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Abstract This work presents reduced models for pricing basket options with
the Black-Scholes and the Heston model. Basket options lead to multi-dimensional
partial differential equations (PDEs) that quickly become computationally in-
feasible to discretize on full tensor grids. We therefore rely on sparse grid
discretizations of the PDEs, which allow us to cope with the curse of dimen-
sionality to some extent. We then derive reduced models with proper orthogo-
nal decomposition. Our numerical results with the Black-Scholes model show
that sufficiently accurate results are achieved while gaining speedups between
80 and 160 compared to the high-fidelity sparse grid model for 2-, 3-, and
4-asset options. For the Heston model, results are presented for a single-asset
option that leads to a two-dimensional pricing problem, where we achieve sig-
nificant speedups with our model reduction approach based on high-fidelity
sparse grid models.
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1 Introduction

We consider pricing European call options that give the right, but not the
obligation, to buy an underlying asset (e.g., stock) at the expiration time
0 < T ∈ R+ = {x ∈ R |x ≥ 0} for a strike price K ∈ R+ [51]. The value of the
option at time t = T (future) is known: If the value x ∈ R+ of the underlying
asset is below or equal K, then the option is not exercised and its value is
zero. If the value x of the asset is higher than K, then the option is worth
the difference between x and K. Thus, the price of the option at time t = T
is max{x − K, 0}; however, to sell the option at time t = 0 (now), we need
the price of the option at t = 0 and not only at t = T . Several models exist
to price such call options at time t = 0. We consider here the Black-Scholes
[2] and the Heston [25] model. The pricing models used in the following are
simple models that are appropriate to showcase our numerical methods but
that ignore many real-world details, see, e.g., [51,15] for more sophisticated
models.

We consider multi-asset or basket options where the option gives the right
to buy multiple assets. This leads to multi-dimensional partial differential
equations (PDEs) with a spatial domain in Rd where d > 1. In general, a
closed form solution does not exist anymore when pricing basket options, and
thus one has to resort to numerical methods; however, this is computation-
ally expensive due to the multi-dimensional setting. Additionally, the price
of an option has to be updated repeatedly. It depends on several parameters
describing the underlying assets, e.g., the drifts, volatilities, and correlations.
These parameters are subject to change as new data becomes available.

Monte Carlo methods are often used to deal with multi-dimensional op-
tion pricing problems. Monte Carlo approaches transform the option pricing
problem into a numerical quadrature problem and compute the scalar option
price value for a given asset price. Whereas standard Monte Carlo is flexible
and easy to use, its convergence rate is limited by 1/

√
M , where M ∈ N is the

number of samples. Advanced techniques, such as quasi, adaptive, or multi-
level Monte Carlo, as well as Smolyak quadrature, are necessary to achieve
a sufficiently fast convergence, see, e.g., [15,14,26,13,16]. Monte Carlo meth-
ods usually compute the scalar option price value for a given asset price only;
they do not construct a function that can be evaluated at an arbitrary asset
price. Therefore, it can become costly to, e.g., compute Greeks (derivatives)
for hedging strategies [33,22], even though sophisticated methods exist [15].
Besides that, if the parameters change, one has to start all over again.

Model reduction approaches derive low-cost surrogates of the computation-
ally expensive option pricing problems that provide approximate but computa-
tionally cheap solutions. The PDE corresponding to the option pricing model
at hand is therefore discretized on a grid with, e.g., finite differences and finite
element methods, and the full solution is obtained by, e.g., Galerkin projec-
tion, see [33,32]. In [46], a model reduction method for option pricing based
on the proper orthogonal decomposition (POD) is presented. The obtained
reduced model is employed for model calibration. In [48], POD is used to
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speedup hedging models for Asian options with one and two underlyings. An-
other POD-based reduced model is derived in [10]. The authors of [9] discuss
how to construct especially well-suited basis functions for option pricing and
show that only a small number of them is required to achieve sufficiently ac-
curate results. In [41] it is shown that [9] is in essence POD. This approach
is then extended in [40] to price options with two underlying assets, but with
the strong limitation that the volatilities of both assets have to be equal. The
reduced basis method is used in [39] for model calibration, and in [35] to price
options with the Heston model. In [21,8], American options, which require
additional inequality constraints, are priced with reduced models.

All of the listed work consider model reduction for single-asset options
or for limited cases of 2-asset options, even though often more sophisticated
pricing models than the Black-Scholes and the Heston model are used. One
reason for this limitation to single-asset options could be that a direct dis-
cretization of the multi-dimensional PDEs corresponding to basket options
on Cartesian grids (so-called full grids) already becomes computationally in-
feasible for a small number of underlying assets (curse of dimensionality).
Recently, discretizations based on sparse grids have been introduced, which
are computationally feasible for moderately high-dimensional option pricing
problems [5,53]. In [42,44,30,31], the multi-dimensional Black-Scholes equa-
tion is solved with the sparse grid combination technique [18], which splits
the high-dimensional problem into many computationally cheap problems. A
direct and adaptive sparse grid approach for up to 6-asset basket options is
introduced in [6,7,22]. A sparse grid discretization for the multi-dimensional
PDE corresponding to the Heston model is developed in [47,34]. Note that
financial products with significantly more underlying assets (e.g., 128) can be
priced with tensor-based approaches, see, e.g., [29].

We construct POD-Galerkin reduced models for basket options. The re-
duced models are developed in the context of the multi-asset Black-Scholes
equation. We therefore discretize the multi-asset Black-Scholes equation with
the direct sparse grid approach introduced in [6], construct a POD basis from
pre-computed snapshot data, and derive the reduced model.

In the following Section 2, we briefly discuss the Black-Scholes and Heston
model. We then focus on the multi-asset Black-Scholes model and derive the
discrete operators stemming from the sparse grid discretization of the multi-
asset Black-Scholes equation. In Section 4, we derive the reduced operators,
discuss how to construct the POD basis vectors, and introduce the reduced
models. Detailed numerical experiments are presented in Sections 5 and 6 for
the Black-Scholes model, and in Section 7 for the Heston model.

2 Option Pricing with the Black-Scholes and the Heston Model

We state the Black-Scholes equation and give details on its parameters in
Section 2.1, and apply the principal axis transformation to avoid the variable
coefficients in Section 2.2. The Heston model is briefly discussed in Section 2.3.
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2.1 Option Pricing with the Black-Scholes Model

Consider the value x = [x1, . . . , xd]
T ∈ [0,∞)d of a basket of d ∈ N assets.

We assume the value x of the assets follows a geometric Brownian motion
with given drift and standard deviation [51]. Consider now the corresponding
European call basket option with d underlying assets and the strike price
K ∈ R+. We define r ∈ R+ as the risk-free interest rate, η = [η1, . . . , ηd]

T ∈ Rd
as the drift, σ = [σ1, . . . , σd]

T ∈ Rd as the volatility, and

Σ =


1 ρ12 . . . ρ1d
ρ12 1 . . . ρ2d
...

. . .
. . .

...
ρ1d ρ2d . . . 1

 ∈ Rd×d

as the correlation matrix. For a compact notation, we collect all these parame-
ters in the vector µ = [µ1, . . . , µp]

T ∈ D ⊂ Rp, with p = d+d+0.5·(d2−d). We
further select a maximum asset value xmax = [xmax

1 , . . . , xmax
d ] ∈ (0,∞)d, fol-

lowing the procedure in [22,28], and define the spatial domain Ω = [0, xmax
1 ]×

. . . [0, xmax
d ] ⊂ [0,∞)d. With the forward time t ∈ [0, T ], where T is the matu-

rity, we consider the function u : Ω × [0, T ] × D → R+ in a suitable function
space1 as the solution of the multi-variate Black-Scholes equation

∂u

∂t
+

1

2

d∑
i,j=1

σiσjρijxixj
∂2u

∂xi∂xj
+

d∑
i=1

ηixi
∂u

∂xi
− ru = 0 , x ∈ Ω. (1)

Note that the choice of the maximum asset value xmax is discussed in detail
in [22,28]. We only note here that it can be chosen such that the effect on the
solution is negligible except near the boundary. Since we will only consider
European call options, the terminal condition of (1) is given by the payoff
function

u(x, T ;µ) = max

{
1

d

d∑
i=1

xi −K, 0

}
.

We refer to, e.g., [15,51] for details. We impose Dirichlet boundary conditions

u(x, t;µ) = u(x, T ;µ) · e−r(T−t) , x ∈ ∂Ω, t ∈ [0, T ] , (2)

where ∂Ω is the boundary of the spatial domain Ω.

2.2 Principal Axis Transformation of the Black-Scholes Equation

The original Black-Scholes equation (1) contains variable coefficients that de-
pend on the asset price x, see [15]. It is therefore common to not directly

1 Suitable function spaces for a transformed Black-Scholes equation will follow in Sec-
tion 3.2.
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discretize and solve (1) but to first transform it such that these variable coef-
ficients are eliminated. After discretization, this leads to a numerically better
conditioned system of linear equations. Following [22,43], we apply the prin-
cipal axis transformation, which we briefly summarize here:

1. We first switch time by considering τ = T − t instead of t. Therefore, our
equation is solved forward in time, i.e., we have an initial condition instead
of a terminal condition as in the original Black-Scholes formulation.

2. The variable coefficients are eliminated by the log transformation yi =
log xi

∂u

∂τ
− 1

2

d∑
i,j=1

σiσjρij
∂2u

∂yi∂yj
−

d∑
i=1

(
ηi −

1

2
σ2
i

)
∂u

∂yi
+ ru = 0 .

3. An eigendecomposition QDQT = Λ of the d×d covariance matrix Λ with
Λij = σiσjρij for all 1 ≤ i, j ≤ d is computed. The eigenvectors are the
columns of Q = [q1, . . . , qd] ∈ Rd×d and the eigenvalues form the diagonal
of the matrix D = diag(λ1, . . . , λd). We then transform z = QTy and
obtain the equation

∂u

∂τ
− 1

2

d∑
i=1

λi(µ)
∂2u

∂z2i
−

d∑
i=1

η̂i
∂u

∂zi
+ ru = 0, η̂i =

d∑
j=1

(
ηj −

1

2
σ2
j

)
Qji ,

where we denote the i-th eigenvalue by λi(µ) to indicate the dependence
on the parameter µ.

4. The drift term is eliminated by the translation ẑi = zi + τ η̂i, and the
reactive term is removed by replacing u by û = u/e−rτ .

After the transformation, we obtain the initial value problem

∂û

∂τ
− 1

2

d∑
s=1

λs(µ)
∂2û

∂ẑ2s
= 0, ẑ ∈ Ω , (3)

with the initial condition

û(ẑ, 0;µ) = max

1

d

d∑
i=1

exp

 d∑
j=1

Qij ẑj

−K, 0
 ,

and boundary condition

û(ẑ, τ ;µ) = û(ẑ, 0;µ), ẑ ∈ ∂Ω, τ ∈ [0, T ] . (4)

The solution function u of the original Black-Scholes equation can be restored
with

u(x, t;µ) = û(ẑ, τ ;µ) · e−rτ . (5)

We once again refer to [22] for details.
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2.3 Option Pricing with the Heston Model

The Heston model [25] extends the Black-Scholes model by allowing the volatil-
ities of the underlying assets to vary. This doubles the number of dimensions
of the corresponding option pricing problem compared to the Black-Scholes
model. An option with d underlying assets therefore leads to a 2d-dimensional
pricing problem in case of the Heston model [47]. We restrict the following
discussion of the Heston model to a single asset option and therefore to a
two-dimensional pricing problem.

The governing equation of the Heston model [25] is of the form

∂u

∂t
=−1

2
vx2

∂2u

∂x2
− ρξvx ∂2u

∂x∂v
− 1

2
ξ2v

∂2u

∂v2
− κ(θ − v)

∂u

∂v
− rx∂u

∂x
+ ru . (6)

where now u depends on the asset price x and on the variance v, with corre-
lation ρ. We further have the long-run variance θ ∈ R+, the mean reversion
rate κ ∈ R+, and the volatility of the volatility ξ ∈ R+. These parameters
are collected into the parameter µ = [θ, κ, ξ]. Similarly to the Black-Scholes
equation, we have the terminal condition

u(x, v, T ;µ) = max{x−K, 0}

for European call options. We refer to [25] for a discussion on boundary and
limit conditions. A log-transformation of the asset price in (6) eliminates co-
efficients with a dependence on x, see, e.g., [25,47].

3 Sparse Grid Discretization

In this section, we discretize the transformed Black-Scholes equation (3) in
the spatial domain Ω with finite elements and in the temporal domain with
the implicit Euler method. In the spatial domain, we rely on sparse grids that
allow us to cope with the curse of dimensionality to some extent [5,37]. We
first give a brief overview of sparse grids and then derive the discrete operators
corresponding to the Black-Scholes equation. Note that a similar derivation can
be applied to the Heston model, see [34] for a detailed discussion.

3.1 Sparse Grids and Sparse Grid Spaces

Sparse grids have become a versatile tool to deal with multi-dimensional prob-
lems and have a wide range of applications [5,12,37]. The original idea was
introduced for numerical quadrature, but sparse grids were first used for the
discretization of PDEs in [53]. We only give an overview of the basic sparse
grid framework, which is required in later sections, and refer to the survey [5]
for details.

Let V be a function space with domain Ω ⊂ Rd, e.g., we can think of
V = H1

0 (Ω) as a Sobolev space. We approximate a function f ∈ V by its
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x1,1x0,0 x0,1

l = 1

φ0,1φ0,0 φ1,1

φ2,1 φ2,3

x2,1 x2,3

l = 2

x3,1 x3,3 x3,5 x3,7

l = 3

φ3,1 φ3,3 φ3,5 φ3,7

(a) hier. basis

l 2

l1
(b) hierarchical increments

x
2

x1
(c) sparse grid

Fig. 1: The one-dimensional hierarchical basis up to level three is shown in (a). The grid
points of the hierarchical increments with level up to three and of the two-dimensional sparse
grid of level three are plotted in (b) and (c), respectively.

interpolant f (∞) ∈ V(∞)
` ⊂ V in the finite-dimensional space V(∞)

` of piecewise
d-linear functions with mesh width h` = 2−`, ` ∈ N in each direction. The
superscript (∞) will become clear with the hierarchical decomposition in (8).

We construct a multi-level basis, the so-called hierarchical basis, for the

space V(∞)
` . Let φ(x) = max{1−|x|, 0} be the standard hat function, and define

by dilation and translation the hierarchical basis function φl,i(x) = φ(2lx− i)
with the level l ∈ N and index i ∈ N, see Figure 1. We derive the multi-
dimensional hierarchical basis functions by the tensor product

φl,i =

d∏
j=1

φlj ,ij ,

where now the level l ∈ Nd and index i ∈ Nd are vectors with d components.
With these hierarchical basis functions we can span the so-called hierarchical
increments Wl as

Wl = span
{
φl,i | 1 ≤ ij < 2lj , ij 6∈ 2N, 1 ≤ j ≤ d

}
. (7)

The hierarchical incrementWl is spanned by those hierarchical basis functions
of level l for which all components of the index i are odd. With (7) we define
the space of piecewise d-linear functions corresponding to mesh width h` = 2−`

as direct sum

V(∞)
` =

⊕
|l|∞≤`

Wl , (8)

where |l|∞ = maxj |lj |. The limit |l|∞ ≤ ` also explains the superscript (∞) in
the notation.

The hierarchical basis leads to better conditioned systems when applied
to the discretization of PDEs with the finite element method [52], but, more
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importantly, the hierarchical decomposition (8) allows us to define many dif-
ferent approximation spaces. In particular, we can ask for the approximation
space with maximum level ` in each dimension that has the best cost-benefit
ratio. The benefit is equal to the interpolation error in the L2 norm, and the
(computational) costs are measured with the number of basis functions. If we
set V to the space of functions with bounded mixed derivatives up to order
two [5], the result of this optimization problem is the sparse grid space of
dimension d and level `

V(1)
` =

⊕
|l|1≤`+d−1

Wl , (9)

where |l|1 =
∑
j lj , see [5] for details and proofs. The grid points of the sparse

grid of dimension two and level three as well as of the corresponding hierar-
chical increments are shown in Figure 1. We also note that different benefit
and error measures lead to different types of sparse grids [5,4].

The interpolation error in the L2 norm of the interpolant f (1) ∈ V(1)
` with

superscript (1) of f ∈ V is in O(2−2``d−1), and thus slightly worse than of the

interpolant f (∞) ∈ V(∞)
` of the full grid space V(∞)

` with error in O(2−2`);
however, the number of grid points, and thus the computational costs, is only

in O(2``d−1) for the sparse grid space, compared to O(2`d) for V(∞)
` . Thus,

it is distinctly cheaper to approximate a multi-dimensional function f in a
sparse than in a full grid space, provided f has bounded mixed derivatives up
to order two. Note that we have considered homogeneous boundary values so
far. We refer to [5,11,37] and references therein for details on sparse grids in
general, and on sparse grids with grid points at the boundary in particular.

3.2 Spatial Discretization with Sparse Grids

We discretize the Black-Scholes equation with the finite element method on
sparse grids. We first derive the weak formulation of (3) and then project with
Ritz-Galerkin onto a finite-dimensional sparse grid space.

Let ∂Ω be the boundary of the spatial domain Ω and let the Sobolev space
H1

0 (Ω) be our ansatz and test space such that all basis and test functions in
H1

0 (Ω) vanish at the boundary ∂Ω, see Section 3.1 and [5]. We then obtain
with integration by parts the variational formulation

〈 ˙̂u, φ〉L2 − 1

2

d∑
s=1

λs(µ)

〈
∂û

∂ẑs
,
∂φ

∂ẑs

〉
L2

= 0 , φ ∈ H1
0 (Ω) , (10)

where 〈·, ·〉L2 denotes the L2 dot product. The boundary integrals vanish
because of the homogeneous Dirichlet boundary conditions. Existence and
uniqueness of the solution is guaranteed in these spaces, see [5] and references
therein. The weak form (10) is derived in detail in [22]. Note that for the
Heston model the weak form is derived in [34]. We use Ritz-Galerkin for the

projection onto the finite-dimensional sparse grid space V(1)
` with boundary
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points, spanned by the basis functions in {φ1, . . . , φNB}. Therefore, we intro-
duce the ordering φ1, . . . , φN , φN+1, . . . , φNB of the hierarchical basis functions

of V(1)
` where the first N functions correspond to the inner grid points and

the rest to the boundary points. For each inner grid point we have one degree
of freedom, the hierarchical coefficient, and thus N is also the number of de-
grees of freedom. The sparse grid function û can be represented as the linear
combination

û(ẑ, τ ;µ) =

N∑
j=1

ûj(τ ;µ)φj(ẑ) +

NB∑
j=N+1

ûj(τ ;µ)φj(ẑ) (11)

for a fixed τ ∈ [0, T ]. Note that the coefficients û1(τ ;µ, ), . . . , ûNB (τ ;µ) ∈ R
still depend on the time τ . We emphasize that our notation does not distinguish
between the solution of (3) and its discretized counterpart (11) because the
context will always make it clear which of them we mean, and we want to keep
the notational burden to a minimum. The coefficients of the linear combination
(11) corresponding to the inner and boundary points are denoted by

ûI(τ ;µ) = [û1(τ ;µ), . . . , ûN (τ ;µ)]T , ûB(τ ;µ) = [ûN+1(τ ;µ), . . . , ûNB (τ ;µ)]T ,

where the Dirichlet boundary conditions (4) fixate ûB(τ ;µ) at all time steps
and thus we skip the time dependence in the notation and write ûB(µ) instead.

With the representation (11), the system of ordinary differential equations
(ODE) follows as[

BI BB

0 I

]
︸ ︷︷ ︸

B

[
˙̂uI(τ ;µ)
˙̂uB(µ)

]
− 1

2

d∑
s=1

λs(µ)

[
LIs L

B
s

0 0

]
︸ ︷︷ ︸

L(µ)

[
ûI(τ ;µ)

ûB(µ)

]
= 0 (12)

where 0 and I are the zero and identity matrices, respectively. Note that
˙̂uB(µ) = 0 because the boundary conditions do not change over time. The
inner operators BI ∈ RN×N and LI ∈ RN×N take only the inner coefficients
into account and are defined as

BI =
(
〈φi, φj〉L2

)
1≤i,j≤N , LIs =

(〈
∂φi
∂ẑs

,
∂φj
∂ẑs

〉
L2

)
1≤i,j≤N

. (13)

Similarly, we obtain

BB =
(
〈φi, φj〉L2

)
1≤i≤N,

N+1≤j≤NB
, LBs =

(〈
∂φi
∂ẑs

,
∂φj
∂ẑs

〉
L2

)
1≤i≤N,

N+1≤j≤NB

(14)

for the operators that also consider boundary points. System (12) depends on
the parameter µ indirectly through the eigenvalues λ1(µ), . . . , λd(µ), but the
operators BI ,BB , LIs, and LBs , 1 ≤ s ≤ d are independent of µ.

The efficient assembly of the discrete operators (13) and (14) based on
the hierarchical basis and sparse grids requires specialized algorithms. These
algorithms are necessary because the hierarchical basis functions have non-
local support and thus lead to full matrices. We do not discuss the details of
these algorithms here but refer to [22,5].
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3.3 Temporal Discretization with Implicit Euler

The system of ODEs (12) is discretized in the time domain with the implicit
Euler method [22]. At each time step we have the (hierarchical) coefficient
vector

ûτ (µ) = [uτ1(µ), . . . , uτNB (µ)]T ∈ RNB

split into inner and boundary points

ûIτ (µ) = [uτ1(µ), . . . , uτN (µ)]T , ûB(µ) = ûBτ (µ) = [uτN+1(µ), . . . , uτNB (µ)]T .

Let δτ be the time step size, then we solve the system of linear equations

(B − δτL(µ))ûτ+δτ (µ) = Bûτ (µ) (15)

in every time step. System (15) involves matrices with size NB ×NB but has
only N degrees of freedom. By representing it as([

BI BB

0 I

]
− δτ

[
LI(µ) LB(µ)

0 0

])[
ûIτ+δτ (µ)

ûB(µ)

]
=

[
BI BB

0 I

] [
ûIτ (µ)

ûB(µ)

]
(16)

we can bring the boundary operators to the right-hand side and obtain the
final N ×N system(

BI − δτLI(µ)
)

︸ ︷︷ ︸
A(µ)∈RN×N

ûIτ+δτ (µ) = BI ûIτ (µ) + δτLB(µ)ûB(µ)︸ ︷︷ ︸
bτ (µ)∈RN

. (17)

System (17) requires a matrix-vector product with the LB(µ) operator of size
N ×NB to impose the Dirichlet boundary conditions in every time step.

4 Reduced Models for the Black-Scholes Equation

In this section, we introduce reduced models that allow us to price basket
options. A reduced basis is constructed with POD, which is then used to derive
the reduced system. We emphasize that we do not reduce the dimension d (i.e.,
the number of underlying assets) but the number of degrees of freedom N , see
[44,23].

4.1 POD-Galerkin Reduced Models

POD [49] is a procedure to compute orthonormal basis vectors to represent a
given set of data points (e.g., solutions of a PDE) such that the first basis vector
(dimension) has the highest variance, and all the following vectors as much
variance as possible under the constraint that they have to be orthonormal.
Let

Û = [ûIT (µ1), . . . , ûIT (µM )] ∈ RN×M (18)
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be our data or snapshot matrix with zero mean and with M ∈ N solutions
(snapshots) ûIT (µ1), . . . , ûIT (µM ) of (17). The parameters µ1, . . . ,µM ∈ D are
chosen such that the snapshots capture the important system behavior of (17).
The selection of the snapshots significantly influences the quality of the reduced
model. Many selection algorithms are based on greedy sampling approaches,
see, e.g., [50,45]. There are also sampling procedures that explicitly target
problems with a large number of parameters, i.e., where the dimension p of
the parameter vector µ is large [3,24,38]. Goal-oriented sampling procedures
take into account the output of interest, e.g., the option price in the setting
of option pricing, see [50,3]. The POD-Greedy [20] method is widely used
for time-dependent problems. We use here a simple random sampling from a
uniform distribution in the parameter domain D. Our numerical results will
confirm that the random sampling is sufficient here; however, we note that
our reduced modeling approach based on high-fidelity sparse grid models is
applicable to the more sophisticated sampling strategies as well.

The POD basis vectors or POD modes for the snapshots in Û correspond to
the left singular vectors of the singular value decomposition (SVD) of Û . Thus,

let Û = WSV T be the SVD of Û with the singular values ζ1 > ζ2 > · · · > 0
and the left singular vectors as columns of W = [w1, . . . ,wN ] ∈ RN×N . We
define W k = [w1, . . . ,wk] ∈ RN×k to contain the first k POD basis vectors
that are the solution to the minimization problem

arg min
{wi}ki=1

M∑
i=1

‖ûIT (µi)−
k∑
j=1

(wT
j û

I
T (µi))wj‖22 (19)

under the constraint wT
i wj = δij for all 1 ≤ i, j ≤ k with the Kronecker delta

δij . The POD basis vectors depend on the choice of the inner product in (19).
A careful selection of the inner product can improve the approximation results
[20,27]. Our numerical results will confirm that this computationally simple
approach is already sufficient for us, see Sections 5 to 7.

Given the POD basis vectors in W k, we construct the reduced operators
for the system (17) as

B̃I = W T
kB

IW k, L̃Is = W T
kL

I
sW k, L̃Bs = W T

kL
B
s , (20)

for all 1 ≤ s ≤ d. With ũIτ (µ) = W T
k û

I
τ (µ) we obtain the reduced system(

B̃I − δτ
d∑
s=1

λs(µ)L̃Is

)
︸ ︷︷ ︸

Ã(µ)∈Rk×k

ũIτ+δτ (µ) = B̃
I
ũIτ (µ) +

d∑
s=1

λs(µ)L̃Bs u
B(µ)︸ ︷︷ ︸

b̃τ (µ)∈Rk

(21)

with k × k degrees of freedoms instead of N ×N as the original system (17).

Let us make a few remarks on the computational procedure. First, the
SG++ solver used in the following, does not give direct access to the boundary
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operators LBs for 1 ≤ s ≤ d due to restrictions of the UpDown algorithm [22].
Therefore, we introduce the matrices RI ∈ RN×NB and RB ∈ RNB×N with

RI

[
uI

uB

]
= uI RBuB =

[
0
uB

]
and represent LBs = RILBs R

B for 1 ≤ s ≤ d. Second, the snapshots to con-
struct the matrix Û are pre-computed in a computationally expensive offline
phase with costs depending on NB . The same holds for the reduced opera-
tors (20) that are independent of the parameter µ ∈ D and thus can also be
pre-computed in the offline phase. Finally, in the online phase, the parameter-
dependent eigenvalues λ1(µ), . . . , λd(µ) are computed, which requires solving
a d × d eigenvalue problem once, then the left-hand side operator Ã and
the right-hand side boundary operator are assembled. Note that the Dirichlet
boundary conditions change with the parameter µ. Note further that matrix-
vector products with costs in O(kNB) are required to assemble the right-hand
side. The costs of the computational procedure of the implicit Euler steps only
depend on k and d, but not on N or NB . The evaluation of the solution func-
tion at an arbitrary asset value x ∈ Ω requires the construction of the sparse
grid function with NB grid points from the reduced solution ũIT (µ).

4.2 Proper Orthogonal Decomposition of Sparse Grid Data

Our snapshot vectors, which are the columns of the matrix Û , contain the
hierarchical coefficients corresponding to the sparse grid function (11) repre-
senting the solution at the final time step and parameter µ. Since the hier-
archical basis is a multi-level basis, it leads to multi-scale coefficients with
very different absolute values for coefficients corresponding to basis functions
of different hierarchical increments, see Section 3.1 and [5, Lemma 3.3]. Such
multi-scale data is often computationally problematic in the context of POD
and requires special treatment such as scalar-valued POD [54, Section 2.2] or
problem-dependent inner products [27]; however, in case of the hierarchical
basis, the coefficients of the sparse grid function decay in a controlled manner
and thus this gives us insight into the POD reconstruction error of the snap-
shots. We emphasize that the following results are only valid for the snapshots
included in Û and are not applicable to general solutions ûτ (µ) ∈ RNB .

The error of representing the snapshots in the POD basis is given by

M∑
i=1

‖ûT (µi)−
k∑
j=1

(wT
j ûT (µi))wj‖22 =

N∑
j=k+1

ζ2j (22)

where ζ1 > ζ2 > · · · > 0 are the singular values. The following corollary
provides a bound for the sum of the squares of the singular values for sparse
grid snapshot matrices.
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Corollary 1 Let Û ∈ RN×M be the snapshot matrix as defined in (18) where
the option pricing problem is discretized on a d-dimensional sparse grid with
level ` and with homogeneous boundary values. The sum of the squares of the
singular values ζ1 > ζ2 > · · · > 0 of Û is bounded by

N∑
i=1

ζ2i ≤
`−1∑
l=0

2−3l
(
d− 1 + l

d− 1

)
4−3dM‖∂2û‖2∞

where ‖∂2û‖∞ is the L∞ norm of the derivatives up to order two in each
dimension of the solution û of the continuous problem (3) and N the number
of degrees of freedom of the discretized problem.

Proof The singular values of Û are related to the matrix entries through

N∑
j=1

ζ2j =

N∑
i=1

M∑
j=1

Û2
ij . (23)

It is shown in [5], if the solution function û of the continuous problem (3) has
bounded mixed derivatives up to order two, the hierarchical coefficients are
bounded by

|Ûij |2 = |ûTi (µj)|2 ≤ 4−d2−4|l|1‖∂2û‖2∞ , (24)

where ûTi (µj) is the hierarchical coefficient corresponding to the i-th basis
function in the j-th snapshot, d is the dimension (i.e., number of assets), l the
level of the basis function corresponding to node i, û the solution function of
the continuous problem (3), and ∂2 the multi-variate derivative operator up
to order two in each dimension, cf. also Section 3.1. The bound (24) shows
that the coefficients decay rapidly with the level l of the corresponding basis
function. Furthermore, a sparse grid space of level ` and dimension d is spanned
by

2i ·
(
d− 1 + i

d− 1

)
(25)

basis functions with |l|1 = i+ d, 0 ≤ i ≤ `− 1, see, again, [5, Lemma 3.6]. We
therefore obtain for all j = 1, . . . ,M that

N∑
i=1

Û2
ij ≤

`−1∑
l=0

2l
(
d− 1 + l

d− 1

)
4−d2−4(l+d)‖∂2û‖2∞

holds. With 2l2−4(l+d)4−d = 4−3d2−3l and by combining (23) with (24) and
(25), we obtain the (possibly very pessimistic) bound stated in Corollary 1. ut
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5 Numerical Results: Single-Asset Options with Black-Scholes

Even though our reduced models allow us to price basket options with multiple
underlying assets, we first report results for single asset options, as those are
also priced in most of the related, previous work on model reduction for option
pricing [46,10,9,41,39,21].

In this and in the following section, we use the SG++2 sparse grid solver
to compute solutions of the high-fidelity sparse grid model. It implements the
sparse grid discretization approach summarized in Section 3. The SG++ solver
does not assemble the matrices of system (17) but only provides routines for
the matrix-vector product with the matrices. These methods are then used
in conjunction with the conjugate gradient method to solve the system. Even
though this matrix-free approach is well-suited if the Black-Scholes equation
is discretized on a large number of grid points, leading to matrices that cannot
be assembled anymore, it is usually slower in case of small matrices. Since a
direct solver is the best choice for the small systems arising in our reduced
models, and to ensure a fair runtime comparison between the reduced and
the high-fidelity model, we exchanged the matrix-free solver routine of SG++

with a direct solver. Thus, assembled matrices are either formed or loaded and
then the system (17) is solved by employing a QR decomposition. We use the
implementation provided in the Eigen library [19]. Our SG++ solver with the
direct solver is about 10 to 30 times faster than the matrix-free solver for the
problems considered in the following; however, we emphasize that the scope
of our direct solver is severely limited by the huge memory requirements. All
of the following runtime measurements were performed on the cluster of the
Munich Centre of Advanced Computing3 on the nodes with a quad socket
Intel Westmere-EX Xeon E7-4830 and 512 GB RAM, on a single core.

We consider the following setup for pricing a one-dimensional European
call option. The option has only one underlying asset in the spatial domain
Ω = [0.5, 4] ⊂ R [28] and thus the option pricing problem depends only on two
parameters µ = [η, σ]T ∈ D = [0.03, 0.07]× [0.2, 0.4] ⊂ R2 that correspond to
the drift η and volatility σ of the asset. We set the risk-free interest rate to
r = 0.05, the time step size to δτ = 0.01, the number of time steps to 100,
and the strike price to K = 1. We note that the risk-free rate can be changed
after the transformed equation (3) has been solved because it only changes
the back transformation (5) into Cartesian coordinates. We compute M = 600
snapshots with the SG++ solver where we discretize on a sparse grid of level
nine, i.e., the mesh width is h = 2−9. Thus, our discretized system has N = 511
degrees of freedom. Note that a one-dimensional sparse grid coincides with
an ordinary Cartesian full grid. The parameters µ1, . . . ,µM of the snapshots
were selected randomly from a uniform distribution in the domain D. Reduced
models constructed from a different number M of snapshots are presented in
the following section.

2 http://www5.in.tum.de/SGpp
3 http://www.mac.tum.de/
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We report runtime and accuracy results of our reduced models for the
option with µ = [η, σ]T = [0.05, 0.3]T . Table 1 shows the runtime and speedup
of our reduced model as well as the absolute ‖ûIT (µ)−W kũ

I
T (µ)‖2 and relative

‖ûIT (µ)−W kũ
I
T (µ)‖2

‖ûIT (µ)‖2

L2 error with respect to the high-fidelity model, where ûIT (µ) and ũIT (µ) are
the high-fidelity and reduced solutions, respectively.

The first row of Table 1 corresponds to the high-fidelity model (i.e., the
SG++ solver) and shows that it requires about 0.14 seconds to construct and
assemble the operators and another 0.5 seconds to solve the system of linear
equations. In the operator setup phase of the high-fidelity model, the operators
are formed and then the system matrix is assembled. In case of the reduced
model, the operators are pre-computed in the offline phase and then loaded
from disk. Furthermore, the operator setup phase includes the transformation
of the initial condition into the POD representation. After the operators are
assembled or loaded, respectively, they can be reused for different parameter
configurations. The reported solve runtime includes the QR decomposition of
the already assembled system matrix, the implicit Euler time steps, and, in
case of the reduced model, the transformation from the POD basis back into
the hierarchical basis.

The following rows correspond to our reduced model for different numbers
of POD modes k. Already with only k = 10 POD basis vectors we achieve
a relative L2 error below 10−3 with respect to the high-fidelity model, and
we gain a speedup of about 400 when solving the system. We do not achieve
any speedup in the operator phase, because in case of the 1-asset problem,
assembling the full-order operators is faster than loading the reduced operators
from disk. The price of the option is evaluated at x = 1, which is near the bend
of the solution function and thus where the sparse grid discretization error is
usually large. It is correct up to three digits if k = 20 POD modes are used.

6 Numerical Results: Basket Options with Black-Scholes

In this section, we report on the performance of our reduced model for pricing
basket options with multiple underlying assets. We first discuss how the hi-
erarchical basis effects the POD representation, and then show accuracy and
runtime results for 2-, 3-, and 4-asset basket options where we gain speedups
between 80 and 160 for solving the system of linear equations and still achieve
an accuracy of about 10−2 with respect to the high-fidelity model.

6.1 POD Representation of Sparse Grid Data

We show details on how the hierarchical basis effects the POD representation
with the help of a 2-asset basket option. We compute 150 snapshots with
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Table 1: Black-Scholes: Runtime and accuracy results are reported for a 1-asset option priced
by the high-fidelity model (first row) and our reduced models with 10 to 100 POD basis
vectors. Our reduced model with 10 POD modes achieves an error below 10−3 with respect
to the high-fidelity solution. Furthermore, the corresponding system is solved about 400
times faster than the one of the high-fidelity model. For this 1-asset problem, no speedup
is achieved in the operator phase because loading the pre-computed reduced matrices from
disk takes more time than assembling the full-order matrices.

#modes operator setup solve price abs. L2 rel. L2

time[s] speedup time[s] speedup

- 0.14 1.0 0.598 1.0 0.142191 - -
10 0.20 0.7 0.0014 427.1 0.143376 0.001453 0.000456
20 0.22 0.6 0.0028 213.5 0.142752 0.000559 0.000175
30 0.22 0.6 0.0042 142.3 0.142754 0.000543 0.000170
40 0.22 0.6 0.0061 98.0 0.142618 0.000423 0.000132
60 0.23 0.6 0.0106 56.4 0.142479 0.000278 0.000087
80 0.25 0.5 0.0162 36.9 0.142427 0.000241 0.000076

100 0.26 0.5 0.0220 27.1 0.142404 0.000219 0.000069
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Fig. 2: The plot shows the coefficients of the nodal point and the hierarchical basis rep-
resentation of the snapshots. The nodal point basis coefficients are in range [10−5, 10−1],
but the (multi-scale) hierarchical coefficients are distributed between 10−8 and 10−1. All
coefficients with an absolute value below 10−15 are not plotted.

parameters µ = [η1, η2, σ1, σ2, ρ12]T chosen from a uniform distribution in
the range [0.06, 0.10] × [0.07, 0.11] × [0.2, 0.4] × [0.3, 0.5] × [−0.6,−0.4] ∈ R5.
These are then represented in the hierarchical and nodal point basis in the
matrices Ûhier ∈ RNB×150 and Ûnodal ∈ RNB×150, respectively. Note that in
this subsection we compute the POD basis vectors for the snapshots including
the boundary points for a better visualization in the following figures.

Figure 2 shows the absolute value of the coefficients corresponding to the
two representations for one particular snapshot. It confirms that the hierar-
chical basis leads to coefficients at different scales in [10−8, 10−1] whereas the
coefficients corresponding to the nodal point basis are only in [10−5, 10−1]. All
coefficients with an absolute value below 10−15 are not plotted.

We compute the POD basis vectors (left singular vectors) W nodal and

W hier of the snapshot matrices Ûnodal and Ûhier, respectively. The first four
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POD basis vectors are visualized in Figure 3. The first column corresponds
to the nodal point basis representation. In the second and third column, the
POD vectors are plotted for the hierarchical basis representation, but whereas
the second column directly plots the entries of W hier, the third column plots
the sparse grid function f j that is defined by the coefficients in column j of
W hier, i.e.,

f j =

NB∑
i=1

W hier
ij φi ,

where φ1, . . . , φNB are the hierarchical basis functions. The nodal point (col-
umn one) and the hierarchical (column three) basis representation lead to
POD modes with a similar structure.

6.2 Pricing Basket Options

We consider 2-, 3-, and 4-asset options with a symmetric correlation ma-
trix Σ. A 2-asset option has 5 parameters, a 3-asset option has 9 param-
eters, and a 4-asset option has 14 parameters. In case of two assets, we

have η(2) = [0.08, 0.09]T , σ(2) = [0.3, 0.4]T , and ρ
(2)
12 = ρ

(2)
21 = −0.5. For

three and four assets, we set η(3) = [0.1, 0.02, 0.04]T , σ(3) = [0.2, 0.3, 0.4]T ,
η(4) = [0.05, 0.05, 0.05, 0.05]T , σ(4) = [0.4, 0.25, 0.3, 0.4]T , and

Σ(3) =

 1.0 −0.7 −0.1
−0.7 1.0 0.1
−0.1 0.1 1.0

 , Σ(4) =


1 0.1 −0.4 0.2

0.1 1 0.3 −0.1
−0.4 0.3 1 0
0.2 −0.1 0 1

 . (26)

We compute 500, 600, and 700 snapshots for 2-, 3-, and 4-asset options, respec-
tively, where the parameters are chosen randomly from a uniform distribution
with the range ±0.02 around the drifts, and ±0.1 around the volatilities and
correlations. We discretize the 2-asset option pricing problem on a sparse grid
of level seven (N = 769 degrees of freedom, NB = 1281 grid points), the 3-
asset problem on a grid of level six (N = 1023 degrees of freedom, NB = 3713
grid points), and the 4-asset problem also on a grid of level six (N = 2561
degrees of freedom, NB = 20, 481 grid points). Besides that, we consider the
same setting as in Section 5.

The runtime and accuracy results of our reduced model for basket options
are shown in Table 2. Again, the first row of each block corresponds to the
high-fidelity model, and the following rows to reduced models with different
numbers of POD modes. We report the price of the options at stock price
x = 1, which is near the bend of the solution and thus where the sparse grid
discretization error is usually large. Still, the reduced model can predict the
price well. We also achieve a relative L2 error between 10−4 and 10−2, which is
similar to what is reported in [6,7,22]. The error increases with the number of
underlying assets. One reason might be that the condition of the system (17)
becomes worse with increasing dimension d, see [6,7,22] for a detailed study.
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Fig. 3: The plots visualize the first four POD basis vectors for the 2-asset snapshot matrix.
On the left, the POD vectors corresponding to the nodal point basis representation are
shown. The POD vectors for the hierarchical representation are plotted in column two, and
the corresponding sparse grid function is plotted in column three. The nodal point (first
column) and the hierarchical basis representation (third column) lead to POD basis vectors
with a similar structure.

Another reason could be that the number of parameters increases drastically
with the number of underlyings, which allows for many different system be-
haviors and so a larger number of POD modes is required. Still, to obtain an
accuracy of about 10−2 to 5 · 10−2 with respect to the high-fidelity model, we
achieve speedups in solving the system of linear equations of 160 (40 POD
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modes), 80 (100 POD modes), and 130 (300 POD modes) for the 2-, 3-, and 4-
asset option pricing problem, respectively. We also note that the speedup drops
quickly if we increase the number of POD modes k, but that this becomes less
significant as we increase the number of underlying assets. The reason is that
the reported runtime also includes the transformation of the reduced solution
from the POD basis back into the hierarchical basis that takes a larger share
of the runtime when the number of assets, and consequently the number of
sparse grid points, is high. Thus, an increase in the number of POD modes has
less effect on the overall solver runtime in the case of four assets than in the
case of two and three assets. In the operator phase, speedups of about 2, 6,
and 20 are achieved for the 2-, 3-, and 4-asset option pricing problem, respec-
tively. The results show that the speedup increases as the number of assets
is increased. We note again that the operators have to be loaded only once
and can then be reused for different parameter configurations. Let us finally
consider the runtime of the offline phase for the 4-asset example. The runtime
is dominated by the snapshot generation. We generate M = 700 snapshots.
According to Table 2 the operator setup (once) needs 14595 seconds and solv-
ing the corresponding systems 700 times requires about 47 seconds each. This
gives a total of about 13 hours for creating a reduced model for the 4-asset
problem on a single core if operators are reused.

In Table 3 we report results for the 4-asset problem where we increased
the parameter domain. Whereas we originally built the reduced model for the
range ±0.02 around the drifts and ±0.1 around the volatilities and correla-
tion coefficients, we now also consider the two times and four times larger
ranges with ±0.04 and ±0.08 around the drifts and ±0.2 and ±0.4 around the
volatilities and the correlation coefficients, respectively. The results reported
in Table 3 show that the accuracy of the reduced model only slightly decreases
as the parameter domain is increased. This is the expected behavior because
a larger parameter domain leads to a richer high-fidelity model for which the
reduced model requires more POD modes.

With the results in Table 4 we show the accuracy of reduced models con-
structed from 700, 1500, and 2000 snapshots. The accuracy does not improve
as we increase the number of snapshots. This indicates that our initial choice
of 700 snapshots for the 4-asset problem was sufficient. Note that the errors
reported in Table 4 might slightly change if the number of snapshots is in-
creased. This is because the POD basis for the reduced model is generated
with respect to the snapshots but is then tested on a solution that was not
used as snapshot, see Section 4.1.

Finally, we show in Figure 4a a pointwise error plot for the 2-asset basket
option. There is a highly oscillatory error near the kink at the strike price
K = 1 that originates from the sparse grid discretization [47]. In Figure 4b we
plot the relative L2 error of the reduced approximation with 40 POD modes
for each time step for the 3-asset problem. The error is larger in the first time
steps because our snapshots consist of the solution at the final time step only.
We therefore report in Table 5 how the accuracy of the reduced model changes
if the snapshots also include the solutions at every, every 10-th, and every 25-
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Table 2: Black-Scholes: Runtime and accuracy results are reported for the 2-, 3-, 4-asset
basket options priced with the high-fidelity model (first row in each block) and with our
reduced models for k = 40 to k = 300 POD basis vectors. We achieve speedups in solving the
systems of linear equation between 80 and 160 and still obtain an accuracy of about 10−2 to
5·10−2 with respect to the high-fidelity model. The speedup in the operator phase is between
2 and 20 and quickly improves with the number of assets. Note that the operators can be
reused for different parameter configurations after they have been assembled or loaded.

#modes operator setup solve price abs. L2 rel. L2

time[s] speedup time[s] speedup

2-asset basket

- 4.53 1.0 1.29 1.0 0.119819 - -
40 1.96 2.3 0.0081 159.2 0.119568 0.004968 0.003048
60 1.87 2.4 0.0129 100.0 0.119596 0.005513 0.003382
80 1.88 2.4 0.0186 69.3 0.120612 0.003724 0.002284

100 2.07 2.1 0.0257 50.1 0.120680 0.002822 0.001731
200 2.10 2.1 0.0804 16.1 0.119072 0.000835 0.000512
300 2.47 1.8 0.1697 7.6 0.120310 0.000602 0.000369

3-asset basket

- 139.83 1.0 2.998 1.0 0.086274 - -
40 21.83 6.4 0.014 214.1 0.090982 0.065028 0.017566
60 22.63 6.1 0.020 149.9 0.086753 0.057331 0.015487
80 21.97 6.3 0.026 115.3 0.088119 0.055508 0.014994

100 22.34 6.2 0.034 88.1 0.086242 0.044121 0.011918
200 22.87 6.1 0.095 31.5 0.086697 0.031781 0.008585
300 23.40 5.9 0.186 16.1 0.085690 0.023374 0.006314

4-asset basket

- 14595 1.0 46.790 1.0 0.091571 - -
40 766.16 19.0 0.120 389.9 0.080437 0.309468 0.064685
60 747.79 19.5 0.127 368.4 0.078553 0.288774 0.060359
80 751.89 19.4 0.144 324.9 0.083016 0.280076 0.058541

100 749.78 19.4 0.156 299.9 0.087010 0.278561 0.058225
200 755.66 19.3 0.236 198.2 0.090035 0.255502 0.053405
300 760.40 19.1 0.346 135.2 0.087448 0.253988 0.053088

Table 3: Black-Scholes: This table reports the price and accuracy obtained with reduced
models of the 4-asset basket option pricing problem for different sizes of the parameter
domain. The results confirm that the accuracy slightly decreases as the parameter domain
is increased but that this can be compensated by increasing the dimension of the reduced
model.

#modes original param. domain two times larger four times larger

price rel. L2 err. price rel. L2 err. price rel. L2 err.

40 0.080437 0.064685 0.082293 0.072020 0.081089 0.076881
60 0.078553 0.060359 0.090056 0.069852 0.085374 0.073441
80 0.083016 0.058541 0.087592 0.068555 0.083794 0.071468

100 0.087010 0.058225 0.092695 0.068433 0.081353 0.069881
200 0.090035 0.053405 0.092996 0.067806 0.093087 0.068245
300 0.087448 0.053088 0.095273 0.064469 0.094025 0.067005
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Table 4: Black-Scholes: We report the accuracy of reduced models constructed from 700,
1500, and 2000 snapshots, respectively, for the 4-asset basket option. The reduced models
were constructed for the parameter domain with the range ±0.08 around the drifts and ±0.4
around the volatilities and correlations. The results confirm that the predicted prices as well
as the L2 errors change only slightly.

#modes #snapshots = 700 #snapshots = 1500 #snapshots = 2000
price rel. L2 err. price rel. L2 err. price rel. L2 err.

40 0.081089 0.076881 0.080763 0.077686 0.074529 0.082620
60 0.085374 0.073441 0.084046 0.075550 0.082079 0.080490
80 0.083794 0.071468 0.078885 0.074863 0.080213 0.078906

100 0.081353 0.069881 0.081036 0.072778 0.083630 0.078918
200 0.093087 0.068245 0.084706 0.068320 0.085835 0.071286
300 0.094025 0.067005 0.088848 0.066846 0.085069 0.068860
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Fig. 4: Black-Scholes: In (a) the pointwise error with respect to the high-fidelity model is
plotted for the reduced solution of the 2-asset option problem. The evolution of the relative
L2 error over time is plotted for the 3-asset problem in (b).

th time step. The results confirm that the solution at the final time step only
slightly changes.

7 Numerical Results: Heston Model

A reduced model based on a high-fidelity sparse grid model can be derived for
the PDE corresponding to the Heston model in a similar manner as for the
Black-Scholes equation, see Sections 2.3 and 4. We consider here a single-asset
option that corresponds to a two-dimensional pricing problem, i.e., the spatial
domain of the PDE (6) is in R2. We generate 500 snapshots for parameters
[κ, θ, ξ] drawn from a uniform distribution in

[1.5, 2]× [0.2, 0.4]× [0.1, 0.4] ⊂ R3 , (27)

(28)

and set ρ = 0.9. We follow a similar problem setup as in Section 6.2: The
pricing problem is discretized on a sparse grid of level seven and we only keep
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Table 5: Black-Scholes: We compare for the 3-asset problem the accuracy that we obtain
if not only the solution at the final time step but also at every, every 10-th, and every 25-
th time step are included into the snapshot matrix. The reported results confirm that the
snapshots at the final time step are sufficient in our case because the solution changes only
slightly during the time steps.

#modes every 25-th time step every 10-th time step every time step

price rel. L2 err. price rel. L2 err. price rel. L2 err.

40 0.084808 0.018058 0.083605 0.019363 0.082674 0.018564
60 0.085601 0.015902 0.087300 0.015730 0.086174 0.016660
80 0.087268 0.015343 0.086921 0.015028 0.087827 0.015350

100 0.085617 0.015019 0.086350 0.014069 0.088316 0.014735
200 0.085623 0.010553 0.087271 0.011476 0.087914 0.011538
300 0.086333 0.008516 0.087201 0.009180 0.086871 0.009283

Table 6: Heston: Our model reduction approach introduced for the Black-Scholes model is
also applicable to the Heston model. The reported results confirm that speedups up to 500
are achieved with the model reduction approach based on sparse grid discretizations and
POD.

#modes solve avg abs L2 min rel L2 avg rel L2 max rel L2

time[s] speedup

- 5.1777 1 - - - -
40 0.0097 533.3 0.153285 0.112562 0.159706 0.195401
60 0.0160 322.6 0.094793 0.083360 0.099475 0.119408
80 0.0248 208.6 0.070438 0.044792 0.072663 0.107145

100 0.0361 143.2 0.070546 0.052427 0.073297 0.101834
200 0.1500 34.5 0.076412 0.047996 0.079195 0.099355
300 0.4539 11.4 0.026619 0.016613 0.027667 0.037096

the solutions at the final time step as snapshots. The solver is implemented in
Matlab.

Table 6 reports runtime and accuracy results of our reduced model. We
test the reduced model on ten option pricing problems with ten randomly
(uniformly) chosen parameters in the domain (28). The minimum, average,
and maximum relative L2 error is reported. The spread between the minimum
and maximum relative L2 error is small. An average relative L2 error of about
10−2 is achieved, as in the case of the Black-Scholes model; however, note,
that significantly more POD modes were necessary than in the case of the
Black-Scholes model. The reduced model is up to 500 times faster to evaluate
than the high-fidelity sparse grid model here.

8 Conclusions and Outlook

Our model reduction approach combines a direct sparse grid discretization of
the Black-Scholes equation with POD to derive reduced models that allow us
to price basket options with up to four underlying assets. The solution process
is about 80 to 160 times faster than the high-fidelity sparse grid model and thus
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lets us price basket options with the simple Black-Scholes model in fractions
of a second.

The number of underlying assets is limited by the high computational costs
of the sparse grid solver. A tensor-based discretization [29] could allow for a
larger number of underlying assets. Furthermore, a 4-asset option leads to 14, a
5-asset option to 20, and a 6-asset option already to 27 parameters. So far, the
presented results suggest that this increasing number of parameters leads to a
richer system behavior that has to be covered by the POD modes. A remedy
could be to compute local reduced models for each hierarchical increment of the
high-fidelity sparse grid function [1,36]. Besides that, dimensionality reduction
could be applied to reduce the number of underlying assets, cf. [44,23].

We only discussed the Black-Scholes and the Heston model here, which
both ignore important real-world phenomena. Future work therefore includes
the extension to more sophisticated option pricing models, which require more
advanced model reduction techniques. In [47], a versatile framework based on
sparse grids for pricing problems is presented, including American and Asian
options, as well as variable annuities. The sparse grid models introduced in [47]
could therefore serve as high-fidelity models for model reduction. For example,
consider American options, where additional inequality constraints have to be
satisfied. A model reduction approach for American options is available, see,
e.g., [21]. With the sparse grid model introduced in [47], the model reduction
technique presented in [21] could be extended to basket options. Similarly, in
[17], a sparse grid model is developed for Kuo’s jump-diffusion model that takes
into account effects such as the ’volatility smile’. This results in an additional
integral term, which is efficiently treated by a sparse grid algorithm. It would
be interesting to see if the evaluation of the integral term could be further
accelerated by using a reduced modeling approach.
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