
MIT Open Access Articles

Mode Conversion Losses in Expansion 
Units for ITER ECH Transmission Lines

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Schaub, S. C., M. A. Shapiro, R. J. Temkin, and G. R. Hanson. “Mode Conversion Losses 
in Expansion Units for ITER ECH Transmission Lines.” J Infrared Milli Terahz Waves 37, no. 1 
(August 16, 2015): 72–86.

As Published: http://dx.doi.org/10.1007/s10762-015-0190-4

Publisher: Springer US

Persistent URL: http://hdl.handle.net/1721.1/106984

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/106984


J Infrared Milli Terahz Waves manuscript No.
(will be inserted by the editor)

Mode Conversion Losses in Expansion Units for ITER
ECH Transmission Lines

S. C. Schaub · M. A. Shapiro · R. J.
Temkin · G. R. Hanson

Received: date / Accepted: date

Abstract The ITER electron cyclotron heating transmission lines will consist of
63.5 mm diameter corrugated waveguides, each carrying 1 MW of 170 GHz mi-
crowaves. These transmission lines must include expansion units to accommodate
expansion and contraction along the path from the gyrotron microwave sources to
the tokamak. A numerical mode matching code has been developed to calculate
power losses due to mode conversion of the operating mode, HE11, to higher order
modes as a result of the radial discontinuities in a sliding joint. Two expansion
unit designs were evaluated, a simple gap expansion unit and a more complex
tapered expansion unit. The gap expansion unit demonstrated loss that oscillated
rapidly with expansion length, due to trapped modes within the unit. The ta-
pered expansion unit has been shown to effectively suppress these trapped modes
at the expense of increased fabrication complexity. In a gap expansion unit, for a
waveguide step size of 2.5 mm, loss can be kept below 0.1% to a maximum ex-
pansion length of 17 mm. Expansion units without corrugation on interior walls
were also evaluated. Expansion units that lack corrugations are found to increase
mode trapping within the units, though not beyond useful application. The mode
matching code developed in this paper was also used to estimate mode conversion
loss in vacuum pumpouts for the ECH lines; the estimated loss was found to be
negligibly small.
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1 Introduction

Electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in
ITER will be initially provided by twenty-four, 1 MW, 170 GHz gyrotrons [1–3].
The gyrotron systems will reside in a separate building from the tokamak. Trans-
mission lines, consisting of 63.5 mm diameter corrugated waveguide, will carry
power from the gyrotron systems to the ECH launchers mounted on the tokamak.
The long transmission lines will require sliding joints. These will accommodate
positional shifts between the tokamak building, assembly building, and the RF
building, as well as thermal expansion and contraction.

ITER specifications have placed stringent requirements upon acceptable losses
in the ECH transmission lines. The overall efficiency of the transmission lines, from
the gyrotron matching optics units to the plasma facing diamond windows, with a
transmission length of up to 150 m, must be at least 90%. The challenge to meet
the ITER requirement on transmission losses is a topic of intensive present-day
research [4–15].

In Section 2, a mode matching code is developed to calculate mode conver-
sion between azimuthally symmetric modes of either corrugated or smooth-walled
waveguide. In Sections 3-5, our mode matching code is benchmarked and used
to evaluate mode conversion loss in transmission line expansion units of various
designs. In Section 6, our mode matching code is used to estimate losses in a
model pumpout for the ITER transmission lines. Section 7 presents a discussion
and conclusions.

2 Mode Matching Code

2.1 Mode Matching Code Overview

Results are presented of a numerical mode matching code that we have developed
to calculate mode conversion losses due to radial discontinuities in highly over-
moded waveguides. The code was developed to analyze either smooth or corru-
gated waveguides. The performance of the code was benchmarked against diffrac-
tive loss in a waveguide gap, as calculated in [16], and, for the TE01 mode of
smooth cylindrical waveguide, against the commercial software Ansys High Fre-
quency Structural Simulator (HFSS). After validation, the code was used to eval-
uate two expansion unit designs, defined in Fig. 1. The gap expansion unit uses
a simple radial step to a larger diameter. The tapered expansion unit includes a
tapered transition to a larger diameter section, but retains an abrupt step back
down to the original waveguide diameter. The abrupt step remains so that all parts
may be suitably thick to survive heat load due to losses. It is assumed that there is
no power lost due to the small space between the fixed and sliding surfaces. Ohmic
loss is also not considered in this study. For calculations of loss in the HE11 mode,
the expansion units shown in Fig. 1 have corrugated walls on all straight sections
and tapers, except as noted in Section 5 of this paper.
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Fig. 1: Geometry of the two waveguide expansion unit designs under consideration.
Units were simulated with smooth walls using TE0n modes, for benchmarking
purposes, and corrugated walls using HE1n modes for application.
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Fig. 2: Geometry for the derivation of scattering matrices. Forward and backward
going waves are considered in the regions before and after the radial discontinuity
at z = 0.

2.2 Derivation of Scattering Matrices for Mode Matching Code

Mode conversion due to a single radial discontinuity was calculated following the
mode matching techniques and scattering matrix formulations outlined in [17,18].
Mode conversion was derived for a transition from larger to smaller radius, as
shown in Fig. 2. Only symmetric modes were considered in this analysis, i.e. TE0n

and HE1n modes in smooth and corrugated waveguide, respectively. Mode con-
version for TE0n and HE1n modes were derived in parallel to allow benchmarking
with HFSS. The approach used here is similar to that used to calculate the over-
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all scattering matrices of complex cavities in [19] and modes excited in dielectric
windows in [20].

The electric and magnetic fields of smooth and corrugated waveguides are given
by Eqs. 1-10. The fields for TE0n modes are given in Eqs. 1 - 5. The amplitude
of the forward going wave in each region is given by F and the amplitude of the
backward going waves is given by B.
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The coordinate z is along the axis of the waveguide and r is radial distance
away from the axis. The value ν′

n is the nth zero of J1, a first order Bessel function
of the first kind. The wavenumber parallel to z is kz, µ0 is the permeability of
free space, c is the speed of light in vacuum, and ω is the angular frequency of
the input microwave. Subscript m or n indicates the number of the waveguide
mode, ordered by cutoff frequency. Superscript I or II indicates that the value is
evaluated before or after the radial discontinuity, respectively. In all calculations
presented here, ω = 2π × 170 GHz. The electric and magnetic fields of the HE1n

modes with linear polarization along the y-axis are given in Eqs. 6 - 10. These are
approximations to the dominant components of the HE1n modes for corrugations
of quarter wavelength depth as found in [21].
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Here νn is the nth zero of J0, a zeroth order Bessel function of the first kind.
The amplitudes, AI

n, were found by setting the amplitude of the forward wave to
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F I
n = 1 and the amplitude of the backward wave to BII

m = 0. At these parameters,
the power in the mode is defined as equal to one watt. This yields for AI

n:
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Using this normalization, the electric and magnetic fields of the modes of region
I were projected onto those of region II at the z = 0 discontinuity. The procedure
is outlined below for projection of the electric fields of the HE1n modes.
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Both sides of Eq. 14 were multiplied by r and a Bessel function representing
the electric field in the larger cross section, J0

(
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aI

)
. Integrating the resulting ex-

pression, Eq. 15, over the waveguide cross section allowed use of the orthogonality
relationship for Bessel functions, Eq. 16, to pick out the projection of a single
mode of region I onto all the modes of region II.
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The transmission matrices, LE and LH are defined in Eqs. 18 and 19. These
can be read off from Eq. 17. It can be shown by using the above procedure to match
the magnetic fields at the discontinuity that LE = LT

H . Superscript T stands for
the transpose of the matrix.(
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By observation of close parallels between the equations describing the fields
of the TE0n and HE1n modes, it can be concluded that equations derived for
HE1n modes can be simply transformed to those for the TE0n modes, using the
substitutions in Eq. 20. The final form for the transmission matrices is given in
Eqs. 21 and 22, for the TE0n and HE1n modes, respectively. Scattering matrices
are calculated from transmission matrices using Eq. 23.

J0(z) → J1(z) (20a)
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n (20b)
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n) (20c)
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S11 = [LELH + I]−1[LELH − I] (23a)

S12 = 2[LELH + I]−1LE (23b)

S21 = LH{I − S11} (23c)

S22 = I − LHS12 (23d)

The case where aI < aII is handled with a simple transformation: S11 ↔
S22 and S12 ↔ S21. Waves are propagated through straight waveguide with the
scattering matrices given in Eq. 24.

S11 = S22 = 0 (24a)

S12 = S21 = D (24b)

D is an N × N diagonal matrix, with elements Dnm = exp (−ikznL) δnm.
N is the total number of modes used in the calculation. L is the length of the
straight section of waveguide. Consecutive scattering matrices are cascaded via
the formalism shown in Eq. 25. In this manner, an overall scattering matrix is
calculated for the expansion unit under consideration.
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Fig. 3: Comparison of mode conversion loss of TE01 mode in the smooth waveguide
gap expansion unit, as predicted by our mode matching code, and gap diffraction
theory, Eq. 26. Plots a - d are for different values of ∆a. The waveguide radius is
a = 31.75 mm, and the frequency is 170.0 GHz.
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3 Mode Matching Results and Benchmarking for the TE01 Mode of
Smooth Waveguide

Multiple methods were used to benchmark the performance of our mode matching
code. As a first approximation, the losses were calculated using gap diffraction the-
ory. This model radiates power in the desired mode from the exit of one waveguide
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Fig. 4: A zoomed in comparison of TE01 loss in the smooth waveguide gap ex-
pansion unit as predicted by our mode matching code and HFSS. The oscillations
predicted by our code have a period of 0.89 mm, approximately λ/2.
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Fig. 5: Comparison of mode conversion loss of TE01 mode in the smooth waveguide
tapered expansion unit versus taper angle as predicted by our mode matching code
and HFSS. The model in this comparison uses a step size of ∆a = 2.5 mm and an
expansion length of d = 10 mm.

to the entrance of a second waveguide using diffraction theory. The power entering
the second waveguide is projected onto the TE01 or HE11 modes for smooth or
corrugated waveguide, respectively. Power that does not project onto the desired
mode of the second waveguide is considered lost. This simple model will be found
to be inaccurate for small values of step size, ∆a, and at long gap lengths, d. This
model also cannot account for trapped modes or reflections. However, this calcu-
lation is particularly useful because of its approximate validity for both TE01 and
HE11 modes. The diffractive losses for radiation of wavelength λ across a gap of
length d, between waveguides of radius a can be expressed analytically [16]. The
losses of TE01 power radiating between smooth walled waveguides is given by Eq.
26. The losses of HE11 power radiating between corrugated waveguides is given by
Eq. 27.
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TE01 fractional loss = 0.99

(
dλ

2a2

)3/2

(26)

HE11 fractional loss = 0.39

(
dλ

2a2

)3/2

(27)

In addition, the code for TE0n modes in a smooth, circular waveguide is bench-
marked against the commercially available HFSS software. The HFSS code was
used only to model the smooth-walled version of both the gap and tapered ex-
pansion units, because the fine mesh required to model corrugated walls would
require computing power beyond our means. Simulations performed with HFSS
are limited to the first 25 symmetric modes of the structure, ordered by cutoff fre-
quency. Because of the highly overmoded nature of the ITER transmission lines,
not all of the propagating TE0n modes of the waveguides can be taken into ac-
count. However, HFSS does well model the complex behavior that arises due to
trapped modes and reflections in the expansion units, allowing us to benchmark
this aspect of our code.

In all results presented in this paper, calculations made with our mode match-
ing code account for the first 100 symmetric modes of the waveguides. This includes
all propagating modes and a sufficient number of evanescent modes to achieve con-
vergence of our results for all the geometries under consideration. Fig. 3 shows the
results of our code for the TE01 mode in a smooth-walled gap expansion unit versus
the predictions of gap diffraction theory, Eq. 26. As expected, our results diverge
from gap diffraction theory at small values of ∆a and large expansion length. In
addition, our results show rapid oscillation in loss versus expansion length. The
oscillations have a period of 0.89 mm, approximately λ/2, as expected for trapped
modes. To verify the reality of this behavior, Fig. 4 shows a detailed compari-
son of the results of HFSS and our code. It can be seen that HFSS reproduces
the rapid oscillations seen in our own calculations. This benchmarking is a good
confirmation of the accuracy of our mode matching code.

To apply our mode matching code to the tapered expansion unit, the taper
was modeled as a series of radial steps. The number of steps was increased until
the results of the calculations converged. 100 such steps were used in all results
presented in this paper. Fig. 5 compares the results of HFSS and our code for the
TE01 mode in a tapered expansion unit in smooth waveguide. Shown in this figure
is a model with a step size of ∆a = 2.5 mm and an expansion length of d = 10
mm. Our code and HFSS are shown to be in good agreement as the taper angle,
ϕ, is swept from 5◦ to 90◦.

4 Results for the HE11 Mode of Corrugated Waveguide in Fully
Corrugated Expansion Units

The results of our calculations for loss of the HE11 mode in a corrugated gap
expansion unit are shown in Fig. 6. Gap diffraction theory, Eq. 27, well predicts a
moving average of our results for large values of ∆a, as well as at small expansion
length for small values of ∆a. Rapid oscillations with expansion length increase in
amplitude dramatically as the value of ∆a is increased.
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Fig. 6: Mode conversion loss of HE11 mode in the fully corrugated gap expansion
unit, Fig. 1a, and tapered expansion unit, Fig. 1b, as predicted by our mode
matching code. The predictions of gap diffraction theory, Eq. 27, are included for
comparison. Plots a - d are for different values of ∆a. The waveguide radius is
a = 31.75 mm, and the frequency is 170.0 GHz.

Fig. 6 also includes the results for a tapered expansion unit with a taper angle
of ϕ = 60◦. For these calculations, all inner surfaces are assumed to be corrugated,
including the taper. The rapid oscillations in loss, resulting from trapped modes,
are partially suppressed by the addition of a taper. This is most evident at ex-
pansion units with large step size, ∆a ≥ 4 mm. Fig. 7 shows results for a tapered
expansion unit with a fixed step size of ∆a = 2.5 mm as both taper angle, ϕ, and
expansion length, d, are varied. It is shown that the amplitude of trapped modes
decreases as taper angle decreases away from 90◦. At very shallow taper angles,
this advantage is mitigated by the additional losses in the taper, which leads to
nonzero mode conversion even at zero expansion length. The example angle of
ϕ = 60◦ shown in Fig. 6 was chosen as a reasonable balance point between mode
suppression and additional loss.
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matching code. The step size used in this model is ∆a = 2.5 mm. The waveguide
radius is a = 31.75 mm, and the frequency is 170.0 GHz.

5 Gap Expansion Units with Smooth Wall Sections

The approximate accuracy of gap diffraction theory suggests that it may not be
necessary to corrugate all the surfaces of the expansion units. In this section,
expansion units in which certain walls are not corrugated are evaluated. Both
designs shown in Fig. 1 are considered. In the designs shown in Fig. 1, the sections
of waveguide with radius r = a+∆a have smooth walls. All the surfaces with radius
r = a have corrugated walls. For the tapered design shown in Fig. 1b, the taper
has a smooth wall. To evaluate the transmission of these units, the commercially
available Cascade software, [22], was used to calculate scattering matrices for the
smooth section of each expansion unit. The first 100 TE1n and TM1n modes were
used, ordered by cutoff frequency. The HE11 mode of corrugated waveguide was
projected onto the TE1n and TM1n modes of smooth circular waveguide, using
scattering matrices from [23]. Eq. 28 projects the HE11 mode onto TE1n modes.
Eq. 29 projects the HE11 mode onto TM1n modes. The constants νm,n and ν′

m,n

correspond to the nth zero of Jm and J ′
m, respectively.
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√
2ν0,1
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(
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√
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2 − (ν1,n)

2

J0 (ν1,n)

|J0 (ν1,n)|
, HE11 → TM1n (29)
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Fig. 8: Loss of the HE11 mode in expansion units with and without corrugation on
the interior walls. The corrugated gap line represents the gap expansion unit of Fig.
1a with all walls corrugated. The smooth gap line represents the same unit with a
smooth wall on the section of waveguide with radius r = a+∆a. The smooth taper
line represents the tapered expansion unit of Fig. 1b with a smooth wall on both
the taper and the section of straight waveguide with radius r = a+∆a. The taper
angle on these units is ϕ = 60◦. The predictions of gap diffraction theory, Eq. 27,
included as a reference, are represented by the HE gap diffraction line. Plots a - d
correspond to different step sizes, ∆a.

The results of these calculations are displayed in Fig. 8. The removal of cor-
rugations on the interior surfaces of the expansion units has several effects. The
moving average of the loss remains in agreement with the predictions of gap diffrac-
tion theory, Eq. 27, to much longer expansion lengths. In contrast, loss in the fully
corrugated expansion units tends to be lower at long expansion lengths. Addition-
ally, the amplitude of the oscillations in loss versus length due to trapped modes
behaves differently as parameters are varied. In units with smooth walls, the am-
plitude of oscillations has a significantly weaker dependence on both step size, ∆a,
and expansion length, d. For the suppression of trapped modes, this is unfavorable
at small step sizes and very short distances, but may be advantageous for the
design of units with a large step size of ∆a & 6 mm.
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Fig. 9: Approximation of mode conversion loss in a waveguide pumpout. a) One
period of the model waveguide wall used to simulate the pumpout slots. b) Trans-
mission of HE11 mode through a pumpout containing 35 periods.

The plots of Fig. 8 show loss to longer expansion lengths than the previous
plots. It is an ideal situation to limit expansion lengths to no more than d = 30 mm,
where mode conversion losses per expansion unit can be kept very low. However,
long runs of transmission line in the RF building, as well as transient environmental
conditions may necessitate expansion gaps of 50 mm or more. As can be seen in
Fig. 8, fully corrugated units have a significant advantage at long expansion lengths
only if the step size, ∆a, is less than about 4 mm.

The addition of a taper to one side of the expansion unit is an effective method
of suppressing trapped modes at long expansion lengths regardless of step size, at
least up to ∆a = 6 mm. The units evaluated in Fig. 8 have a taper angle of
ϕ = 60◦. For clarity in the plots of Fig. 8, the results for the fully corrugated
tapered unit are omitted. The behavior of these units at long expansion lengths
continues to follow the pattern shown in Fig. 6. The moving average continues to
track close to that of the fully corrugated gap expansion unit, though with smaller
amplitude oscillations due to suppression of trapped modes.

6 ITER Waveguide Pumpouts

The mode matching code developed in this paper was used to estimate mode
conversion losses in vacuum pumpouts for the ITER ECH waveguide. Because the
code is limited to axially symmetric waveguides, a simplified model of a pumpout
was analyzed. Shown in Fig. 9a, a corrugated waveguide in which a slot is cut into
every fifth corrugation was analyzed. For a pumpout, the slot must go through
the waveguide wall. To approximate mode conversion losses, the depth of the slot
was increased until the asymptotic behavior of the system was determined.

The pumpout model analyzed included 35 slots in a total of 12.075 cm of
waveguide. 350 modes were accounted for in the calculation to achieve convergence
of the results shown in Fig. 9b. Mode conversion loss due to the narrow slots was
calculated to be very small. Transmission loss of the HE11 mode is approximately
−4.5× 10−6 dB for the pumpout. This is less than the expected ohmic loss in 12
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cm of ITER ECH waveguide, 1.9× 10−5 dB, estimated using expressions found in
[24,25].

7 Discussion and Conclusions

It has been shown that, for sufficiently small expansion length and radial step
size, mode conversion losses in sliding waveguide joints of overmoded, corrugated
waveguide can be kept acceptably low for use in the ECH system of ITER. Reflec-
tions and trapped modes in the expansion units lead to losses that oscillate rapidly
with expansion length, with a period on the order of half the guide wavelength.
This oscillation is too rapid to allow for optimization of the expansion units, but
rather will lead to a range of predicted loss in each unit. It is seen that the addition
of a tapered section of waveguide can be used to suppress these trapped modes.
The decision to use a taper will depend upon the final design goals for the system.
At the example step size of ∆a = 2.5 mm, mode conversion loss can be kept below
0.1% to a maximum expansion length of d = 17 mm in the gap expansion unit.
At this step size, conditions causing expansion gaps up to d = 50 mm will lead to
losses of approximately 0.5%.

Losses have been calculated for expansion units that include a tapered section
of waveguide. The tapered, corrugated waveguide was used at the non-moving
side of the expansion unit. The taper allows for suppression of trapped modes in
the unit. A second taper at the moving side of the expansion unit may result in
more complete suppression of the trapped modes. This would, however, introduce
additional complexity in the fabrication of the expansion units and necessitate
thin, fragile parts.

Comparison of the results of the mode matching code with gap diffraction
theory, Eq. 27, yields additional insight. Though the gap diffraction theory does
not capture the effect of reflections, for sufficiently large values of ∆a or short
expansion lengths, the theory well approximates the moving average of our mode
matching results. It is shown in Fig. 8 that, where our mode matching results and
predictions of gap diffraction theory are in approximate agreement, corrugations
on the walls of the larger radius waveguide do not affect the moving average of loss
in the expansion unit. The trapping of modes and the resulting oscillations in loss
versus expansion length, however, are affected by the presence of corrugations.

It is important to note that our calculations make an assumption of perfect
axial alignment of the waveguides and expansion units. In application, slight tilts
between waveguides can lead to higher order mode excitation, calculated in [21].
Specifically, a tilt as small as 0.045◦ can lead to 0.1% power losses as a result of
conversion to the LP11 mode of the corrugated waveguide. Such alignment losses
must be taken into account in the final design of the ITER waveguide expansion
units.
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