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Abstract During multiagent interactions, robust strategies are needed to help
the agents to coordinate their actions on efficient outcomes. A large body of
previous work focuses on designing strategies towards the goal of Nash equilib-
rium under self-play, which can be extremely inefficient in many situations such
as prisoner’s dilemma game. To this end, we propose an alternative solution
concept, socially optimal outcome sustained by Nash equilibrium (SOSNE),
which refers to those outcomes that maximize the sum of all agents’ payoffs
among all the possible outcomes that can correspond to a Nash equilibrium
payoff profile in the infinitely repeated games. Adopting the solution concept
of SOSNE guarantees that the system-level performance can be maximized
provided that no agent will sacrifice its individual profits. On the other hand,
apart from performing well under self-play, a good strategy should also be
able to well respond against those opponents adopting different strategies as
much as possible. To this end, we consider a particular class of rational oppo-
nents and we target at influencing those opponents to coordinate on SOSNE
outcomes. We propose a novel learning strategy TaFSO which combines the
characteristics of both teacher and follower strategies to effectively influence
the opponent’s behavior towards SOSNE outcomes by exploiting their limi-
tations. Extensive simulations show that our strategy TaFSO achieves better
performance in terms of average payoffs obtained than previous work under
both self-play and against the same class of rational opponents.
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1 Introduction

Multiagent learning has received extensive attention in the literature and lots
of learning strategies [14, 25, 4, 9, 11] have been proposed to coordinate the
interactions among agents. The multi-agent learning criteria proposed in [4]
require that an agent should be able to converge to a stationary policy against
some class of opponent (convergence) and the best-response policy against
any stationary opponent (rationality). If both agents adopt rational learning
strategies in the context of repeated games and also their strategies converge,
then they will converge to the Nash equilibrium of the stage game. Indeed,
convergence to Nash equilibrium has been the most commonly adopted goal
to pursue within different multiagent environments in the multiagent learn-
ing literature, and representative examples include distributed Q-learning in
cooperative games [13], minimax Q-learning in zero-sum games [14], Nash Q-
learning in general-sum games [10], to name just a few.

Convergence is a desirable property in multiagent systems, however, con-
verging to Nash equilibrium may not be the most preferred since it does not
guarantee that the agents can receive their best payoffs. One well-known exam-
ple is the prisoner’s dilemma (PD) game shown in Fig. 1a. By converging to the
Nash equilibrium (D, D), both agents obtain the payoff of 1, while they could
have received a much higher payoff by coordinating on the non-equilibrium
outcome (C, C). To this end, the concept of Pareto-optimal outcomes sus-
tained by Nash equilibrium (POSNE) [3] has been proposed as an alternative
solution that the agents should learn to converge to. POSNE outcomes refer to
those outcomes that are Pareto-optimal and also correspond to a Nash equi-
librium payoff profile when the game is infinitely repeated. For example, the
outcome (C, C) in the PD game is a POSNE outcome. Converging to POSNE
outcomes is attractive in that it not only solves the inefficiency problem (e.g.,
the PD game), but also is stable since any deviation from POSNE outcomes
can be punished which is guaranteed by the Folk theorem [19]. However, there
may exist multiple POSNE outcomes, and it is not clear which POSNE out-
come that the agents should learn to converge to. Therefore, in this work, we
introduce a more refined solution concept - socially optimal outcome sustained
by Nash equilibrium (SOSNE), which represents those outcomes maximizing
the sum of all agents’ payoffs involved among all the POSNE outcomes. For
example, in the prisoner’s dilemma game, there is only one SOSNE outcome,
i.e., outcome (C, C). Compared with POSNE outcomes, SOSNE outcomes still
sustain the desirable property of stability as POSNE outcomes, and can be
considered as the optimal POSNE outcomes in terms of maximizing the system
level efficiency.

The most commonly adopted interacting framework in multiagent learning
literature is two-player repeated games, in which each agent chooses its action
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independently and simultaneously each round. To reach POSNE outcomes, Sen
et al. [22, 1] propose an interesting variation of sequential play by allowing each
agent to reveal its action choice to its opponent first. If one agent chooses to
reveal its action choice to its interacting partner first,1 then its partner will
make its best response accordingly. In this way, for some games, the agents
are able to coordinate on POSNE outcomes under self-play, while inefficient
Nash equilibria in the single-stage game would be reached without the action
revelation mechanism. However, there is inadequacy in this approach since in
an open environment we may not have control on the strategies of all agents.
Within an open environment, the agents are usually designed by different
parties and may have not the incentive to follow the strategy we design. To
this end, in this work we adopt the “AI agenda” [23] by assuming that the
opponent agent will not adopt the strategy we design. We assume that the
opponent agent is individually rational and may adopt one of the following
well-known rational strategies: Q-learning [25], WoLF-PHC [4], and Fictitious
play (FP) [9] following previous work [8]. In “AI agenda” [23], one commonly
adopted direction is considering how to obtain as high rewards as possible
by exploiting the opponents [21]. However, we are more interested in how
the opponents can be influenced towards coordination on SOSNE outcomes
through repeated interactions [8].

All these above rational strategies share the common characteristic of my-
opic rationality, i.e., all of them follow the principle of making best responses
towards their opponents based on their current estimations. One can take ad-
vantage of this characteristic when interacting with this kind of opponents. We
consider an interesting variant of sequential play with decision entrustment.
In addition to choose from their original action spaces, the agents are given a
free option of deciding whether to entrust its opponent to make decision for
itself or not (denoted as action F ). If agent i asks its opponent j to make
decision for itself (choosing action F ), then the agents will execute the action
pair assigned by agent j in this round. The motivation behind is to investigate
whether the introduction of the additional action F can give the rational op-
ponents additional incentive to coordinate towards socially optimal outcomes.
Similar idea of introducing “leader” and “voter” agents has been adopted in
investigating multi-agent learning in multi-agent resource selection problems
[18], which has been shown to be effective for agents to coordinate on optimal
utilizations of the resources.

We propose a novel learning strategy TaFSO (Teach and Follow towards
Social Optimality), which combines both characteristics of teacher and fol-
lower strategies. The characteristics of being a teacher strategy are exhibited
through the implementation of sequential play and action entrustment mecha-
nisms: a TaFSO agent rewards its opponent by choosing some socially optimal
outcome as their joint action if its opponent chooses action F , and punishes
its opponent otherwise. The TaFSO strategy also has the characteristic of a

1 One agent is randomly chosen to reveal its action in case that both agents choose to
reveal their actions simultaneously.
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(a) (b)

Fig. 1: Payoff matrices for (a) prisoner’s dilemma game, and (b) stackelberg
game

follower strategy in that it always tries to obtain as much payoff as possible
(reducing the punishment cost) while punishing its opponent when its oppo-
nent does not choose action F .

A number of different learning strategies [16, 8] based on punishment
mechanism have been developed to achieve more efficient outcomes instead
of single-stage Nash equilibrium. Compared with previous work [16, 8], the
TaFSO strategy has the following advantages. Firstly, it can be guaranteed
that the opponent never perceives the wrong punishment signal and thus the
coordination efficiency among agents is greatly improved. Secondly, the agent
adopting the TaFSO strategy always picks an action in the best response to
the opponent’s strategy from the set of candidate actions suitable for punish-
ment instead of adopting the minmax strategy, thus the punishment cost is
reduced. Thirdly, due to the introduction of action F , the agents are guar-
anteed to always coordinate on the same optimal outcome even if multiple
optimal outcomes coexist. Extensive simulations have been performed to eval-
uate the performance of the TaFSO strategy under self-play and also against
the class of rational learners. Simulation results show that better performance
under a number of evaluation criteria can be achieved compared with previous
work [8, 3, 22].

The remainder of the paper is structured as follows. The related work is
given in Section 2. In Section 3, the learning environment and the learning
goal of SOSNE are introduced. In Section 4, we present the learning approach
TaFSO under decision entrustment mechanism in the context of two-player
repeated games. Experimental simulations and performance comparisons with
previous work for both the case of playing against the class of rational oppo-
nents and self-play are presented in Section 5. In the last section, we conclude
our paper and describe the future work.

2 Related Work

Considering the inefficiency of pursuing Nash equilibrium solution, a number
of approaches [24, 17, 22, 3] have been proposed targeting at an alternative
solution: Pareto-optimal solution. Some work [24, 17] focuses on the PD game
only, and the learning goal is to achieve Pareto-optimal solution of mutual
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cooperation instead of Nash equilibrium solution of mutual defection. There
also exists some work [22, 1, 3] which addresses the problem of achieving
Pareto-optimal solution in the context of general-sum games.

Sen et al. [22, 1] proposed an interesting learning mechanism of sequen-
tial play with action revelation. Under this mechanism, each agent is allowed
to choose to inform the other agent of its action choice at the beginning of
each round. If one agent chooses to tell its opponent its action choice before-
hand, then its opponent will make its best response accordingly. Each agent
adopts an expected utility based probabilistic learning strategy based on Q-
learning algorithm to make its decision during each round. Simulation results
show that agents using action revelation strategy under self-play can achieve
Pareto-optimal outcomes which dominate Nash Equilibrium in certain games,
and also the average performance with action revelation is significantly better
than Nash Equilibrium solution over a large number of randomly generated
game matrices. The action revelation mechanism here can be considered as a
coordination signal introduced into the learning process to facilitate the co-
ordination towards Pareto-optimal outcomes between agents. However, they
only focused on the case of self-play, and also still cannot solve the problem of
coordinating on mutual cooperation in the PD game. In this work, we propose
an alternative coordination signal by allowing action entrustment to achieve
better coordination between agents on socially optimal outcomes.

Banerjee et al. [3] proposed the conditional joint action learning strategy
(CJAL) under which each agent takes into consideration the probability of an
action taken by its opponent given its own action, and utilize this information
to make its own decision. Simulation results show that agents adopting this
strategy under self-play can learn to converge to the pareto-optimal solution
of mutual cooperation in prisoner’s dilemma game when the game structure
satisfies certain condition. However, this strategy mainly focuses on the pris-
oner’s dilemma game and only works when the structure of the prisoner’s
dilemma game satisfies certain property. Besides, this strategy is based on the
assumption of self-play, and there is no guarantee of its performance against
the opponents using different strategies.

A number of work [15, 16, 8] made the next step by assuming that the op-
ponent may adopt different strategies instead of self-play. One natural way of
enforcing the opponents to cooperate is to adopt the Folk theorem [19] in the
literature of Game Theory. The basic idea of the Folk theorem is that there
are some strategies based on the punishment mechanism which can enforce
desirable outcomes and are also in Nash equilibrium of the infinitely repeated
game, assuming that all players are perfectly rational. Our focus, however, is
to utilize the ideas in Folk theorem to design efficient strategy against adaptive
best-response opponents from the learning perspective. Besides the strategies
we explore need not be in equilibrium in the strict sense, since it is very diffi-
cult to construct a strategy which is the best response to a particular learning
strategy such as Q-learning. In this direction, a number of teacher strategies
[15, 16] have been proposed to induce better performance from the opponents
via punishment mechanisms, assuming that the opponents adopt best-response
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strategies such as Q-learning. However, as mentioned in [8], there are a few dis-
advantages of this work that need to be addressed. The Godfather++ strategy
[16] does not take the agent’s own payoff into account during the punishment
phase, which can make the punishment cost unnecessarily high. Besides, the
agents using Godfather++ may be not able to coordinate their action choices
successfully when the target solution is not unique particularly in the case of
self-play.

Based on the teacher strategy Godfather++ [16], Crandall and Goodrich [8]
proposed the strategy SPaM employing both teaching and following strategies
simultaneously. They evaluated the performance of the SPaM strategy using
a number of representative two-player games under the case of both self-play
and playing against best-response learners, provided that the game structure is
observable. The SPaM strategy remedies the disadvantages of Godfather++ in
that the follower strategy part of the SPaM strategy enables a SPaM agent to
reduce its punishment cost as much as possible when it punishes its opponent.
Also it is empirically shown that the SPaM agents can always coordinate on
the socially optimal solution under self-play. However, the average performance
of the SPaM agent when matching against the best-response learners is not
as good as its performance under self-play, and mis-coordinations occur with
certain probabilities. In contrast, the TaFSO strategy we propose here learns
to teach selfish opponents based on the action entrustment mechanism, which
thus is able to prevent the opponents from perceiving the punishment signal
by mistake.

There also exist other learning algorithms [20, 21, 6] assuming that the
opponents may be adaptive and concentrating on how to achieve best-response
against different types of opponents apart from the case of self-play. Two
different types of opponents have been considered: stationary opponents and
opponents adopting conditional strategies where their action choices depend on
the most recent k periods of past history. The authors theoretically proved that
their strategies can achieve ǫ-best response against the class of opponents they
consider while also guarantee the maximin payoff against any other opponent
and achieve Pareto-optimal Nash equilibrium of the stage game under self-
play. Different from their work, we assume that the opponents are rational and
focus on the most commonly adopted rational learning strategies. Besides, our
goal is to achieve system-level efficiency, socially optimal outcomes, instead of
achieving best-response against the opponents.

3 Learning Environment and Goal

In this paper, we focus on the class of two-player repeated normal-form games.
Formally a two-player normal-form game G is a tuple 〈N, (Ai), (ui)〉 where

– N = {1, 2} is the set of players.
– Ai is the set of actions available to player i ∈ N .
– ui is the utility function of each player i ∈ N , where ui(ai, aj) corresponds

to the payoff player i receives when the joint action (ai, aj) is achieved.
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At the end of each round, each agent receives its own payoff based on the
agents’ joint action and also observes the action of its opponent. Each joint
action of the agents is also called an outcome of the game.2

Two examples of normal-form games (prisoner’s dilemma game and stack-
elberg game) are already shown in Fig. 1a and Fig. 1b respectively.

Following the setting in [15, 8], we assume that the opponent is individu-
ally rational, and specifically we consider the opponent may adopt one of the
following well-known rational strategies: Q-learning [25], WoLF-PHC [4],3 and
Fictitious play [9]. Q-learning is a rational learning algorithm that has been
widely applied in multiagent interacting environments. It has been proved that
the agents using Q-learning algorithm converge to some pure strategy Nash
equilibrium in deterministic cooperative games only [7], but no guarantees on
which Nash equilibrium that will be converged to. WoLF-PHC is empirically
shown to converge to a Nash equilibrium in two-player two-action games, how-
ever, similar with Q-learning, the Nash equilibrium that the agents converge
to may be extremely inefficient. Finally, fictitious play is a rational learning
strategy widely studied in game theory literature, and it is guaranteed to con-
verge to a Nash equilibrium in certain restricted classes of games (e.g., games
solvable by iterated elimination of strictly dominated strategies). Under Fic-
titious play, each agent keeps the record of its opponent’s action history, and
chooses its action to maximize its own expected payoff with respect to its op-
ponent’s mixed strategy (obtained from the empirical distribution of its past
action choices). For our purpose, we do not take into consideration the task of
learning the game itself and assume that the game structure is known to both
agents beforehand.

It is well-known that every two-player normal-form game with finite actions
has at least one pure/mixed strategy Nash equilibrium [19]. Under a Nash
equilibrium, each agent is making its best response to the strategy of the
other agent and thus no agent has the incentive to unilaterality deviate from
its current strategy.

Definition 1 A pure strategy Nash equilibrium for a single-shot two-player
normal-form game is a pair of strategies (a∗

1, a
∗

2) such that

1. u1(a
∗

1, a
∗

2) ≥ u1(a1, a
∗

2), ∀a1 ∈ A1

2. u2(a
∗

1, a
∗

2) ≥ u2(a
∗

1, a2), ∀a2 ∈ A2

If the agents are allowed to use mixed strategy, then we can naturally define
the concept of mixed strategy Nash equilibrium similarly.

Definition 2 A mixed strategy Nash equilibrium for a single-shot two-player
normal-form game is a pair of strategies (π∗

1 , π∗

2) such that

2 Note that in general an outcome is a profile of mixed strategies of all agents [19], and
a profile of pure strategies is a special case. In this paper, we adopt the meaning that an
outcome is a pure strategy profile unless otherwise mentioned.

3 WoLF-PHC is short for Win or Learn Fast - policy hill climbing.
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1. Ū1(π
∗

1 , π∗

2) ≥ Ū1(π1, π
∗

2), ∀π1 ∈ Π(A1)

2. Ū2(π
∗

1 , π∗

2) ≥ Ū2(π
∗

1 , π2), ∀π2 ∈ Π(A2)

where Ūi(π
∗

1 , π∗

2) is player i’s expected payoff under the strategy profile (π∗

1 , π∗

2),
and Π(Ai) is the set of probability distributions over player i’s action space Ai.
A mixed strategy Nash equilibrium (π∗

1 , π∗

2) is degenerated to a pure strategy
Nash equilibrium if both π∗

1 and π∗

2 are pure strategies.

Pure/mixed strategy Nash equilibrium in single-stage games has been com-
monly adopted as the learning goal to pursue in previous work [14, 25, 4, 10],
however, it can be extremely inefficient in terms of the payoffs the agents
receive (see the example in Fig. 1a). To this end, in this paper, we set our
learning goal to converging to socially optimal outcome sustained by Nash
equilibrium (SOSNE). A SOSNE outcome is an outcome maximizing the sum
of all players’ payoffs among all possible outcomes which correspond to a Nash
equilibrium payoff profile when the game is infinitely repeated with limit of
means criterion.4 Compared with converging to Nash equilibrium in single-
stage games, converging to a SOSNE outcome not only achieves system-level
efficiency, but also maintains system stability since any agent deviating from
the SOSNE outcome can be punished successfully which is guaranteed by the
Nash folk theorem [19]. For example, consider the repeated prisoner’s dilemma
game in Fig. 1a. (C, C) is the only SOSNE outcome in this game, since it is the
only outcome under which the sum of both agents’ payoffs is maximized, and
also it corresponds to a Nash equilibrium payoff profile in the limit of means
infinitely repeated PD game.

To formally define the concept of SOSNE, let us define the concept of
outcome sustained by Nash equilibrium (OSNE) first.

Definition 3 For any two-player normal-form game G, let us denote the set of
Nash equilibrium payoff profiles in the corresponding infinitely repeated game
under the limit of means criterion as P . An outcome (a1, a2) is an outcome
sustained by Nash equilibrium (OSNE) if and only if there exists a payoff
profile (p1, p2) ∈ P such that u1(a1, a2) = p1 and u2(a1, a2) = p2.

In Definition 3, for an outcome to be an OSNE, we explicitly require that
its payoff profile must correspond to one Nash equilibrium payoff profile in
the corresponding infinitely repeated game under the limit of means criterion.
From the Nash folk theorem [19], we know that for any two-player game, a
Nash equilibrium payoff profile of the limit of means infinitely repeated game
must be both feasible and enforceable (i.e., Pareto-dominates the minimax
payoff profile). Thus for any OSNE outcome, its payoff profile must also Pareto-
dominate the minimax payoff profile. In other words, the set of OSNE outcomes

4 A preference relation %i for player i is defined under the limit of means criterion if it
satisfies the following property: O1 %i O2 if and only if limt→∞ Σt

k=1
(pk

1
−pk

2
)/t ≥ 0, where

O1 = (a1
i,t, a

1
j,t)

∞

t=1
and O2 = (a2

i,t, a
2
j,t)

∞

t=1
are the outcomes of the infinitely repeated game,

and pk
1

and pk
2

are the corresponding payoffs player i receives in round k of outcomes O1

and O2 respectively.
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consists of all and only those outcomes whose payoff profiles Pareto-dominate
the minimax payoff profile of the single-stage game. Based on the definition of
OSNE, we can easily define the concept of SOSNE as follows.

Definition 4 For any two-player normal-form game G, an outcome (s∗

1, s
∗

2)
is a socially optimal outcome sustained by Nash equilibrium (SOSNE) if and
only if the sum of both players’ payoffs under (s∗

1, s
∗

2) is the highest among all
possible OSNE outcomes.

To check whether an outcome is a SOSNE outcome, we only need to find all
outcomes that Pareto-dominates the minimax payoff profile of the single-stage
game and examine whether the sum of both players’ payoffs under this outcome
is the highest among all the candidate outcomes. Taking the stacklberg game
shown in Fig. 1b as an example, let us represent each payoff profile as a point
in 2-dimensional space shown in Fig. 2. In this figure, the x-axis represents the
payoff to the row player (player 1) and the y-axis denotes the payoff to the
column player (player 2). All the feasible payoff profiles in repeated game under
the limit of means criterion are within the triangle area with three vertices of
(1, 0), (4, 0) and (3, 2), and also it is easy to check that the minimax payoff
profile corresponds to the point (2, 1). A payoff profile is Pareto-dominated by
all feasible payoff profiles that lies in the right or above it. Therefore, in this
example, the set P of Nash equilibrium payoff profiles (i.e., the set of points
Pareto-dominating the minimax payoff profile (2, 1)) is represented by the sub
triangle with the three vertices: Minimax, c, and SO. Among all the outcomes
whose payoff profiles are within this sub triangle, the sum of both players’
payoffs are the highest under the outcome (U, R). Therefore the outcome (U, R)
corresponding to the payoff profile SO is a SOSNE outcome. If there exists a
SOSNE outcome in a game, it means that this outcome is enforceable since
this outcome must correspond a Nash equilibrium payoff profile under the
limit-of-means criterion. Therefore from a single agent’s perspective, it always
has the capability of enforcing any perfectly rational opponents to reach this
SOSNE outcome using trigger strategy. On the other hand, it is reasonable to
expect that under trigger strategy, any individually rational agent would have
the incentive to coordinate on the SOSNE outcome given the threat of being
punished by obtaining the worse minimax payoff otherwise in the long run.
Notice that a SOSNE outcome must be a POSNE, but not vice versa, and
only a POSNE outcome which maximizes the sum of both players’ payoffs is
a SOSNE.

4 TaFSO: A Learning Approach Towards SOSNE Outcomes

In this section, we present the learning approach TaFSO aiming at achieving
SOSNE outcomes. To enable the TaFSO strategy to exert effective influence
on the opponent’s behavior, we consider an interesting variation of sequential
play by allowing entrusting decision to others. During each round, apart from
choosing an action from its original action space, every agent is also given an
additional option of asking its opponent to make the decision for itself.
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Fig. 2: Payoff profile space of the stacklberg game in Fig. 1b

The TaFSO strategy combines the properties of both teacher and follower
strategies based on the action entrustment mechanism. Its teacher component
is used to influence its opponent to cooperate and behave in the expected
way based on punishment and reward mechanisms, which mainly involves the
following two functions.

– If the opponent agent chooses action F , the teacher component will be
responsible for determining which joint action to execute to reward the
opponent;

– Otherwise the teacher component will determine the suitable set of actions
for punishing the opponent for being uncooperative.

Its follower component is in charge of which action to choose to punish the
opponent agent while ensuring that the TaFSO agent can obtain as much
payoff as possible against its opponent at the same time.

4.1 Teacher strategy in TaFSO

During each round, apart from choosing an action from its original action
space, every agent is also given an additional option of asking its opponent
to make the decision for itself. Whenever the opponent j decides to entrust
TaFSO agent i to make decisions (denoted as choosing action F ), TaFSO
agent i will select the SOSNE outcome (s1, s2) if there only exists one SOSNE
outcome and both agents will execute their corresponding actions accordingly.
If there exist multiple action pairs that are SOSNE, then the one with highest
payoff for the opponent agent is selected. We assume that every agent will
honestly execute the action assigned by its opponent whenever it asks its
opponent to do so. If both agents choose action F simultaneously, then one of
them will be randomly picked as the joint decision-maker for both agents.
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We can see that the opponent j may obtain a higher payoff by deviating
from action F to some action from Aj . Therefore a TaFSO agent i needs to
enable its opponent j to learn to be aware that entrusting the TaFSO agent to
make decisions is its best choice. To achieve this, the TaFSO agent i will teach
its opponent by punishment if the opponent j chooses actions from Aj . To
make it effective, the punishment must exceed the profit of deviating. In other
words, the opponent j’s any possible gain from its deviation has to be wiped
out through one or more rounds of punishment. The TaFSO agent i keeps the
record of the opponent j’s accumulated gains Gt

j from deviation by each round
t and updates Gt

j at the end of each round. We propose two different ways of
updating the value of Gt

j based on the forgiveness degree of the TaFSO agent
when faced with any deviation from its opponent, which are shown in Fig. 3
and Fig. 4 respectively.

– If the opponent j entrusts the TaFSO agent i to make decision for itself (i.e.,
at

j = c), and also its current gain Gt
j ≥ 0, it means the opponent deviates

from choosing action F and makes certain gain in previous rounds and
choose not to deviate in the current round. If the TaFSO agent is nice and
easy to forgive others, it will forgive the opponent and update the gain Gt

j

of opponent j to zero; otherwise, it will keep the gain Gt
j of opponent j

unchanged in the next round t + 1.
– If the opponent j asks the TaFSO agent i to make decision for itself (i.e.,

at
j = c), and also its current gain Gt

j < 0, this indicates it suffers from
previous deviations. In this case, if the TaFSO agent is nice and easy to
forgive, it will keep the value of Gt

j unchanged; otherwise, it will update

the value of Gt+1

j to 0 in next round.

– If the opponent j chooses its action independently and also Gt
j > 0,

it means the opponent makes profits from previous deviations and still
chooses to deviate this round. If the TaFSO agent is easy to forgive oth-
ers, it will update the gain of the opponent as Gt

j + uj(a
t
i, a

t
j) − uj(si, sj);

otherwise, it will update Gt
j as Gt+1

j = max{Gt
j +uj(a

t
i, a

t
j)−uj(si, sj), ǫ}.

Notice that ǫ is a small positive value which ensures that the opponent j’s
total gain by round t+1 cannot become smaller than zero since it deviates
in the current round.

– If the opponent j chooses its action independently and also Gt
j ≤ 0, it

means the opponent suffers from previous deviations and still chooses to
deviate this round. If the TaFSO agent is easy to forgive others, the oppo-
nent’s gain is updated as Gt+1

j = Gt
j + uj(a

t
i, a

t
j)− uj(si, sj); otherwise, its

gain is updated as Gt+1

j = uj(a
t
i, a

t
j) − uj(si, sj) + ǫ. That is, even though

the opponent suffers from previous deviations (Gt
j ≤ 0), it still deserves

punishment by counting its previous gain as ǫ.

Based on the above updating rules of Gt
j , the TaFSO agent needs to deter-

mine which action is chosen to punish the opponent j. To do this, the TaFSO
agent i keeps a teaching function T t

i (a) for each action a ∈ Ai in each round t,
indicating whether this action can be used to punish the opponent. First, the
TaFSO evaluates the punishment degree Dt

i(a) on the opponent by choosing
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Fig. 3: The rules of calculating the opponent j’s accumulated gain Gt
j by each

round t (Proposal 1). Each path in the tree represents one case for calculating
Gt

j .

Fig. 4: The rules of calculating the opponent j’s accumulated gain Gt
j by each

round t (Proposal 2). Each path in the tree represents one case for calculating
Gt

j .

an action a as the opponent’s possible payoff loss compared with the case of
following the instruction of the TaFSO agent to choose action s2, and formally
we have

Dt
i(a) = uj(s1, s2) − E[uj(a, b)] (1)

where E[uj(a, b)] is the expected payoff that the TaFSO agent believes that
the opponent j would obtain if the TaFSO agent chooses action a based on
the past history. Formally, E[uj(a, b)] can be expressed as follows,

E[uj(a, b)] =
∑

b∈Aj

(freqj(b) × uj(a, b)) (2)

where freqj(b) is the estimated probability that the opponent j will play action
b next round based on the past history (i.e., the frequency that action b was
played in the past rounds).

Given an action a, if its current punishment degree is not lower than the
current gain of the opponent (Dt

i(a) ≥ Gt
j), it means this action is suitable

for punishing the opponent. However, the opponent’s gain may be too large
to be wiped out in a single round. In this case, from the Folk theorem [19]
we know that the opponent can always receive its minimax payoff minimaxj
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when the TaFSo agent exerts punishment on it. Thus we may only expect to
exert uj(s1, s2)−minimaxj amount of punishment on the opponent j. Overall,
if Gt

j ≤ uj(s1, s2) − minimaxj, then punishing the opponent j by the amount
of Gt

j is already enough; otherwise, we set our expected single-round highest
amount of punishment to the value of uj(s1, s2)− minimaxj. Therefore given
an action a, the TaFSO agent evaluates whether it can be used to punish the
opponent as follows,

T t
i (a) = Dt

i(a) − min{Gt
j , uj(s1, s2) − minimaxj} (3)

If T t
i (a) ≥ 0, it means it is sufficient to choose action a to punish the

opponent j. The set Ct
i of candidate actions for punishment is obtained based

on the values of T t
i (a). Formally we have

Ct
i = {a | T t

i (a) ≥ 0, a ∈ Ai} (4)

We can see that Ct
i may consist of multiple candidate actions for punishing

the opponent j. If T t
i (a) < 0, ∀a ∈ Ai, we only choose the action with the

highest T t
i (a) as the candidate action, and thus Ct

i becomes a singleton. Based
on this information, the TaFSO agent i chooses an action from this set Ct

i to
punish its opponent according to its follower strategy, which will be intro-
duced in Section 4.2. Another point worth mentioning is that the previous two
ways of updating the value of Gt

j determines the punishment degree that the
TaFSO agent could exert on its opponent. The higher the punishment degree
is, the less number of actions that the TaFSO agent could choose from CT

i .
Intuitively, the unforgiving version of the TaFSO agent would usually exert
more harsh punishment on its opponent when the opponent deviates. Thus it
is expected that the unforgiving version of the TaFSO agent can incentivize its
rational opponents to coordinate on SOSNE outcomes more effectively than
the forgiving version of the TaFSO agent. This hypothesis will be evaluated
in the experimental part in Section 5.1.

4.2 Follower strategy in TaFSO

The follower strategy in TaFSO is used to determine the best response to the
strategy of the opponent if the opponent chooses its action from its original
action space. Here we adopt the Q-learning algorithm [25] as the basis of the
follower strategy. Specifically the TaFSO agent i holds a Q-value Qt

i(a) for
each action a ∈ Ai ∪ {F}, and gradually updates its Q-value Qt

i(a) for each
action a based its own payoff and action in each round. The Q-value update
rule for each action a is as follows:

Qt+1

i (a) =

{

Qt
i(a) + αi(u

t
i(O) − Qt

i(a)) if a is chosen in round t

Qt
i(a) otherwise

(5)

where ut
i(O) is the payoff agent i obtains in round t under current outcome O

by taking action a. Besides, αi is the learning rate of agent i, which determines
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how much weight we give to the newly acquired payoff ut
i(O), as opposed to the

old Q-value Qt
i(a). If αi = 0, agent i will learn nothing and the Q-value will be

constant; if αi = 1, agent i will only consider the newly acquired information
ut

i(O).
In each round t, the TaFSO agent i chooses its action based on the ǫ-greedy

exploration mechanism as follows. With probability 1−ǫ, it chooses the action
with the highest Q-value from the set Ct

i of candidate actions, and chooses one
action randomly with probability ǫ from the original action set Ai ∪ F . The
value of ǫ controls the exploration degree during learning. It initially starts at
a high value and decreased gradually to nothing as time goes on. The reason is
that initially the approximations of both the teaching function and the Q-value
function are inaccurate and the agent has no idea of which action is optimal,
thus the value of ǫ is set to a relatively high value to allow the agent to explore
potential optimal actions. After enough explorations, the exploration has to
be stopped so that the agent will focus on only exploiting the action that has
shown to be optimal before.

4.3 Overall Algorithm of TaFSO

The overall algorithm of TaFSO (denoted as agent i) is sketched in Algorithm
1, and it combines the teacher and follower elements we previously described.
The only difference is that a special rule (line 5 to 9) is added to identify
whether the opponent is adopting TaFSO or not for the case of self-play. If
the opponent also adopts TaFSO, it is equivalent to the reduced case that
both agents alternatively decide the joint action and thus the pre-calculated
optimal outcome (s1, s2) is always achieved. Otherwise, during each round,
the TaFSO agent first determines the optimal joint action and also the set of
candidate actions based on its teacher strategy, and then chooses an action to
execute following its follower strategy. The outcome of each round depends on
the joint action of the TaFSO agent and its opponent, and also the Q-values
and Gt

i of the TaFSO agent will be updated accordingly (Line 14 to 20).
Next we make the following observations for the TaFSO algorithm from

the teacher and follower strategies’ perspectives respectively and also discuss
the differences with the SPaM strategy proposed in previous work [8].

4.3.1 Efficiency of the teacher strategy

In TaFSO, the teacher strategy is designed based on the entrustment mech-
anism we incorporate to modify the way of interaction between agents each
round. The teaching goal is to let the opponent be aware that entrusting the
TaFSO agent to make decisions for itself is in its best interest. The opponent is
always rewarded by the payoff in the optimal outcome (s1, s2) when it chooses
action F (not punished), and punished to wipe out its gain whenever it de-
viates by choosing action from its original action space based on its current
gain from past deviations. In this way, it prevents the occurrence of mistaken
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Algorithm 1 Overall Algorithm of TaFSO

1: Initialize Gt
i, Q(a), ∀a ∈ Ai ∪ F

2: Observe the game G, calculate the SOSNE outcome (s1, s2) with the high-
est payoff for the opponent.

3: for each round t do

4: Compute the set Ct
i of candidate actions.

5: if t = 1 then

6: Choose action F .
7: else

8: if at−1

j = F then

9: Choose action F .
10: else

11: Choose an action at
i according to the follower strategy in Sec 4.2.

12: end if

13: end if

14: if agent i becomes the joint decision-maker then

15: Choose the pre-computed optimal outcome (s1, s2) as the joint deci-
sion.

16: Update Gt
i based on the update rules in Sec 4.1.

17: else

18: Update Q(a), ∀a ∈ Ai ∪ F following Equation 5 after receiving the
reward of either outcome (at

i, a
t
j) or the joint action specified by its

opponent.
19: Update Gt

i based on the update rules in Sec 4.1.
20: end if

21: end for

punishment and the opponent never wrongly perceives the punishment signal.
Thus it is expected that for any rational agent, when it plays against a TaFSO
agent, it should be able to finally learn to choose action F to maximize its
individual payoff even though there may exist another outcome under which
it can receive a higher payoff. One exceptional case is that when the SOSNE
outcome is in the best interest of both agents, the rational opponent will not
get punished by deviating from choosing action F , since the gain of the op-
ponent by deviating from choosing action F is at most 0. Therefore, in this
case, it is possible for the rational opponent to learn to choose its best action
from its original action space instead of choosing action F , and the TaFSO
agent will cooperate with the rational opponent to coordinate on the SOSNE
outcome eventually according to the follower strategy.

In contrast, in previous work [8], the teaching goal is to let the opponent
be aware that always choosing its corresponding action of the optimal joint
action is its best choice, and the way of calculating the opponent’s gain from
deviation also depends on the teaching agent’s own actions. The side effect
is that the opponent may still be punished even when it chooses its action
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from the optimal joint action, thus the opponent may misperceive the punish-
ment signal from the teaching agent. It is expected that this would result in
the teaching process less effective compared with our approach, which can be
verified from the experimental results given in next section.

4.3.2 Efficiency of the follower strategy

From the teacher strategy, a set of candidate actions suitable for punishment
is obtained based on the teaching function in Equation 3. Different from trig-
ger strategy, the teaching function predicts the opponent’s next-round action
based on the past history, instead of assuming that the opponent always takes
the maxmin strategy. This is more reasonable and efficient since the oppo-
nent does not necessarily choose the maxmin strategy and it is highly likely
that there exist multiple action choices that are all sufficient to wipe out any
possible gain of the opponent from past deviation.

According to the follower strategy, the TaFSO agent learns the relative
performance of different actions (their Q-values) against the opponent. Given
the set of candidate actions obtained from the teaching function, the TaFSO
agent always chooses the action in its own best interest from the candidate ac-
tions through exploration and exploitation mechanism. In this way, the TaFSO
agent can reduce its own punishment cost as much as possible when still guar-
anteeing that it is sufficient to exert punishment on its opponent. In contrast,
an agent adopting trigger strategy always picks the minimax strategy to pun-
ish its opponent in a deterministic way without taking into consideration its
punishment cost, which thus may make the teaching process quite inefficient.
Compared with the SPaM strategy, the difference is that the SPaM strategy
adopts a variant of fictitious play to determine which action to choose in order
to exploit its opponent as much as possible while punishing the opponent.

5 Experiments

In this section, we perform experimental evaluations and present the experi-
mental results in three parts. First, in Section 5.1, we evaluate and compare
the learning performance of the two different versions of TaFSO strategies with
different ways of updating the gain of the opponent (described in Section 4.1)
adopted, when they play against best-response learners. Second, in Section 5.2
we compare the learning performance of the TaFSO strategy with the SPaM
strategy [8] when playing against different best-response learners in terms of
average payoff obtained under different testbeds. Last, in Section 5.3, we fo-
cus on the case of self-play and compare the performance of TaFSO strategy
under self-play with previous strategies [8, 3, 22] using the testbed adopted in
previous work [3] based on a number of commonly adopted evaluation criteria
[3].
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5.1 Punishing the opponent: forgiving or unforgiving

In Section 4.1, we have distinguished two possible ways of updating the gain
of the opponent each round based on the forgiving degree of the TaFSO agent.
In this section, we evaluate the learning performance of these two versions of
the TaFSO strategies when playing against best-response learners. If a best-
response learner becomes the joint decision-maker for both agents, we assume
that it will always choose the joint action pair with the highest payoff for itself.
We perform the evaluation under a larger class of games, the 57 conflicting-
interest game matrices with strict ordinal payoffs. This testbed was proposed
by Brams in [5], which has been widely adopted to evaluate the learning per-
formance of different learning algorithms [3, 2]. Generally conflicting interest
games are those games in which the players disagree on their most-preferred
outcomes. These 57 game matrices cover all the structurally distinct two-player
two-action conflicting interest games and we simply use the rank of each out-
come as its payoff for each agent. All the 57 games are listed in Appendix
A.

Fig. 5 shows the average payoffs of the two versions of the TaFSO learners
when playing against the WOLF-PHC learner over both roles (as either the
row or column player) and 100 runs across all the 57 game matrices.5 It is
interesting to notice that the unforgiving TaFSO agent (with proposal 2) ac-
tually achieves statistically significant higher average payoff than the TaFSO
agent that is more forgiving (with proposal 1). We hypothesize that it is be-
cause the unforgiving version of the TaFSO agent is able to exert more effective
punishment on the opponent when the opponent deviates from choosing ac-
tion F , thus incentivize the opponent to switch back to choose action F more
effectively. In contrast, the forgiving version of the TaFSO agent is more easy
to forgive the previous deviations of the opponent, thus in some games the
opponent may misperceive the punishment signal from the TaFSO agent and
still pursue the maximization of its individual payoff through deviation.6

Fig. 6 shows the average payoffs of the WOLF-PHC learner when playing
against the two different versions of the TaFSO agents over both roles (as either
the row or column player) and 100 runs across all the 57 game matrices. We
can see that the WOLF-PHC learner is able to receive statistically significant
higher average payoff when playing against the forgiving version of the TaFSO
agent (with proposal 1). This is consistent with the results of the TaFSO agents
and can be explained in a similar way. When playing against the forgiving
version of the TaFSO agent, since the TaFSO agent is easy to forgive the
previous deviations of the opponent, it is more likely for the WOLF-PHC
learner to deviate from choosing action F to maximize its individual payoffs.

5 Similar results can be observed when the opponent adopts other types of best-response
strategies (Q-learning and FP) and are omitted here.

6 Note that theoretically, the opponents should be able to understand the punishment
signal given enough explorations. In practice, due to the exploration schedule, the opponents
do not explore enough to understand the punishment and thus settle on a sub-optimal
strategy.
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Fig. 5: Average payoffs of the two different versions of the TaFSO agents with
different proposals of updating the gain of the opponent adopted

From previous results, we know that the unforgiving TaFSO agent can
achieve higher individual payoff than the forgiving TaFSO agent at the cost of
reducing the payoff of its opponent (the WOLF-PHC learner). Next we com-
pare the utilitarian social welfare of agents when these two different versions
of the TaFSO agents play against the WOLF-PHC learner over both roles (as
either the row or column player) and 100 runs across all the 57 game ma-
trices, which is shown in Fig. 7. We can observe that the unforgiving TaFSO
agent (with proposal 2) is able to achieve statistically significant slightly higher
utilitarian social welfare than the TaFSO agent who is more forgiving (with
proposal 1). Intuitively, the TaFSO agent which is more forgiving (with pro-
posal 1) makes more concessions to the WOLF-PHC agent, which thus allows
the WOLF-PHC agent to obtain higher individual payoffs. However, those
outcomes under which the WOLF-PHC agent can obtain higher payoff are
usually not socially optimal, thus the side effect of this kind of forgiveness and
concession is the decrease of the group’s overall utility.

5.2 Against Best-response Learners

In this part, we evaluate the performance of TaFSO strategy against the op-
ponents adopting a variety of different best-response strategies. From Section
5.1, we have known that the learning performance of the unforgiving version
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Fig. 6: Average payoffs of the WOLF-PHC learner when playing against two
different versions of the TaFSO agents

of the TaFSO agent is better and thus this version of the TaFSO agent will
be used for all the following experimental evaluations unless mentioned oth-
erwise. For the best-response opponents, we assume that the opponent may
adopt one of the following best-response strategies: Q-learning [25], WoLF-
PHC [4], and Fictitious play (FP) [9]. Similar to the previous section, here we
assume that an agent using either of the previous best-response strategies will
always choose the joint action pair with the highest payoff for itself when it
becomes the decision-maker for both agents. We compare the performance of
TaFSO with SPaM [8] against the same set of best-response opponents under
different testbeds. The first set of testbed we adopt here is the same as the
one in previous work [8] by using the following three representative games:
prisoner’s dilemma game (Fig. 1a), game of chicken (Fig. 8a), and tricky game
(Fig. 8b).

For the prisoner’s dilemma game, the socially optimal and also SOSNE
outcome is (C, C) , in which both agents receive a payoff of 3. For the game
of chicken, the target solution is also (C, C), in which both agents obtain a
payoff of 4. In the tricky game, the socially optimal and also SOSNE out-
come is (C, D), and the agents’ average payoffs are 2.5. Table 1 shows both
the agents’ utilitarian social welfare when both the TaFSO and SPaM strate-
gies are adopted to repeatedly play the above representative games against
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Fig. 7: Utilitarian social welfare of the two different versions of the TaFSO
agents with different proposals of updating the gain of the opponent adopted

(a) (b)

Fig. 8: Payoff matrices for (a) game of chicken, and (b)tricky game

different rational opponents.7 We can see that when the SPaM strategy is
adopted, the agents can always receive the utilitarian social welfare corre-
sponding to the socially optimal outcomes for different games. In contrast, for
those cases when the SPaM strategy is adopted, the agents’ utilitarian social
welfare is relatively lower than the sum of the payoffs under the socially op-
timal outcomes. The main reason is that the opponent agents adopting the
best-response strategies may wrongly perceive the punishment signals from

7 Note that only the payoffs obtained after 500 rounds are counted here since at the
beginning the agents may achieve very low payoffs due to initial explorations. The results
are averaged over 50 runs. For the tricky game, the payoffs of both TaFSO and SPaM
learners are averaged over the cases when they play as the row or column players.
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Table 1: The agents’ utilitarian social welfare when both the TaFSO and SPaM
strategies play against a number of best response learners in three representa-
tive games

Utilitarian Social Wel-
fare

Prisoner’s
Dilemma Game

Game of
Chicken

Tricky Game

TaFSO vs. Q-learning 6.0 8.0 5.0
SPaM vs. Q-learning 5.23 7.34 4.56
TaFSO vs. WoLF-PHC 6.0 8.0 5.0
SPaM vs. WoLF-PHC 5.2 7.4 4.5
TaFSO vs. FP 6.0 8.0 5.0
SPaM vs. FP 5.4 7.82 4.68

the SPaM agent, and thus result in mis-coordination occasionally. This kind
of occasional mis-coordination on the socially optimal outcomes directly re-
sults in the consequence that the utilitarian social welfare when employing the
SPaM strategy is lower than that when the TaFSO strategy is adopted.

To further validate our results, next we further evaluate the performance of
TaFSO strategy under a larger class of games, the 57 conflicting-interest game
matrices with strict ordinal payoffs as previously mentioned. These 57 game
matrices cover all the structurally distinct two-player two-action conflicting
interest games. For the non-conflicting interest (common interest) games, it is
trivial since there always exists a Nash equilibrium that both players prefer
most and also is optimal for both players.

For these 57 conflicting-interest games, first we notice that the TaFSO
learner is able to successfully incentive its rational opponent to converge to
SOSNE outcome for all the three rational strategies we consider. Table 2 shows
the utilitarian social welfare when the TaFSO and SPaM learners play against
different rational opponents over all the 53 conflicting-interest games and both
roles (the row and column players). We can see that the TaFSO learner is able
to achieve higher utilitarian social welfare than the SPaM learner when play-
ing against all the three rational opponents. We hypothesize that it is due
to the rational opponent’s misperception of the punishment signal from the
SPaM agent in some games, which thus leads to the convergence of non-socially
optimal outcomes. Taking game 32 for example, the SPaM agent expects to
coordinate on the outcome (D, D), while the rational opponent may deviate
by choosing action C to increase its payoff. In this case, the SPaM agent would
choose action C to punish the opponent, which would reinforce the opponent
to choose action C, since choosing action D is worse for itself when the SPaM
agent chooses action C (performing punishment). Therefore the agents finally
converge to the non-socially optimal outcome (C, C), which results in the de-
crease of the overall group’s utility. Another example is considering game 48,
in this game any rational opponent as the row player has the incentive to de-
viate from the optimal outcome (D, D) to increase its individual payoff, and
the SPaM agent (as the column player) would choose action C to punish its
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Table 2: Utilitarian social welfare under the 57 conflicting-interest games when
the TaFSO and SPaM agent play against a number of rational opponents

Utilitarian social welfare the TaFSO agent the SPaM agent
Against Q-learning 6.275 6.05
Against WoLF-PHC 6.156 4.26
Against FP 6.21 5.73

row opponent. The punishment signal from the SPaM agent will reinforce the
rational opponent to stay there: when the column agent chooses action C, the
best response for the row agent is choosing action C. Accordingly, the agents
will eventually converge to the inefficient non-socially optimal outcome (C, C)
instead of the socially optimal outcome (D, D). In contrast, there is no mis-
perception of the punishment signal under the action entrustment mechanism,
and the TaFSO agent can successfully coordinate on the socially optimal out-
comes under game 32 or 48 when playing against all rational opponents we
consider.

Overall, we can see that under the action entrustment mechanism, com-
pared with the SPaM agent, the TaFSO agent is able to induce rational op-
ponents to converge to (socially) optimal outcomes under more percentages of
games, and thus obtain higher utilitarian social welfare on average.

5.3 Under Self-play

In this section we compare the performance of TaFSO with SPaM [8], CJAL [3],
Action Revelation [22] and WOLF-PHC [4] in two-player’s games under self-
play. Both players play each game repeatedly for 2000 time steps with learning
rate of 0.6. The exploration rate starts at 0.3 and gradually decreases by 0.0002
each time step. For all previous strategies the same parameter settings as those
in their original papers are adopted.

Here we again use the 57 conflicting-interest game matrices with strict
ordinal payoffs proposed by Brams in [5] as the testbed for evaluation. For
the non-conflicting interest games, it is trivial since there always exists a Nash
equilibrium in the single stage game that both players prefer most and also is
optimal for both agents. It is easy for the agents to learn to converge to this
optimal Nash equilibrium for all the learning strategies we consider here and
receive the maximum payoffs for both agents, and thus this type of games is
not considered.

The performance of each strategy is evaluated in self-play on these 57
conflicting interest games, and we compare their performance based on the
following two criteria [3]. The comparison results are obtained by averaging
over 50 runs across all the 57 conflicting interest games.

Utilitarian Social Welfare The utilitarian collective utility function
swU (P ) for calculating utilitarian social welfare is defined as swU (P ) =

∑n

i pi,



Title Suppressed Due to Excessive Length 23

where P = {pi}
n
i and pi is the actual payoff agent i obtains when the out-

come is converged. Utilitarian social welfare can be used as the criterion for
evaluating the learning performance of each strategy under self-play in terms
of average payoffs obtained when the influence of different roles (as row or
column player) is taken into account.

Nash Social Welfare Nash social welfare is also an important evalua-
tion metrics in that it strikes a balance between maximizing utilitarian social
welfare and achieving fairness. Its corresponding utility function swN (P ) is de-
fined as swN (P ) =

∏n

i pi, where P = {pi}
n
i and pi is the actual payoff agent

i obtains when the outcome is converged. One one hand, Nash social welfare
reflects utilitarian social welfare. If any individual agent’s payoff decreases, the
Nash social welfare also decreases. On the other hand, it also reflects the fair-
ness degree between individual agents. If the total payoffs is a constant, then
Nash social welfare is maximized only if the payoffs is shared equally among
agents.

The comparison results based on these two criteria are shown in Table 3.
We can see that TaFSO outperforms all the other four strategies in terms of the
above criteria. Players using the ToFSO strategy can obtain utilitarian social
welfare of 6.45 and Nash social welfare of 10.08, which are higher than all the
other strategies. We also provide the average Nash equilibrium payoffs for all
the 57 games for comparison purpose, which clearly shows that pursuing the
goal of Nash equilibrium is less efficient compared with the goal of SOSNE.
Note that the performance of WOLF-PHC approach is the worst since this
approach is specifically designed for achieving Nash equilibrium in single-stage
game only. For SPaM, it is possible for both SPaM learners to misperceive that
their opponents are deliberately deviating from the optimal solution to increase
their individual payoffs and punish their opponents simultaneously. This kind
of mutual punishment can lead to punishment deadlock, which corresponds to
the case that both SPaM learners always play its minmax strategy, thus both
agents receive suboptimal payoffs.

For Action Revelation and CJAL, they both fail in certain types of games,
e.g., the prisoner’s dilemma game. For Action Revelation, self-interested agent
can always exploit the action revelation mechanism and have the incentive to
choose defection D, thus leading the outcome to converge to mutual defection;
for CJAL, it requires the agents to randomly explore for a finite number of
rounds N first and the probability of converging to mutual cooperation tends
to 1 only if the value of N approaches infinity. Besides, it only works when
the payoff structure of the prisoner’s dilemma game satisfies certain condition
[3]. For example, consider the two different versions of the prisoner’s dilemma
game in Fig. 9a and Fig. 9b. For both WOLF-PHC and Action Revelation,
the agents always converge to the pure strategy Nash equilibrium (D, D); for
CJAL, the agents can successfully learn to converge to the socially optimal
outcome (C, C) for the first prisoner’s dilemma game while fail to converge
to (C, C) for the second one [3]. In contrast, the agents using the TaFSO
strategy can always coordinate on the socially optimal outcome (C, C) for
both instances of the prisoner’s dilemma games under self-play.
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Table 3: Performance comparison with CJAL, action revelation and WOLF-
PHC using the testbed in [5]

Utilitarian Social
Welfare

Nash Social Welfare

TaFSO (our strategy) 6.45 10.08
SPaM [8] 6.10 9.25
CJAL [3] 6.14 9.25
Action Revelation [22] 6.17 9.30
WOLF-PHC [4] 6.03 9.01
Nash 6.05 9.04

(a) (b)

Fig. 9: Payoff matrices for prisoner’s dilemma game (a) version 1, and (b)
version 2

6 Conclusion and Future Work

In this paper, we propose a learning strategy TaFSO consisting of both teacher
and follower strategies’ characteristics to achieve socially optimal outcomes.
We consider an interesting variation of sequential play by introducing an ad-
ditional action F for each agent. The introduction of action F serves as an
additional signal to facilitate the coordinate between agents, and the adoption
of this signal is voluntary and determined by the agents themselves indepen-
dently. Simulation results show that a TaFSO agent can effectively influence
a number of rational opponents towards SOSNE outcomes and better per-
formance in terms of higher average payoff can be achieved compared with
previous work under both the case of against a class of rational learners and
self-play.

In this work, we focus on learning towards socially optimal outcomes in the
cases of self-play and against the class of rational learners only. It remains un-
explored on how to better utilize the characteristics of their strategies towards
the optimal goals when interacting with other types of opponents. Besides,
here we focus on achieving socially optimal outcomes as our targeted goal and
it is sufficient to achieve one of them if there exist multiple socially optimal
outcomes. One parallel direction is to investigate how to design the strategy
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when the targeted solution consists of a sequence of outcomes such as achieving
fairness [12].
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A Appendix

The 57 structurally distinct games mentioned in Section 5 are listed as follows.
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(a) game 1 (b) game 2 (c) game 3

(d) game 4 (e) game 5 (f) game 6

(g) game 7 (h) game 8 (i) game 9

(j) game 10 (k) game 11 (l) game 12

(m) game 13 (n) game 14 (o) game 15

(p) game 16 (q) game 17 (r) game 18
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(a) game 19 (b) game 20 (c) game 21

(d) game 22 (e) game 23 (f) game 24

(g) game 25 (h) game 26 (i) game 27

(j) game 28 (k) game 29 (l) game 30

(m) game 31 (n) game 32 (o) game 33

(p) game 34 (q) game 35 (r) game 36
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(a) game 37 (b) game 38 (c) game 39

(d) game 40 (e) game 41 (f) game 42

(g) game 43 (h) game 44 (i) game 45

(j) game 46 (k) game 47 (l) game 48

(m) game 49 (n) game 50 (o) game 51

(p) game 52 (q) game 53 (r) game 54

(s) game 55 (t) game 56 (u) game 57


