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Abstract A procedure to quantify the distortion (qual-
ity) of a high-order mesh composed of curved tetrahe-
dral elements is presented. The proposed technique has
two main applications. First, it can be used to check the
validity and quality of a high-order tetrahedral mesh.
Second, it allows the generation of curved meshes com-
posed of valid and high-quality high-order tetrahedral
elements. To this end, we describe a method to smooth
and untangle high-order tetrahedral meshes simulta-
neously by minimizing the proposed mesh distortion.
Moreover, we present a p-continuation procedure to im-
prove the initial configuration of a high-order mesh for
the optimization process. Finally, we present several re-
sults to illustrate the two main applications of the pro-
posed technique.

1 Introduction

In the last two decades, high-order methods have at-
tracted a remarkable attention from the computational
methods community. This attention has been prompted
by the potential of high-order methods to deliver higher
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accuracy with a lower computational cost than low or-
der methods [47,5,4,26,22,19,27]. However, their adop-
tion has been hampered by several technical issues such
as the difficulty of developing robust implementations
and the generation of 3D curved meshes. Note that a
mesh for high-order methods is composed of straight-
sided and potentially curved elements. The curved ele-
ments are required to approximate adequately the curved
domain boundaries and therefore, to preserve the accu-
racy of high-order methods [2,7,29,49,42]. Hence, it is
mandatory to develop techniques that allow the gener-
ation of valid 3D curved meshes to obtain full benefit
of high-order methods.

A curved mesh is considered to be valid if each
one of the elements can be transformed to a regular
and straight-sided element (master) through a mapping
that is differentiable, invertible and smooth (diffeomor-
phism). That is, the mapping between the master ele-
ment and the curved element is expressed in terms of a
differentiable function, and the curved element is non-
folded (positive determinant of the mapping Jacobian).
Moreover, a curved mesh is considered to be of high-
quality if all the elements have a shape close to reg-
ular (smooth and well-conditioned Jacobian). Specifi-
cally, if an element is invalid, the determinant of the
mapping Jacobian presents non-positive values. These
non-positive values invalidate the change of variables
used to compute the weak formulation integrals on a
master element. Moreover, if an element has low-quality
the Jacobian could be non-smooth or ill-conditioned. In
that case, the approximation accuracy is degraded and
the solution may be polluted by the introduced error
[45]. Therefore, it is required to develop measures to
quantify the validity and quality of a given 3D curved
mesh.

Quality measures also have an alternative and sig-
nificant application. They allow using optimization based
techniques to repair non-valid meshes (untangle) and
to improve the mesh quality (smooth) by minimizing
(maximizing) the distortion (quality) of the mesh ele-
ments. Note that this technique allows the generation
of high-order meshes with an a posteriori approach
[7,6,30,28,43,32]. That is, it allows the generation of
meshes that might contain inverted or low-quality el-
ements, and then untangle and smooth them a poste-
riort to ensure and enhance the mesh quality. Specif-
ically, a high-order mesh can be obtained by generat-
ing first a linear mesh. Second, the linear mesh is con-
verted to a high-order mesh by adding additional nodes
and by curving the boundary elements. Finally, the con-
verted mesh is untangled and smoothed to remove the
non-valid (folded) and low-quality (distorted) elements.
However, the application of this approach together with
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a mesh quality optimization has been hampered by the
absence of 3D quality measures for high-order elements
with degree superior than two. Note that the capability
of generating valid curved 3D meshes is of the major im-
portance for the community of high-order unstructured
methods.

The main contribution of this work is to present
a technique that allows extending any Jacobian based
quality measure for linear 3D elements to high-order
simplices of any interpolation degree. In addition, we
derive how to apply the proposed technique: to quan-
tify the validity and quality of a given 3D curved mesh;
and to generate curved meshes with an a posteriori ap-
proach based on the minimization of the mesh distor-
tion. To illustrate these two main applications, we check
the validity and quantify the quality of several curved
meshes. Moreover, we present several curved meshes ob-
tained with the presented a posteriori approach.

In this work, we also present a p-continuation proce-
dure to accelerate the generation of curved high-order
meshes. The main idea is to split each curved element
in several linear elements determined by the high-order
nodes. Then, the smoothing and untangling method is
applied to this linear mesh. The resulting configuration
of the nodes on this linear mesh, determines the initial
configuration for the nodes on the high-order mesh. Fi-
nally, this initial configuration is smoothed and untan-
gled to obtain the desired curved high-order mesh.

The rest of the paper is organized as follows. In Sec.
2, we review the literature related with this work. In
Sec. 3 we present the definition of distortion and qual-
ity measures for high-order simplicial elements. Next, in
Sec. 4, we detail the two main applications of the pro-
posed measures: the validation and generation of curved
high-order meshes. Finally, in Sec. 5, we present sev-
eral examples in order to illustrate the behavior of the
defined measures and the application of the developed
techniques.

2 Related work

One of the main issues in mesh generation is to quantify
the validity of a mesh for computational purposes. For
linear elements, a wide range of quality measures have
been developed [10,45]. However, this is an unresolved
issue for high-order meshes. To address this issue, we
develop a technique that allows extending to high-order
elements the set of Jacobian-based measures for linear
elements presented in [23,24]. These measures allow de-
termining the quality of a linear element in terms of the
Jacobian of the representation mapping. Below we re-
view the previous developed approaches to quantify the
validity and quality of curved meshes.

Different techniques have been proposed to deter-
mine the validity of a high-order mesh by means of
checking the positivity of the Jacobian mapping from
the master to the physical element. Specifically, it has
been studied how to detect non-positive Jacobian de-
terminants for B-spline based mappings [7,6,30,28,43]
and quadratic iso-parametric elements [31,9,1]. More-
over, for higher interpolation degrees, in References [20,
21] it is proposed to compute accurate bounds on Jaco-
bian determinants of 2D and 3D curvilinear polynomial
finite elements.

In contrast, several approaches have been developed
to quantify the quality of non-linear iso-parametric el-
ements. For elements of quadratic degree, different def-
initions of distortion (quality) have been proposed for
the planar [50,37,38,25] and 3D [39,3,16] elements. The
main difference of this work with the previous works is
that we propose the definition of the distortion (quality)
measure for tetrahedral elements (3D) of any interpo-
lation degree. The proposed distortion is the £2-norm
of the regularization of a given point-wise Jacobian-
based measure. This definition allows the detection of
non-positive values of the Jacobian determinant of the
master mapping for any interpolation degree. That is,
if the quality is greater than zero, the master mapping
is a local diffeomorphism in the integration points. It is
important to point out that this work is an extension
to 3D of the distortion measures for planar and surface
elements presented in [34,12].

The defined distortion measure allows both the val-
idation of high-order tetrahedra and the generation of
high-order meshes via an a posteriori optimization ap-
proach. The a posteriori approach has been previously
used with success for B-spline mappings [7,6,30,28,43],
and for iso-parametric elements [44,32,34,48,16,12,33].
Next, we highlight the two main types of approaches to
generate high-order tetrahedral meshes by means of an
a posteriori approach.

On the one hand, in [32,48] two techniques to gener-
ate curved meshes by means of a solid mechanics anal-
ogy are presented (non-linear and linear elasticity, re-
spectively). On the other hand, the curving of the mesh
in the a posteriori approach can also be achieved by
the optimization of a distortion (quality) measure. In
[16] a technique is presented to generate meshes com-
posed of tetrahedra of degree two via topology regular-
ization and optimization of two functions (scaled Jaco-
bian measure and a ratio of the length and volume of
the elements). Moreover, in [34,12,13,14] we proposed
to optimize the high-order nodes location according to
an objective function based on the defined distortion
measure for high-order meshes. In contrast, in [33,46]
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it is proposed to optimize a function that is able to
avoid Jacobians that are too small or too high.

One of the main features of the optimization ap-
proach that we propose for high-order meshes is that it
allows untangling (recovering from an inverted config-
uration) as well as smoothing meshes of any interpola-
tion degree. Among the reviewed optimization formu-
lations, there are two consistent untangling techniques
specialized in curving high-order meshes. Note that un-
tangling high-order meshes is strictly necessary, since
tangled elements appear in the a posteriori approach.
A technique to define a regularized distortion and qual-
ity measure for high-order planar and surface elements
applied to generate curved meshes is proposed in [34,
12]. The untangling capability is introduced explicitly
in the formulation by means of the regularization of the
Jacobian-based measure presented in [8,12]. This regu-
larization leads to an automatic and robust smoothing-
untangling optimization approach that enforces that
unfeasible configurations (tangled) become valid (un-
tangle). In contrast, in [33,46] it is proposed to opti-
mize a function that penalizes small values of the Jaco-
bian determinants based on the parameter-dependent
log-barrier method presented in [40,41]. In this work,
we use the approach proposed in [34,12]. It is impor-
tant to point out that the optimization process pro-
posed here consists of a minimization of the defined
high-order mesh distortion. Therefore, the resulting un-
tangled mesh is valid, but it also maximizes the defined
quality measure.

3 Distortion and quality measures for
high-order tetrahedral elements

In this section, we first review the definition of Jacobian-
based distortion measures for linear tetrahedral elements.
In addition, we introduce the notation required for high-
order elements. Finally, we propose a definition for a
distortion and a quality measure for high-order tetrahe-
dra in terms of the Jacobian-based distortion measures
for linear elements.

3.1 Preliminaries

In this work, we propose to define the quality of a high-
order tetrahedral element by means of a generalization
of the Jacobian-based quality measures for linear ele-
ments presented in [23,24]. To define a Jacobian-based
measure for linear tetrahedra, three elements are re-
quired: the master, the ideal, and the physical. The
master element (EM) is the element from which the iso-
parametric mapping is defined. The ideal tetrahedron
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Fig. 1 Mappings between the master, ideal and physical lin-
ear elements.

(ET) represents the target configuration. The physical
(ET) is the element to be measured. First, the map-
pings between the ideal and the physical elements through
the master element are obtained. By means of these ap-
plications, a mapping between the ideal and physical
elements is determined by the composition (see Figure

1)
b B P pM 22, pP.

The Jacobian of this affine mapping, herein denoted
by D¢y, encodes the deviation of the physical ele-
ment with respect to the ideal one. Hence, the dis-
tortion measure of the physical element is defined in
terms of D¢y. These distortion measures, herein de-
noted by 7, quantify the deviation of one or several
features (shape, size, skewness, degeneracy,...) of the
physical element with respect to the ideal element in a
range scale [1,00). The corresponding quality measure
is defined as ¢ := 1/n € [0,1].

For the remainder of this work, we use the shape

distortion measure [23]:

Dl
n(Deég) = e (1)
where || || F is the Frobenius norm, and o = det(D¢p).
This distortion measure quantifies the deviation of the
shape of the physical tetrahedron with respect to the
ideal shape. To assign quality zero for degenerated el-
ements (negative o), o in Eq. (1) is replaced by g9 =
(o +]0])/2. In this way, for negative values of o, n = 00
and therefore, ¢ = 0.

To untangle meshes in the optimization procedure,
we use the modification of the determinant o proposed
in [8]. This modification can be applied to Jacobian-
based distortion measures where the determinant of the
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Fig. 2 Mappings between the master, ideal and physical
high-order elements.

Jacobian appears in the denominator. Specifically, we
replace o in (1) by

o5(0) = % (0’ +Vo?2+ 452> ) (2)

where 0 is a numerical parameter that is determined
element-wise. In our implementation, we set § = 0 for
valid configurations and § = 0.01-¢* for tangled config-
urations, being ¢* the determinant of the correspond-
ing straight-sided ideal element, as proposed in [15,14,
11]. Therefore, we consider a modified shape distortion
measure,

D 2
15(Ds) = ”3|(i|’”;'/'§. 3)

It is important to point out that without the proposed
modification, n has an asymptote when o = 0 (where
an element becomes non-valid). Thus, it is required to
modify ¢ to remove this asymptote and therefore, allow
the optimization procedure to recover from the non-
valid configuration (tangled). For § > 0, os(0) is a
strictly increasing function, such that o5(0) = § and
that tends to 0 when o tends to —oo . Therefore, 75 is
a smooth function with no asymptotes. Moreover, for
small values of 4, the minimum of 7 is close to the valid
minimum of 7.

3.2 Notation for iso-parametric high-order tetrahedra

Let EF be a nodal high-order tetrahedron of interpola-
tion degree p determined by n, = (p+1)-(p+2)-(p+3)/6
nodes with coordinates x; € R3, for i = 1,...,n,. We
select a node distribution that provides a quasi-optimal
Lebesgue constant [17]. Given a master element EM
with nodes &; € R3, beingi = 1,... ,Np, we consider the
basis {N;}i=1,...n, of nodal shape functions (Lagrange

interpolation) of degree p. Then, the high-order isopara-
metric mapping from EM to ET can be expressed as:

¢p: EM CR? — EP CR?

¢ ox=ope) =Y xne. Y

The Jacobian of the isoparametric mapping (4) is
the matrix

D¢p(€) =Y xVN;(€) € R® x R, (5)
=1

3.3 Definition of distortion and quality

In this section, we define the distortion and quality mea-
sure for a high-order element in terms of a Jacobian-
based distortion measure for linear elements. To this
end, analogously to the linear case, we consider three
elements: the master EM | the ideal E, and the phys-
ical E¥. The master element allows the characteriza-
tion of the ideal and physical elements in terms of a
master mapping. In particular, it is required to deter-
mine a distribution of points on the master element and
the corresponding coordinates of the nodes in the ideal
and physical elements. On the one hand, the coordi-
nates of the nodes of the ideal element (see Sec. 4.1 for
more details) are chosen to determine a straight-sided
high-order tetrahedron. Therefore, ¢; is an affine map-
ping. On the other hand, the coordinates of the nodes
of the physical element determine, in general terms, a
curved element. Hence, the mapping ¢p presented in
Eq. (4), is not affine in general, see Figure 2. Moreover,
¢p = ¢po (;5;1 is also not affine, and the Jacobian ma-
trix is not constant. Specifically, for a point y on the
ideal element, the expression of the Jacobian is:

Déy(y) =Dop(d; ' (v)) Do (y). (6)

Similar to the linear case, we want to define a distortion
measure based on the Jacobian matrix of ¢5. However,
the Jacobian of a high-order element is not constant.
Nevertheless, the Jacobian on a point allows measuring
the local deviation between the ideal and the physical
element. Thus, we can obtain an elemental distortion
measure by considering the £2-norm of the Jacobian-
based distortion measure on the ideal element.

We define the ideal mesh M of a mesh M as the set
of ideal elements that correspond to each physical ele-
ment. Next, we define the scalar product of two scalar
functions on M7 as

ng

<fag>/\/11 = Z<fvg>E{7 (7)

i=1
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expressed in terms of their inner product on the ideal
element,

(fr9)pr = /EI f(y) 9(y)dy, (8)

where E! is the ideal of element EY, and ng is the num-
ber of elements of the mesh. The norms corresponding
to these scalar products are

[fllar == VS £ (9)
1fller ==/ {f; Fer (10)

Remark 1 We choose E! as a valid straight-sided tetra-
hedron. That is, ¢; is an affine mapping and therefore,
a global diffeomorphism. In this way, we can use the
change of variable determined by ¢; to compute the
scalar product as:

Feahe = [ F(81(6)) a(@1(6)) |detDs, ©)] de.
(1)

To compute this integral, we use a numerical quadra-
ture scheme that ensures that polynomials of degree
(d + 3)p — d and d variables are integrated exactly,
where d = 3 is the number of spatial dimensions. Specif-
ically, the quadrature use ((d + 3)p —d — 1) /2 integra-
tion points as specified in [18].

Next, we define the distortion at a point y € E' for a
high-order element with nodes x,...,x, € R3, as:

Méep :=n5; (Dog) . (12)

We point out that M@y, is a function of y, and that it
also depends on Xi,...,Xy,,, since ¢ does. Note that
the point-wise distortion, Eq. (12), can be defined using
any distortion measure for linear elements that is ex-
pressed explicitly in terms of of the Jacobian (Jacobian-
based) or that can be casted to an expression in terms
of the Jacobian.

Now, we can define the corresponding distortion and
quality measures for a high-order element:

Definition 1 The distortion measure for a high-order
3D element is

M| 1
= e (13)
11
where 7 is a function of the element nodes x1, ..., X,

since M, is. Note that ||1||zr is the area of the ideal
element.

Remark 2 Selecting 6 = 0 in the point-wise distortion
measure for high-order elements Eq. (12), implies that
the regularization introduced in Eq. (2) is null, and the

point-wise distortion is divergent. Therefore, if an ele-
ment is inverted in a region of non-null measure, the
L?-norm of the point-wise distortion in Eq. (12) will be
infinite.

Definition 2 The quality measure for a high-order pla-
nar element is qg = 1/ng.

4 Application to meshing

In this section, we analyse the two main applications of
the defined distortion and quality measures. First, we
overview the main features that allow using these mea-
sures to validate a given high-order tetrahedral mesh.
Second, we set an optimization framework in order to
generate high-order tetrahedral meshes in an a posteri-
ori procedure.

4.1 Validation of high-order tetrahedral meshes

One of the main applications of distortion (quality)
measures is to check that the mesh is valid to perform
a numerical simulation. Specifically, a quality measure
has to properly detect if an element it is non-valid (and
assign 0 value). Moreover, the measure has to penalize
the deviation of the element with respect to the target
ideal (and assign value 1 to the ideal).

To measure the validity of elements, J is set to 0
n (12). Therefore, if there is a point y where the Ja-
cobian is non-positive (o < 0), then M¢(y) = oc.
Hence, ng = oo. Conversely, if the physical element is
the ideal, ¢ is the identity. Then, the point-wise dis-
tortion M¢(y) is 1 for all y € ET. Thus, by Definition
1, the element distortion ng is also 1. Summarizing, we
state the following remark:

Remark 3 The distortion measure 7g for high-order tetra-
hedral elements has image [1,00), where 1 corresponds
to the ideal configuration and oo to a non-valid one.
Hence, by Definition 2, ¢g has image [0, 1], where 0
corresponds to an inverted element, and 1 to the ideal
one.

The measures defined in Sec. 3.3 can accommodate
different ideal elements. We select two different type of
ideals depending on the framework of the computation.
On the one hand, for absolute quality measurement,
we select the equilateral tetrahedron as ideal (standard
ideal for isotropic meshes [23]). The equilateral tetrahe-
dron is used to obtain an absolute value of the quality,
where all the elements are measured with respect the
same target tetrahedron.

On the other hand, for optimization purposes we
use a relative quality measurement. That is, we assume
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that we have an initial linear mesh, and for each high-
order curved element we select the corresponding ini-
tial straight-sided element as ideal. It is important to
point out that we assume that the initial linear mesh
verifies the geometrical constraints for the numerical
simulation, see Sec. 1. Therefore, in the a posteriori
mesh generation procedure, our final goal is to opti-
mize the location of the inner nodes to obtain a valid
(without tangled elements) high-order mesh composed
of elements with a shape similar to the one in the initial
linear mesh.

4.2 Generation of curved and high-order tetrahedral
meshes

The second application for the defined distortion mea-
sures is the generation of high-order meshes via an a
posteriori approach [32]. First, we present the main
steps of the a posteriori approach. Specifically, we de-
rive an optimization method based on the minimization
of the presented distortion measure. This procedure will
be used to curve the high-order mesh so that the invalid
boundary elements become valid. Second, we detail a
p-continuation method to determine an initial configu-
ration of the high-order mesh that improves the initial
high-order distribution and therefore, reduces the iter-
ations required in the optimization of the high-order
mesh.

4.2.1 A posteriori mesh generation

The a posteriori mesh generation approach is composed
of several steps. First, we generate a linear tetrahedral
mesh (M7). The elements of this mesh have the shape
and the size that hold the requirements for the desired
numerical computation. Second, we increase the degree
of the elements and curve the boundary faces to fit the
CAD geometry. For each high-order element, we set as
ideal the corresponding straight-sided element in the
linear mesh M. Note that the boundary elements can
be inverted or present low quality. Finally, we smooth
and untangle the high-order curved mesh by minimizing
the distortion of the curved mesh with respect to the
straight-sided ideal.

It is important to point out that the surface mesh
itself can be tangled when the faces are curved to fit
the geometry. If there is a non-valid surface element,
the 3D tetrahedron cannot recover from the inversion.
Therefore, the a posteriori approach that we use for
3D high-order meshes is composed of two optimization
steps. First, we smooth and untangle the surface mesh
[12]. Second, once the surface mesh is valid, we fix the
nodes of the boundary surfaces and then we optimize

the volume mesh. In this section, we present an algo-
rithm to optimize the distortion of high-order tetrahe-
dral meshes in order to obtain valid final meshes.

The main goal of a simultaneous smoothing and un-
tangling method is to obtain high-quality meshes com-
posed of valid (non-inverted) elements. The best possi-
ble result, can be characterized in terms of the distor-
tion measure. That is, given a distortion measure 7 and
a mesh M composed of ny nodes and ng elements, the
node location is ideal if

Moy =1, Vy € M, (ideal mesh distortion)

(14)

where M@y is the point-wise distortion presented in
(12), and My is the mesh composed of the ideal ele-
ments (initial straight-sided mesh). That is,

. ,vaﬁp) = 1,

Mo g (y;%; i, - - Vy € B, j=1,....ng,

(15)

where EJI is the ideal element corresponding to the el-
ement E;, and the pairs (j,1) in x, ; identify the local
i-th node of element j with their global mesh number 1.
However, for a fixed mesh topology and a given surface,
the node location that leads to an ideal mesh distortion
is in general not achievable. That is, the constraints in
Eq. (14) cannot be imposed strongly and therefore, we
enforce the ideal mesh distortion in the least-squares
sense.

For a given mesh topology and a set of fixed nodes
(nodes on the surface boundary), we formulate the non-
linear least-squares problem in terms of the coordinates
of a set of free nodes (nodes in the interior of the do-
main). To this end, we reorder the coordinates of the
nodes, X;, in such a way that ¢ = 1,...,np are the in-
dices corresponding to the free nodes, and i = ng +
1,...,ny correspond to the fixed nodes. Defining

1
f(x1, .. §HM¢E— 1134,

we can formulate the mesh optimization problem as

-anF§XnF+1""’XnN) =

Xy ) (16)

min  f(xq,..
Xl,..,,an

S XnpsXnp41y .-

In this work, we solve this least-squares problem by
means of a standard non-linear iterative Gauss-Seidel
method. In this manner, we can exploit the local na-
ture of the global objective function since a node only
influences its neighbor elements, as we pointed out in
[12].

Remark 4 The goal of the proposed method is to pro-
vide a robust smoothing and untangling procedure to
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Fig. 3 Decomposition of a straight-sided (a,b) and a curved (c,d) triangle and tetrahedral elements of interpolation degree

four into the corresponding linear sub-elements.

improve the quality of a given high-order mesh. How-
ever, there are meshes that cannot be untangled by
the proposed method, for instance, when the boundary
mesh presents self-intersections. Nevertheless, the pro-
posed method has properly smoothed and untangled all
the tested meshes that present a valid boundary mesh.

4.2.2 Initial configuration: p-continuation

In this section, we detail a p-continuation procedure to
improve the initial configuration of a high-order invalid
mesh for the optimization procedure presented in Sec.
4. The proposed approach is composed of three steps.
First, we generate a linear mesh by decomposing
each high-order element into several structured linear
elements determined by the high-order nodes. Specifi-
cally, each triangle of interpolation degree p is decom-

posed into O(p?) linear triangles, and each high-order
tetrahedron into O(p?) linear tetrahedra. The obtained
linear mesh has the same nodes of the high-order mesh.
Moreover, we assign to each linear sub-element a differ-
ent ideal linear element. The ideal element associated
to each sub-element is the corresponding sub-element of
the ideal high-order element. In Figure 3 we show the
linear decomposition of a triangle and a tetrahedron,
both of interpolation degree 4, for a straight-sided and
a curved configuration.

The second step is the optimization of the linear
sub-mesh using an objective function based on the dis-
tortion measure for linear elements presented in Eq.
(3). Since the linear sub-mesh can also contain inverted
elements, it is mandatory that the optimization method
for linear elements also allows untangling invalid meshes.
To meet this requirement, in this work, we use the op-
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(a)
(b)

L
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(c)
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| —
0.75 1

Fig. 4 Procedure to find an initial mesh configuration. High-order meshes: (a) initial invalid configuration, (b) mesh configu-
ration obtained with the smoothing of the linear sub-mesh. Linear sub-meshes: (c¢) initial invalid configuraion, (d) optimized

configuration.

timization technique presented in [8,15]. Finally, in the
third step we recover the high-order mesh by updating
the locations of the nodes.

An untangled linear sub-mesh is a necessary condi-
tion to have a valid high-order mesh. Therefore, we only
apply our procedure when this necessary condition does
not hold, i.e. if the linear sub-mesh has invalid elements.
In this context, our procedure guarantees that the qual-
ity of the initial high-order configuration is improved,
since it obtains an untangled linear sub-mesh. We high-
light that having a valid linear sub-mesh is a necessary,
but not sufficient, condition. Hence, the updated high-
order mesh can still be invalid after this procedure. This
is not the case of the example presented in Figure 4,
where the final high-order mesh is also untangled. How-
ever, since the validity of the high-order mesh cannot

be guaranteed with this procedure, it is required to use
the high-order optimization process presented in Sec. 4
to obtain a valid and high-quality high-order mesh.

To illustrate the p-continuation process, in Figure 4
we show a triangular mesh of interpolation degree four
on a circular ring. Figure 4(a) presents the initial high-
order mesh obtained after curving the boundary edges
of the high-order ideal mesh. Next, in Figure 4(b) we
show the initial linear sub-mesh generated by decom-
posing the high-order elements. Note that the high-
order mesh has four invalid elements, and the corre-
sponding linear sub-mesh has twelve tangled triangles.
Figure 4(d) displays the optimized linear sub-mesh. No-
tice that it does not contain inverted elements. Finally,
in Figure 4(c) the high-order mesh is recovered. The
quality of this mesh configuration has been improved
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Table 1 Time of the different optimization processes relative
to the total time of the high-order optimization enhanced
with the p-continuation technique.

Approach Technique  Rel. time  Iter.
. . . p-cont 0.875 55
With p-continuation high-order 0.125 6
. . . p-cont 0 0
Without p-continuation high-order 2.91 82

with respect to the initial one, and that it does not
contain any invalid elements. This high-order mesh is
the input of the optimization procedure presented in
Sec. 4.

For this example, the p-continuation procedure saves
more than half of the total computational cost of the op-
timization process when only the high-order method is
used. For the presented 2D mesh of interpolation degree
four, we have checked that each global iteration of the
linear mesh represents half of the cost of the high-order
one. On the one hand, if we directly run the high-order
method, we require 82 iterations. On the other hand,
the p-continuation process requires 55 iterations, and
the high-order optimization procedure requires just 6
more iterations. Hence, the p-continuation leads to an
speed-up factor of 2.21 relative to the full high-order op-
timization. Table 1 details the time of the different opti-
mization processes relative to the total time of the high-
order optimization enhanced with the p-continuation
technique.

5 Results

In this section, we present two applications in order to
illustrate the properties of the proposed quality mea-
sures. First, we show that the defined measures allow
checking the validity of high-order tetrahedral meshes.
Specifically, we analyze the validity of three meshes of
degree 2, 4 and 6 on a hollow sphere. Second, we detail
the main steps of the a posteriori mesh generation ap-
proach of two different CAD geometries. We generate a
mesh of interpolation degree seven on a propeller, and
a mesh of degree four of a Falcon aircraft. In all the
examples, we have used the p-continuation technique
presented in Sec. 4.2.2 to improve the initial mesh con-
figuration, and next, we have optimized the obtained
high-order mesh using the procedure presented in Sec.
4.2.1. The proposed algorithm has been implemented
in C++ in the meshing environment Ez4U [35,36].

5.1 Validation of curved high-order tetrahedral meshes

In this section, we illustrate that the defined measure
is capable of quantifying the validity of a high-order

tetrahedron. In particular, we show that the measure
detects when an element is valid or not. Moreover, it
properly determines the deviation of a given element
with respect to the considered ideal. Finally, we show
that the presented untangling procedure is robust and
can untangle high-order meshes composed of inverted
elements.

We consider a hollow sphere of inner radius 1 and
external radius of 3, and we generate a coarse tetra-
hedral mesh. Then, we generate three meshes of in-
terpolation degree 2, 4 and 6 with the same topology,
and we tangle them, see Figures 5(a), 5(b) and 5(c).
In Figures 5(d), 5(e) and 5(f) we present the smoothed
meshes. Note that the optimization approach generates
valid and high-quality meshes. In Table 2 we present
the quality statistics of the obtained mesh. All the in-
verted elements have been untangled and the overall
quality statistics improved. The quality statistics and
the displayed quality in Figure 5 is computed taking as
ideal the initial linear mesh. Therefore, we observe that
in Figures 5(d), 5(e) and 5(f) almost all the elements
are of quality one. That is, the optimized mesh is close
to the straight-sided one.

5.2 Generation of curved and high-order tetrahedral
meshes

The main goal of this example is to show the a poste-
riori mesh generation process on two CAD geometries.
Specifically, we generate a high-order mesh of degree 7
for the exterior domain of a propeller, and a mesh of
degree 4 for the exterior domain of a Falcon aircraft.

First, we generate a linear mesh on both geometries.
Once a linear mesh is generated, the degree of the mesh
is increased. We choose these high-order straight-sided
meshes as ideal, since we want to preserve the features
(shape, size, isotropy...) that have been assigned to the
linear meshes, see Figures 6(a) and 7(a). It is impor-
tant to point out that we use the shape quality mea-
sure, presented in Eq. (3), to define the point-wise dis-
tortion measure in Eq. (13). That is, in this work, we
only impose that the shape of the initial linear mesh
is preserved. In practice, this approach leads to meshes
that resemble the element size of the initial linear mesh.
Therefore, the element size can be imposed in practice
by generating a linear mesh with the proper size dis-
tribution. To impose explicitly that the element size is
preserved, it is required to use a distortion that com-
bines at the same time a shape and size measure as we
detailed in [12]. To preserve additional geometrical fea-
tures of the elements other Jacobian-based distortion
measures can be considered [23].
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Fig. 5 Tetrahedral meshes of degree 2, 4 and 6 colored according to the shape quality measure (initial straight-sided ideal)
on a hollow sphere: (a-c) initial meshes, and (d-f) smoothed meshes.

Table 2 Shape quality statistics for a hollow sphere. The mesh is composed of 160 elements.

Degree  #nodes Mesh Figure Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.
9 302 Initial 5(a) 0.00 0.97 0.51 0.40 59
Smoothed 5(d) 0.91 0.99 0.98 0.02 0
4 2042 Initial 5(b) 0.00 0.97 0.81 0.28 16
Smoothed 5(e) 0.95 1.00 0.99 0.01 0
6 6502 Initial 5(c) 0.00 0.96 0.81 0.27 15
Smoothed 5(f) 0.95 1.00 0.99 0.01 0

Next, the boundary faces are curved to fit the CAD
representation. In Figures 6(b) and 7(b) we present the
initial curved meshes. This process leads to several non-
valid and low-quality elements, see Tables 3 and 4. In
Figure 8(a), we illustrate some inverted elements that
originate after curving the boundary faces on the wing
of a Falcon aircraft.

Finally, we optimize the meshes. To this end, we
relocate the nodes on the CAD surfaces [12], and af-
terwards we optimize the 3D meshes by means of the
approach presented in Sec. 4. In Figures 6(c) and 7(c)

we present the optimized meshes. Note that all the non-
valid elements of the mesh have been repaired. Specif-
ically for the Falcon aircraft, in Figure 8(b) we show
the smoothed set of elements that correspond to the
originally inverted ones in Figure 8(a).

It is important to point out that we evaluate the
quality of the meshes with respect to two different ide-
als: the equilateral tetrahedron, and the initial straight-
sided high-order tetrahedra. The optimization is devel-
oped taking as ideal the initial straight-sided high-order
mesh, since we assume that this mesh has the necessary
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(d)

T | .

0 025 0.5 0.75 1
Fig. 6 Tetrahedral meshes of interpolation degree 7 colored according to the shape quality (equilateral ideal) measure for the
exterior domain of a propeller: (a) initial straight-sided mesh, (b) initial curved mesh, and (c) smoothed mesh.

Table 3 Shape quality statistics of a mesh of interpolation degree 7 for the propeller. The mesh is composed of 5111 elements

and 309170 nodes.

Mesh Quality  Figure Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.
Initial Absolute  6(b) 0.00 1.00 0.61 0.22 72
Relative - 0.00 1.00 0.96 0.12 72
Smoothed Absolute 6(c) 0.20 1.00 0.78 0.12 0
Relative - 0.78 1.00 0.99 0.01 0

computational requirements. However, the equilateral
tetrahedron is used in isotropic meshes to allow the
comparison of the qualities between different elements.

In Figure 9, we show a detail of the mesh around
the left wing of the Falcon aircraft with the elements
colored according to the element quality computed us-
ing two different ideal elements. On the one hand, in
Figures 9(a) and 9(b) the elements are colored taking
as ideal the equilateral tetrahedron. On the other hand,
Figures 9(c) and 9(d) are colored with the quality tak-
ing as ideal the initial straight-sided high-order mesh.

In Figure 9(c), we observe that almost all the elements
have initial quality one, since except the elements on
the boundary, the rest are still straight-sided. On the
contrary, the curved elements have lower quality and
they can even be non-valid. In Figure 9(d), the inverted
elements have been untangled, obtaining a high-quality
final mesh.

Tables 3 and 4 present the quality statistics of the
generated meshes. The minimum quality with respect
to the straight-sided high-order mesh has been improved
from 0 to 0.778 for the propeller, and from 0 to 0.32 for
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(d)

T | .
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Fig. 7 Tetrahedral meshes of interpolation degree 4 colored according to the shape quality (equilateral ideal) measure for the
exterior domain of a Falcon aircraft: (a) initial straight-sided mesh, (b) initial curved mesh, and (c) smoothed mesh.

the Falcon aircraft. That is, the proposed procedure 6 Concluding remarks
has generated a high-order curved mesh composed of
valid and high-quality elements that preserve the main

geometrical features prescribed in the linear mesh. In this work, we present a new technique to define dis-
tortion (quality) measures for high-order tetrahedral

meshes. The proposed definition is valid for any inter-
polation degree and allows detecting the validity of a
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Fig. 8 Tetrahedral meshes of degree 4 colored according to the shape quality measure (equilateral ideal) for the exterior
domain of a Falcon aircraft. Detail of the mesh where inverted elements can be observed: (a) initial curved mesh, and (b)

smoothed mesh.

Table 4 Shape quality statistics of a mesh of interpolation degree 4 for a Falcon aircraft. The mesh is composed of 27511

elements and 317854 nodes.

Mesh Quality Figure Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.
Initial Absolute  7(b),9(a) 0.00 1.00 0.77 0.11 9
Relative 9(c) 0.00 1.00 0.99 0.02 9
Smoothed Absolute  7(d),9(b) 0.21 1.00 0.78 0.11 0
Relative 9(d) 0.32 1.00 0.99 0.04 0

high-order tetrahedron. Moreover, the defined distor-
tion measure can be used to generate 3D curved high-
order meshes. Specifically, the distortion is capable of
smoothing and untangling high-order meshes by means
of an optimization procedure. Note that this is the final
step of a curved meshing a posteriori approach. More-
over, we propose a p-continuation technique to acceler-
ate the generation of curved high-order meshes. Finally,
we show that the combination of the presented tech-
niques allows the generation of valid curved high-order
meshes from real CAD geometries.

Acknowledgements Work partially sponsored by the Span-
ish Ministerio de Ciencia e Innovacién (grant DPI2011-23058),
by the Ferran Sunyer i Balaguer Foundation (grant FSB 2013),
and by CUR from DIUE of the Generalitat de Catalunya and
the European Social Fund (grant FI-DGR).

References

1. Baart, M., Mulder, E.: A note on invertible two-
dimensional quadratic finite element transformations.
Commun. Appl. Numer. M. 3(6), 535-539 (1987)

2. Bassi, F., Rebay, S.: High-order accurate discontinuous
finite element solution of the 2D Euler equations. J. Com-
put. Phys. 138(2), 251-285 (1997)

3. Branets, L., Carey, G.: Extension of a mesh quality metric
for elements with a curved boundary edge or surface. J.
Comput. Inf. Sci. Engrg. 5(4), 302-308 (2005)

4. Cantwell, C., Sherwin, S., Kirby, R., Kelly, P.: From h to
p efficiently: selecting the optimal spectral/hp discretisa-
tion in three dimensions. Math. Model. Nat. Phenom.
6(3), 84-96 (2011)

5. Cantwell, C., Sherwin, S., Kirby, R., Kelly, P.: From h
to p efficiently: strategy selection for operator evaluation
on hexahedral and tetrahedral elements. Comput. Fluids
43(1), 23-28 (2011)

6. Dey, S., O’Bara, R., Shephard, M.S.: Curvilinear mesh
generation in 3D. Computer-Aided Design 33, 199-209
(2001)

7. Dey, S., Shephard, M.S., Flaherty, J.E.: Geometry repre-
sentation issues associated with p-version finite element
computations. Comput. Meth. Appl. M. 150(1-4), 39-55
(1997)

8. Escobar, J.M., Rodriguez, E., Montenegro, R., Montero,
G., Gonzélez-Yuste, J.M.: Simultaneous untangling and
smoothing of tetrahedral meshes. Comput. Meth. Appl.
Mech. Engrg. 192(25), 2775-2787 (2003)

9. Field, D.: Algorithms for determining invertible two-and
three-dimensional quadratic isoparametric finite element
transformations. Int. J. Numer. Meth. Engrg. 19(6), 789—
802 (1983)



14

Abel Gargallo-Peiré et al.

10.

11.

12.

I
0 0.25

Field, D.: Qualitative measures for initial meshes. Int. J.
Numer. Meth. Engrg. 47(4), 887-906 (2000)
Gargallo-Peird, A.: Validation and generation of curved
meshes for high-order unstructured methods. Ph.D. the-
sis, Universitat Politécnica de Catalunya (2014)
Gargallo-Peir6, A., Roca, X., Peraire, J., Sarrate, J.:
Defining quality measures for mesh optimization on pa-
rameterized CAD surfaces. In: Proc. 21st Int. Meshing
Roundtable, pp. 85-102. Springer International Publish-
ing (2013)

| —
0.75 1
Fig. 9 Detail of the tetrahedral meshes of interpolation degree 4 for the exterior domain of a Falcon aircraft. (a,c) Initial

meshes colored with respect to the equilateral and initial straight-sided ideals. (b,d) Smoothed meshes colored with respect to
the equilateral and initial straight-sided ideals.

13.

14.

Gargallo-Peir6, A., Roca, X., Peraire, J., Sarrate, J.:
Defining quality measures for validation and generation
of high-order tetrahedral meshes. In: Proc. 22nd Int.
Meshing Roundtable, pp. 109-126. Springer International
Publishing (2014)

Gargallo-Peir6, A., Roca, X., Peraire, J., Sarrate, J.: Op-
timization of a regularized distortion measure to gener-
ate curved high-order unstructured tetrahedral meshes.
Preprint (2014)



Distortion and quality measures for high-order tetrahedral meshes

15

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Gargallo-Peird, A., Roca, X., Sarrate, J.: A surface mesh
smoothing and untangling method independent of the
CAD parameterization. Comput. Mech. 53(4), 587-609
(2014). DOI 10.1007/s00466-013-0920-1. URL http:
//dx.doi.org/10.1007/s00466-013-0920-1

George, P.L., Borouchaki, H.: Construction of tetrahedral
meshes of degree two. Int J Numer Meth Eng 90(9),
1156-1182 (2012)

Hesthaven, J., Warburton, T.: Nodal Discontinuous
Galerkin Methods: Algorithms, Analysis, and Applica-
tions. Texts in Applied Mathematics. Springer (2007).
URL http://books.google.es/books?id=APQkDOmwyksC
Huerta, A., Angeloski, A., Roca, X., Peraire, J.: Effi-
ciency of high-order elements for continuous and discon-
tinuous Galerkin methods. Int. J. Numer. Meth. Engrg.
96, 529-560 (2013). DOI 10.1002/nme.4547

Huerta, A., Roca, X., Angeloski, A., Peraire, J.: Are high-
order and hybridizable discontinuous Galerkin methods
competitive? Oberwolfach Reports 9(1), 485 — 487 (2012)
Johnen, A., Remacle, J.F., Geuzaine, C.: Geometrical va-
lidity of curvilinear finite elements. In: Proc. 20th Int.
Meshing Roundtable, pp. 255-271. Springer International
Publishing (2012)

Johnen, A., Remacle, J.F., Geuzaine, C.: Geometrical va-
lidity of curvilinear finite elements. J. Comput. Phys.
233, 359 — 372 (2013)

Kirby, R., Sherwin, S.,; Cockburn, B.: To CG or to HDG:
a comparative study. J. Sci. Comput. 51(1), 183-212
(2012)

Knupp, P.M.: Algebraic mesh quality metrics. STAM J.
Numer. Anal. 23(1), 193-218 (2001)

Knupp, P.M.: Algebraic mesh quality metrics for unstruc-
tured initial meshes. Finite Elem. Anal. Des. 39(3), 217—
241 (2003)

Knupp, P.M.: Label-invariant mesh quality metrics.
In: Proc. 18th Int. Meshing Roundtable, pp. 139-155.
Springer Berlin Heidelberg, Salt Lake City (2009)
Lohner, R.: Error and work estimates for high-order el-
ements. Int. J. Numer. Meth. Fluids 67(12), 2184-2188
(2011)

Lohner, R.: Improved error and work estimates for high-
order elements. Int. J. Numer. Meth. Fluids 72, 1207-
1218 (2013)

Luo, X., Shephard, M.S., O’Bara, R., Nastasia, R., Beall,
M.: Automatic p-version mesh generation for curved do-
mains. Engrg. Comput. 20(3), 273-285 (2004)

Luo, X., Shephard, M.S., Remacle, J.F.: The influence of
geometric approximation on the accuracy of higher order
methods. In: 8th Int. Conf. Numerical Grid Generation
in Computational Field Simulations (2002)

Luo, X., Shephard, M.S., Remacle, J.F., O’Bara, R.,
Beall, M., Szabd, B., Actis, R.: P-version mesh gener-
ation issues. In: Proc. 11th Int. Meshing Roundtable,
pp. 343-354. Springer Berlin Heidelberg (2002)
Mitchell, A., Phillips, G., Wachspress, E.: Forbidden
shapes in the finite element method. IMA J. Appl. Math.
8(2), 260 (1971)

Persson, P.O., Peraire, J.: Curved mesh generation and
mesh refinement using lagrangian solid mechanics. In:
Proc. 47th ATAA (2009)

Remacle, J.F., Toulorge, T., Lambrechts, J.: Robust un-
tangling of curvilinear meshes. In: Proc. 21st Int. Mesh-
ing Roundtable, pp. 71-83. Springer International Pub-
lishing (2013)

Roca, X., Gargallo-Peiro, A., Sarrate, J.: Defining quality
measures for high-order planar triangles and curved mesh
generation. In: Proc. 20th Int. Meshing Roundtable, pp.
365-383. Springer International Publishing (2012)

35

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

. Roca, X., Ruiz-Gironés, E., Sarrate, J.: EZ4U: Mesh
generation environment. www-lacan.upc.edu/ez4u.htm
(2010)

Roca, X., Sarrate, J., Ruiz-Gironés, E.: A graphical mod-
eling and mesh generation environment for simulations
based on boundary representation data. In: Communica-
tions in Num. Meth. Engrg. Porto (2007)

Salem, A., Canann, S., Saigal, S.: Robust distortion met-
ric for quadratic triangular 2D finite elements. Appl.
Mech. Div. ASME. 220, 73-80 (1997)

Salem, A., Canann, S., Saigal, S.: Mid-node admissible
spaces for quadratic triangular arbitrarily curved 2D fi-
nite elements. Int. J. Numer. Meth. Engrg. 50(2), 253~
272 (2001)

Salem, A., Saigal, S., Canann, S.: Mid-node admissible
space for 3D quadratic tetrahedral finite elements. Engrg.
Comput. 17(1), 39-54 (2001)

Sastry, S., Shontz, S., Vavasis, S.: A log-barrier method
for mesh quality improvement. In: Proc. 20th Int.
Meshing Roundtable, pp. 329-346. Springer International
Publishing (2012)

Sastry, S., Shontz, S., Vavasis, S.: A log-barrier method
for mesh quality improvement and untangling. Engrg.
Comput. (Published online ahead of print) (2012).
DOI 10.1007/s00366-012-0294-6. URL http://dx.doi.
org/10.1007/s00366-012-0294-6

Sevilla, R., Ferndndez-Méndez, S., Huerta, A.: NURBS—
Enhanced Finite Element Method (NEFEM): a seamless
bridge between CAD and FEM. Arch. Comput. Meth.
Engrg. 18(4), 441-484 (2011)

Shephard, M.S., Flaherty, J.E., Jansen, K., Li, X., Luo,
X., Chevaugeon, N., Remacle, J.F., Beall, M., O’Bara,
R.: Adaptive mesh generation for curved domains. Appl.
Numer. Math. 52(2-3), 251-271 (2005)

Sherwin, S., Peird, J.: Mesh generation in curvilinear do-
mains using high-order elements. Int. J. Numer. Meth.
Engrg. 53(1), 207-223 (2002)

Shewchuk, J.: What is a good linear finite element? inter-
polation, conditioning, anisotropy, and quality measures.
Preprint (2002)

Toulorge, T., Geuzaine, C., Remacle, J.F., Lambrechts,
J.: Robust untangling of curvilinear meshes. J. Comput.
Phys. 254, 8 — 26 (2013)

Vos, P.E., Sherwin, S., Kirby, R.: From h to p efficiently:
implementing finite and spectral/hp element methods
to achieve optimal performance for low- and high-order
discretisations. J. Comput. Phys. 229(13), 5161-5181
(2010)

Xie, Z., Sevilla, R., Hassan, O., Morgan, K.: The gen-
eration of arbitrary order curved meshes for 3D finite
element analysis. Comput. Mech. 51, 361-374 (2012)
Xue, D., Demkowicz, L.: Control of geometry induced er-
ror in hp finite element (FE) simulations. I. Evaluation of
FE error for curvilinear geometries. Internat. J. Numer.
Anal. Model. 2(3), 283-300 (2005)

Yuan, K., Huang, Y., Pian, T.: Inverse mapping and dis-
tortion measures for quadrilaterals with curved bound-
aries. Int. J. Numer. Meth. Engrg. 37(5), 861-875 (1994)



