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ON THE POWER OF

NON-ADAPTIVE LEARNING

GRAPHS

Aleksandrs Belovs and Ansis Rosmanis

Abstract. We introduce a notion of the quantum query complexity of a
certificate structure. This is a formalization of a well-known observation
that many quantum query algorithms only require the knowledge of the
position of possible certificates in the input string, not the precise values
therein.
Next, we derive a dual formulation of the complexity of a non-adaptive
learning graph and use it to show that non-adaptive learning graphs are
tight for all certificate structures. By this, we mean that there exists a
function possessing the certificate structure such that a learning graph
gives an optimal quantum query algorithm for it.
For a special case of certificate structures generated by certificates of
bounded size, we construct a relatively general class of functions having
this property. The construction is based on orthogonal arrays and gen-
eralizes the quantum query lower bound for the k-sum problem derived
recently by Belovs and Špalek (Proceeding of 4th ACM ITCS, 323–328,
2012).
Finally, we use these results to show that the learning graph for the
triangle problem by Lee et al. (Proceeding of 24th ACM-SIAM SODA,
1486–1502, 2013) is almost optimal in the above settings. This also
gives a quantum query lower bound for the triangle sum problem.

Keywords. Quantum computing, query algorithms, adversary
method, k-sum problem, triangle problem, semidefinite optimization.
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1. Introduction

Determining the minimum amount of computational resources re-
quired to solve a computational problem is one of the main prob-
lems in theoretical computer science. At the current stage of knowl-
edge, however, this task seems far out of reach for many problems.
In this case, it is possible to analyze the complexity of the problem
under some simplifying assumptions.

One such assumption is exhibited by the query model. In this
model, it is assumed that all computational resources except ac-
cessing the input string are free of charge. (For a detailed descrip-
tion of the model, including our case of interest—quantum query
complexity, refer to Buhrman & de Wolf 2002.) Under this assump-
tion, it is possible to prove some tight bounds. In particular, a rela-
tively simple semidefinite program (SDP) was constructed, yielding
a tight estimate for the quantum query complexity of any function.
This is the adversary bound which we describe in Section 4.1.

Unfortunately, for many functions, even this SDP is too hard
to solve. In this paper, we investigate a possibility of constructing
an even simpler optimization problem under further simplifying
assumptions. Our assumptions are motivated by the class of al-
gorithms based on quantum walks. A popular framework for the
development of such algorithms (Magniez et al. 2011) includes a
black-box checking subroutine that, given the information gathered
during the walk, signals if this information is enough to accept the
input string. In many cases, the precise content of the gathered
information is not relevant for the implementation of the quantum
walk, what matters are the possible locations of these pieces of
information. We formalize this by the following definition.

In the definition, we use the following notation. If m and n
are positive integers, we use [n] to denote the set {1, 2, . . . , n} and
[m,n] to denote the set {m,m + 1, . . . , n}. Also, for a sequence
x = (xi) ∈ [q]n and S ⊆ [n], let xS ∈ [q]S denote the projection
of x on S, i.e., the sequence (xs1 , . . . , xs�

) indexed by the elements
s1, . . . , s� of S.

Definition 1.1 (Certificate structure). A certificate structure C
on n variables is a collection of non-empty subsets of 2[n] with each
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subset closed under taking supersets. We say a function f : D →
{0, 1} with D ⊆ [q]n has certificate structure C if, for every x ∈
f−1(1), one can find M ∈ C such that

∀S ∈ M ∀z ∈ D : zS = xS =⇒ f(z) = 1.

For example, all functions on n variables satisfy the trivial cer-
tificate structure {{[n]}}.

We are interested in quantum algorithms that only depend on
the certificate structure of a function. More formally, define the
quantum query complexity of a certificate structure as the maxi-
mum quantum query complexity over all functions possessing this
certificate structure.

The most celebrated examples of such algorithms are Grover’s
search algorithm (Grover 1996) and Ambainis’s algorithm for el-
ement distinctness and k-distinctness (Ambainis 2007). As first
noticed by Childs & Eisenberg (2005), Ambainis’s algorithm can
be applied to any function with 1-certificate complexity k. In our
terms, it works for any function having the following certificate
structure:

Definition 1.2. The k-subset certificate structure C on n ele-
ments with k = O(1) is defined as follows. It has

(
n
k

)
elements,

and, for each subset A ⊆ [n] of size k, there exists a unique M ∈ C
such that S ∈ M if and only if A ⊆ S ⊆ [n].

In the same paper, Childs and Eisenberg also conjectured that
Ambainis’s algorithm is optimal for the k-sum problem. Our The-
orem 1.6 below can be seen as a strong generalization of this con-
jecture.

A recently developed computation model of a (non-adaptive)
learning graph (Belovs 2012a) relies on the certificate structure
of the function by definition. This suggests to define the learning
graph complexity of a certificate structure as the minimum complex-
ity of a non-adaptive learning graph computing a function (hence,
any function) with this certificate structure. Since a learning graph
can be transformed into a quantum query algorithm with the same
complexity, the learning graph complexity of a certificate structure
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is an upper bound on its quantum query complexity. In this pa-
per, we prove that these two complexities are actually equal up to
a constant factor.

Theorem 1.3. For any certificate structure, its quantum query
and learning graph complexities differ by at most a constant mul-
tiplicative factor.

This means that any quantum query algorithm that performs
better than the best learning graph has to take the values of the
variables into account on the earlier stages of the algorithm. Al-
though Theorem 1.3 is a very general result, it is unsatisfactory
in the sense that the function having the required quantum query
complexity is rather artificial, and the size of the alphabet is as-
tronomical. However, for a special case of certificates structures
we are about to define, it is possible to construct a relatively nat-
ural problem with a modestly sized alphabet having high quantum
query complexity.

Definition 1.4 (Boundedly generated certificate structure). A
certificate structure C is boundedly generated if, for any M ∈ C,
one can find a subset AM ⊆ [n] such that |AM | = O(1), and S ∈ M
if and only if S ⊇ AM .

Definition 1.5 (Orthogonal array). Assume T is a subset of [q]k.
We say that T is an orthogonal array over alphabet [q] if, for every
index i ∈ [k] and for every sequence x1, . . . , xi−1, xi+1, . . . , xk of
elements in [q], there exist exactly |T |/qk−1 choices of xi ∈ [q] such
that (x1, . . . , xk) ∈ T . We call |T | the size of the array, and k its
length.

Compared to a standard definition of orthogonal arrays (cf. He-
dayat et al. 1999), we always require that the so-called strength of
the array equals k − 1.

Theorem 1.6. Assume a certificate structure C is boundedly gen-
erated, and let AM be like in Definition 1.4. Assume the alphabet
is [q] for some q ≥ 2|C|, and each AM is equipped with an orthog-
onal array TM over alphabet [q] of length |AM | and size q|AM |−1.
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Consider a function f : [q]n → {0, 1} defined by f(x) = 1 iff there
exists M ∈ C such that xAM

∈ TM . Then, the quantum query
complexity of f is at least a constant times the learning graph
complexity of C.

For example, for a boundedly generated certificate structure C,
one can define a corresponding sum problem: Given x ∈ [q]n, detect
whether there exists M ∈ C such that

∑
j∈AM

xj ≡ 0 (mod q). If
q ≥ 2|C|, Theorem 1.6 implies that the quantum query complexity
of this problem is at least a constant times the learning graph
complexity of C.

Theorem 1.6 is a generalization of the lower bound for the k-sum
problem from Belovs & Špalek (2012) and provides additional in-
tuition on the construction, by linking it to learning graphs. Much
of the discussion in Belovs & Špalek (2012) applies here as well.

Let us give some more examples. Another (besides Ambai-
nis’s algorithm) well-known quantum walk-based algorithm (Mag-
niez et al. 2007) (implicitly) solves any function with the following
certificate structure:

Definition 1.7. The triangle certificate structure C on n vertices
is a certificate structure on

(
n
2

)
variables defined as follows. Assume

that the variables are labeled as xij where 1 ≤ i < j ≤ n. The
certificate structure has

(
n
3

)
elements, and, for every triple 1 ≤ a <

b < c ≤ n, there exists unique M ∈ C such that S ∈ M if and only
if S ⊇ {ab, bc, ac}. (Note that for this certificate structure, the
letter n that customary denotes the number of input variables, is
used to denote the number of vertices. This is a standard notation,
and we hope it will not cause much confusion.)

Originally, the algorithm in Magniez et al. (2007) dealt with
the triangle problem: All xij are Boolean, and the condition on
f(x) = 1 is that xab = xac = xbc = 1 for some M . The quantum
walk algorithm for this certificate structure was lately superseded
by an algorithm based on learning graphs (Lee et al. 2013). We will
show in Section 3 that this learning graph is essentially optimal.

Both the k-subset and the triangle certificate structures are
boundedly generated. We also consider some certificate structures
that are not. Recall the collision problem (Brassard et al. 1998).
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Given an input string x ∈ [q]2n, the task is to distinguish two
cases. In the negative case, all input variables are distinct. In the
positive case, there exists a decomposition of the input variables
[2n] = {a1, b1} � {a2, b2} � · · · � {an, bn} into n pairs such that
xai

= xbi
for all i ∈ [n], but xai

�= xaj
for all i �= j. The set equality

problem is defined similarly, with an additional promise that, in
the positive case, ai ∈ [n] and bi ∈ [n + 1, 2n] for all i. Finally, the
hidden shift problem is defined like the set equality problem with
an additional promise that, in the positive case, there exists d ∈ [n]
such that bi = n + 1 + ((ai + d) mod n) for all i ∈ [n]. Inspired by
these problems, we define the following certificate structures.

Definition 1.8. Each of the following certificate structures is de-
fined on 2n input variables. In the collision certificate structure,
there is unique M for each decomposition [2n] = {a1, b1}�{a2, b2}�
· · ·�{an, bn}, and S ∈ M if and only if S ⊇ {ai, bi} for some i ∈ [n].
The set equality certificate structure contains only those M from
the collision certificate structure that correspond to decompositions
with ai ∈ [n] and bi ∈ [n + 1, 2n] for all i. Finally, the hidden shift
certificate structure contains only those M from the set equality
certificate structure that correspond to decompositions such that
d ∈ [n] exists with the property bi = n + 1 + ((ai + d) mod n) for
all i ∈ [n].

All certificates structures from Definition 1.8 are not boundedly
generated. The algorithm for the collision problem from Bras-
sard et al. (1998) actually solves any function possessing the col-
lision certificate structure in O(n1/3) quantum queries, and it is
tight (Aaronson & Shi 2004). Clearly, the same algorithm is ap-
plicable for the set equality and hidden shift certificate structures.
The situation with the hidden shift problem is more interesting.
This problem reduces to the hidden subgroup problem in the dihe-
dral group (Kuperberg 2005), and the latter has logarithmic query
complexity (Ettinger et al. 2004). Unlike other algorithms in this
section, the latter one is not, in general, applicable to any function
with the hidden shift certificate structure.

Let us briefly describe organization of the paper. In Section 2,
we define the complexity of a learning graph and derive its dual
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formulation of the complexity of a non-adaptive learning graph. In
Section 3, we apply this dual formulation to give lower bounds on
the learning graph complexity of the certificate structures from the
introduction. We demonstrate that transition to the learning graph
complexity indeed simplifies the problem by obtaining an almost
optimal Ω̃(n9/7) lower bound for the triangle certificate structure,
whereas nothing better than trivial Ω(n) is known for the original
triangle problem. Finally, in Section 4, we prove both Theorems
1.3 and 1.6.

2. Learning graph complexity

In this section, we recall the definition of a non-adaptive learning
graph from Belovs (2012a) and derive its dual formulation. Non-
adaptive learning graphs were used to construct best known quan-
tum query algorithms for triangle and other subgraph detection
(Lee et al. 2011a, 2013; Zhu 2012) and associativity testing (Lee
et al. 2013). Although more general versions of learning graphs
were used for k-distinctness (Belovs 2012b; Belovs & Lee 2011) and
graph collision (Gavinsky & Ito 2012), the non-adaptive version is
much easier to apply. This makes it important to understand its
limitations.

Let E by the set of pairs (S, S ′) of subsets of [n] such that
S ′ = S ∪{j} for some j /∈ S. This set is known as the set of arcs of
a learning graph on n variables. For e = (S, S ′) ∈ E , let s(e) = S
and t(e) = S ′.

Definition 2.1. The learning graph complexity of a certificate
structure C on n variables is equal to the optimal value of the
following two optimization problems

minimize

√∑

e∈E
we(2.2a)

subject to
∑

e∈E
pe(M)2

we

≤ 1 for all M ∈ C;(2.2b)
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∑

e∈E : t(e)=S

pe(M) =
∑

e∈E : s(e)=S

pe(M)(2.2c)

for all M ∈ C and S ∈ 2[n] \ (M ∪ {∅});
∑

e∈E : s(e)=∅
pe(M) = 1 for all M ∈ C;(2.2d)

pe(M) ∈ R, we ≥ 0 for all e ∈ E and M ∈ C.(2.2e)

(here, 0/0 in (2.2b) is defined to be 0), and

maximize

√∑

M∈C
α∅(M)2(2.3a)

subject to
∑

M∈C
(
αs(e)(M) − αt(e)(M)

)2 ≤ 1(2.3b)

for all e ∈ E ;

αS(M) = 0 whenever S ∈ M ;(2.3c)

αS(M) ∈ R for all S ⊆ [n] and M ∈ C.(2.3d)

Equation (2.2) is a trivial restatement of the definition of a
non-adaptive learning graph from Belovs (2012a). The second ex-
pression (2.3) is new and requires a proof that we will give shortly.

The relation of this construction to quantum algorithms is as
follows:

Theorem 2.4 (Belovs 2012a; Belovs & Lee 2011). The quantum
query complexity of a certificate structure is at most a constant
times its learning graph complexity.

In Section 4, we prove the reverse statement for all certificate
structures.

Proof (of the equivalence of (2.2) and (2.3)). The equivalence
is obtained by duality. We use basic convex duality (Boyd & Van-
denberghe 2004, Chapter 5). First of all, we consider both pro-
grams with their objective values (2.2a) and (2.3a) squared. With
this change, (2.2) becomes a convex program (in fact, an SDP; for
the convexity of (2.2b), see Section 3.1.5 of Boyd & Vandenberghe
(2004)). The program is strictly feasible. Indeed, it is easy to
see that (2.2c) and (2.2d) are feasible. To assure strict feasibility
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in (2.2b), it is enough to take we large enough. Hence, by Slater’s
condition, the optimal values of (2.2) and its dual are equal. Let
us calculate the dual. The Lagrangian of (2.2) is as follows

∑

e∈E
we +

∑

M∈C
μM

(∑

e∈E

pe(M)2

we

− 1
)

+
∑

M∈C, S⊆[n]
S �=∅, S /∈M

νM,S

( ∑

e∈E
t(e)=S

pe(M) −
∑

e∈E
s(e)=S

pe(M)
)

+
∑

M∈C
νM,∅

(
1 −

∑

e∈E
s(e)=∅

pe(M)
)
.(2.5)

Here, μM ≥ 0, and νM,S are arbitrary. Let us first minimize over
pe(M). Each pe(M) appears three times in (2.5) with the following
coefficients:

pe(M)2μM

we

+ pe(M)
(
νM,t(e) − νM,s(e)

)
,

where we assume νM,S = 0 for all S ∈ M . The minimum of this
expression clearly is

− we

4μM

(
νM,t(e) − νM,s(e)

)2
.

Plugging this into (2.5) yields

(2.6)
∑

M∈C
(νM,∅ − μM) +

∑

e∈E
we

(
1 −

∑

M∈C

(
νM,t(e) − νM,s(e)

)2

4μM

)
.

Define αS(M) as νM,S/(2
√

μM). Minimizing (2.6) over we, the
second term disappears if condition (2.3b) is satisfied. The first
term is

∑

M∈C
(2

√
μMα∅(M) − μM).

We can also maximize over μM that gives the square of (2.3a). �
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3. Examples of application

In this section, we construct feasible solutions to the dual formula-
tion of the learning graph complexity (2.3) for the certificate struc-
tures from Section 1. Their objective values match the objective
values of feasible solutions to the corresponding primal formula-
tions (2.2) that were obtained previously.

Proposition 3.1. The learning graph complexity (and, hence,
the quantum query complexity) of the k-subset certificate structure
is Ω(nk/(k+1)).

Proof. Let C be the k-subset certificate structure, and αS(M)
be defined by

(
n

k

)−1/2

max
{
nk/(k+1) − |S|, 0

}

if S /∈ M , and as 0 otherwise.
Let us prove that (2.3b) holds up to a constant factor. Take

any S ⊂ [n] and let j be any element not in S. If |S| ≥ nk/(k+1),
then αS(M) = αS∪{j}(M) = 0, and we are done. Thus, we further
assume |S| < nk/(k+1). There are

(
n
k

)
choices of M . If S ∪ {j} /∈

M , then the value of αS(M) changes by
(

n
k

)−1/2
as the size of |S|

increases by 1. Also, there are at most
( |S|

k−1

) ≤ nk(k−1)/(k+1) choices
of M ∈ C such that S /∈ M and S ∪ {j} ∈ M . For each of them,

the value of αS(M) changes by at most
(

n
k

)−1/2
nk/(k+1). Thus,

∑

M∈C
(αS(M) − αS∪{j}(M))2

≤
(

n

k

)−1 [(
n

k

)
· 1 + nk(k−1)/(k+1)n2k/(k+1)

]
= O(1).

On the other hand, for the objective value (2.3a), we have

√∑

M∈C
α∅(M)2 = nk/(k+1).
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By scaling all αS(M) down by an appropriate constant factor,
we obtain a feasible solution to (2.3) with the objective value
Ω(nk/(k+1)). �

Belovs & Lee (2011) and Zhu (2012) show that the correspond-
ing upper bound is O(nk/(k+1)), thus the result of Proposition 3.1
is tight. Moreover, Theorem 1.6 implies that the complexity of the
k-sum problem is Θ(nk/(k+1)), a result previously proven in Belovs
& Špalek (2012).

Proposition 3.2. The learning graph complexity of the hidden
shift (and, hence, the set equality and the collision) certificate
structure is Ω(n1/3).

Proof. The proof is similar to the proof of Proposition 3.1.
Let C be the hidden shift certificate structure. Define αM(S) as
n−1/2 max{n1/3 − |S|, 0} if S /∈ M , and as 0 otherwise. Take any
S ⊂ [n], j /∈ S, and let us prove (2.3b). Again, if |S| ≥ n1/3, we are
done. Otherwise, there are n choices of M in total, and at most
n1/3 of them are such that S /∈ M and S ∪ {j} ∈ M . Thus,

∑

M∈C
(αS(M) − αS∪{j}(M))2 ≤ 1

n

[
n · 1 + n1/3n2/3

]
= O(1).

The objective value (2.3a) is n1/3. For the set equality and collision
certificate structures, just assign αS(M) = 0 for all M that are not
in the hidden shift certificate structure. �

The result of this proposition is also tight. The corresponding
upper bound can be derived by similar methods as used for the
k-sum problem in Belovs & Lee (2011) and Zhu (2012). We omit
the precise construction.

Proposition 3.3. The learning graph (and the quantum query)
complexity of the triangle certificate structure is Ω(n9/7/

√
log n).

The best known upper bound is O(n9/7) as proven in (Lee et al.
2013). The proof of the lower bound is rather bulky and essentially
proceeds by showing, in a formal way, that all possible strategies
of constructing a better upper bound fail.
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Proof (Proof of Proposition 3.3). Let E = {uv | 1 ≤ u < v ≤
n} be the set of input variables (potential edges of the graph). Let
C be the triangle certificate structure. We will construct a feasible
solution to (2.3) (with [n] replaced by E) in the form

(3.4) αS(M) = max
{

n−3/14 −
k∑

i=0

gi(S,M), 0
}

if S /∈ M , and αS(M) = 0 otherwise. Here, gi(S,M) is a function
satisfying 0 ≤ gi(S,M) ≤ n−3/14 and gi(∅,M) = 0. The value

of (2.3a) is
√(

n
3

)
n−3/14 = Ω(n9/7). The hard part is to show

that (2.3b) holds up to logarithmic factors.
We define

g0(S,M) = min{n−3/2|S|, n−3/14}.

This forces αS(M) = 0 if |S| ≥ n9/7. Hence, we may further assume
|S| ≤ n9/7.

For S ⊂ E and j ∈ E \ S, let F (S, j) denote the set of M ∈ C
such that S /∈ M , but S ∪ {j} ∈ M . We have

∑

M∈C
(αS(M) − αS∪{j}(M))2(3.5)

≤
∑

M∈F (S,j)

(
max

{
n−3/14 −

k∑

i=0

gi(S,M), 0
})2

(3.6)

+
∑

M∈C\F (S,j)

( k∑

i=0

(gi(S,M) − gi(S ∪ {j},M))
)2

.(3.7)

We estimate two terms of (3.5) separately. In order to estimate
the first one, we decompose F (S, j) into a disjoint union F1(S, j)�
· · · � Fk(S, j) of k = O(log n) subsets so that gi(S,M) is large for
all M ∈ Fi(S, j), or, more precisely,

(3.8)
∑

M∈Fi(S,j)

(
n−3/14 − gi(S,M)

)2
= O(1).

Hence, the first term of (3.5) is O(log n). For the second term,
we show that for all, except O(1), values of i ∈ [0, k], we have
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gi(S,M) = gi(S ∪ {j},M) for all M ∈ C \ F (S, j), and, for the
remaining values of i,

(3.9)
∑

M∈C\F (S,j)

(
gi(S,M) − gi(S ∪ {j},M)

)2
= O(1).

(In particular, it is not hard to see that g0 satisfies (3.9).) Hence,
the second term of (3.5) is O(1). By scaling all αS(M) down by a
factor of O(

√
log n), we obtain a feasible solution to (2.3) with the

objective value Ω(n9/7/
√

log n).

Let us now define Fi(S, j). For each M ∈ C fix three vertices
a = a(M), b = b(M), c = c(M) forming the triangle, i.e., such that
S ∈ M if and only if ab, ac, bc ∈ S. An input index j ∈ E satisfies
S /∈ M and S ∪ {j} ∈ M only if j ∈ {ab, ac, bc}. We specify to
which of Fi(S, j) an element M ∈ F (S, j) belongs by the following
criteria:

◦ to which of the three possible edges, ab, ac or bc, the new edge
j is equal, and

◦ the range to which the degree in S of the third vertex of the
triangle belongs: [0, n3/7], [n3/7, 2n3/7], [2n3/7, 4n3/7],. . . , [2in3/7,
2i+1n3/7], . . .

Hence, k ≈ 12/7 log2 n. (We need the labeling of vertices here
because we want to prepare in advance for all possible sequences
of loading the edges of the triangle.) For notational convenience, let
j = bc. Then, the second property is determined by deg a = degS a,
the degree of a in the graph with edge set S.

It remains to define the functions gi(S,M). In the following, let
μ(x) be the median of 0, x, and 1, i.e., μ(x) = max{0, min{x, 1}}.
The first interval of deg a will be considered separately from the
rest.

First interval. Let us define

(3.10) gi(S,M) =

{
n−3/14 μ(2 − n−3/7 deg a), ab, ac ∈ S;

0, otherwise.
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Clearly, gi satisfies (3.8) for the case when deg a ≤ n3/7. Let us
prove (3.9). There are two possibilities how gi(S,M) can be influ-
enced when the element j is added to S:

◦ It may happen if |{ab, ac} ∩ S| = 1 and j ∈ {ab, ac}, i.e., the
transition from the second case of (3.10) to the first one hap-
pens. Moreover, g1(S,M) changes only if deg a ≤ 2n3/7. Then
j identifies two vertices of the triangle, and the third one is
among the neighbors of an end point of j having degree at
most 2n3/7. Thus, the total number of M satisfying this sce-
nario is at most 4n3/7. The contribution to (3.9) is at most
O(n3/7)(n−3/14)2 = O(1).

◦ Another possibility is that ab, ac ∈ S and deg a changes. In
this case, a is determined as an end point of j, and b and c are
among its at most 2n3/7 neighbors. The number of M influenced
is O(n6/7), and the contribution is O(n6/7)(n−9/14)2 = o(1).

Other intervals Now we consider an interval d < deg a ≤ 2d
with d ≥ n3/7. Define a piece-wise linear function τ as follows

τ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, x < d/2;

(2x − d)/d, d/2 ≤ x < d;

1, d ≤ x < 2d;

(5d − 2x)/d, 2d ≤ x ≤ 5d/2;

0, x ≥ 5d/2.

It can be interpreted as a continuous version of the indicator func-
tion that a vertex has the right degree. Define

ν(S,M) =
∑

v∈N(b)∩N(c)

τ(deg v),

where the sum is over the common neighbors of b and c. Let

gi(S,M) = n−3/14 μ
(
min

{
2 deg a

d
,

ν(S,M)

n3/7

}
− 1
)
.

Let us check that this function satisfies (3.8). We know that
deg a ≥ d, hence, either n−3/14 − gi(S,M) = 0 or ν(S,M) ≤ 2n3/7,
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in which case, there are O(n3/7) choices of a satisfying the con-
straint d ≤ deg a ≤ 2d. Hence, the left hand side of (3.8) is
O(n3/7)(n−3/14)2 = O(1).

Let us prove (3.9). There are three possibilities how gi(S,M)
may be influenced when j is added:

◦ It may happen that j is incident to a common neighbor of b and
c, and ν(S,M) changes. This means that b and c are among the
neighbors of an end point of j of degree at most 5d/2. As a can
be arbitrary, this affects O(nd2) different M . The contribution
to (3.9) is O(nd2)(n−9/14/d)2 = o(1).

◦ The set N(b) ∩ N(c) may increase. This causes a change in
gi(S,M) only under the following circumstances. The new edge
j is incident to b or c. The second vertex in {b, c} is among Θ(d)
neighbors of the second end point of j. Finally, deg a ≥ d/2
that together with |S| ≤ n9/7 implies that there are O(n9/7/d)
choices for a. Altogether, the number of M affected by this
is O(n9/7), and the change in gi(S,M) does not exceed n−9/14.
The contribution is O(1).

◦ The degree of a may change. Let us calculate the number P of
possible pairs b and c affected by this. Let A denote the set of
vertices having degrees between d/2 and 5d/2 in S. There is a
change in gi(S,M) only if b and c are connected to at least n3/7

vertices in A, so we will count only those M that satisfy this
condition. Since |S| ≤ n9/7, we have |A| = O(n9/7/d).

Let us calculate the number of paths of length 2 in S having the
middle vertex in A. On the one hand, this number is at least
Pn3/7. On the other hand, it is at most O(d2|A|) = O(dn9/7).
Thus, P = O(dn6/7). Since a is determined as an end point of
j, the contribution is O(dn6/7)(n−3/14/d)2 = O(1), as d ≥ n3/7.

If gi(S,M) �= gi(S ∪ {j},M), then the value of d, up to a
small ambiguity, may be determined from the degree of one of
the end points of j; hence, there are O(1) choices of i satisfying
gi(S,M) �= gi(S ∪ {j},M) for some M . �

Automatically, we obtain that the quantum query complexity
of the triangle sum problem is Ω̃(n9/7). Thus, any quantum query



338 Belovs & Rosmanis cc 23 (2014)

algorithm, willing to improve the O(n9/7) bound for the triangle
detection problem, will have to take differences between the trian-
gle detection and triangle sum problems into consideration.

4. Lower bound

In this section, we prove Theorems 1.3 and 1.6. The results are
strongly connected: In the second one, we prove a stronger state-
ment from stronger premises. As a consequence, the proofs also
have many common elements.

This section is organized as follows. In Section 4.1, we recall
the adversary method that we use to prove the lower bound. In the
proofs, we will define a number of matrices and argue about their
spectral properties. For convenience, we describe the main parame-
ters of the matrices, such as the labeling of their rows and columns,
as well as their mutual relationships in one place, Section 4.2. In
Section 4.3, we state the intermediate results important to both
Theorems 1.3 and 1.6. In Section 4.4, we finish the proof of Theo-
rem 1.6. In Section 4.5, we recall the definition and main properties
of the Fourier basis and define the important notion of the Fourier
bias. Finally, in Section 4.6, we prove Theorem 1.3.

4.1. Adversary bound. The adversary method is one of the
main techniques for proving lower bounds on quantum query com-
plexity. At first, it was developed by Ambainis (2002) in what later
became known as the nonnegative-weight variant of the bound.
This version of the bound is widely used because of its intuitive
combinatorial formulation. Unfortunately, it has several limita-
tions. In particular, the so-called certificate complexity barrier
(Špalek & Szegedy 2006; Zhang 2005) implies that the nonnega-
tive version of the adversary bound fails to prove a better lower
bound than O(

√
n) for any function possessing a boundedly gen-

erated certificate structure. This renders this version of the bound
totally useless for our purposes.

Luckily, a stronger variant of the adversary bound was obtained
by Høyer et al. (2007). It is the general or negative-weight version
of the bound. After that, the adversary bound was proven to be
optimal (Lee et al. 2011b; Reichardt 2011). Although being more
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powerful, this version of the bound is much less intuitive, which
explains why it has almost never been used previously. Below, we
use a variation in the negative-weight adversary bound from Belovs
& Špalek (2012).

Definition 4.1. Let f be a function f : D → {0, 1} with domain

D ⊆ [q]n. Let D̃ be a set of pairs (x, a) with the property that the
first element of each pair belongs to D. (The second element may
be arbitrary: Its only purpose is to distinguish pairs with the same
first element.) Let also D̃i = {(x, a) ∈ D̃ | f(x) = i} for i ∈ {0, 1}.

An adversary matrix for the function f is a nonzero real D̃1 × D̃0

matrix Γ. And, for j ∈ [n], let Δj denote the D̃1 × D̃0 matrix
defined by

Δj[[(x, a), (y, b)]] =

{
0, xj = yj;

1, otherwise.

Theorem 4.2 (Adversary bound, Belovs & Špalek 2012; Høyer
et al. 2007). In the notation of Definition 4.1, the quantum query
complexity of f is Ω(Adv(f)), where

(4.3) Adv(f) = sup
Γ

‖Γ‖
maxj∈n ‖Γ ◦ Δj‖

with the maximization over all adversary matrices for f , ‖·‖ is the
spectral norm, and ◦ is the entrywise matrix product.

The following result is very useful when proving lower bounds
using the adversary method.

Lemma 4.4 (Lee et al. 2011b). Let Δj be as in Definition 4.1.
Then, for any matrix A of the same size,

‖A ◦ Δj‖ ≤ 2 ‖A‖ .

We will use it to replace Γ◦Δj in the denominator of (4.3) with
a matrix Γ′ such that Γ ◦ Δj = Γ′ ◦ Δj. By Lemma 4.4, this gives
the same result up to a factor of 2. We will denote this relation

between matrices by Γ
Δj�−→ Γ′.
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4.2. Outline. Let us now outline how Theorems 1.3 and 1.6 are
proven. Let C denote the certificate structure. Let αS(M) sat-
isfy (2.3) and be such that (2.3a) equals the learning graph com-
plexity of C. We define an explicit function f : D → {0, 1} with
D ⊆ [q]n having the objective value (2.3a) of program (2.3) as a
lower bound on its quantum query complexity. The latter is proven
using the adversary bound, Theorem 4.2.

Function. Let M be an element of the certificate structure C.
Let A

(1)
M , . . . , A

(�(M))
M be all the inclusion-wise minimal elements of

M . (In a boundedly generated certificate structure, M has only

one inclusion-wise minimal element AM .) For each A
(i)
M , we choose

an orthogonal array T
(i)
M of length |A(i)

M | over the alphabet [q] and
define

(4.5) XM =
{

x ∈ [q]n | x
A

(i)
M

∈ T
(i)
M for all i ∈ [�(M)]

}
.

The orthogonal arrays are chosen so that XM is non-empty and
satisfies the following orthogonality property:
(4.6)

∀S ∈ 2[n] \ M ∀z ∈ [q]S :
∣
∣{x ∈ XM | xS = z}∣∣ = |XM |/q|S|.

For boundedly generated certificate structures, this property is sat-
isfied automatically.

The set of positive inputs is defined by f−1(1) =
⋃

M∈C XM .
The set of negative inputs Y = f−1(0) is defined by

(4.7) Y =
{

x ∈ [q]n | x
A

(i)
M

/∈ T
(i)
M for all M ∈ C and i ∈ [�(M)]

}
.

It is easy to see that f has C as its certificate structure. The
parameters will be chosen so that |f−1(0)| = Ω(qn).

Matrices. We define a number of matrices whose mutual rela-
tions are shown in Figure 4.1. At first, we construct a matrix Γ̃
satisfying the following properties. Firstly, it has rows labeled by
the elements of [q]n × C and columns labeled by the elements of
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Figure 4.1: The relationships between matrices used in Section 4.
The parts marked in gray form the matrix Γ on the left and Γ̂′

on the right. Note that they are not submatrices of Γ̃ and Γ̃′, re-
spectively: They have additional multiplicative factor as specified
in (4.9) and (4.10).

[q]n. Thus, if we denote C = {M1, . . . ,Mk}, the matrix Γ̃ has the
following form

(4.8) Γ̃ =

⎛

⎜
⎜
⎜
⎝

G̃M1

G̃M2

...

G̃Mk

⎞

⎟
⎟
⎟
⎠

,

where each G̃Mi
is an [q]n × [q]n-matrix. Next, ‖Γ̃‖ is at least

the objective value (2.3a). And finally, for each j ∈ [n], there

exists Γ̃′ such that Γ̃
Δj�−→ Γ̃′ and ‖Γ̃′‖ ≤ 1. The matrix Γ̃′ has a

decomposition into blocks G̃′
M similar to (4.8).

Thus, Γ̃ has a good value of (4.3). But, we cannot use it,
because it is not an adversary matrix: It uses all possible inputs
as labels of both rows and columns. However, due to the specific
way Γ̃ is constructed, we will be able to transform Γ̃ into a true
adversary matrix Γ such that the value of (4.3) is still good.

Let us define X = {(x,M) ∈ [q]n × C | x ∈ XM}. Also, as
mentioned previously, Y = f−1(0). The matrix Γ is an X × Y
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matrix defined by

(4.9) Γ[[(x,M), y]] =

√
qn

|XM | Γ̃[[(x,M), y]].

Thus, Γ consists of blocks GM , like in (4.8), where

GM =
√

qn/|XM | G̃M [[XM , Y ]].

(The latter notation stands for the submatrix formed by the speci-
fied rows and columns). We also show that ‖Γ‖ is not much smaller

than ‖Γ̃‖.

The matrix Γ′ is obtained similarly from Γ̃′. It is clear that

Γ̃
Δj�−→ Γ̃′ implies Γ

Δj�−→ Γ′. We show that the norm of Γ′ is small
by showing that ‖Γ̂′‖ = O(‖Γ̃′‖) where Γ̂′ is an X × [q]n-matrix
with

Γ̂′[[(x,M), y]] =

√
qn

|XM | Γ̃′[[(x,M), y]].

As Γ′ is a submatrix of Γ̂′ and ‖Γ̃′‖ ≤ 1, we obtain that ‖Γ′‖ = O(1)

as required. We denote the blocks of Γ̂′ by Ĝ′
M . That is,

(4.10) Ĝ′
M =

√
qn

|XM | G̃′
M [[XM , [q]n]].

4.3. Common Parts of the Proofs. Let e0, . . . , eq−1 be an
orthonormal basis of C

q such that e0 = 1/
√

q(1, . . . , 1). Denote
E0 = e0e

∗
0 and E1 =

∑
i>0 eie

∗
i . These are q × q matrices. All

entries of E0 are equal to 1/q, and the entries of E1 are given by

(4.11) E1[[x, y]] =

{
1 − 1/q, x = y;

−1/q, x �= y.

For a subset S ⊆ [n], let ES denote
⊗

j∈[n] Esj
where sj = 1 if j ∈

S, and sj = 0 otherwise. These matrices are orthogonal projectors:

(4.12) ESES′ =

{
ES, S = S ′

0, otherwise.
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We define the matrices G̃M from (4.8) by

(4.13) G̃M =
∑

S⊆[n]

αS(M)ES,

where αS(M) give an optimal solution to (2.3).

Lemma 4.14. If Γ̃ and Γ are defined as in Section 4.2, all XM

satisfy the orthogonality property (4.6) and |Y | = Ω(qn), then

(4.15) ‖Γ‖ = Ω
(√∑

M∈C
α∅(M)2

)
.

Proof. Recall that GM =
√

qn/|XM |G̃M [[XM , Y ]], hence, from
(4.13), we get that

GM =

√
qn

|XM | α∅(M)E⊗n
0 [[XM , Y ]]

+

√
qn

|XM |
∑

S �=∅
αS(M)ES[[XM , Y ]].

Let us calculate the sum s(GM) of the entries of GM . In the first
term, each entry of E⊗n

0 equals q−n. There are |XM | rows and |Y |
columns in the matrix; hence, the sum of the entries of the first
term is

√|XM |/qn |Y |α∅(M).
In the second term, s

(
αS(M)ES[[XM , Y ]]

)
= 0 for all S �= ∅.

Indeed, if S ∈ M , then αS(M) = 0 by (2.3c). Otherwise,

s(ES[[XM , Y ]]) =
∑

y∈Y

∑

x∈XM

ES[[x, y]] = q|S|−n
∑

y∈Y

∑

x∈XM

E
⊗|S|
1 [[xS, yS]]

=
|XM |
qn

∑

y∈Y

∑

z∈[q]S

E
⊗|S|
1 [[z, yS]] = 0.

(In the third step, the orthogonality condition (4.6) is used. In the
last step, we use that the sum of the entries of every column of
E⊗k

1 is zero if k > 0.) Summing up,

s(GM) =

√
|XM |
qn

|Y |α∅(M).
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We are now ready to estimate ‖Γ‖. Define two unit vectors
u ∈ R

X and v ∈ R
Y by

u[[(x,M)]] =
α∅(M)

√|XM |∑M∈C α∅(M)2
and v[[y]] =

1
√|Y |

for all (x,M) ∈ X and y ∈ Y . Then,

‖Γ‖ ≥ u∗Γv =

∑
M∈C α∅(M)s(GM)

√|XM | |Y |∑M∈C α∅(M)2

=

√
|Y |
qn

∑

M∈C
α∅(M)2 = Ω

(√∑

M∈C
α∅(M)2

)
.

�

In the remaining part of this section, we define the transforma-

tion Γ̃
Δj�−→ Γ̃′ and state some of the properties of Γ̃′ that will be

used in the subsequent sections. Using (4.11), we can define the
action of Δ on E0 and E1 by

E0
Δ�−→ E0 and E1

Δ�−→ −E0.

We define Γ̃′ by applying this transformation to E0 and E1 in the
jth position in the tensor product of (4.13). The result is again a

matrix of the form (4.8), but with each G̃M replaced by

(4.16) G̃′
M =

∑

S⊆[n]

βS(M)ES,

where βS(M) = αS(M) − αS∪{j}(M). In particular, βS(M) = 0 if
j ∈ S or S ∈ M . Thus,

(4.17) (Γ̃′)∗Γ̃′ =
∑

M∈C
(G̃′

M)∗G̃′
M =

∑

S∈2[n]

(∑

M∈C
βS(M)2

)
ES.

In particular, we obtain from (2.3b) that ‖Γ̃′‖ ≤ 1.
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4.4. Boundedly generated certificate structures. In this
section, we finish the proof of Theorem 1.6. In the settings of the
theorem, the orthogonal arrays T

(i)
M in (4.5) are already specified.

Since each M ∈ C has only one inclusion-wise minimal element
AM , we drop all upper indices (i) in this section.

From the statement of the theorem, we have |XM | = qn−1,
and, in particular, they are non-empty. Also, XM satisfies the
orthogonality property (4.6), and, by (4.7), we have

(4.18) |Y | =
∣
∣
∣[q]n\

⋃

M∈C
XM

∣
∣
∣ ≥ qn−

∑

M∈C
|XM | = qn−|C|qn−1 ≥ qn

2
.

Thus, the conditions of Lemma 4.14 are satisfied, and (4.15) holds.
Recall from Section 4.2 that in order to estimate ‖Γ′‖, we con-

sider the matrix Γ̂′. The matrix Γ′ is a submatrix of Γ̂′; hence, it
suffices to estimate ‖Γ̂′‖. Let k = maxM∈C |AM |. By Definition 1.4,
k = O(1).

Fix some order of elements in each AM = {aM,1, . . . , aM,|AM |},
and let LM,i, where M ∈ C and i ∈ [k], be subsets of 2[n] satisfying
the following properties:

◦ for each M , the set 2[n]\M is the disjoint union LM,1�· · ·�LM,k;

◦ for each M and each i ≤ |AM |, all elements of LM,i omit aM,i;

◦ for each M and each i such that |AM | < i ≤ k, the set LM,i is
empty.

Recall that, if S ⊆ [n] and (sj) is the corresponding characteristic
vector, ES =

⊗
j∈[n] Esj

. The main idea behind defining LM,is is
as follows.

Claim 4.19. If S, S ′ ∈ LM,i, then

(ES[[XM , [q]n]])∗(ES′ [[XM , [q]n]]) =

{
ES/q, S = S ′;

0, otherwise.

Proof. If we strike out the aM,ith element in all elements of
XM , we obtain [q]n−1 by the definition of an orthogonal array. All
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elements of LM,i omit aM,i; hence, ES has E0 in the aM,ith position
for all S ∈ LM,i. Thus, the aM,ith entries of x and y have no impact
on the value of ES[[x, y]].

Let (sj) and (s′
j) be the characteristic vectors of S and S ′.

Then,

ES[[XM , [q]n]] =
( ⊗

j∈[n]\{aM,i}
Esj

)
⊗ e∗

0√
q
.

(Here e∗
0 is on the aM,ith element of [q]n.) Similarly for S ′, and the

claim follows from (4.12). �

For each M , decompose G̃′
M from (4.16) into

∑
i∈[k] G̃

′
M,i, where

G̃′
M,i =

∑

S∈LM,i

βS(M)ES.

Define similarly to Section 4.2,

Ĝ′
M,i =

√
qn

|XM | G̃′
M,i[[XM , [q]n]] =

√
q
∑

S∈LM,i

βS(M)ES[[XM , [q]n]],

and let Γ̂′
i be the matrix consisting of Ĝ′

M,i, for all M ∈ C, stacked

one on another like in (4.8). Then, Γ̂′ =
∑

i∈[k] Γ̂
′
i. We have

(Γ̂′
i)

∗Γ̂′
i =
∑

M∈C
(Ĝ′

M,i)
∗Ĝ′

M,i =
∑

M∈C

∑

S∈LM,i

βS(M)2ES,

by Claim 4.19. Similarly to (4.17), we get ‖Γ̂′
i‖ ≤ 1. By the

triangle inequality, ‖Γ̂′‖ ≤ k, hence, ‖Γ′‖ ≤ k = O(1). Combining
this with (4.15) and using Theorem 4.2, we obtain the necessary
lower bound. This finishes the proof of Theorem 1.6.

4.5. Fourier Basis. In Section 4.3, we defined ei as an arbitrary
orthonormal basis satisfying the requirement that e0 has all its en-
tries equal to 1/

√
q. In the next section, we will specify a concrete

choice for ei. Its construction is based on the Fourier basis we
briefly review in this section.
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Let p be a positive integer, and Zp be the cyclic group of order
p, formed by the integers modulo p. Consider the complex vector
space C

Zp . The vectors (χa)a∈Zp , defined by χa[[b]] = e2πiab/p/
√

p,
form its orthonormal basis. Note that the value of χa[[b]] is well
defined because e2πi = 1.

If U ⊆ Zp, then the Fourier bias (Tao & Vu 2006) of U is
defined by

(4.20) ‖U‖u =
1

p

∣
∣
∣ max

a∈Zp\{0}

∑

u∈U

e2πiau/p
∣
∣
∣.

It is a real number between 0 and |U |/p. In the next section, we will
need the following result stating the existence of sets with small
Fourier bias and arbitrary density.

Theorem 4.21. For any real 0 < δ < 1, it is possible to construct
U ⊆ Zq such that |U | ∼ δq, ‖U‖u = O(polylog(q)/

√
q) and q is

arbitrary large. In particular, ‖U‖u = o(1).

For instance, one may prove that a random subset satisfies these
properties with high probability (Tao & Vu 2006, Lemma 4.16).
There also exist explicit constructions (Gillespie 2010).

4.6. General Certificate Structures. In this section, we fin-
ish the proof of Theorem 1.3. There are two main reasons why it is
not possible to prove a general result like Theorem 1.6 for arbitrary
certificate structures.

A first counterexample is given by Proposition 3.2 stating that
the learning graph complexity of the hidden shift certificate struc-
ture is Ω(n1/3) and the statement at the end of Section 1 that the
quantum query complexity of the hidden shift problem is O(log n).
The proof in Section 4.4 cannot be applied here, because k in the
decomposition of G̃′

M into
∑

i∈[k] G̃
′
M,i would not be bounded by a

constant. We solve this by considering much “thicker” orthogonal
arrays T

(i)
M .

Next, the orthogonality property (4.6) is not satisfied auto-
matically for general certificate structures. For instance, assume
A

(1)
M = {1, 2}, A

(2)
M = {2, 3}, and the orthogonal arrays are given

by the conditions x1 = x2 and x2 = x3, respectively. Then, for
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any input x satisfying both conditions, we have x1 = x3, and the
orthogonality condition fails for S = {1, 3}.

The problem in the last example is that the orthogonal arrays
are not independent because A

(1)
M and A

(2)
M intersect. We cannot

avoid that A
(i)
M s intersect, but we still can have T

(i)
M s independent

by defining them on independent parts of the input alphabet.
More formally, let � = maxM∈C �(M), where �(M) is defined

in Section 4.2 as the number of inclusion-wise minimal elements
of M . We define the input alphabet as Z = Z

�
p for some p to be

defined later. Hence, the size of the alphabet is q = p�.
Let Q

(i)
M be an orthogonal array of length |A(i)

M | over the alphabet

Zp. We will specify a concrete choice in a moment. From Q
(i)
M , we

define T
(i)
M in (4.5) by requiring that the ith components of the

elements in the sequence satisfy Q
(i)
M . The sets XM are defined as

in (4.5). We additionally define

X
(i)
M = {x ∈ Z

n
p | x

A
(i)
M

∈ Q
(i)
M },

for i ≤ �(M), and X
(i)
M = Z

n
p otherwise. Note that XM =

∏�
i=1 X

(i)
M

in the sense that, for each sequence x(i) ∈ X
(i)
M with i = 1, . . . , �,

there is a corresponding element x ∈ XM with xj = (x
(1)
j , . . . , x

(�)
j ).

Now we make our choice for Q
(i)
M . Let U ⊆ Zp be a set with small

Fourier bias and some δ = |U |/p that exists due to Theorem 4.21.

We define Q
(i)
M as consisting of all x ∈ Z

A
(i)
M

p such that the sum of
the elements of x belongs to U . With this definition,

(4.22) |X(i)
M | = δpn.

Hence, there are exactly δqn elements x ∈ Zn such that x
A

(i)
M

∈ T
(i)
M .

If we let δ = 1/(2�|C|), a calculation similar to (4.18) shows that
|Y | ≥ qn/2. Also, by considering each i ∈ [�] independently, it is
easy to see that all XM satisfy the orthogonality condition. Thus,
Lemma 4.14 applies, and (4.15) holds.

Now it remains to estimate ‖Γ′‖, and it is done by consider-

ing matrix Γ̂′ as described in Section 4.2 and performed once in
Section 4.4. If Γ̃′ = 0, then also Γ′ = 0, and we are done. Thus,



cc 23 (2014) Non-adaptive learning graphs 349

we further assume Γ̃′ �= 0. Recall that (χa)a∈Zp denotes the
Fourier basis of Zp. The basis e is defined as the Fourier basis of

C
Z . It consists of the elements of the form ea =

⊗�
i=1 χa(i) where

a = (a(i)) ∈ Z. Note that e0 has the required value, where 0 is
interpreted as the neutral element of Z.

If v = (vj) = (v
(i)
j ) ∈ Zn, we define ev =

⊗n
j=1 evj

, and v(i) ∈
Z

n
p as (v

(i)
1 , . . . , v

(i)
n ). Also, for w = (wj) ∈ Z

n
p , we define χw =⊗n

j=1 χwj
.

Fix an arbitrary M ∈ C. Let B̃M = (G̃′
M)∗G̃′

M and B̂M =

(Ĝ′
M)∗Ĝ′

M . We aim to show that

(4.23) ‖B̃M − B̂M‖ → 0 as p → ∞,

because this implies

‖(Γ̃′)∗Γ̃′ − (Γ̂′)∗Γ̂′‖ =
∥
∥
∥
∑

M∈C
(B̃M − B̂M)

∥
∥
∥ ≤

∑

M∈C
‖B̃M − B̂M‖ → 0

as p → ∞. As ‖Γ̃′‖ > 0, this implies that ‖Γ′‖ ≤ 2‖Γ̃′‖ for p large
enough, and together with (4.15) and Theorem 4.2, this implies
Theorem 1.3.

From (4.16), we conclude that the eigenbasis of B̃M consists of
the vectors ev, with v ∈ Zn, defined above. In order to understand
B̂M better, we have to understand how ev[[XM ]] behave. We have

(4.24) (ev[[XM ]])∗(ev′ [[XM ]]) =
�∏

i=1

(χv(i) [[X
(i)
M ]])∗(χv′(i) [[X

(i)
M ]]).

Hence, it suffices to understand the behavior of χw[[X
(i)
M ]]. For

w ∈ Z
n
p , A ⊆ [n] and c ∈ Zp, we write w + cA for the sequence

w′ ∈ Z
n
p defined by

w′
j =

{
wj + c, j ∈ A;

wj, otherwise.

In this case, we say that w and w′ are obtained from each other by
a shift on A.
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Claim 4.25. Assume that w and w′ are elements of Z
n
p , and let

ξ = (χw[[X
(i)
M ]])∗(χw′ [[X

(i)
M ]]). If w = w′, then ξ = δ. If w �= w′, but

w can be obtained from w′ by a shift on A
(i)
M , then |ξ| ≤ ‖U‖u.

Finally, if w cannot be obtained from w′ by a shift on A
(i)
M , then

ξ = 0.

Proof. Arbitrarily enumerate the elements of U = {u1, . . . , um}
where m = δp. Denote, for the sake of brevity, A = A

(i)
M . Consider

the decomposition X
(i)
M =

⊔m
k=1 Xk, where

Xk =
{

w ∈ Z
n
p |
∑

j∈A
wj = uk

}
.

Fix an arbitrary element a ∈ A and denote w̄ = w − waA and
w̄′ = w′ − w′

aA. In both of them, w̄a = w̄′
a = 0, and by an

argument similar to Claim 4.19, we get that

(4.26) (χw̄[[Xk]])
∗(χw̄′ [[Xk]]) =

{
1/p, w̄ = w̄′;

0, otherwise.

If x ∈ Xk, then

χw[[x]] =
n∏

j=1

χwj
[[xj]] =

1√
pn

exp

[
2πi

p

n∑

j=1

wjxj

]

=
1√
pn

exp

[
2πi

p

( n∑

j=1

w̄jxj + wa

∑

j∈A

xj

)]

= exp
(2πi wauk

p

)
χw̄[[x]].

Hence,

(χw[[X
(i)
M ]])∗(χw′ [[X

(i)
M ]]) =

m∑

k=1

(χw[[Xk]])
∗(χw′ [[Xk]])

=
m∑

k=1

e2πi(w′
a−wa)uk/p(χw̄[[Xk]])

∗(χw̄′ [[Xk]]).(4.27)

If w′ cannot be obtained from w by a shift on A, then w̄ �= w̄′

and (4.27) equals zero by (4.26). If w = w′, then (4.27) equals
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m/p = δ. Finally, if w′ can be obtained from w by a shift on A
but w �= w′, then w̄ = w̄′ and wa �= w′

a. By (4.26) and (4.20), we
get that (4.27) does not exceed ‖U‖u in absolute value. �

Let v ∈ Zn, and S = {j ∈ [n] | vj �= 0}. Let v′ ∈ Zn and define
S ′ similarly. By (4.10), (4.16), (4.22) and (4.24), we have

e∗
vB̂Mev′ =

qnβS(M)βS′(M)

|XM | (ev[[XM ]])∗(ev′ [[XM ]])

=
βS(M)βS′(M)

δ�

�∏

i=1

(χv(i) [[X
(i)
M ]])∗(χv′(i) [[X

(i)
M ]]).(4.28)

By this and Claim 4.25, we have that

(4.29) e∗
vB̂Mev = βS(M)2 = e∗

vB̃Mev.

Call v and v′ equivalent, if βS(M) and βS′(M) are both nonzero
and, for each i ∈ [�], v(i) can be obtained from v′(i) by a shift on

A
(i)
M . By (4.28) and Claim 4.25, we have that e∗

vB̂Mev′ is nonzero
only if v and v′ are equivalent.

For each i ∈ [�], there are at most |A(i)
M | ≤ n shifts of v(i) on A

(i)
M

that have an element with an index in A
(i)
M equal to 0. By (2.3c),

the latter is a necessary condition for βS(M) being nonzero. Hence,
for each v ∈ Zn, there are at most n� elements of Zn equivalent to
it.

Thus, in the basis of evs, the matrix B̂M has the following prop-
erties. By (4.29), its diagonal entries equal the diagonal entries of

B̃M , and the latter matrix is diagonal. Next, B̂M is block diagonal
with the blocks of size at most n�. By (4.28) and Claim 4.25, the
off-diagonal elements satisfy

|e∗
vB̂Mev′| ≤ ‖U‖u

δ
βS(M)βS′(M),

because ‖U‖u ≤ δ. Since the values of βS(M) do not depend on

p, and by Theorem 4.21, the off-diagonal elements of B̂M tend to
zero as p tends to infinity. Since the sizes of the blocks also do not
depend on p, the norm of B̃M − B̂M also tends to 0, as required
in (4.23). This finishes the proof of Theorem 1.3.
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Aleksandrs Belovs and Robert Špalek, Adversary lower bound
for the k-sum problem. In Proc. of 4th ACM ITCS, 2012, 323–328.

Stephen Boyd and Lieven Vandenberghe, Convex optimization.
Cambridge University Press, 2004.



cc 23 (2014) Non-adaptive learning graphs 353

Gilles Brassard, Peter Høyer, and Alain Tapp, Quantum
cryptanalysis of hash and claw-free functions. In Proc. of 3rd LATIN,
vol. 1380 of LNCS. Springer, 1998, 163–169.

Harry Buhrman and Ronald de Wolf, Complexity measures and
decision tree complexity: a survey. Theoretical Computer Science 288
(2002), 21–43.

Andrew M. Childs and Jason M. Eisenberg, Quantum algorithms
for subset finding. Quantum Information & Computation 5(7) (2005),
593–604.

Mark Ettinger, Peter Høyer, and Emanuel Knill, The quan-
tum query complexity of the hidden subgroup problem is polynomial.
Information Processing Letters 91(1) (2004), 43–48.

Dmitry Gavinsky and Tsuyoshi Ito, A quantum query algorithm
for the graph collision problem. 2012.

Bryan Gillespie, On randomness of subsets of ZN , as described by
uniformity of Fourier coefficients. 2010.

Lov K. Grover, A fast quantum mechanical algorithm for database
search. In Proc. of 28th ACM STOC, 1996, 212–219.

A. S. Hedayat, N. J. A. Sloane, and John Stufken, Orthogonal
arrays: theory and applications. Springer, 1999.

Peter Høyer, Troy Lee, and Robert Špalek, Negative weights
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