of volume and
degree distributions, and structural relationships between stages. We represent each of these features in
the model, using statistical data to inform parameter choices wherever possible. Structural assumptions
and probability distributions were used to fill in where this data was not available.
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3, 1.. Representing K'ev Structural Feamures

A review of distribution structure identified the following four key features characterizing food
distribution networks. In this section we introduce the features and describe our modeling approach for
representing them in the network models. These features were developed based on data from government
published sources (USDA NASS 2012; USDA NASS 2016; USDA ERS 2016; AMS 2016), academic
literature (as cited below), and through information elicited in interviews with industry experts (Appendix
2.2).

Consolidation of the industrial agricultural system in production and processing; spatial scale and
long-ranging distribution
In past decades, the food system in the US has undergone dramatic consolidation, or the organization of
production into fewer but larger farms or plants. Consolidation is occurring in both production or farming
practices and processing. While population and consumption levels have expanded enormously, the total
number of US farms has declined from 5 million farms in 1950 to about 2.2 million in 2010. Processing
plant sizes have increased sharply, facilitated by improving processing plant technologies and the
emergence of mega-corporations and new -scale economies." An extreme example can be seen in the
poultry industry in the US, where 95% of chickens produced for meat are grown under production
contracts with fewer than 40 companies. (Nesheim et al. 2015; MacDonald et al. 2013).

Consolidation and concentration in the food supply chain have important implications for modeling
distribution structure, and in particular, on the spatial distribution of production and processing nodes. As
the industry consolidates, the location of supply chain actors will cease to be distributed throughout the
country as the sites of production and processing aggregate at specific centralized locations. The result is
a supply chain where nodes are organized in fewer, larger "clusters" of production. The distance between
supply chain nodes plays a lesser role in the choice of trade partners.

To reflect these observations in the spatial structure of nodes and connections in our models, we adopt the
following approach.

* The major geographical clusters accounting for the top 80 - 95% of production and processing
volume are represented (USDA NASS 2012; 2016; USDA AMS 2016); these clusters determine
the location of production and processing nodes.

* Consumption is represented in proportion with population (USDA ERS 2016); this determines the
location of warehouse and retail nodes.

* The incidence of trade connections reflect these assumptions, with proportionally more out-degree
links for clusters producing greater volume and more in-degree links in for regional areas of
greater population.

* In matching supply and demand, we implement a bias to connect nodes locally. However because
the clusters of production are not evenly spatially distributed throughout the country, regional
supply will often not satisfy regional demand. As a result, the majority of supply and demand is
matched according to volume capacity alone, without considering the distance between node
locations.

Heterogeneity in structure
As suggested in previous chapters, food distribution networks are characterized by heterogeneity in (i) the
distribution of the number of links leaving each node across all nodes in a stage, or the out-degree
distribution, (ii) the initial volume distribution across producing nodes the first stage, and (iii) the
distribution of flow volumes across the links leaving a single node, or the flow distribution. This behavior
has been observed in network studies documenting supply chain structure (Manitz et al. 2014; Pinior et al.
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2012, Friedrich 2010), and moreover characteristic of complex networks in general (Brockmann and
Helbing 2013; Grady et al. 2011).

To represent heterogeneity in out-degree distributions, we generate links according to the geometric
probability distribution, X0u ~Geom (0), where y is the average out-degree. Where available, p is fit to

distributional data. To represent heterogeneity in the initial volume distribution F(s) across the v,
producing nodes in stage 1, we sample volumes from the actual farm size distribution data published by
the USDA (USDA 2012). To represent the flow distribution across links leaving a node, we sample
volume proportions according to the geometric distribution F(f) - Geom(l / ,IM), where lmrepresents

the number of links leaving node m and scale parameter X F=5.

Supply Relationships Across Stages
The structure of the supply chain is characterized by a series of relationships with respect to a scale-up or
a scale-down in the number of nodes from one stage to the next (Conrad et al. 2012; Pinior et al. 2013;
LeBlanc et al. 2015). While the degree of scale-up or down will depend on the commodity, in general the
following relationships are observed: (i) the number of nodes from grower to processor stage is a scale-
down relationship; (ii) the number of nodes from processor to warehouse stage is a dramatic scale-up
relationship; and (iii) the number of nodes from warehouse to retailer is a dramatic scale-up relationship.

These relationships are useful in modeling the number of nodes v,, in each stage n. The number of farm or
producer nodes for various commodities are available from USDA Census of Agriculture (USDA NASS
2012; 2016) and the number of retailer nodes are informed by the USDA Economic Research Service
(USDA ERS, however the number of interior stage nodes (i.e. processor and warehouse) are not readily
available. The scale-up and scale-down relationships thus help to set parameter values that reflect general
structural characteristics.

N.2. Mdel Implemenlltation
We have developed models based on the structural and spatial features highlighted above to the
distribution of two commodities: Tomatoes and Lettuce. In this section we overview the modeling choices
and parameter values implemented.

Foods Chosen
To simplify the structure of the distribution network and focus the analysis of traceback accuracy results,
we model two single-ingredient fresh produce commodities: Tomatoes and Lettuce. Both of these
distribution structures can be represented by the four stages of supply introduced in Chapter 2: Farms,
Processors, Warehouses, and Retailers. The primary reason for choosing these commodities was
structural. In particular, lettuce was chosen because it exhibits one of the most consolidated supply
structures, with 95% of production being concentrated within 2 growing regions: central California and
Yuma, Arizona (USDA 2015; AMS 2015). Extreme clustering in production makes it more difficult to
distinguish between feasible source nodes in the event of an outbreak, since distance is no longer a
differentiating factor. We thus see this network as representing a "lower bound" on the accuracy
achievable with the traceback methodology. If we are able to achieve accurate results with this network, it
would suggest that accuracy will be higher with other commodity types. Tomatoes (in summer season)
were chosen because they represent an average distribution of production clustering throughout the
country.
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In addition to structural considerations, these two commodities have a history of carrying foodborne
disease (E coli, salmonella, and listeria) that has escalated in recent years, and are thus ripe for studies to
improve food safety and faster detection of outbreak sources. Because of this history of outbreaks,
understanding the structure of these two commodities has been high priority for investigators, from whom
we have been able to gather considerable background information from both directly and from past
outbreak reports.

Another consideration is that of the generalizability of the distribution models based on fresh produce-
specific supply chains. Fresh produce was chosen above other commodities due to the purity of product.
While extensions to more complex, processed products can be imagined, the scale up would introduce
considerable complexity that may not be accounted for in our modeling framework. As one example,
some processed products have many month long shelf lives and may even be stored somewhere in the
middle of the supply chain, which completely invalidates the use of temporal parameters to track the
product's trajectory. Still, because produce is easier to model it is a good starting point for more complex
modeling frameworks. Furthermore, fresh produce on its own is a significant and increasing contributor to
the disease burden from foodborne disease, with recent estimates citing produce as the cause of 13.5% of
illnesses, 13.6% of hospitalizations, and 10.4% of deaths attributed to foodborne disease (Batz et al.
2012).

Spatial and Population Assumptions
The geography, population distribution, and production clusters modeled in each network are pictured in
Figure 3.1. The networks exist on a geographical area extending 2500 x 1500 miles, roughly resembling
the structure of the US. This area is divided into three regions with grid boundaries based roughly on US
time zones: Pacific and Mountain as one region, Central as a second, and Eastern as a third. Population
fractions in each region are set to reflect the population of the states comprising each time zone, with each
region divided into sub-regions as depicted in the figure. Warehouse and Retailer nodes are allocated
across each region and then across each sub-region according to population, while ensuring that there is at
least I Warehouse node per sub-region.

Pacific and Mountain Central Eastern
Population: 20% Population: 33% Population: 47%

n000

SR4 SR3
12.5% 50%

SR4 SR3 SR4 SR3
2.5% 12.5% -- 12.5% 412.5% Esstern Slore VA

Cer traI CA SRi SR2 SRi 5R2 NCI
50% g12.5% .50% 12.5%

I, I.,

Yuma.A * ~,ETN ISC
Yu , A X h

MX thru Laredo

SR491th SR1SR SRR2R

50% 12.5%

Figure 3.1. Geography, population distribution, and production clusters modeled in the Tomato and
Lettuce distribution networks. Regional (sub-regional) populations as a fraction of US (regional)
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totals. Red and blue X's in Figure 3.1 mark the location of tomato and lettuce growing clusters,
respectively.

Tomato Production Clusters
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Figure 3.2. Distribution of production volume across the clusters for the (a) Tomato and (b)
Lettuce networks.

For the reasons discussed above, we model farming and processing of each commodity as being
concentrated in a variable number of clusters of production in the US and Mexico (via border crossings).
Each cluster is modeled as a 100 x 100 grid box in the map. We assume that production of raw
commodities is minimal and occurs at processing centers very close to the site of production. Thus, trade
between Farm and Processor nodes occurs only within clusters. We capture ~80% of the production
volume of tomatoes by representing the top 13 clusters of production, including 4 border crossings from
Mexico (USDA 2015; AMS 2015). For lettuce, we represent the California and Arizona clusters that
together account for -95% majority concentration of production, adding a third cluster at a Mexico border
crossing to capture ~99% of production. The red and blue X's in Figure 3.1 mark the location of tomato
and lettuce growing clusters, respectively. Figure 3.2 reports the distribution of production volume across
the clusters for each network. The network structural parameter values realized from implementing the
modeling approach with these clustering and population assumptions are reported in Table 3.1. The
resulting networks are visualized in Figure 3.3 a and b.

Tomato Network Lettuce Network
Clusters of production

13 3
Nodes v, in stage n
Farms. v, 1500 500
Processors, v2 250 100
Warehouses, v3  1500 1500
Retailers, v4  2500 2500
Average out-degree g, for stage in, n+II

Farm - Processor 2 2
Processor - Warehouse 12 30
Warehouse - Retailer 5 5

Table 3.1. Model parameters for the Tomato and Lettuce networks.

I
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Figure 3.3. Visualization of the (a) Tomato and (b) Lettuce network models. Farms are represented by
red nodes, Processors by green nodes, Warehouses by blue nodes, and Retailers by purple nodes.

84

I

40

0 0 1IO0



3.2. Traceback Accuracy for Regional Network Models

In this section we evaluate the performance of the traceback methodology applied to the Tomato and
Lettuce networks. We implement the same performance evaluation framework used in Chapter 2,
generating 100 outbreak simulations according to the baseline scenario specifications. Results are
assessed according to the Traceback Accuracy metric. Since the networks are represented on the spatial
dimension, we add an additional metric to measure the ability of the methodology to geographically
identify the source, the Distance From True Source. As its name implies, this metric measures the
geographical distance between the algorithm's top ranked source ^ and the true source s*. We report
source identification and localization performance as a function of the number of illnesses; this is the
most granular interval of progression, since multiple illnesses can occur on the same day and at the same
node.

3.2.1. Results: Source Identification and Localization

Source Localization
Figure 3.3a plots the Distance from the True Source as a function of the number of illnesses reported. The
variability in the simulation results is quantified by the PMFs pictured in Figure 3.3 b and c. which plot
the Distance from the True Source as a random variable D for various intervals in number of illnesses
reported. Localization performance is precise and efficient. After only 20 reports of illness, the true source
is identified within -10 miles for the Tomato network and -2 miles for the Lettuce network, on average; a
focused area given the entire country is being considered. While the variable in results can range well
beyond the averages, the method is able to localize the source within 30 and 50 miles. for Tomatoes and
Lettuce respectively, in 100% of simulations after 20 illness reports. Because each cluster is modeled as a
100 x 100 grid box in the map, this means that the source cluster is accurately identified in all simulations.

Distance From True Source, Regional Networks
100 -100

14 -Toatoes
12 etuce 80 8

12

--- _._6. 73i 0 4 602

0100

~~o4 40 100 1? >ll 0 I 0il 4 il 5 l 0 l 2 i 0ii 411 5 I

Number of |In esses Number of illnesses, K, Number of illnesses, K,

Figure 3.3. (a) Distance from True Source for Tomato and Lettuce networks, as a function of the
number of illnesses (b) Probability mass functions for Rank of True Source R, at intervals in number
of illnesses K1, = 10. 20. 30, 40, 50 for the Tomato network and (c) Lettuce network.

Source Identification

Figure 3.4 a and b plots Traceback Accuracy (TA) and the estimation error of the start time t, for the

Tomato and Lettuce networks as a function of the number of illnesses. Traceback performance is both
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accurate and efficient, with TA converging to close to peak value after only 25 illnesses for both
networks. (The variability of these results is quantified in Chapter 3, where we demonstrate detection

rates over 80% accuracy after only 25 illnesses have been reported). The start time estimate improves
more linearly with the number of reported illnesses, in both cases identifying the source within <3 days of

the true start time; that is, within 1.5 days of the actual contaminated batch.

The rapid convergence to a peak accuracy value 10 - 20 % below 100% accuracy is attributable the

densely connected clusters. Essentially what is happening is that the algorithm is able to rapidly narrow in

on the correct cluster of distribution, as shown above, but then has greater difficulty in distinguishing

between nodes within the cluster. The combination of the scale-down relationship between the grower and

processor stages and the high density of connections within each production cluster means that there is a

"bottleneck" structure, with multiple grower nodes connected to the same processor nodes. More

specifically, the set of retailer node decedents of the true source node will be identical to the retailer node

descendants for another source node within the same geographical cluster. This means that the problem is

only reducible to a specific number of sources as dictated by the regionally dependent connectivity

patterns of a given network structure. The start time, on the other hand, improves with each new piece of

evidence (i.e. illness report at a given time) as dictated by the optimization function generating the

estimate.

Traceback Accuracy, Regional Networks
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Figure 3.4: (a) Traceback Accuracy (TA) and (b) Estimation Error of the Start Time t as a function of

the number of illnesses K,, for the Tomato and Lettuce networks.

Network Structure and Traceback Accuracy
We now comment on differences between the two networks and implications for understanding the role of

network structure on traceback accuracy. As expected, traceback performance is better for the Tomato

network, converging to 92% correct detections vs. 83% for the Lettuce network. The difference in

accuracy can be attributed to some combination of the greater (i) density and (ii) clustering of the lettuce

network. With regard to (i), we observe from the structural parameters reported in Table 3.1 that the

Lettuce network is more densely connected, demonstrating a significantly higher average out-degree

between the Processor and Warehouse stages. We expect this factor to also lessen the traceback

performance of the Lettuce network in comparison with the Tomato network, since a greater link density

means there are more possible network pathways to consider, increasing the uncertainty in the problem.

With regard to (ii), we have discussed how the Lettuce network represents an extreme in the clustering of
86
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production for which two geographically close regions fulfill -95% of US consumption. Due to the high

degree of clustering, the time taken in distribution to reach any given contaminated node will be similar

from all feasible sources, making the temporal signal sent by the true source less distinguishable. As a

result, the start time likelihood objective will contribute less in the way of prediction to the source

localization problem. At the same time, the similarity in distribution times will mean that an accurate start

time estimate can be achieved, as exhibited in Figure 3.4b.

3.2.2 Practical Implications

In this section, we have demonstrated high accuracy in identifying and localizing the outbreak source

when the traceback methodology is applied to geographically realistic network structures. The many

network structural features influencing traceback performance can interact in complex ways, meaning that

caution must be taken when deriving general conclusions regarding the accuracy of source traceback for

foodborne disease outbreaks. Furthermore, it is important to stress that while the network models

developed here are representative of key structural and spatial features and are based on current

production and distribution data, they are still stylized, high-level models that are neither perfectly

representative or complete. A much more complex trade network would result from the consideration of

all supply chain actors, big and small, characterizing all commodity flows as well as external trade

relations with different producers in the industry. Furthermore, our conclusions are derived from a

simulation-based evaluation framework. The next step towards validation of the methodology will be to

demonstrate its ability to correctly localize the origin of outbreaks in historical outbreaks. Live use of

these techniques may demonstrate features of the real problem inadvertently omitted from the modeling.

Still, the results presented suggest a few important insights regarding the dependence of traceback

accuracy on network structure, and the robustness of results for food distribution networks in general.

First, we have seen that initial observations regarding the relationship between network structural features

and traceback accuracy in 2.3 are robust when applied to these realistic networks; in particular,

performance improves for networks characterized by a greater degree of heterogeneity, in this case in the

geographical distribution of nodes. What this means in practice, if we generalize from these conclusions,

is that we can expect higher traceback accuracy for foods that are produced across a greater number of

spatially distributed locations. We have also seen that performance is worse where the density of

connections is greater. This means Traceback Accuracy prefers industries where there are more supply

chain actors who work with a smaller number of other entities. Still, as we have seen in Section 2.3,

differences i.e. heterogeneity in connectivity is needed to best differentiate between sources, and thus a

distribution of connectivity where some nodes are more highly connected than others will improve

accuracy. Additionally, as discussed in Section 3.1, lettuce is one of the most aggregated products in the

country, with 95% of our lettuce supply grown in only 2 small regional areas. That traceback performance

performs well for this network means it has succeeded for a structure representing reasonable realistic

bounds, i.e. "worst case" boundary values. This observation suggests that we can expect location

performance at least as accurate for other fresh-produce food items. In the next section, we provide further

support for the traceback methodology presented in this thesis by quantifying benefits in comparison to

existing approaches.

3.3. Quantifying Benefits
We now quantify the benefits resulting from the network-theoretic framework and Spatio-Temporal

Traceback (STT) algorithm developed in Chapter 2 and evaluated in application to realistic network

structures in the previous section. We compare STT to existing approaches in foodborne disease outbreak

87



source detection: a practical heuristic meant to model current methods applied in practice, and a best-in-
class method presented in the literature (Brockmann and Helbing 2013). Differences in the Traceback
Accuracy achievable with each method are measured to quantify benefits. If STT can significantly
outperform the heuristic, it would suggest that the network-theoretical approach to source identification
developed in this Chapter can contribute substantially to the traceback investigation process as a tool for
tactical decision-making. The case for implementing our method is strengthened if it can also outperform
existing theoretical approaches in the scientific literature.

3.3.1. Existing Approaches to Traceback

Modeling Current Methods in Investigation
The heuristic was developed from discussions with FDA investigators. It models the process applied to
identify contamination sources during outbreak events, in the absence of a network-theoretic method like
the methodology presented in this thesis. Specifically, investigators implement a process of
"triangulation," or tracing back the distribution paths of products from several locations to determine if
there is a common point of convergence in the supply chain. An example of a product trace diagram
depicting exposure pathways is illustrated in Figure 1.2. As described in the introduction, because the set
of all possible supply chain pathways leading to each chosen location must be traced independently along
the supply chain without a structural network model to guide this investigation, the process is time and
resource intensive. According to an estimate provided by investigators with the Minnesota Department of
Public Health, 8 to 24 person hours are required to collect paperwork and create a product trace diagram
for 1 to 2 contamination cases (Smith 2015). This information provides the basis for an assumption
regarding the time necessary to perform product tracing for individual cases in the following heuristic. Of
course, many potential differences with actual decisions might arise from practical factors that are not
included in this model. For example, investigators will aim to identify a minimal convergence set by
choosing cases that are part of distinct sub-clusters of contamination emerging at different restaurants or
retailers, or choosing locations that are geographically distant from one another, e.g. a case in California,
Texas, and Massachusetts. The model presented here chooses cases at random, without incorporating any
information that might help to reduce the overlapping set. Discussions with outbreak investigators are
required to design iterative improvements to this heuristic and its implementation.

FDA Heuristic
The FDA Heuristic is defined as follows. On each outbreak day t,, the decision-maker chooses at random

1 report of illnessi linked to a unique nodeoi from the set of reported illnesses K.. The choiceo, is added

to the set of chosen contamination report nodes which we call the triangulation contamination node set
HT. For each node o, e HT , the possible exposure pathways are traced back through the supply chain.

The set of all common points of convergence is identified as the set of nodes in stage n = 1 that have at
least one network pathway to the nodes o, e HT ; we call this the feasible source set by triangulation T -
This process is continued as the outbreak progresses, so that by day t. = r , there are I HT I = r nodes in the

triangulation contamination set, wherejHT is equal to the size of the set HT . The Traceback Accuracy on

any given day t. is then determined as AQrI, where K Tj is equal to the size of the set KT on t, .

Exploiting Network Structure
We also introduce a baseline meant to demonstrate the advantage of access to the network structural data
while at the same time accentuating the value of the probability models incorporated into STT to
differentiate between outbreak sources.
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Network Baseline
The network baseline assumes that the underlying distribution networkG(V,E,N) is available and that the

information from all reports of illness K, can be utilized to identify the full feasible source setQ. Again,
no mechanism is applied to use network structure to distinguish between sourcess e , and Traceback
Accuracy is determined as AQI. A possible but unimplemented extension of this baseline would involve

differentiating between feasible sources by weighting them according to a prior probability distribution.

Existing Network-Theoretical Traceback Approach
Finally, we compare the method to the only known existing approach applying network-theoretic methods
to identify the source of a foodborne disease outbreak, the "Effective Distance" method presented by
Brockmann and Helbing in a 2013 paper. An overview of this method is provided in Section 1.3.2;
readers should refer to the paper for further details. In the following, we refer to this method as B&H.

3.3.2. Comparisons

Numerical examples
First, we compare the detection performance obtained by applying each of the four traceback methods to
the Geometric-4 network and the performance evaluation framework introduced in Section 3.2.1. Figure
3.5 present the results of Traceback Accuracy as a function of the number of reported illnesses. K.. As

expected, the Network Baseline performs better than the FDA Heuristic, since it makes use of a greater
evidence base. However due to the high connective density characterizing each network, even after 150
have reported, the network baseline cannot significantly reduce the feasible source set. In other words,
there are many stage n = 1 nodes that satisfy a connection to each node in the reported set KO = 150, which

we saw in Section 2.3.2 will be distributed across -20 nodes (out of 25) on average. Neither method
distinguishes between nodes in the feasible source set. When an analytical mechanism making use of
network structure to distinguish between nodes within the feasible set is applied, the results are striking.
Traceback Accuracy improves by almost 70% between the Network baseline and the method presented by
B&H. Furthermore, the STT method performs significantly better than all existing approaches,
demonstrating an improvement of >10% above B&H. These results suggest that the methods introduced
in this Chapter might contribute substantially to improving outbreak investigation procedures.

We now apply the same comparison to the Deterministic-4 network introduced Section 3.2.1. While the
same comparative relationships hold between the FDA Heuristic, the Network Baseline, and STT, there is
a patent difference between the detection performance of STT and B&H. While STT reaches 96%
accuracy by K,, = 150, the existing method achieves 10% correct detections, performing slightly worse

than even the Network Baseline. This means it is not able to accurately distinguish between nodes within
the feasible set.

The lower performance exhibited by the state-of-the-art method in comparison with STT may be
explained by the fact that the methodological approach of STT is tailored to the specific network problem
investigated here. The Effective Distance method (B&H) is designed for general complex networks,
directed or undirected, where possible paths travelled can differ markedly in length, by multiple orders of
magnitude. Their approach leverages the observation that while a contaminant can travel a multitude of
paths to any other node, the dynamics are dominated by the shortest paths; correspondingly, longer paths
are penalized (Brockmann and Helbing 2013). In comparison, the STT algorithm is designed for directed,
multi-partite networks where the length of all network paths from source node to contamination point are
equal or close to the same number of steps, differing at most by the number of layers in the network. It
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leverages the observation that in multi-layer networks, the contamination will in fact travel across a
multitude of paths; correspondingly, it considers the aggregate probability of all paths traveled from
possible source to observed contamination point. This difference is exemplified by the Deterministic
networks in which all paths statistically identical and no single path will dominate the contamination
dynamics. The superior results demonstrated for STT in these network cases exemplify that it is the more
appropriate method for the problem of source traceback on food distribution networks. It is also important
to note that the Deterministic-4 network is a stylized structure designed to exemplify the differences in the
predictive approach taken by the two network-theoretical methods. As discussed in Section 2.2.4, real
food distribution network structures demonstrate great degrees of heterogeneity in link distribution among
other parameters, and the statistically identical structure typified by the Deterministic network is very
unlikely to be observed in reality.

Traceback Accuracy Comparisons: Geometric Network
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Figure 3.5: Traceback Accuracy (TA) as a function of the number of illnesses K, for the (a) Geometric-4

and (b) Deterministic-4 networks. Results are based on 100 simulations in the baseline scenario. From
bottom to top, TA with the FDA Heuristic is plotted in light green, with the Network Baseline in dark
green, with B&H in red, and with the STT in blue.

Robustness of comparative behavior

We have performed extensive robustness analyses to verify whether that the comparative relationships
exhibited in the two illustrative examples hold broadly. We have varied multiple structural parameters,
including the distribution of flow volume across outgoing links from each node, the number of stagesn,
the number of nodes per stage v,, and average degree y. We have observed that the series of relationships

FDA Heuristic < Network Baseline < B&H < STT holds almost universally, with a few fluctuations. Here
we present two sets of analyses to demonstrate the consistency of results, applying the comparative
framework to (i) a set of stylized network structures that vary significantly in their connective density and
(ii) to the realistic network structures developed in Section 2.1.

We compare the two heuristics and two traceback methods across a set of 10 network structures defined
by Deterministic out-degree distributions and 10 Geometric out-degree distributions, respectively. The
networks considered in each figure vary in their average degree p but are otherwise constructed according
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I
to identical variable specifications: Each network is a square layered network consisting of n = 4 stages of

v= 100 nodes. The initial volume distribution is equal over the node set V(1). Again, detection

performance is based on 100 outbreak simulations generated according to the baseline scenario
specifications. Figure 3.6 a and b presents the results obtained with the four methods applied to each
series of 10 networks. Each figure plots Traceback Accuracy at a specific slice in time,K =150

illnesses, and a function of average degree p (thus, each integer value p represents a network). As with the

Deterministic-4 network, STT significantly outperforms all existing methods for the set of Deterministic
networks considered. For Geometric networks in which the majority of the flow from source to sink will
be concentrated in a small number of high probability paths, the difference is much less pronounced while
still significant. On average, STT performs 8% points better, ranging from 19% to 5% in all network
cases except forp = 8, when STT dips 3% points below B&H. Fluctuations from the general trend are

always possible for geometrically defined networks, which can exhibit extreme variability.
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Figure 3.6: Traceback Accuracy (TA) at a specific slice in time, KW = 150 illnesses, as a function of

average degree p for the (a) Tomato and (b) Lettuce networks. Results are based on 100 simulations in

the baseline scenario. From bottom to top, TA with the FDA Heuristic is plotted in light green, with the
Network Baseline in dark green, with B&H in red, and with the STT in blue.

We now demonstrate robustness of the comparative behavior in application to the realistic network
structures developed in Section 2.1, for the performance evaluation framework described in Section 3.2.
Figure 3.7 a and b presents the percentage of correct detection obtained with the four methods as a
function of the number of illnesses Kw . For both network cases, STT's detection performance is

consistently best through the entire time course of the outbreak, closing out a 15% points better than B&H
by Kw =1 50 illnesses and outperforming the FDA Heuristic by an 80 - 85% margin.

3.33. Practical hmplicatios

The comparison of the STT traceback method to heuristics and existing approaches suggests that the
network-theoretical approach to the source localization problem can contribute substantially to the
traceback investigation process. Current methods are able to identify the source in less than 35% of all
identified outbreaks (Painter et al. 2013). If the source is unknown it is not possible for investigators to
implement interventions to limit its spread, meaning that the majority of contamination events progress
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I
freely. Implementation of the methods introduced here may provide substantial benefits to emergency
responders, helping them to identify the source successfully and efficiently, and importantly, enabling the
implementation of interventions to avert illnesses before they occur. We will dig further into this
difference and discuss the practical implications in Chapter 4, when we quantify the benefits resulting
from using the traceback methodology to develop specific investigation interventions to identify the
source and limit its spread.
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Figure 3.7: Traceback Accuracy (TA) as a function of the number of illnesses K., for the (a) Tomato and

(b) Lettuce networks. Results are based on 100 simulations in the baseline scenario. From bottom to top,
TA with the FDA Heuristic is plotted in light green, with the Network Baseline in dark green, with B&H
in red, and with the STT in blue.
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3.4. Conclusions
This chapter provides a first step towards validating the practical utility of the traceback methodology
presented in this thesis in real-world scenarios. A generalizable modeling framework representing key
structural and spatial features of real food supply networks has been developed and applied to model the
distribution of two specific commodities in the US: tomatoes and lettuce. We have evaluated the
performance of the traceback methodology applied to these two realistic structures, demonstrating high
accuracy in both identifying and localizing the outbreak source. We have analyzed the results to provide
an understanding of how the successful resolution of an outbreak depends on the structure of a network.

This chapter also develops a framework for quantifying benefits in comparison to existing approaches to
foodborne disease outbreak source detection: to a practical baseline meant to demonstrate current methods
applied in practice during outbreak investigations and to a best-in-class method presented in the literature.
In results across a wide range of network structures and outbreak scenarios, our approach to traceback
demonstrates significant improvements in accuracy. Theoretically, these results demonstrate the
suitability of our specific methodological approach to the problem of localizing the source of foodborne
disease outbreaks. Practically they suggest that our traceback methodology provides an effective
framework for identifying the source of large-scale outbreaks of foodborne disease, and that it may
contribute substantially to the traceback investigation process. In the following chapter, we explore the
applicability of applying the method in real time, developing and implementing a decision-making tool
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for guiding investigators at the tactical level in making the most effective interventions to solve an
investigation and stem impact on the public.

It is important to stress that these findings are derived from simulation results and as such are only
illustrative. Future analyses will be necessary to determine the method's accuracy when applied to real
food supply network data. This work is described in Chapter 5.
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Chapter 4:
Interventions

The performance evaluation presented in Chapter 3 demonstrates that the traceback methodology provides
an effective framework for identifying the source of large-scale outbreaks of foodborne disease. The
results suggest its implementation during an outbreak may provide substantial benefits. In this Chapter,
we use the traceback methodology to develop a decision-making framework to guide investigators at the
tactical level to make the most effective interventions to solve an investigation and stem impact on the
public.

In the event of an outbreak, investigators' primary objective is to limit the number of illnesses. Illnesses
are averted when the source is identified and the public is notified through a public service message,
which can be combined with a recall and removal of the offending product from the supply chain. In the
best cases, an initial investigation is successful in narrowing down the number of feasible sources to a few
possibilities. Investigators are then deployed to these sites in order to gather records, observations, and
perform sampling experiments in order to definitively identify the source. Often in practice, however, it
may be possible only to narrow the problem down to a subset of facilities or a specific region. In some
cases, such as during the spread of a particularly virulent or deadly outbreak strain, investigators may
decide that it is more important to take measures to limit the spread before the source is singly identified.
In these situations, a public service message regarding the status of the investigation may be issued,
warning the public to avoid consuming products from specific brands or regional origin. In the worst
cases, a category currently including over 65% of multi-state outbreaks occurring in the US, no leads on
the source emerge in the investigation. In these cases, either no action is taken or an extremely broad
message is issued that implicates an entire category of foods.

In deciding to deploy investigators or dispatch a public service message, investigators face difficult
decisions. They must decide whether the accuracy of their assessments merits an action being taken, if so,
then when it should be taken, and what it should include. The greatest challenge lies with determining
when. Clearly, taking action earlier in the outbreak while the case development rate is highest will create
the greatest benefit. At the same time, assessments regarding the source location made at an early stage in
an outbreak's progression will, on average, be marked by greater uncertainty and a broader set of
possibilities. If an untargeted message is issued implicating a large region or set of food products or
categories, it will have major repercussions for all firms in that industry. For example, in the 2006 E.Coli
spinach outbreak, all spinach in North America was pulled off the shelves while it took the authorities
over a month to identify the origin of contamination (Seltzer et al. 2009). Tracing the spinach back to the
county or even district of origin would have provided a huge impact both to consumers and the spinach
industry. Furthermore, when a statement issued prematurely turns out to be incorrect, the indicted brand,
product, or industry will suffer unmerited damages. This occurred in the 2011 German outbreak of E.coli
in sprouts, when investigators wrongly implicated cucumbers produced by a Spanish produce cooperative,
wiping out over a month's worth of production of that commodity and doing lasting damage to the
reputation of the Spanish cucumber industry as a whole (a $2.54 million settlement was reached between
the City of Hamburg, whose health officials made the mistaken implication, and the Spanish cooperative
was reached in 2015). On the other hand, taking a conservative approach and waiting for more evidence
to become available to pinpoint the source with greater certainty will inadvertently allow more cases of
illness to proliferate. At the extreme, the epidemiological curve may well have died out by the time a
confirmation is established and action taken, meaning that no illnesses will be averted.
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Further complicating the difficulty of timing a decision is the criticality of each day in the outbreak's
progression. This is exemplified by the example provided in Chapter I of various times at which action
could have been taken to avert the spread of the 2006 spinach outbreak. Given the rate of case progression
in that outbreak, five days of separation in the timing of an intervention would have resulted in a
difference of 19 vs. 1 10 cases averted - around 8% vs. 70% of the total number of reported cases.

Standard protocol to guide the deployment of mitigation measures during an outbreak currently involves
investigators consulting with colleagues at state public health agencies, university agricultural research
institutions, and in industry to prioritize between sources. An importation limitation to these practices is
that a systematized approach to identifying, evaluating, and deciding mitigation measures is not applied
process. Sherri McGarry, the Foodborne Outbreak Coordinator at the FDA Headquarters has emphasized
the need for scientifically sound approaches to guide investigation and control measures. Ms. McGarry
has asserted that, "Any measure that will help to determine where we should focus our attention and give
leads on the investigation would have a lot of application and utility for public health, and for business as
the longer the outbreak the greater the impact on industry" (S. McGarry, personal communication,
December 20, 2012).

In this Chapter, we propose, implement, and evaluate a systematic approach to establishing interventions
that address the types of situations described. Mechanisms are developed to answer the questions whether,
when, and what, deciding (i) when and where to deploy investigators and (ii) when to message the
public implicating the likely outbreak source(s) and what locations it should include. The procedures
involve investigators predetermining a desired accuracy level and allocating a non-monetary "budget" of
resources to the investigation. In defining these strategies, we do not prescribe how a decision should be
made; our purpose is to provide an objective framework that investigators can use to quantify and tradeoff
their alternatives, making clear the benefits of taking (or not) certain actions.

The contributions of this chapter fall under four categories:
" We define the attributes accuracy, benefit to public health, and cost to regulators or industry as

characterizing the performance of investigation interventions; these performance measures allow
us to define an framework for enumerating, quantifying, and comparing intervention options.

" We propose mechanisms based on the traceback methodology of this thesis for deciding when and
where to deploy investigators and when and what to message to the public given an allowable
level of risk and the resources available.

" We quantify the potential benefits to public health possible if interventions based on these
mechanisms are implemented, measured in terms of illnesses averted.

* We show from computational results that these methods demonstrate great potential to improve
upon current methods in outbreak response, recommending whether, when, and with what to
respond during an outbreak.

4.1. Intervention Performance Attributes

4.1.1. Overview
In the first section of this Chapter, we develop a decision-making framework and set of mechanisms for
deploying investigators and dispatching messaging interventions to the public during an ongoing
outbreak. The mechanisms require investigators to specify a desired accuracy target and an available
resource budget. The procedures rely on the simulation-based traceback performance evaluation
framework (Section 2.2), using the results of multiple simulation runs to quantify the expected
improvement in traceback accuracy with each day's new information on illness reports. Based on the
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expected improvement in accuracy, a set of options is derived to indicate when and where to deploy
investigators or messages for specific combinations of accuracy and resources. The decision maker will
review the options and will make a decision by comparing the tradeoff between the expected accuracy,
the cost to public health incurred by the number of new cases generated each day the outbreak progresses,
and the cost to industry by implicating multiple firms.

In the following, we define intervention performance attributes and present the mechanisms. We apply the
mechanisms to outbreak scenarios involving the Lettuce and Tomato networks and evaluate their potential
to effectively recommend whether, when, and where to focus when responding to an outbreak.
Implementing these methods also allows us to directly quantify the benefits of our methodology in
comparison to existing methods used in outbreak investigations. Specifically, we quantify how many
illnesses could have been avoided had a recall or public service announcement been made at the time of
detection, given assumptions regarding the response time following the implication of the source(s).

4.1.2. Performance Attributes
We consider the following three performance attributes of interventions: accuracy, benefit to public health
and cost to industry (i.e. what facilities or regions) to implicate. The specificity quantifies what action to
take, accuracy pertains to the notion of whether it should be taken, and benefit to public health relates to
when it should be carried out.

Specificity
This refers to an intervention's ability to focus on a small, bounded subset of top-ranked predictions. It is
quantified by the number of facilities included in an intervention, S . In deploying investigators, it
quantifies the number of facilities to sample, S, . In dispatching a message to the public, it quantifies the

number of facilities to implicate, S, .

An intervention deploying investigators with a higher value S, will have a larger cost to the central

authority performing the investigation, as it will require a greater number of facilities to be inspected and
sampled. An intervention to dispatch a message with a higher value S, will have a larger cost to industry,

as it will implicate a greater number of facilities when at most one will be culpable. Therefore, although
the notion of "high specificity" may have a positive connotation in colloquial use, by this definition the
connotation is negative.

Accuracy
This refers to an intervention's precision in correctly identifying the source within a specific number of
top-ranked predictions, that is, of achieving a certain specificity. The Accuracy A is quantified by the

probability that the true source s* is ranked within the topS predictions, i.e. A = P(R S), where R is the

random variable representing the Rank of the true source as defined in Section 2.2. The higher the
accuracy, the greater the probability that the true source is identified.

Benefit to public health
This refers to an intervention's ability to mitigate the outbreak's impact on public health. It is measured
by the number of illnesses averted by taking action to message the public not to consume the
contaminated product (or set of products including the contaminated product). In interventions to deploy
investigators, this action is taken after the S, facilities have been inspected and sampled.
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Illnesses Potentially Averted
To quantify the number of illnesses averted, we introduce a new metric, Illnesses Potentially Averted
(IPA). IPA is defined for an outbreak 0 characterized by observed cases of illness i e 0. We define IPA as
the number of cases i that had not consumed the contaminated product by the time a message to avoid that
product would have reached them, for a messaging intervention strategy informed by the evidence
provided by the first K. reported illnesses. To calculate the metric, it is necessary to describe a few

important features of the process of implementing an intervention. Recall that cases i are recorded in the
outbreak curve according to their time of illness onset t. . The eventual date that an intervention informed

by the evidence provided by the set K. can realistically be implemented must account for two process

delays: case reporting delay and message transmission delay. First, the date that each illness would
become known to investigators and thus usable in traceback calculations is subject to a delay in case
reporting which can range from a few days to 3 weeks, as described in Figure 1.1 and Appendix 1.1, the
Timeline for Case Reporting. Second, after investigators use the available evidence to perform the
traceback assessment, make predictions, and decide on an intervention, there is a delay between when the
message is announced and when it reaches members of the consuming public. This may include the time
it takes for the message to spread through various media outlets, or for food providers to remove the
item(s) from circulation. In determining IPA, we account for the case reporting delay and the messaging
delay. We assume that the time to perform the traceback assessment, make predictions, and decide on an
intervention is instantaneous.

IPA is calculated forO using the outbreak simulation model (Section 2.2), with a few additions. First, we
introduce the following notation:

tj , the date that i consumes the contaminated product

- ti , the date that symptoms begin for i, which is the date recorded in E(t)
OR, a random variable representing the case reporting delay
tri , the date that i is ultimately reported to investigators

- K, , the time that the K. t illnesses would be reported

- m , a random variable representing the message propagation delay
- tj , the date the message would reach i

Dates of consumption and illness onset t(,- andt, are determined according to the process represented in

the original simulation model, described in Section 2.2. To determine the reporting times tr , a reporting

delay 0 R is sampled from R and added to the date of illness onset t, . The time TrK can then be found; set

equal the time tr associated with the K, th reporting illnesses.

Informed by the evidence provided by K., investigators will perform the traceback assessment, make

predictions, and decide on a messaging intervention. Since we assume this decision is made
instantaneously, rK. is stored as the Date ofInvestigation Response. The message is propagated, reaching

case i at tj after a random propagation delay Om sampled from Om. Finally, we can find IPA for

outbreak 0 as the number of cases i reached by the message before consuming the contaminated product,
i.e.

IPA= i

lic~mj(4.1)
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The critical assumptions of this approach are that the message will eventually reach all retailers and
consumers, who once reached, will react immediately by removing or discarding the contaminated
product. These assumptions are not entirely realistic, since retailers and consumers in more isolated parts
of the country may not be reached by the message. However since the industry-led recall of the
contaminated product following its message will contribute to the reduction of that product in the supply
chain, it will become increasingly less possible that the contaminated commodity remains in circulation,
meaning that each consumer or food seller will ultimately be qffected by the intervention itself. The
uncertainty in the message propagation delay variableeA will account, in part, for the variability in the
time the intervention takes to achieve this qffect.

We also note that the quantification of IPA is limited to reported illnesses; illnesses that go unreported are
not considered. Due to underreporting or unknown agents, these numbers are potentially much higher,
with estimates that for every reported illness, between 25 - 100 go unreported (Batz 2005, Batz and
Morris 2012, Scallan et al. 2011). The true public health benefit is thus larger than indicated by IPA.

4.2. Mechanisms for Interventions
In this section, we develop several mechanisms for outbreak interventions that define inputs provided by
investigators and determine set of feasible intervention strategies satisfying the input conditions. In
defining these mechanisms, we do not prescribe how investigators should compare between feasible
strategies to make a decision, such as by assigning values to the "importance" of each performance
attribute in order derive a solution that "optimally" trades off between them. Rather, our intention is to
provide a systematic framework that investigators can use to (i) identify a set of possible intervention
options, (ii) quantify the costs and benefits of each according to the performance measures, and (iii)
compare the options on an objective basis.

4.2.1. Investigator Deployment Mechanism
We first define a mechanism for deciding where and when to deploy investigators to sample suspect
source facilities. Under this mechanism, the investigation decision-makers, which we refer to as the
"investigation task force," submit their preferred accuracy target A m" and resource budget S,"r
determining the maximum number of facilities that they can afford to sample. With regard to specifying
input values, we note that the accuracy target is flexible and defines an "acceptable" level of risk
investigators are comfortable taking on in implementing an intervention. While the resource budget may
be inflexible, set by a specific finite budget, it may also be negotiable. For example, emergency funds
might be allocated to respond to an outbreak strain causing greater "impact" measured by the severity of
the presenting cases.

The accuracy target and resource budget imply the constraint P(R S,)> A"", forS , 5S,". Given the

inputs, the decision modeler, who we refer to as the "analyst," forms a set of feasible intervention options
or strategies $ e 0, , each describing a unique combination of accuracy and resource budget parameters
satisfying this constraint. The analyst then uses the simulation-based traceback performance evaluation
framework (Section 2.2) to quantify the expected public health benefit of each strategy, defined as the

mean number of illnesses potentially averted IPA . First, the PMF for Rank R, PR (r), is formed from the

results of the traceback algorithm applied to a set of simulated outbreak events 0 : 0. PR(r) is used to

determine K"" , the minimum amount of evidence, i.e. the smallest number of reported illnesses K,

necessary to achieve each strategyO e (D,. Finally, the expected public health benefit IPA is calculated by
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averaging IPA over all outbreak events. Recall that IPA is a metric defined for an individual outbreak

event 0 and evidence level K.. IPA is therefore also a function of the evidence level, and will be identical

for each strategy with the same revealed value K" m.

The investigation task force reviews the intervention strategies, comparing the alternatives on the basis of
their accuracy (quantified by A), cost to the central authority performing the investigation (quantified by

resources required S, ), and benefit to public health (quantified by IPA ). The task force chooses a strategy;
establishing what action will be taken, i.e. deploy investigators to S, sources, and when the action will be
taken, i.e. after waiting for K, illnesses to report. This mechanism does not prescribe how the task force

should arrive at a decision, though the first step should be to quantify and compare the tradeoffs between
the intervention strategies. For example, it would be useful to determine the increase in the cost to public
health incurred by waiting for a more stringent accuracy target to be achievable at a given resource
budget, or alternatively, waiting until a desired level of risk is achievable at a lower resource budget.

Finally, the analyst shifts focus from the results of the set of 0 simulated/hypothetical outbreak events and
back to the real data from the ongoing outbreak event. The final step is carried out once the K. th illness

has been reported and the analyst can determine the realization of the strategy, identifying where/which S,
facilities investigators are deployed to. The traceback algorithm is applied to determine which facilities
occupy the first S, positions in the resulting ordered ranking. The intervention is successful if the true

sources* is identified within this set. Follow-on action should be taken to warn the public to avoid the
contaminated product.

Mechanism 1: Investigator Deployment Mechanism

. The investigation task force submits their preferred accuracy target Am
in and maximum number of facilities to

deploy investigators to S,', determined by the available resource budget

- The analyst forms a set of feasible intervention strategies 0 e cD, for combinations of accuracy and resource

budget parameters, satisfying the constraint P(R S,)> A""" for S, S "a.

The analyst quantifies the expected benefit to public health for each intervention using the simulation-based
traceback performance evaluation framework (Section 3.2)

The PMF for Rank R, PR (r), is formed from the results of the traceback algorithm applied to a set of

simulated outbreak events 0 e 0.

PR() is used to determine K." , the minimum amount of evidence necessary to achieve each strategy

The mean number of illnesses potentially averted IPA is defined for each strategy according to K'"

The investigation task force reviews the strategies, comparing the alternatives on the basis of their accuracy
(quantified by A ), cost to the central authority performing the investigation (quantified by resources required

S, ), and benefit to public health (quantified by IPA ), and decides on an intervention.

Once the once the K. th illness has been reported, the analyst determines the realization of the strategy,

identifying where/which S, facilities investigators are deployed to.

The analyst shifts focus from the results of the set of 0 simulated/hypothetical outbreak events and
back to the real data from the ongoing outbreak event.
The traceback algorithm is applied to determine which facilities occupy the first S, positions in the
resulting ordered ranking.
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4.2.2., Public Service Message Dispatching Mechanism
We now propose a mechanism for deciding when to issue a public service message implicating the likely
outbreak source(s) and what facilities it should include. The mechanism applies the same approach as
Mechanism 1, the difference being the meaning of input and output terms. As in Mechanism 1,
investigators provide their preferred accuracy target , but instead of an internal resource budget, they

submit a maximum allowable number of facilities to implicate in the message Si"a" IfS";" > I , this term

defines an "acceptable" limit on the cost to industry incurred by the damage caused by an unmerited
attribution since most one facility will truly be the source.

As for mechanism 1, strategies satisfying the input constraints are formed and quantified according to
their expected benefit to public health and the investigation task force reviews the strategies in order to
decide on an intervention strategy 0 E 0, carried out at interval K0). In this case, however, alternatives are

compared on the basis of their damage to industry (quantified by number of facilities implicatedS., ) in

addition to their accuracy (quantified by A ) and benefit to public health (quantified by IPA ). The task
force chooses a strategy; establishing what action will be taken, i.e. implicate S. facilities in the message,

and when the action will be taken, i.e. after waiting for K, illnesses to report.

Finally, once the K. th illness has been reported, the analyst determines the realization of the strategy,

identifying which S,, facilities to implicate. The traceback algorithm is applied to determine which

facilities occupy the first S, positions in the resulting ordered ranking. A messaging intervention is

successful if the true sources* is within this set, meaning that the public has been warned to avoid the
contaminated product.

Mechanism 2: Public Service Message Dispatching Mechanism

- The investigation task force submits their preferred accuracy target Am"" and maximum number of facilities to

implicate in message S"ax, quantifying an "acceptable" limit on the damage/cost to industry

- The analyst forms a set of feasible intervention strategies e = 0, for combinations of accuracy and number of

facilities implicated, satisfying the constraint P(R SM Am for S 5  S max

- The analyst quantifies the expected benefit to public health for each intervention using the simulation-based
traceback performance evaluation framework (Section 3.2)

The PMF for Rank R, PR (r), is formed from the results of the traceback algorithm applied to a set of

simulated outbreak events 0 e 0.

P. (r) is used to determine K, , the minimum amount of evidence necessary to achieve each strategy

The mean number of illnesses potentially averted IPA is defined for each strategy according to K"

- The investigation task force reviews the strategies, comparing the alternatives on the basis of their accuracy
(quantified by A ), specificity (quantified by facilities implicated S, ), and benefit to public health (quantified

by IPA ), and decides on an intervention.
- Once the once the K. t" illness has been reported, the analyst determines the realization of the strategy,

identifying which S. facilities to implicate in message.

The analyst shifts focus from the results of the set of 0 simulated/hypothetical outbreak events and
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back to the real data from the ongoing outbreak event.
The traceback algorithm is applied to determine which facilities occupy the first S. positions in the

resulting ordered ranking.

4.3. Implementation
In the following we implement the mechanisms to the Tomato and Lettuce networks introduced in
Chapter 3. Assuming reasonable values for input constraints, we present a set of strategies prescribed by
the mechanisms. The impact of the interventions is quantified according to the performance measures.
Finally, we compare this approach to current methods in outbreak investigation, quantifying the benefits
of a systematic approach to developing interventions, and moreover, one based on the novel approach to
traceback introduced in this thesis.

4.3.1. Modeling Assumptions
First, we report on our input parameter choices. We consider an accuracy target of A""' = 90% . This can
be interpreted as accepting the risk that 1 out of every 10 interventions implemented is unsuccessful.
Investigation resources were limited to S" = 5 independent investigations to reflect the very limited

resources available in the federal outbreak response budget. The maximum number of facilities to
implicate in a message was also limited toS" = 5, implying it would be too damaging to industry to
wrongfully implicate more than 5 brands. To satisfy the bounds set by these thresholds, we consider
strategies at combinations of A = 90% and 95%, and S, S, 5 .

To calculate IPA, we apply the traceback performance evaluation framework to the E.coli outbreak
scenario and simulation set considered in Section 3.2, leading to 374 and 462 reports of illness on average
for the Tomato and Lettuce cases. We model the case reporting delay using a Weibull random variable
R Weibull(A,K)with scale parameter A = 7 and shape parameterK = 1.5, a right-skewed distribution

peaked at 7 days with a long right tail. We model the message propagation delay M as a normal random
variable with a mean of uM = 0.5 , or half of a week, and with variance l = i, so that most of its
density occurs between 0 and I week.

4.3.2. Results
We first discuss what type of strategy should be adopted for each network case by considering qualitative

results. Figure 4.1 a and b plot traceback accuracy against IPA , the mean number of cases potentially
averted , as a function of the available evidence K.. As we saw in Section 3.2, the traceback methodology

converges quickly, almost reaching its peak accuracy with the evidence from between 20 - 30 cases of

illness. At the same time, IPA falls quickly towards the beginning of the outbreak, reflecting the bell
shaped curve of the average epidemic that increases rapidly and then decreases almost as rapidly. This
comparison enables an important observation for both cases: compared with interventions implemented
late in the outbreak's progression, interventions implemented early on will achieve a much greater benefit
to public health without taking on greater risk. In the following, we therefore only present interventions
achieved at available evidence levels K. 50.

U
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Figure 4.1. Traceback Accuracy and mean number of cases potentially averted IPA as a function of

the number of illnesses K, for (a) the Tomato network and (b) the Lettuce network. The comparison

qualitatively illustrates that interventions implemented early on can achieve a much greater benefit to

public health without taking on greater risk.

To illustrate how the mechanisms are implemented, the Rank PMF PR(r)formed from the results of

simulation and used to calculate K"'" is demonstrated in Figure 4.2 a and b. The white dashed lines

indicate accuracy levels of 90% and 95% being met P,(r) can also be used to quantify alternative

strategies, such as determining how many facilities would need to be sampled / implicated to implement a

strategy with 100% accuracy, or what strategies could be postulated after only 10 illnesses have reported.
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and used to calculate Km"" for the

We now report the intervention options presented by the mechanisms. Table 4.1 shows the minimum
amount of evidence necessary to achieve the constraints (i.e. the smallest number of reported illnesses,

K"' ) and the expected benefit to public health (i.e. the mean number of illnesses averted, IPA ) for each

strategy. To facilitate comparisons between the two network cases, the benefit to public health is also
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represented as a percentage of the total number of cases of illnesses. A dash denotes strategies that cannot
be achieved at any level of evidence. Figures 4.3a and b visualize the expected benefit to public health.
Each figure plots the average results of the total epidemic curve with no intervention, overlaid by the
diminished epidemic curves that could result from successful interventions implemented at the evidence
level K"" corresponding to each strategy.

Intervention Implementation: Tomatoes Implementation: Lettuce

Facilities Facilities Evidence Mean Evidence Mean

Strategy Sampled, Implicated, Accuracy required, Ave ted % required, Aveed, %
S, SM Target, A K ' K'"

1 W IPA (0 IPA
la Sample 1 Implicate 1 90% 30 157 42% - - -

lb Sample I Implicate 1 95% - - -- - -

2a Sample 2 Implicate 2 90% 20 182 50% 30 192 42%
2b Sample 2 Implicate 2 95% 30 157 42% 40 172 37%
3a Sample 3 Implicate 3 90% 20 182 50% 20 219 48%
3b Sample 3 Implicate 3 95% 20 182 50% 30 192 42%
4a Sample 4 Implicate 4 90% 10 220 60% 10 263 57%
4b Sample 4 Implicate 4 95% 20 182 50% 30 192 42%
5a Sample 5 Implicate 5 90% 10 220 60% 10 263 57%
5b Sample 5 Implicate 5 95% 20 182 50% 20 219 48%

Table 4.1. Results of Investigator Deployment and Message Dispatching Mechanisms for an outbreak
of E.coli in Tomatoes and Lettuce.

We first note that almost all strategies are "achieved," meaning that there exists a value K. at which

P(R 5 S) A. All but the most demanding constraint combination are achieved for the Tomato network

and all but the two strategies requiring only 1 facility to be sampled/implicated are achieved for the
Lettuce network. All other strategies suggest major benefits upon implementation, ranging from between
at least 37 - 40% and at most 57 - 60% illnesses averted. The range of benefits is so similar for the two
cases because of the parallel behavior of traceback accuracy, rising quickly and almost reaching its peak
value at the same evidence level by around which rises quickly and almost reaches its peak value by K,=
30, as seen in Figure 4.1 above.

To choose a strategy, the investigation task force would compare the alternatives on the basis of their
preferred risk criteria, resources available or cost to industry, and the expected benefit to public health.
Figures 4.3 a and b help to visualize specific tradeoffs between intervention options. For example, 95 out
of every 100 interventions implemented in the Lettuce case will be successful, averting on average 219
cases for a cost of 5 investigations or implications. To achieve a cost reduction by 2, 27 fewer cases
would be averted, and to achieve a cost reduction by 3, 47 fewer cases would be averted. The meaning of
these differences and the implications for the decision-making process will ultimately be determined by
the severity of the disease. One can imagine that a difference of 27 illnesses will drive a more urgent
response if a large fraction of these cases are expected to present with life-threatening complications or
mortality.

We also note that the quantification of IPA is limited to reported illnesses; illnesses that go unreported are
not considered. Therefore, the true public health benefit is larger than indicated by the figures in Table 4.1
Even without this multiplier, it is clear that great gains in public health can be achieved by improved
traceback processes.
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4.4. Comparison to Current Investigation Methods
To quantify benefits in comparison with current methods in outbreak investigation, we implement the
FDA Heuristic introduced in Section 3.3. The heuristic was developed from discussions with FDA
investigators. It models the process of "triangulation," or tracing back the distribution paths of products
from several locations to determine if there is a common point of convergence in the supply chain.
Ideally, we would evaluate the heuristic in combination with the decision-making framework developed
here, quantify the resulting performance attributes, and compare with the results achieved with the
traceback methodology presented above. However, no strategies satisfying the pre-specified input
constraints are achievable with the FDA Heuristic. To see this, in Figures 4.4a and 4.4b we plot the
average Number of Feasible Sources F converged on by the FDA Heuristic against the Rank of the True
Source metric R found with the traceback methodology, both as a function of number of illnesses K,. The
FDA Heuristic is able to narrow down the number of possible sources to around 30 possibilities in the
Tomato network case and 20 possibilities in the Lettuce case, and this is on average; the range of possible
values is much greater. Clearly, strategies requiring a specificity of S",S"" 5 are not feasible.

Therefore, to quantify benefits, we measure the equivalent specificity SF (i.e. the investigative resources or
cost to industry), required for the FDA Heuristic to achieve the same benefits to public health (i.e. an
intervention implemented at the same evidence level Kf") at the same minimum allowable risk (i.e. an

accuracy target ofA" r"= 90%) achieved by the traceback methodology - mechanism combination. This is
equivalent to finding the value of SF satisfying P(R S, ) A for the value K m" corresponding to each

strategy. SF can determined by inspecting the PMF for F, shown in Figure 4.5.
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Tables 4.2 and 4.3 report the results of this comparison, showing the specificity SF required by the FDA

Heuristic to achieve the same accuracy A, benefit to public health % IPA, and specificity S achieved by
our methodology. Clearly, the traceback methodology developed in this thesis outperforms the FDA
heuristic by a significant margin. To identify the source with 90% accuracy and avert the same number of
illnesses, the minimum specificity SF required by the FDA Heuristic ranges from 40 - 100. When
interpreted according to the perspective of the mitigation measures, these values are impossibly high. In
terms of investigator deployment interventions, it would not be feasible to deploy investigators to this
many facilities within the timeframe required by emergency response measures. For messaging
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interventions, implicating this many facilities in a public service message would essentially represent
condemning the entire tomato or lettuce industry.

Thus, for the outbreak scenario and distribution networks considered, it would not be possible to
implement successful mitigation measures according to current methods in outbreak response.
Furthermore, these results suggest that the large benefits to public health that come from successful
interventions are possible only with the traceback methodology developed in this thesis combined with
the decision-making tool of this Chapter.

Public Health

Strategy Accuracy Target, Benefit, Specificity S Specificity SF
A% IPA (Ours) (FDA Heuristic)

la 90% 42% 1 100
2a 90% 50% 2 150
3a 90% 50% 3 150
4a 90% 60% 4 200
5a 90% 60% 5 200

Table 4.2. Results of Investigator Deployment and Message
of E.coli in Tomatoes.

Dispatching Mechanisms for an outbreak

Public Health
Strategy Accuracy Target, Benefit, Specificity S Specificity SF

A (Ours) (FDA Heuristic)

la 90% - -
2a 90% 42% 2 40
3a 90% 48% 3 50
4a 90% 57% 4 60
5a 90% 57% 5 60

Table 4.3. Results of
of E.coli in Lettuce.

Investigator Deployment and Message Dispatching Mechanisms for an outbreak

4.5. Conclusions

In this Chapter, we developed, implemented, and evaluated mechanisms for investigation interventions
that build upon the ranked output of the traceback methodology. These interventions can help
investigators to determine when and to what facilities to deploy investigators to or to implicate in a
message dispatched to the public. While specific benefits are determined by the particular outbreak
scenario, general conclusions can be drawn regarding the potential impact of the mitigation-based
approach to developing and implementing interventions. In particular, the computational results presented
here suggest that benefits can be measured on four important dimensions:

1. If interventions based on these approaches are implemented, the true source can be identified
within specific number of high probability candidates with specific accuracy.

2. This identification is possible early enough in an outbreak's progression that if quick action is
taken, a substantial fraction of the illnesses that would ultimately result can be averted: ~40 - 60%
in simulated outbreaks.

3. All of these results can be achieved with low demands on investigational resources (if
investigators are deployed) and/or cost to industry (if a message is dispatched to the public).
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4. The decision-making framework combined with the traceback methodology outperforms
heuristics meant to model current methods in traceback investigation by a significant margin,
requiring a fraction of resources necessary to achieve the same level of benefits.

It is important to stress that these findings are derived from simulation results and as such are only
illustrative; live use of these techniques has yet to occur and may demonstrate features of the real problem
inadvertently omitted from the modeling. The network models underlying the analysis are neither
complete nor perfectly representative of real distribution structure or complete. More fundamentally, the
accuracy of the system will ultimately depend on the fidelity of the underlying network model and the
outbreak illness data available at the time of an event. This data is always better in simulation results than
at the time of an event, even when realistic scenarios are recreated. Still, the results suggest that when
applied to real outbreak investigations, the decision-making framework will present major improvements
to the traceback process, resolving outbreaks that would not be solved by current methods and preventing
many illnesses. At its best, it can identify the source definitively. At its worst, it can still narrow down the
problem to a feasible set of sources, providing investigators with guidance at a tactical level.
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Chapter 5:
Implementation: Modeling the Food Supply Network

The traceback framework developed in this thesis presents a viable approach to improving the capacity to
effectively and rapidly identify the source of outbreaks of foodborne disease. In Chapters 3 and 4, we
quantified potential benefits of this methodology to public health, industry, and investigators by
improving the speed, effectiveness, and accuracy of traceback investigations on a large scale. Here, we
describe how our methodology might be implemented to form a holistic system for rapid traceback of
outbreak events.

Vital to using the traceback framework during actual contamination events is a real-world supply chain
network model for any food involved in a contamination event. To implement the traceback methodology
in an emergency, a database of network models for various food types would need to be constructed in
advance so that the methodology is ready to launch immediately. However acquiring and organizing the
necessary food system data presents multiple practical challenges. Due to these challenges, it would be
opportune to collect the minimal data necessary to achieve high traceback performance without
oversupplying it. Clearly, the performance of the combined model-and-method approach will ultimately
depend on the properties of the underlying network, including the granularity of the model and the
representativeness of the data informing the model. In this chapter, we seek to understand the parameters
of the "sufficient" network data. We propose multiple approaches to modeling the supply chain network,
each at a different level of detail or granularity. For each approach, we suggest a means to collect the
necessary data and then examine (i) the feasibility of collecting this data and (ii) the potential traceback
accuracy achieved when implementing the model together with the traceback method. We start by
revisiting the basic requirements of the supply chain network model and outlining the data needs of the
"idealized" system and considering the feasibility of implementation. We examine the practical challengs
associated with collecting this data; namely, the feasibility of capturing and storing it, and the high
compliance burden doing so would pose to private enterprise. We then propose four approaches to
forming the model at different levels of granularity, considering the accuracy, feasibility, and ready
implementability of each. On the basis of the last approach presented, in third section we a recommend
ready-to-implement system for real-time source detection.

The contributions of this chapter fall in four categories:
" We specify the requirements of the underlying system-wide supply chain network model and

propose four approaches for modeling the structure meeting the necessary requirements
" We examine the potential accuracy of each alternative, considering in particular the level of detail

necessary to achieve high traceback performance without oversupplying it
" We suggest a means to collect the necessary data and discuss the feasibility of its implementation
" On the basis of these analyses, we recommend a combined model-and-method approach that

would form a ready-to-implement system for real-time source detection and suggest next steps in
its evaluation and implementation.

Section 5.1 outlines the "idealized" network model and considers the challenges associated with its
implementation. Section 5.2 proposes four approaches to forming the model at different levels of
granularity, considering the accuracy, feasibility, and ready implementability of each. On the basis of the
last approach presented, in Section 5.3 recommends a ready-to-implement system for real-time source
detection. Section 5.4 concludes.
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5.1. Network Models for Implementation

In this section we revisit the requirements of the supply chain network model and outline the idealized
data needs of the system and considering the feasibility of implementation. As discussed in Section 2.1.1,
the network model must take a systemic view for a given commodity, since the national food supply is a
coherent system. This system consists of individual supply chain actors of various kinds, e.g. growers,
processors, distributors, and retailers, sometimes organized under parent companies or businesses, and
markets that organize the movement of goods between actors, e.g. retailing, wholesaling, and direct sales.
The network model must capture the flows of goods between actors and between businesses, documenting
the many possible paths from point of production through processing, production, transportation and
distribution, to point of sale at retail.

5.1.1. Idealized solution
The network-specific inputs required by the traceback framework, summarized in Table 2.1, are the
topology of the network, characterized by (i) the nodes and (ii) the links and flows; (iii) the geographical
location of and distance between the nodes; and (iv) the storage time delays at each node. We now
provide an overview of the idealized data for each of these input categories, which would form the most
complete picture of the network, which is summarized in the third column in Table 5.1.

Nodes
In the idealized view, nodes would represent each individual supply chain actor engaged in preparing
food for consumption. for each stage of the supply chain. Precise geographical coordinates would
document the location of each node. The most accurate distance between any pair of nodes is the shortest
path road network distance between them. With the geographical coordinates, this can be calculated
trivially using GIS software.

Links and Flows
According to the network model framework in the traceback methodology, links and flows are equal to
the total volume of commodity sent from supply chain actor u in one stage to each adjacent actor v in the
subsequent stage, as a fraction of total volume handled by u per unit time. Here, we define the unit time to
be the temporalperiod of analysis r,, which could be a week, growing season, or year. It is important to

emphasize that because of this feature, the network represents a probabilistic picture of all connectivity
over a fixed period of time rather than representing transactions as they happen. As long as all possible
links occurring within 'rare logged, including contracted relationships, spot-market relationships, and

possible but unknown relationships, this probabilistic picture accounts for the inherent stochasticity in the
market. Clearly, the smaller the period rof connections the network structure represents. the more

accurate the model will be.

Assembling link and flow information for the idealized view would require documenting the existence of
every pair of trading supply chain actors and the total magnitude of trade over each link. This information
could be gathered exhaustively by collecting and reviewing all transaction data over a fixed period of
time. Importantly, it would need to be updated as frequently as T,.

Storage Time Delay
The storage time delay for a supply chain node is equal to the difference between receiving and
dispatching times of commodity handled by that node. In the idealized case, this would be documented
for each supply chain node u, rather than taken as an average across all nodes of stage n as implemented
in the outbreak scenarios and traceback analyses conducted in Chapters 2 and 3. In the exhaustive case,
this term could be determined by collecting a representative sample of transaction data and analyzing the
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facility logistics to determine a representative distribution of the storage times; the sample should be large
enough to account for outliers.

Traceback
Model Input Definition Description Data To Collect

Supply chain nodes are Nodes represent supply chain Identity of each supply chain actor /
actors u in stage n, for all actors engaged in preparing food facility from:
stages n e 1,...,N for consumption, for each stage of - Growers: USDA or state agricultural

Nodes the supply chain i.e. growing, records
processing, packing or holding, Processors and Distribution
and retailing Centers/Warehouses: Required FDA

registration information for
-Retailers: Professional data collectors

Transition probability Proportion of total volume of Total volume of commodity handled by u
matrix F of normalized commodity sent from supply sent to each trading partner v during Ti,
flow proportions f, out chain actor u in one stage to v in as recorded in traceability data or other

Links and of node u in stage the subsequent stage, as a fraction transaction records (for idealized model),
flows n e [1,N -1]and into of total volume handled by u over or estimated by producer

temporal period of analysis T,, /processor/packer/retailer (for
adjacent node v in stage e.g. week, growing season, year approximate model)
n+ii during T,
Matrix D of distances d,, Shortest path road network Road network distances can be found for
between adjacent node u distance between any traders u any two points on a map using GIS
in stage n and v in stage and v in all supply chain stages software. Geographical coordinates for
n+ /, for all stages each node found from:

distance n E 1,...,N Growers: USDA or state agricultural
distancerecords

between nodesrerd
-Processors and Distribution
Centers/Warehouses: Required FDA
registration information for

- Retailers: Professional data collectors
Storage delay Distribution of delay times, or the Sample of delays for commodity a at
distribution for difference between receiving and each supply chain node u during T,, as

Storage time commodity a at each dispatching times, associated with recorded in traceability data or other
delay for supply chain node u in storage at each supply chain node transaction records (for idealized model),

nodes stages n e [2,N], with or estimated by producer

mean Ya /processor/packer/retailer ( (for
I I , approximate model)

Table 5.1. Data categories and sources to be used in creating the idealized and approximate network
model for application to the foodborne disease detection problem.

5.1.2. Problems with idealized solution
The critical assumption underlying implementation of the idealized model is access to perfect data. There
are two major problems arising from this assumption and they are polarizing: (i) acquiring and organizing
information at this level of detail, and (ii) the compliance burden associated with succeeding.

Problem 1: Data Collection and Organization

We first discuss the feasibility of acquiring and organizing this data, and in particular, the transactional
data necessary for representing link/flow and mean storage time delays that presents the greatest challenge
owing to its abundance and the frequency with which it would need to be updated.
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In principle, the necessary data does exist. Many food industry companies have an electronic system in
place for recording transactions for proprietary business analysis, and more and more of these firms are
adopting comprehensive technology-enabled traceability systems to capture the real-time movement of
products through the supply chain (Storoy et al. 2013, McEntire and Bhatt 2013). If no official system has
been set up, through due course of business, transactional data is generated in "native" forms such as bills
of lading, purchase orders, harvest records, production records, shipping invoices, etc., or for tax and audit
purposes (McEntire and Bhatt 2013).

The legal right to this data is another question. Trade relationships are proprietary information that
businesses are often reluctant to share, since they constitute competitive information that presents
advantages in the low-margin retail food industry. While each facility must participate with at least the
"one-up, one-back" recordkeeping mandated by the Bioterrorism Act of 2002, this data is proprietary and
must be shared with FDA only when responding to an incident. However it is possible that this obstacle
might be overcome by new legislation passed under the landmark 2011 Food Safety Modernization Act
(FSMA), the first major reform to food safety in 70 years, was signed into law. Among the Act's many
provisions is an extension of traceability requirements. Specifically, FSMA extends the authority of the
FDA to establish, as appropriate, "a product tracing system to receive information that improves the
capacity to effectively and rapidly track and trace food that is in the United States or offered for import
into the United States." The Act does not include specific provisions for implementing the law, and the
regulatory timeline for determining the requirements is still developing. So far, the data gathering stage
has begun and two product tracing pilots have been carried out for the purpose of exploring for how
technology can be used by investigators to improve the traceback process. The FDA has yet to initiate the
rulemaking process, and considerable work remains to be done before the agency will be in a position to
decide upon an appropriate federal track and trace solution. Is it possible to imagine that access to the data
necessary for the traceback methodology developed in this thesis could be made possible through this
Act.

Assuming FSMA could expand the regulatory mandate to this data, its organization presents yet another
challenge. The challenge is greatest for processed or otherwise multi-component foods containing dozens
of ingredients. Even if many companies have robust traceability systems for efficient capture, storage, and
communication, the necessary data will inevitably be recorded in different forms and levels of ready
usability. Combining information from multiple platforms presents practical challenges, which are
exacerbated for data recorded manually or in a native form unspecific to the task of traceability (e.g.
invoice data). Ultimately, however, this is a surmountable problem faced by all organizations that deal
with big, unwieldy data, and one that is being addressed at both the federal and industry levels. For
example, as part FSMA, the FDA was required carry out product tracing pilots for the purpose of
identifying and evaluating methods for how technology can be used by investigators to enhance the speed,
effectiveness, and accuracy of the product tracing process. One of the main findings of the pilot study,
conducted by the Institute of Food Technologists (IFT) under contract with the FDA, was that a lot of the
key information necessary for traceability is already being captured in data systems, but that the way in
which firms accessed and transmitted product tracing data varied widely. To connect these pieces of
information into a package or system that the FDA can use, the IFT developed a specific set of
requirements for improving capture and reporting of records, including standardized electronic
mechanisms that would allow efficient aggregation and analysis of data (McEntire and Bhatt 2013).
Movement towards a standardized recording and reporting system has emerged in industry as well. An
organization consisting of growers, processors, retailers and foodservice companies has formed the
Produce Traceability Initiative (PTI), whose purpose is prescribing a chain-wide standard format for
electronic product traceability.

Problem 2: Compliance burden
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In theory, a coherent framework for collecting and organizing the data could be implemented. On the
other side of this, however, is the polarizing issue of the compliance burden. The more comprehensive the
demands for data collection, the greater the burden on industry to comply and supply the information.
Furthermore, the idealized system would require all members of the supply chain to participate.

A precedent for data collection and compliance has been set by the Bioterrorism Act of 2002, however the
detail is many levels removed from what would be necessary. Firms under FDA's jurisdiction are
required to officially register with the agency, providing their address, parent company name, trade
names, and food product categories, among other requirements (H.R. 3488). After FSMA, the regulation
was amended to require that facilities renew their registration every other year (H.R. 2751). This
information in essence documents the location and supply chain stage identity of nodes in interior stages
of the distribution network, e.g. processors, packers, and distribution centers. Growers, ranchers, and
producers of raw commodity of any type are under the jurisdiction of the US Department of Agriculture
(USDA) and thus are not included, however their registration information sits with the USDA's Farm
Service Agency (FSA). Retailers too are not included, however their location information is available
through professional data providers and marketing services such as the Red Book and the Produce Blue
Book, which collect and market data under categories spanning the food and transportation industries
(Red Book Credit Services 2016; Produce Blue Book 2016). Other requirements based on the
Bioterrorism Act include having firms know who they received products from and to whom they were
sent ("one up, one back" tracing); growers and retailers are still exempt. Furthermore, this data must be
shared with FDA only when responding to a safety incident or when there is "reasonable cause" to make
inquiries. While this information plays an essential rule during current traceback investigations, it is far
from forming the idealized model, and the additional requirements necessary to get there would represent
a significant increase in compliance burden on industry.

Furthermore, the degree that federal government should be able to regulate private business and trade and
require the type of data necessary for the "idealized" solution is itself a very decisive topic. The
appropriate strength of federal powers over private business has been a topic of extensive and often very
passionate debate in this country since its inception and is very likely to indefinitely remain a major
subject of political, economic and academic discourse. The Constitution provides objectively vague
powers for federal regulation of business, most notably in the Commerce Clause (Article I, Section 8,
Clause 3). The multiple interpretations of this clause have generated a significant branch of constitutional
jurisprudence. More broadly, the differing policies on what the clause represents, the degree of separation
between private enterprise and federal regulation, is a central distinguishing aspect of our two main
political parties.

5.2. Alternative Network Solutions
We have presented two critical concerns regarding the feasibility of accessing, collecting, and organizing
the idealized data. The significance of each issue and the fact that solving one exacerbates the other means
there are significant challenges to implementing this modeling framework. While it can remain an
ultimate goal, the FDA needs solutions to the traceback problem that are implementable in the short-term.
In the following, we present three alternatives to the idealized model, each with its own strengths and
weaknesses, but each requiring data at reduced granularity.

5.2.1. Approximate Modeling Framework
The first alternative is a modeling framework described by the same network characteristics and level of
detail as the idealized model, but assembled from approximate rather than exact traceability data.
Determining flow volumes and parameter values from the full data may be oversupplying the information
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necessary for the traceback methodology to identify probable outbreak origin locations. Instead of
requiring documentation of the existence of every pair of trading supply chain actors and total magnitude
of trade over each link, link/flow data could be assembled by requesting that each facility submit a list of
the full set of business partners they (expect to) trade with, accompanied by an estimate of the proportion
of total volume of production conducted with each actor. These estimates could be based on historical
values, together with any forecasted changes in the upcoming time period. Similarly, storage time delay
data could be collected through a less exhaustive process in which each facility is requested to submit an
estimate of the average, minimum, and maximum distribution times in place of their full record of
logistical data. Within some uncertainty, estimates should still provide adequate information to solve the
probabilistic traceback problem. Data on the identity and location of the nodes would be collected by the
same approach as in the idealized model, summarized in Table 5.1.

The clear benefit of this approach to data collection is that it would considerably reduce both the burden
both on industry to supply the information, and on the central body responsible for organizing it. Indeed,
the feasibility of implementing this approach, and doing so under conditions of voluntary compliance, has
been demonstrated by a group of researchers working with Canada's Public Health Agency and
Agriculture and Food Research and Development Centre. The goal of the project was to model the
system-wide Canadian packaged lettuce retail supply chain. To simplify the task, the project focused on
the five largest Canadian food retailers, which account for approximately 79% of food sales in Canada. A
survey of growers, processors, distributors, and retail outlets was conducted to request information on (i)
the volume of lettuce handled by each facility, (ii) the proportion supplied to each downstream node, and
(iii) the number of days the product typically spends in each facility after production/arrival before being
delivered to downstream nodes. From this information, the researchers were able to assemble a system-
wide network model representing the probability of movement between actors in a supply chain.

This case study presents a first step towards demonstrating the implementability of the modeling approach
for traceback purposes. The next steps would involve forming a complete picture of the supply chain
including all businesses, and ultimately, validation for use in combination with a traceback methodology.
The reliance on cooperating industry members to provide estimates introduces an uncertainty and a
reduction in accuracy, both of which would be extremely difficult to quantify in practice. Furthermore,
despite this demonstration that it can be implemented, the approach still presents similar drawbacks to the
original model regarding feasibility, since significant data would need to be collected and updated on a
regular basis to generate a database of networks for various food products. This constraint will limit the
application of the methodology from tracing processed foods containing dozens of individual ingredients.
One approach could be to focus on improving the accuracy of constructing networks for high priority,
single-item foods, since simple foods cause the majority of the foodborne illnesses in the United States; in
particular, 85% of those illnesses are attributed to produce (fruit and vegetables), poultry, dairy, eggs. and
seafood alone (Painter et al. 2013). Even in the case of a single item, however, maintaining a
comprehensive supply chain database would be onerous, even if the update cycle time r is infrequent.

5.2.2. Compressed Modeling Framework
The second alternative we present is a compressed modeling framework in which only the first stage and
last stage nodes are represented, that is, only the producer and the retailer stages. No knowledge about the
identity or location, flows entering or leaving, or storage time delays at nodes in interior stages of the
network is assumed. Instead, nodes represent supply chain actors engaged in growing and selling, but not
processing, packing, or holding, food for consumption. Links in this condensed view represent the
existence of at least one path between a producer and a retailer. Flows represent the proportion of total
volume of commodity sent from supply chain actor u in the producing stage eventually each connecting
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retail node v along all paths traveled, as a fraction of total volume produced by u over temporal period of
analysis .

Implementing this modeling framework would represent a major decrease in the compliance burden, since
the full set of compressed link/flow data could be formed by collected information at either only the first
or last stage. Because it would be considerably more difficult to track the ultimate origin of products
leaving a producer than to document the provenance of products arriving at the retailer, we recommend
collecting data at the retail stage. Flow proportions could be calculated if total volume of commodity
received at each retailer v from all points of origin u over the periodrp were recorded. Since identifying
point of origin does not represent "one-back" traceability and would not be available from "native" data
records, to determine these volumes, it would be necessary to introduce additional track-and-trace
requirements. The information would only need to document the business name or identification of the
producer, which could be achieved by attaching some sort of labeling device at the producer level that
would follow each commodity through its path to retail. This information is already attached to many
individually packaged food items, or for bulk or loose items, the pallets or boxes these products are
transported in. Of course, an in-depth analysis of the state of labeling in the industry would be necessary
to determine how feasible it would be to achieve full compliance.

Mode I nut Definition Description Data To Collect

Supply chain nodes are actors Nodes represent supply chain Identity of each supply chain actor /
u in stage 1 and v in stage N actors engaged in growing facility from

Nodes and selling, but not - Growers: USDA or state agricultural
processing, packing, or records
holding, food for . Retailers: Professional data collectors
consumption

Transition probability matrix Proportion of total volume of Total volume of the commodity received
F of normalized aggregate commodity sent from supply at each retailer v from all points of origin
flow proportions f, from node chain actor u in growing/ u over the period r,, as recorded in

u in stage n=1 eventually production stage eventually invoices or other transaction records, or
Links and reaching descendent node v in reaching each connecting estimated by producer

flows stage n=N from each ancestor retail node v, as a fraction of /processor/packer/retailer
node u in stage n=], in total volume produced by u

aggregate over all possible over temporal period of

paths of transmission, during analysis T,, e.g. week,

T, Igrowing season, year

Table 5.2. Data categories and sources to be used in creating the compressed network model.

Since estimates of path lengths are not possible without the locations of interior stage nodes, applying this
framework for outbreak traceback would mean applying an abridged version of the traceback
methodology. Clearly, without the interior stages, it is not possible to determine the time delay density
associated with individual paths traveled through the network. Accordingly, the entire spatio-temporal
component of the algorithm must be disregarded. The resulting traceback algorithm determines the source
PMF using only the aggregate probability flow from first stage to last stage nodes.

To evaluate the combined model-and-method approach theoretically, we applied it to the Tomato and
Lettuce networks from the previous Chapters. The results are qualitatively illustrated in Figure 5.1, which
plot the Traceback Accuracy as a function of number of illnesses for the idealized network and original
method combination against the compressed network and abridged method combination for (a) the
Tomato and (b) the Lettuce network. Table 5.3 quantifies the percentage decrease in accuracy at various
intervals in number of reported illnesses. There is a clear loss in performance with the compressed
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network, though the drop is not extremely significant, ranging between 5 to 15% for both the Tomato and
Lettuce networks.

Traceback Accuracy, Tomato Network
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Figures 5.1. Expected Traceback Accuracy as a function of number of illnesses for the idealized
network and original method combination against the compressed network and abridged method
combination, for (a) the Tomato and (b) Lettuce networks.

5 150

Traceback Accuracy Reduction With Compressed Modeling Framework
% Difference % Difference

Number of Illnesses Tomato Network Lettuce Network
10 -4% -7%
20 -14% -11%
30 - 11% -10%
40 -7% -11%
50 -9% -10%
100 -7% -12%

150 -6% -12%
Table 5.3. Percentage drop in traceback accuracy between the idealized network and original method
combination against the compressed network and abridged method combination, at various intervals in
number of illnesses, for the Tomato and Lettuce networks.

The drop in performance in the compressed case highlights the value of the spatio-temporal component to

source localization, while the relatively minor reduction demonstrates the robustness of the aggregate
probability component. The primary explanation for the small drop in performance is the uncertainty in
the time delay density functions, which compounds over the combination of the multiple random
variables representing the time a contaminated commodity takes to traverse a step along the path between
contamination and eventual illness, each with its individual uncertainty. Still, traceback performance is
clearly inferior without the temporal contribution and further analysis would be necessary to quantify the
loss in benefits to public health and industry when combining this approach with the investigation
strategies of Chapter 4.
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There are clear advantages to implementing this network modeling framework over the idealized or
approximate cases. With link/flow information needed to be collected only at the retail stage rather than
for the producer, processor, and storage stages, the compliance burden shrinks considerably. Some
additional traceability data would be necessary, but as discussed above, much of the data necessary to
implement this approach is already fully available. Theoretically, traceback performance with the
compressed approach is relatively robust to the loss in data on interior stages of the network; the drop is
minor enough that it might be justified by the huge decrease in the compliance burden of implementing
this approach. Still, the theoretical results assume perfect data, which reduced as it may be, would still
require compliance by all members of the supply chain required by the model, i.e. retailers. Furthermore,
the model could only be implemented after the necessary additional traceability requirements are
determined, mandated, and the information collected. Ultimately, the major drawback of all of the
methods presented thus far is the many steps removed the proposed approaches are from implementation.
In all three cases, the specific data requirements and standards would need to be determined, their
collection mandated by regulatory law, and a system for receiving and organizing the resulting data
implemented by the FDA or other central authority responsible for data management.

5.2.3. Regionally Aggregated Modeling Framework
We now propose a third modeling framework alternative with a major advantage: a regionally aggregated
network structure constructed using publicly available data sources without requiring data collection by a
central authority. This alternative represents an aggregated modeling framework working at the regional
or state level, where nodes are modeled as all actors of a supply chain type located in a specifically-
defined regional area. For example, if working on a state level, all growers in the state of Massachusetts
would be aggregated into a single Massachusetts "grower" node. The proposed framework is based on a
methodology developed recently by researchers at KLhne Logistics University and the Technical
University of Darmstadt in Germany. In this section we present an overview of the methodology as
interpreted from the perspective of the modeling framework presented in this thesis; we will evaluate the
appropriateness and accuracy of the methods for the source detection problem in future work (see Chapter
6). The overview of the data types, their interpretations in the foodborne disease problem, and the data
sources to collect is summarized in Table 5.4. The data to be collected and methods for deriving the
model categories nodes and links and flows come directly from the work presented in (Balster and
Friedrich 2016). Storage time delay at supply chain nodes is not treated in their work; plausible
suggestions for data sources are provided below, which will need to be verified through further research
and discussion with the model's developers.

Mode nput Definition Description Data To Collect

Supply chain nodes are Nodes represent the aggregate of all Identity of each region in which

regional districts Urn supply chain actors engaged in preparing activity of supply chain stage type
reprgsndtri o ras food for consumption within a clearly n is conducted, determined from
representig operations delimited regional district. There are as existing data sources - public

Nodes of stage n in region ur many nodes for each district as there are authorities, food-related
for all stages supply chain stage types operating in that associations, and professional data
n e l,...,N district, i.e. growing, processing, packing providers

or holding, with the exception of
retailing, which are modeled as one node
per retailing company

Transition probability Proportion of total volume of commodity Total volume of commodity
matrix F of normalized handled by actors of supply chain stage handled by u, sent to Vr+i during

Links and flow proportions f., out type n operating within region ur ' Z, compiled from existing data
flows of node U,. in regionur distributed to supply chain actors of

1 subsequent stage operating within region sources - public authorities, food-

and stage E IN - 1] v as a fraction of total aggregate related associations, and
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and into adjacent node volume handled by actors of stage n
Vr,n+ in region vr and within district ur over temporal period of

stage n+ 1, during T, analysis T,, e.g. week, growing season,
year

Matrix D of distances: For transport from one stage to the next Geographical dimensions and
d,,,, for the average between distinct regions ur and v,., the coordinates for midpoint of each
distance between geographical distance between the region, from spatial / GIS data

Location of distinct regions ur and spatial center of the two regions
distance Vr ; For transport from one stage to the next

between nodes d,,,, for the average within the same district u,. , the average
distance between two distance between two points within the
points within the region
region u,

Average Fixed parameter v Average velocity of food transport In the US, Average food retail

transport travel, including delays, within given truck transport speed collected by

speed country context Bureau of Transportation Statistics
(BTS)

Storage delay Distribution of delay times, or the Sample of delays for commodity
distribution for difference between receiving and a at each supply chain node u

Storage time commodity a at each dispatching times, associated with during r,, as recorded in
delay for supply chain node u in storage at each supply chain node traceability data or other

nodes stages n c [2,N] , with transaction records, or estimated

mean Yu by producer
I I I /processor/packer/retailer

Table 5.4. Data categories and sources to be used in creating the regionally aggregated network
model. The modeling framework is based on the methodology presented in (Balster and Friedrich
2016) with the exception of the categories location of / distance between nodes, average transport
speed, and mean of storage time delay for nodes; these sources are not directly referenced in
(Balster and Friedrich 2016) and the suggestions here will need to be verified through further research
and discussion with the model's developers.

The work presented in Friedrich (2010) and Balster and Friedrich (2016) define a methodology for
modeling dynamic commodity flows for the entire food supply chain using existing data sources coming
from public authorities, food-related associations, and professional data providers. The framework models
the entire supply structure for a given commodity, differentiating between node stage types e.g.
production, storage, and retail, within different markets operating within the supply chain: wholesaling, or
sales to industrial consumers such as restaurants, hotels, schools, and prisons; retailing, sales directly to
consumer; direct sales, or sales purchased by the consumer directly from the commodity's producer, e.g.
farmers markets; and diversion of commodity into the production of a compound food type. The inclusion
of this final category means that the framework models multiple foods simultaneously, including
combinations and transformations of food products, making it fully extendable to tracing processed foods
containing dozens of individual ingredients.

For the reasons discussed in this Chapter, readily-accessible supply chain data is only available on an
aggregate, regional level. The same resolution is therefore adopted in the model: nodes u,. represent the
aggregate of all supply chain actors / facilities engaged in preparing food for consumption in stage n
within a clearly delimited regional district u,. . Multiple stages exist for each node: there are as many nodes
for each district as there are supply chain stage types operating in that district, i.e. growing, processing,
packing or holding, with the exception of retailing companies, which are modeled independently, i.e. one
node per retailing company. Links and flow proportions thus represent the proportion of total volume of
commodity handled by actors of one supply chain stage operating within a given region, distributed to
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supply chain actors of the subsequent stage operating within the same or another region, over the temporal
period of analysis rp.

First, annual flows are determined from the publicly available data sources using a trade flow Gravity
Modelling approach. A detailed explanation of the methodology can be found in Balster and Friedrich
(2016), which we overview here. The Gravity Model is a modified version of Newton's gravitation
model, assuming that the probability of two market actors trading with each other is proportional to the
supply and demand of the respective actors and indirectly proportional to their distance to each other
(Anderson and Van Wincoop 2003). The Gravity Model is calibrated using transport data collected
annually by the Federal Transport Plan in Germany and the Bureau of Transportation Statistics (BTS) in
the US. The annual flows are calibrated using federal transport data following a procedure suggested in
(Balster and Freidrich 2016), which extends methods from the class of multi-regional input-output models
(Cascetta 2008). After determining annual flows, the model calculates inventories for each group of actors
and every region. The inventories are recalculated incrementally every day, considering the production,
relocation of food products, and consumption. The result is a comprehensive analysis of day-to-day
inventories in and flows among actors and regions. In application to the foodborne disease traceback
problem, these flows would be aggregated over the temporal period of analysis rp.

In the regionally aggregated view, the data category mean of storage time delay at nodes is represented
by the mean of the delay times averaged over all supply chain nodes of type n operating within a region
U, . Since the characteristic delay distribution representing all nodes of stage Ur should not be distributed
differently than that aggregating over all nodes in another region V,., one mean storage delay term can be
used for each supply chain stage n.

To determine the matrix D of distances in the regionally aggregated model, two terms must be accounted
for: (1) transport from one stage to the next between distinct regions ur and v,, and (2) transport from one
stage to the next within the same districtU, . For (1), the most direct proxy would be to use the
geographical distance between the spatial center of the two regions. For (2), we suggest determining the
average distance between two points within a shape of the same dimensions as ur .

So far, the researchers at KUhne and Darmstadt have illustrated this methodology in application to the
German food supply system for the year 2012. Their implementation works on an aggregate level of 402
regions within Germany as well as the 50 most important trading nations and includes 51 commodity
groups. In Figure 5.2, we present a representation of the aggregated supply chain model system applied to
single-item food type A. This example includes four supply chain stages: production,
storage/holding/packing, sale at retail stores, and consumer purchasing. The different colors in the figure
represent the four types of markets operating within the supply chain: wholesaling, or sales to industrial
consumers such as restaurants, hotels, schools, and prisons; retailing, sales directly to consumer; direct
sales, or sales purchased by the consumer directly from the commodity's producer, e.g. farmers markets;
and diversion of commodity into the production of a compound food type. Each market will operate
independently until combining at the consumer purchasing level. More information on this food system
model is provided in Friedrich (2010) and Friedrich and Balster (2016). Flows across stages are permitted
in this network view, as can be seen by links in the direct sales and wholesaling market streams. These
across-stage links can be accommodated by the source traceback framework without any extensions to the
methodology.
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Production stage

Storage/holding/
packing stage

Retailing stage

Consumer purchasi

452 Producing Regions/Countries, Food Type a
1 2 ... 4s2 Other Products Using Food Type a

Wholesaling Retailing (28 Brands)
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Wholesalers in 225 Retail Warehouses (total)
402 Regions/

1. 2 RI 1 1 2 .. ... 1 1 2 1 ... JR281

Retail Stores in 402 Regions
(divided by brand)

Direct Sales

ng stage 1 2 ... 1452

452 Consuming Regions

Figure 5.2. Representation of the regionally aggregated network modeling framework applied to
single commodity type a . Four supply chain stages are represented: production,
storage/holding/packing, sale at retail stores, and consumer purchasing. The different colors in the
represent the four types of markets operating within the supply chain: wholesaling, retailing, direct
sales, and diversion of commodity into the production of other products using food type a .

There are significant advantages of employing a modeling framework based on existing sources and
without requiring additional data collection. In particular, there would be zero data collection burden to
industry, and the model is immediately implementable and ready to use for traceback purposes.
Furthermore, because the data is readily available and electronically accessible, networks could be
generated more or less instantaneously at the time of an event, for single and multiple-ingredient foods.
For all other approaches presented in this Chapter, a bank of network models would need to be
constructed in advance and updated at regular intervals r, .

5.3. Recommended network modeling approach
On the basis of its ready implementability, extendibility to multiple food types, and potential for accuracy
within regional limits, we recommend deploying our traceback methodology with the KLU food
distribution network model. In an upcoming research collaboration, we will work together with
researchers at the KLU to integrate their network model with our traceback methodology to form a
holistic traceback framework. Using this combined model and method approach, we will seek to
demonstrate the ability to identify the origin of recent outbreaks that have occurred in Germany. This
work is already planned, as described in the Conclusion (Chapter 6). Success in correctly identifying the
source of these outbreaks will be an important step in validating the accuracy and effectiveness of our
methodology for identifying the source of large-scale outbreaks of foodborne disease.

This work will seek to (i) verify the feasibility of combining the dynamic commodity flow model with the
spatio-temporal method for source localization developed in this thesis, and (ii) determine the loss of
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granularity in localizing the source resulting from the aggregation of nodes to regions and thus the
inability to differentiate between feasible sources within a region. Clearly, the accuracy will be directly
limited by the granularity of the regional unit of analysis and the distribution of production across the
map, with boundaries that mean that producers are not all clustered into a few regions. For example, while
the Lettuce network modeled in this thesis represents only three growing regions, each of these regions is
subdivided into counties, whose borders we have not included in the model.

5.4. Conclusions
Implementing the traceback methodology developed in this thesis relies on access to a database of
representative network models for various food types. However, acquiring and organizing food supply
system data presents multiple practical challenges. First, food distribution networks are markets
characterized by inherent stochasticity. While many trade relationships are enduring, others may be based
on transitory spot-markets that are difficult to know and to model. Second is the legal right to the data,
though this obstacle might be overcome by new legislation passed under the 2011 Food Safety
Modernization Act (FSMA). Trade relationships are proprietary information that businesses are often
reluctant to share, since they constitute competitive information that presents advantages in the low-
margin retail food industry. While each facility must participate with at least the "one-up, one-back"
recordkeeping mandated by the Bioterrorism Act of 2002, this data is proprietary and must be shared with
FDA only when responding to an incident. Third is that even if this information is made available to
regulators, collecting and organizing the data in a well-maintained system would present extensive
practical data-management challenges. Foods of today are complex and outbreaks can occur in foods
containing dozens of ingredients.

Clearly, the performance of the combined model-and-method approach will ultimately depend on the
properties of the underlying network, including the granularity of the model and the representativeness of
the data informing the model. Due to the challenges associated with collecting the data, it would be
opportune to collect the minimal data necessary to achieve high traceback performance without
oversupplying it. In this chapter, we seek to understand the parameters of the "sufficient" network data.
We propose multiple approaches to modeling the supply chain network, each at a different level of detail
or granularity. For each approach, we suggest a means to collect the necessary data and then examine (i)
the feasibility of collecting this data and (ii) the potential traceback accuracy achieved when
implementing the model together with the traceback method. On the basis of this analysis, we conclude
that a network model based on a recently developed food supply modeling methodology developed by
researchers at Kifhne Logistics University (KLU) and the Technical University of Darmstadt in Germany
demonstrates the strongest potential for overcoming the said challenges. This model is both readily
implementable, utilizing only existing, readily available data sources coming from public authorities,
food-related associations, and professional data providers. It is also comprehensive, covering the supply
of 50 different foods and their interactions, making it extendable to tracing processed foods containing
dozens of individual ingredients. The next step will be to deploy our traceback methodology with the
KLU food distribution network model, integrating the two to form a holistic tracebackframework. Next
steps in the evaluation and implementation of this framework are presented in Chapter 6 (Conclusions).
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Chapter 6:
Conclusions

6.1 Overview

This thesis is focused on the increasingly dangerous, but largely understudied problem of large scale
outbreaks of food-borne disease. The overarching goal of this thesis was to develop techniques to
efficiently identify the source of a large-scale food-borne disease outbreak while contamination-caused
illnesses are still occurring and provide food-safety practitioners with a framework for making decisions
based on source identification, thereby resolving investigations earlier and averting potential illnesses.
To meet this goal, we developed a holistic traceback framework centered on a network-theoretical
approach for rapid identification of the source of foodborne contamination events. The primary
contribution of the network-theoretical approach is a Spatio-Temporal Traceback (STT) algorithm,
which uses backward induction and network analysis to determine the probability that any location in a
network is the outbreak source.

To deploy the methodology in the event of an outbreak, the first step would be to generate a supply chain
network model for the food or foods in question according to the regionally aggregated modeling
framework. Second, given the location and timing of the reported cases of foodborne illness, the source
detection framework would be applied to identify high probability sources of contamination. Finally,
strategic recommendations regarding allocation of investigative resources for search effort and mitigation
measures would be determined by applying the intervention mechanisms described in Chapter 4. All
stages could be implemented more or less instantaneously, with the data sources and analytical models all
being computer implemented.

The traceback framework was subjected to an extensive study to evaluate the detection performance
and robustness across multiple outbreak scenarios and network structures. In addition, studies were
conducted to measure the benefits of the methods in comparison to existing approaches: a practical
heuristic meant to model current methods applied in practice, and a best-in-class method presented in
the literature. The results from simulation studies across a range of realistic outbreak scenarios and
network structures demonstrate the methodology is highly accurate and efficient, consistently
outperforming existing approaches by a significant margin. Theoretically, these results demonstrate the
suitability of our specific methodological approach to the problem of localizing the source of foodborne
disease outbreaks. Practically, they suggest that if implemented by investigators, our method can
contribute to the traceback investigation process in significant ways. Investigations previously
unapproachable could be successfully and conclusively resolved. More importantly, for those cases
when identification is possible early enough in an outbreak's progression and quick action is taken, a
substantial fraction of the illnesses might be averted. These conclusions will ultimately need to be
validated beyond the simulation results presented here.

To perform the evaluation studies, a probabilistic simulation network model was developed, primarily
because there was no prior existing network model that allowed for realistic simulations across multiple
food types and outbreak scenarios. The model was structured as a directed network with four stages of
supply and distribution, representing the flow of US's complex food-system network. The simulation
model allowed us to test algorithm by generating contamination events and observing the algorithm's
ability to trace reported outbreaks back to a set of possible sources.
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Once the accuracy and robustness of the STT algorithm was demonstrated, we developed strategies for
real-time investigation response based on the traceback inference methodology. These strategies include
determining (i) when and to which potential source candidates to send out investigators to sample
predictions and (ii) when to message the public about the outbreak source and how to frame the statement.
The combination of the network-based inference algorithm with the decision-making tool formed a
holistic traceback framework.

Lastly, while the potential benefits of the holistic framework are promising, it has heretofore only been
tested on simulated food systems networks with probabilistic outbreak scenarios. Additionally, it requires
a dynamic data network of food production, processing, distribution and retail that is currently infeasible
or impossible for a food safety regulatory agency to acquire or maintain. However, there is strong promise
that a regionally aggregated network model, as described at the end of Chapter 5 can be used to overcome
this latter shortcoming of the traceback framework. Testing of the STT algorithm on a regionally
aggregated network model using real food distribution and historical outbreak data will be immediate
next steps in the development of the work presented in the is thesis.

6.2 Key Findings

This thesis has contributed a novel approach and framework to outbreak traceback investigations: a
computer-based methodology that has the potential to efficiently identify the location source of large scale,
distributed outbreaks of foodborne illness with high accuracy. The following are key findings and
contributions from the development and testing of this network based traceback framework.

Advantages of the proposed traceback methodology in comparison with current approaches
" Immediately identifyfeasible source locations
" Rankfeasible sources by likelihood each one is true source
* Use ordered ranking to create systematic investigation strategies
" Low financial and opportunity cost to implement

o Low financial cost since the traceback system would function on a computer model at very
low cost to implement and no cost to operate.

o Low opportunity cost because generation of investigation recommendations can be done at
no exclusion of other approaches

* Leverage all data available:
o All case reports, including initial or "tentative" cases; Comprehensive system network data

Improved accuracy and efficiency in source identification during large scale outbreaks
While the specific benefits will be determined by the particular outbreak scenario, general conclusions
can be drawn regarding the potential impact of the mitigation-based approach to developing and
implementing interventions. In particular, the computational results presented here suggest that benefits
can be measured on three important dimensions:

I. Methodology can outperform existing methods in traceback investigation by significant
margin, requiring a fraction of resources necessary to achieve the same level of benefits; in
simulation results, the source is identified within a set of 5 top ranked candidates with 95%
accuracy vs. 50 - 150 sources required by current methods

2. Many more investigations successfully and conclusively resolved: In simulation testing
across a variety of distribution network structures, we found that the true source can be
identified or narrowed down to a small, bounded set of possibilities with very high accuracy
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and efficiency: the actual outbreak source was robustly ranked within the top 5% (1%) of
feasible locations after 10% (30%) of the cases had been reported.

3. Identification is possible early enough in an outbreak's progression that a significant
fraction of illnesses can be averted; results suggest numbers between 40 - 60% of the
illnesses that would ultimately result from simulated outbreaks

Broader understanding about the problem of source traceback in complex systems
* Characteristics of network topology have been identified to that improve / decrease detection

performance; in particular, the degree of heterogeneity and connectivity in a network.
* Taken together, these insights provide a first step in understanding how the accuracy of

detection depends on the structure of a network and on the stochastic evolution of the disease
trajectory.

6.3 Future Work
As stated in the body of this thesis, these findings are derived from simulation results; live use of these
techniques has yet to occur and may demonstrate features of the real problem inadvertently omitted from
the modeling. To validate the relevance of the traceback system in times of real public health emergency,
it will be necessary to demonstrate its ability to accurately identify outbreak origins and recommend
effective investigation strategies. Extensive testing will be necessary to determine the utility to public
health, measured in terms of how much earlier an investigation can be resolved and how many illnesses
averted as a result.

6.3.1 Validation through application to historical outbreaks
The first step towards validation will be to integrate the holistic traceback framework with the Aggregated
Network Modeling Framework described in Chapter 5, then demonstrate the ability to correctly localize
the origin of historical outbreaks. To conduct this first step, we will work with the researchers at Kfihne
Logistics University and the Technical University of Darmstadt in Germany who developed the
Aggregated Network Modeling Framework (planned during October - December 2016).

Basing the methodology on the regionally aggregated network is preferable for validation because the
network is generated from publicly-available data. Because the regionally aggregated network was
originally developed in Germany, we will verify the feasibility of combining the approaches and to
demonstrate the ability to correctly localize the origin of historical outbreaks of foodborne disease in
Germany. An example in practice would be the E. coli outbreak of 2011 linked to sprouts grown in
district Uelzen, which lead to nearly 4,000 reported illnesses and 53 deaths (WHO 2011). Another
possibility is the much smaller outbreak in 2014 of Salmonella Enteritis PT14b, traced to an egg producer
in Bavaria (Bayern Ei), which led to 24 cases of illness in Germany (ECDC-EFSA 2014). We intend to
apply the techniques to other significant outbreaks of foodborne disease in Germany occurring after 2010.

For each food, we will develop a distribution network model for the aggregated flows of the contaminated
commodity (e.g. for sprouts and eggs within Germany). We will collect the case report data by location
and date of illness onset from the Robert Koch Institute (RKI). We will then develop and implement
strategies to tactically respond to the investigation at multiple time intervals in the course of the
outbreaks' progression. This study will allow us to directly quantify the benefits of our tool through the
comparison to the existing methods used in outbreak investigations. We well determine the effectiveness
of the strategy developed for public service messaging through comparison to the measures taken during
the actual investigations. Specifically, we will quantify how much earlier our approach would have been
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able to converge on the true outbreak source location than the historical investigation, and how many
illnesses could have been avoided had a public service announcement been made at the time of detection.

To further extend this analysis, we will subject the combined aggregated-model-and-method system to
extensive robustness tests to determine the accuracy when applied to various differing commodity types.
We will make comparisons between commodities that exhibit different distribution patterns, for example
choosing fresh seafood, which exhibits regionally concentrated production and thus cross-national
distribution, and eggs, with production distributed throughout the country and thus highly localized
distribution. We will compare the results from the case studies to the sensitivity analyses from synthetic
outbreaks to draw conclusions about the dependence and limits of accuracy on the distribution structure of
various food types. The successful completion of the proposed initial model-and-method validation
Germany will provide useful information to food-safety regulators internationally. It will demonstrate that
it can be applied in any region (defined by national boundaries or not) in which a food-safety regulator (or
consortium of regulators) can benefit from rapid identifying the source of foodborne disease, as long as
the statistical data required to model the network structures are available.

Ultimately, the methodology will need to be tested through live experiments in differing outbreak cases
and country contexts: the US, the broader EU, and developing countries. However even then, in all
application to historical cases the data available will be better than what would be available at the time of
an outbreak, due to the delays and inaccuracies in case reporting. Real-time application of the tool during
outbreak emergencies will ultimately be necessary to determine the utility to public health in terms of how
much earlier an investigation can be resolved and how many illnesses averted as a result.

6 tilt, foodborne dise orc idenIi
Future work should seek to combine the source identification methodology with other computational/
"big-data" methods for outbreak detection (Digital Disease Detection) and identifying the specific product
source, creating a comprehensive system for outbreak response. This would include:

" Detecting the outbreak using Digital Disease Detection:
* Identifying food source using sales data
" Identifying location source: methods of this thesis

Future work should seek to expand upon insights derived from learning about dependence of traceback
accuracy on network structure. This can inform the design of network structure that more robust to both
propagation of contamination, as well as to facilitate traceback. For example, we are interested in
evaluating the structural property of consolidation in the food supply chain, which is defined as the
organization of production into fewer but larger plants or farms. It will be important to identify
implications for the safety of the food supply, and for the proactive design of supply networks that limit
propagation and improve tracebacks.

This thesis presents a novel approach to source identification of spreading agents in networks of food
distribution. This may be the start for further research projects in modeling and source identification of
spreading agents in complex networks. The fundamental requirement our methodology is access to a
(mostly) known network structure characterized by weighted links and (mostly) known temporal
dynamics. Given this data, the traceback methodology developed here can be adapted to other problem
contexts that are growing in importance as our society increases in connectedness, such as

" Infectious disease + weighted, known transport network + case reporting times
" Hospital contagion + patient-provider networks
" Violence (or terrorism) + online social networks
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