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Abstract This article presents two methods for computing intervairats on the so-
lutions of nonlinear, semi-explicit, index-ondi@irential-algebraic equations (DAES).
Part 1 presents theoretical developments, while Part 2is&s implementation and
numerical examples. The primary theoretical contribigiare (1) an interval inclu-
sion test for existence and unigueness of a solution, ansif@gient conditions, in
terms of diferential inequalities, for two functions to describe comgratwise upper
and lower bounds on this solution, point-wise in the indejgen variable. The first
proposed method applies these results sequentially in ghaee algorithm analo-
gous to validated integration methods for ordinaffiediential equations (ODES). The
second method unifies these steps to characterize bourfus sdutions of an auxil-
iary system of DAEs. Hicient implementations of both are described using interval
computations and demonstrated on numerical examples.

Keywords Differential-algebraic equationfkeachable setDifferential inequali-
ties- Validated numerical integratiorinterval Newton method
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1 Introduction

This work explores the computation of interval bounds onsibiations of nonlinear,
semi-explicit index-one dlierential-algebraic equations (DAES) subject to a given set
of initial conditions and model parameters. These parametay represent uncer-
tain constants in the model, as well as parametrized comipolts or disturbances.
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Computing enclosures of the reachable sets of dynamicragstea classical prob-
lem with a wide variety of applications, including propaggtuncertainty through
dynamic models [7,33,26,27], solving state and paramsténation problems [34,
13,25, 11], safety verification and fault detection in dyi@asaystems [10, 15], global
optimization of dynamic systems [35, 3,14, 24], validatederical integration [21],
controller design and synthesis [23,16], and verificatibrcantinuous and hybrid
systems [38,4,6]. However, nearly all available methodsyapnly to systems of
explicit ordinary diferential equations (ODEs). On the other hand, many dynamic
systems encountered in applications are best modeled bys [BAE7].

For nonlinear ODEs, much work has been done on methods whbitipate a
time-varying interval enclosure of the reachable set. €msthods are primarily of
two types. Taylor methods [21] use Taylor expansions anidwainterval techniques
to approximate the ODE solutions and rigorously bound thr@pmation error. A
key feature of these methods is that they prodialelatedenclosures, meaning that
the enclosures are guaranteed even when computed on a fiedisipn machine.
Some Taylor methods can be implemented veficiently, but often produce ex-
tremely conservative enclosures. This conservatism cgndagly mitigated by using
high-order Taylor expansions, or by using more sophisitatclusion algebras, such
as Taylor model arithmetic [1]. Unfortunately, these measwlramatically increase
the computational cost, which in the latter case scalesrexq@lly in the number of
uncertain initial conditions and parameters. Methods efstacond type useftiren-
tial inequalities [40] and interval arithmetic to derive 8®describing bounding tra-
jectories, which are then integrated numerically [7,3328027,31]. These methods
also stiter from potentially large overestimation [33], but are tglly more éficient
than Taylor methods, because state-of-the-art numeritagiiation software can be
used. Moreover, it has recently been shown that overestimat these methods can
be dramatically reduced by exploiting simple solution niwats, without compro-
mising dficiency [33,30, 31]. While the enclosures produced by theshaods are
mathematically guaranteed, they are not validated. Thezethey are inappropriate
for investigating long-time behavior of unstable or ostiry systems. Given the ac-
curacy of modern numerical integration codes, howevesetmethods areffective
for stable systems over modest integration times, espewiakn the reachable setis
large compared to the expected numerical error owing telpegameter ranges.

In this article, we present two approaches for computingrimti bounds on the
solutions of semi-explicit index-one DAEs. The fact thatlsIDAES are equivalent to
an explicit system of ODEs, the so-called underlying ODE® Remark 3.1), sug-
gests that methods for ODEs could be applied directly. Uanfately, this turns out
to be unworkable, because ODE methods require explicibadge expressions for
the right-hand side functions. For underlying ODEs, thisassitates an explicit ex-
pression for the inverse of the Jacobian of the algebraiatémns, which would be
very difficult to obtain in general (this requires the constructiothef cofactor ma-
trix, which has a factorial number of terms [36]). Moreoueg theoretical reduction
to explicit ODEs is only valid locally around a given solutitrajectory. This proves
problematic for ODE methods, because the computed enel®soay come to con-
tain regions of state space on which this reduction is idv&or these reasons, it is
necessary to develop a dedicated theory.
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Part 1 of this article presents the major theoretical deralents leading to the
proposed bounding methods for DAEs, while Part 2 discussesetuired compu-
tations. The first theoretical contribution is an intervatlusion test that verifies the
existence and uniqueness of a DAE solution within a giveeruatl. This test com-
bines a well-known interval inclusion test for solutions@DEs (used in standard
Taylor methods) with an interval inclusion test for solatoof a system of non-
linear algebraic equations from the literature on inteiNalton methods [22]. The
second theoretical contribution is a pair of results usifi@cential inequalities to de-
rive bounding trajectories corresponding to thffediential state variables; i.e., those
state variables whose time derivatives are given expli@igt the DAE equations.
Together, these contributions lead to the first boundincghoweproposed in Part 2.
The final theoretical contribution is a result combiningfeliential inequalities and
interval Newton methods to compute bounds on both tifierdintial and algebraic
variables simultaneously. This result leads to the secoetthoa described in Part 2.
Owing to the use of standard numerical integration codesiinroplementation, the
proposed methods produce enclosures that are mathenyatjoaranteed, but not
validated. However, the existence and uniqueness testilded@bove can be imple-
mented in a validated manner, thus providing a key step usvealidated bounding
methods for DAESs.

A previous method for bounding the solutions of semi-expAEs was pro-
posed in [28]. This method is not based ofiefiential inequalities, but it does involve
an existence and uniqueness test based on an interval Nevethod (the interval
Krawczyk method). However, rather than combining the wakKrawczyk inclusion
test with an interval inclusion tests for ODE solutions, @asldne this work, the au-
thors apply the interval Krawczyk inclusion test to the eystof nonlinear integral
equations obtained by replacing each instance of tfierditial variables in the orig-
inal DAEs by the integrals of their time derivatives. Theid#@y of this approach is
unclear, since no justification is given for applying an irstbn test for real-valued
solutions of algebraic equations to a system of functiomgiagions defined on a
function space.

The article [9] presents an algorithm for computing intébh@unds on the solu-
tions of implicit ODEs using Taylor models, which can be exted to treat DAEs as
well. This method first computes a high-order polynomialragpmation of the ODE
solution, and then attempts to find a rigorous error boundaltigfying an inclusion
test. Satisfying this inclusion test, which uses Taylor piedather than intervals,
implies existence and uniqueness of an ODE solution negpdhmomial approx-
imation, i.e., within the validated error bound. This aitfun appears capable of
computing very tight bounds, but requires the computatfanmotentially very large
number of Taylor coficients. This method does not make use ffiedential inequal-
ities. Furthermore, in addition to the use of Taylor modalpliace of intervals, the
existence and uniqueness test proven in [9] is fundamgrddterent from the one
presented here (and the one used in [28]) because it is detiveugh direct re-
arrangement of the implicit ODE equations into fixed-poorhi, rather than through
application of the mean-value theorem, as is done in alhiaté&Newton methods (see
Remark 4.2).
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Finally, in [5], a method for approximating the reachablésse semi-explicit
index-one DAEs is proposed, based on level set methods f@&JB8]. Methods
of this type are designed to provide an accurate approxamati the reachable set,
rather than a rigorous enclosure of it. Accordingly, thes¢hods are not appropriate
for many applications of interest [34,25, 10, 15, 35, 3].

The remainder of this article is organized as follows. Notaand relevant back-
ground material is presented in Section 2. Section 3 fognagiscribes the DAEs
considered in this work and presents basic results. In @edtj an interval test for
existence and uniqueness of solutions is described. ®€ebtjgroves three results
using diferential inequalities to characterize bounding trajeesorComputational
implementation of these results and case studies are peeserPart 2.

2 Preliminaries
2.1 Basic notation

Throughout this article, vector quantities are denotedbid bwhile scalar quantities
are written without emphasis. For amye R", the standarg-norms are denoted by

VIl = ( i”:l|vi|P)1/p, 1< p< o0, and||V]le = max |vi|. Suppose thaw,u € R" as well.
The order relations < w andv < w denote that these relations hold componentwise.
Similarly, minfv,w) and max¢,w) denote the vectors with components mijng;)
and maxy;, w;), respectively, and mid(w,u) denotes the vector where each compo-
nent is the middle value of, w; andu;. ForV c R", the interior and boundary &f

are denoted by int() andoV, respectively.

2.2 Intervals and natural interval extensions

If a set iNnR" may be expressed as the Cartesian product iofervals inR, it is
referred to as an-dimensional interval or simply an interval. Feyw € R", the no-
tation [v,w] denotes then-dimensional interval\j;,wi] X ... X [V, Wp]. The set of
all nonempty compact interval subsetsffis denotedR". The set of all nonempty
compachx minterval matrices is denoté®™™ and defined analogouslfe IR™™
has element#y; € IR, for all i € {1,...,n} and j € {1,...,m}, and, for anyA e R™™
with elementsa;j, A € Aif &; € A;j for all indicesi and j. For anyD c R", let ID
denote the s€fZ € IR" : Z c D}. This notation is also used f& ¢ R™™M,

ForZ =[Zz",2Y] e IR", letm(Z) denote thenidpointof Z, m(Z) = - + (¥ - zY)/2.
For Ae IR™™ m(A) is a real-valued matrix defined analogously.

Let D c R" andf : D — R™ An interval extensiorof f is a mappindf] : ID —
IR™ such that, for any degenerate interval (i.e. singleton)][€ ID, [f]([x,X]) =
[f(x),f(x)]. For any X € ID, the notation f]“(X) and []Y(X) is used to denote the
lower and upper bounds of][X), respectively. An interval extension isclusion
monotonidf, for any X, X’ € ID, X’ c X implies that f](X’) c [f](X). It is easily veri-
fied that inclusion monotonic interval extensions sati¢k) c [f](X), VX €ID, where
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f(X) denotes the image of underf. This image bounding property is fundamental
to the use of interval extensions in this article.

Inclusion monotonic interval extensions are known for bjreddition, subtrac-
tion, multiplication and division, and many common uniedg functions including
scalar multiplication, integer and fractional powers,dathm, exponential, trigono-
metrics, etc. Throughout this work, the interval counterpaf the standard arith-
metic operation$+, —, %X, /} are implied; i.e., forA, B € IR, AB denotes interval mul-
tiplication. Arithmetic operations between real numbaerd mtervals are carried out
using interval arithmetic with real numbers identified witle corresponding degen-
erate interval inlR. If f is defined by a computational graph, that is, by the recur-
sive application of additions, subtractions, multiplioas, divisions and composi-
tions with common univariate functions, then it is refertecs aactorablefunction
[18,32], and each of these basic operations is calledti@r of f. For any factorable
functionf, one can compute a particular interval extension callechtteral inter-
val extensiorby recursively applying the known interval extensions @&f thactors of
f. That is, each operation in the definition fofs replaced by its interval counter-
part. Natural interval extensions are inclusion monotamd thus satisfy the image
bounding property off]] discussed above. The reader is referred to [19] and [22] for
further details on interval analysis.

2.3 Absolutely continuous and continuouslytdientiable functions

Let | =[to,tf]. Recall that an absolutely continuous functigén| — R is differen-
tiable at almost every (a.eL.¥ |. The results irf§5 involve some standard facts about
absolutely continuous functions which are not reviewedeHart can be found in
[39]. Because it is central to many of the results in this wevk recall one standard
monotonicity result below.

Theorem 2.1 If ¢ : | — R is absolutely continuous an#d(t) < 0 for a.e. te |, theng
is non-increasing on |.

Proof See Theorem 3.1 in [37]. O

For any operD c R", CK(D,R™) denotes the set é&ttimes continuously dieren-
tiable mappings fronD into R™. For a generaD c R", ¢ ng(D,Rm) if there exists
an open seb > D and a functionp € CK(D,R™) such thai|p = ¢.

Lemma 2.1 Let Dc R" and¢ € CY(D,R™). Then, for any compact K D, ALk € R,
such that|¢(z) - ¢(2)Il1 < Lkllz— 2|1, ¥(z,2) € K x K.

Let Ds c R™, D; c R™, and ¢ € CK(Dsx D;,R™) with k > 1. For any &f) €
Dsx Dy, the Jacobian matrix of the mappif(§,-) atf is denoted by%(s?). The
implicit function theorem is required below and stated Hereeference.

Theorem 2.2 (Implicit Function Theorem) Let Ds c R"™ and O ¢ R™ be open,
and letf e CK(Dsx Dy, R™). Suppose thaso, o) € Ds x Dy satisfies(so,ro) = 0 and
det%(so,ro) # 0. Then there exists an open ball arousg] Vo c Ds, an open ball
aroundr, Qo c Dy, andh € CX(Vo, Qo) satisfying
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2. For anyse Vy, the vector = h(s) is the unique element ofg@atisfyingf(s,r) = 0,
3. detff(sr) £ 0, V(sr) € Vox Qo.

Proof See Theorem 9.2 in [20] and Theorem 9.28 in [29]. O

3 Problem Statement

In this section, the system of DAEs under consideration flneé and the problem
of computing interval bounds is stated formally. Becauseavegeinterested in com-
puting interval enclosures of the possible solutions of #yistem, it is necessary to
have clear statements of the existence and uniquenessieepd these solutions.
The basic local existence result is well-known [12] and is proven here. On the
other hand, certain arguments in this work require veryi@aer properties related
to uniqueness, so the relevant analysis is provided. Inrdodemove quickly to the
primary problem of computing interval bounds, detailedgscare relegated to Ap-
pendix A.

3.1 Semi-explicit DAEs

LetD; cR, Dy cR", Dy c R™ andDy c R™ be open sets, and et Dy x Dpx Dy x
Dy —» R™, g: Dyx Dpx Dy x Dy —» R andxo : Dp — Dy be C! functions. Given
somety € Dy, consider the initial value problem in semi-explicifférential-algebraic
equations

X(t’ p) = f(t’ p’ X(t’ p)’ y(t’ p))
0 = g(t, p.x(t, p). y(t, p))}’ (1a)
X(t07 p) = XO(p)’ (1b)

wheret is the independent variablp,is a vector of problem parametesgt, p) de-
notes the derivative of(-,p) att, andxg specifies the parametric initial conditions. A
solution of (1) is defined below.

Definition 3.1 Define the sets

G ={(t,p,Zx,2zy) € Dt x Dy x Dy x Dy : 9(t, p, Zx, Zy) = O},
Go={(t.p,2x,2y) € G 1 Xo(P) = Zx},

GRr= {(t, P, Zx,2zy) € Dt xDpx Dyx Dy : detZ—g(t,p,zx,zy) * O}.

Definition 3.2 Let | c Dt be connected, and I€t c Dy. A function ,y) € Cl(I x
P,Dy) xC(I x P, Dy) is called asolution of (1a)on | x P if (1a) holds for all {,p) € | x
P. If in addition ¢, p, x(t, p),y(t,p)) € Gr, Y(t,p) € | X P, then §,y) is calledregular.
Whentg € | is specified and also satisfies (1b)x(y) itis called a (regular) solution
of (1) onl xP.
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Remark 3.1In this work, the assumption that (1) ha#fdiential index 1 is not stated
directly, but rather implied by restricting our resultsregular solutions, as defined
above. Indeed, these notions are identical in this caseesfor any regular solu-
tion of (1) onl x P, a single diferentiation of the algebraic equatioggives the
underlying ODEs

X(t,p) = (t,.p.x(t.p). y(t.p)), 2)
1
e =-(5) (Grepxamyeens ) @

forall (t,p) € | x P, where all partial derivatives afare evaluated at,, x(t, p), y(t, p))-

3.2 Existence and uniqueness

Existence of a solution of (1) can of course only be guarahteeally. The main
result is stated in terms of local solutions, defined as ¥slo

Definition 3.3 For any (o, p, X0, o) € Go, @ mappingX,y) € C1(I’ x P/, D) x C1(I’ x
P’,Dy) is called asolutionof (1) local to (to,p,Xo0,Yo) if I” andP” are open balls
containingty andp, respectivelyx andy satisfy (1) onl’ x P’, andy(to, p) = o. If in
additionx andy satisfy ¢, p,x(t,p),y(t,p)) € Gr, Y(t,p) € I’ x P, then k,y) is called
regular.

Theorem 3.1 Let (o, P, X0, Yo) € Go N Gr. There exists a regular solution ¢t) local
to (to, P, Xo. o).

Proof See Theorems 4.13 and 4.18 in [12]. O

For any &.y) € CY(I’ x P",Dy) x C}(I” x P’, Dy) satisfying (1), the initial value of
y must obviously satisfg(to, p, X(to, p), y(to, p)) = O for eachp € P’. Therefore, these
values cannot be specified arbitrarily. On the other harid, @hquation may have
multiple solutions inDy, so that in general more information (in addition to (1)) is
required to specify a solution uniquely. As will be showndveluniqueness of regular
local solutions follows from the additional conditigito, p) = Yo in Definition 3.3.
The following example demonstrates that uniqueness isuaregiteed in the absence
of this condition.

Example 3.1Let | =[0,6] ¢ Dy =R, Dp =0, Dx = Dy = R, and defineg(t, zy,z,) =

— Z«. With fixed initial conditionxp = 1 attg = 0, there are two possible values for
Y(to) satisfyingg(to, X(to), y(to)) = 0; y(to) = 1 andy(to) = —1. Letting f(t,z,z) = 1,
clearly x(t) = 1+t satisfiesx(t) = 1 = f(t, x(t), y(t)) for anyy: | — R. However, both
y(t) = VI+tandy(t) = — V1+tresulting(t, x(t), y(t)) = (y(t))2—x(t) = 0. In particular,
y(t) = V1+tis a solution of (1) local totg, Xo, o) = (0,1,1), whiley(t) = - V1+tis
a solution of (1) local totf, Xo, Vo) = (0,1, -1).

A detailed analysis of the uniqueness properties of saistiaf (1) is given in
Appendix A. The most relevant conclusion is the following.
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Corollary 3.1 Let(x,y) € CX(I x P,Dy) x C}(I x P,Dy) and (x*,y*) € C*(I x P, Dy) x
CY(I'x P, Dy) be solutions of1) on Ix P andl x P, respectively, with somg ¢ I N1,
and suppose thax,y) is regular. If P c PN P is connected andp € P _such that
y(to. p) = y*(to. p), thenx(t, p) = x*(t,p) andy(t,p) = y*(t.p), ¥(t.p) € (I N 1) x P.

Proof See Appendix A. O

3.3 Interval bounds

The primary aim of this article is to compute interval boufwisthe solutions of (1).
Let| = [to,tf] c Dy andP c Dy, be intervals, and suppose thaty) € CL(1 x P,Dy) x
Cl(l x P,Dy) is a regular solution of (1) ohx P. Then, our objective is to compute
functionsx®,xY : 1 - R™ andy‘,yY : | - R" such that

xt) <x(tp)<xV(@t) and y-@t) <y(t.p)<yY(t), Y(t.p)elxP

Recall that (1) may have multiple regular solutions laxnP corresponding to
different solution branches of the algebraic equations (semplez3.1). In the meth-
ods of this article, a single solution is specified for bomgdihrough an interval,
either provided as input or computed, which, for each P, contains exactly one
initial condition fory which is consistent witlxg(p) (see Theorem 4.2). This interval
specifies which solution branch defingst ty, and hence the solution is uniquely
determined o x P (Corollary 3.1). In principle, Theorem 5.1 provides boumekd
for all regular solutions of (1), but we do not pursue a metfayxdcomputing such
bounds.

4 An Interval Inclusion Test for DAE Solutions

This section presents an interval inclusion test which eanputationally guarantee
the existence and uniqueness of a solution of (1) over iaket andP’ satisfying

the test. When successful, the test provides intervals wdrelguaranteed to enclose
the solutionx andy onl” x P’. This test is very similar to the Phase 1 step of standard
Taylor methods for ODEs [21]. The complicating factor hereficourse the presence
of the algebraic variablgsand the fact that they are defined implicitly. To overcome
this obstacle, a well-known interval inclusion test for#&hce and unigueness of
solutions of systems of nonlinear algebraic equations éslushis inclusion test is
based on the interval Hansen-Sengupta method [22]. Thisadés described below,
and its application to DAEs is discussed§ih.2.

4.1 The Interval Hansen-Sengupta Method
Let Dsc R™ and D, c R™ be open, and lef € CX(Dsx D;,R™). Given intervals

S c DsandRc Dy, we are concerned with (i) determining if there exist poim#sR
such that(s,r) = 0for somese S, and (ii) computing a refined intervR®I c Rwhich
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contains all suchi. Conceptually, this is done by using the mean value theocem t
characterize the zeros &fFor any §r) e SxRsuch that(s,r) =0, anyr e R T #r,

and any index, the mean value theorem states thglfl € Rsuch thagl! =7+ A(r -T)

for somet € (0,1), and

at

~Hs €M) (=D =—6(sD. @

Noting that£l! € Rbecausgl! =T+ A(r —T) andr,T € R, consider the interval linear

equations
o6 |
[E (87 R) (r _?) == [ZI] (Sv?)’ (5)

which can be written in matrix form, preconditioned by @y R as

o |

clar

(S.R)(r-1)=-C[a(ST). (6)

The solution set of (6) is the set of glle R™ such thatAp = b for someA ¢
C[%] (S,R) andb € —C[£] (S,T). Clearly, anyr € R satisfyingf(s,r) = 0 for some
se€ S must correspond to an elememtHr) = p of this solution set. Thus, we are
interested in computing an interval enclosure of the sofusiet of (6).

For Q c R, let hull(Q) denote thenterval hullof Q; i.e, the smallest interval con-
taining Q. To state the Hansen-Sengupta method formally, the fafigwliefinition is
useful.

Definition 4.1 For allA,B,Z € IR, let

I'(A,B,Z) =hull({ze Z: az=bfor some @,b) e Ax B}).
The following lemma provides a way to evaludteomputationally.
Lemma 4.1 For all A,B,Z € IR,

B/ANZ if0gA
hull(Z\int([b"/a", b /a"])) if 0 € Aandb >0
hull(Z\int([bY /a", kY /al])) if 0 € Aandb! <0
4 if 0 e Aand Oe B

I'(A,B,Z) = (7)

where BA denotes interval division,
B/A = [min(b-/al,bY /ab,bt/a" b /a¥), maxpt/at,bY /at, bt /av kY /aY)].

Proof See Proposition 4.3.1 in [22]. O

For anyA,B,Z € IR, eitherl'(A,B,Z) € IR or I'(A, B, Z) = 0. For convenience, the
definition of I' is extended so thdi(A, B,Z) = ® when any ofA, B, or Z is empty. Fur-
thermore, we adopt the convention that any arithmetic djperbetween an element
of IR and0 returns@, and any Cartesian product involvifigs equivalent td). The
following definition generalize§ for application ton dimensional linear systems.
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Definition 4.2 For Ac IR™", B,Z e IR", let

W EF(Aii»Bi—ZAijo—ZAiij,Zi],

j<i j>i
foralli=1,...,n. Definel'(A,B,Z) = Wy X...x W,

Applying I" to (6) gives the following variant of the well-known resulhiorem
5.1.8in[22].

Theorem 4.1 Let SeIDs, ReID,, T € R,C e R"™™ and let
HSRT.O)=T+r(c [g—f} (S.R).-CLA(ST).(R-T)).

With R = H(S,RT,C), the following conclusions hold:

1. If(sr) e SxR satisfieg(s,r) =0, thenr e R'.

2. If R =0, thenf(s,r) e Sx R such that(s,r) = 0.

3. IfFeint(R) and0 # R c int(R), thenaH € CX(S,R) such that, for everge S,
r = H(s) is the unique element of R satisfyifig,r) = 0. Moreover, the interval
matrix C [ﬂ] (S.R) does not contain a singular matrix and does not contain zero

or
in any of its diagonal elements.

Proof Suppose first thab is a singletonS = [s, ], for somes € Ds. Then, noting
that [f]([s,9],T) = £(s,T) by the definition of an interval extension, applying Corol-
lary 5.1.5 and Theorem 5.1.8 in [22] to the functié(s,-) proves the theorem (the
properties ofc[%](s, R) in Conclusion 3 result from Theorem 4.4.5 (ii) in [22]).
Next, suppose thab is not a singleton. Fix ang e S and suppose thate R sat-
isfies€(s,r) = 0. Since the theorem holds fos, f| as shown above, we must have
r e H([s,s,RT,C). But, by the inclusion monotonicity of natural intervaltex-
sions,C[%]([s.5].R) c C[%](S.R) and-C[¢]([s.§].T) ¢ —~C[£] (S.T). Then Propo-
sition 4.3.4in [22] gives

H(s9.RT.C) ='r‘+r(c [g} (s9.R.~C[] (s 9.7). (R—’r)), @®)
c'r+r(c [%] (S.R).-C[£](ST), (R—?)), ©)
— H(S,RT.C). (10)

Thereforer e R, which proves 1, and 2 is an immediate consequence.

To prove Conclusion 3, suppose thatint(R), andd # R’ c int(R). Theorem 4.4.5
(i) in [22] again establishes the properties@i%] (S,R). By Theorem 5.5.1 in [22]
(see also Corollary 5.1.5), there exists a continuous foint¢t : S — R such that, for
everyse S, r = H(s) is the unique element & satisfyingf(s,r) = 0. By Conclusion
1 of the present theorerd, : S — R'. It only remains to show that € CK(S,R).

Choosing ange S, Theorem 2.2 can be applied at the pofH(8)) to conclude
that there exists an open ball arounis c Ds, an open ball around (8), Qs, andhg €
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CX(Vs, Qs) such thahs(8) = H(3) and, for evense Vs, r = hs(s) is the unique element
of Qs satisfyingé(s,r) = 0. By continuity ofH, it is possible to choose an open day
arounds small enough thatl mapsUsN S into Qs. Then, by the uniqueness property
of hgin Qs, H = hgonUsN S. The fact thaH € Ck(S, R’) now follows from Lemma
23.1in [20].

Remark 4.1Theorem 4.1 does not require that the preconditi@é nonsingular.
However, singular preconditioners are not useful in thessehat the inclusion test
0 # R cint(R) in Conclusion 3 will never be satisfiedd is singular. Nonetheless,
we will often chooseC as the value og—f at a point inS x R, and it is convenient that
we do not need to check invertibility before applying Theoré.1. If the inclusion
test in Conclusion 3 is satisfied, invertibility follows.

Remark 4.2The interval inclusion test given in part 3 of Theorem 4.1asdd on a
characterization of the zerosbilerived from the mean-value theorem. Alternatively,
an inclusion test can be derived from Brouwer’s fixed poiriotiem without using
the mean value theorem. This requires deriving a fixed pajotgon,r = ¢(sr),
with the same solutions as the original equations. For el@mapsuming th"’(a‘f) is
nonsingular ors xR, let

-1
()=t -(g) (NS, (1)

Brouwer’s fixed point theorem can be used to show that theissimh p](S,R) c

R guarantees the existence ldf: S — R satisfyingH(s) = ¢(s,H(s)), and hence
(s H(9)) =0, for all se S. However, it is easily demonstrated that this inclusion wil
almost never be satisfied when the natural interval extansii@ is used. Denoting
the natural interval extension of the second term on thed-tigihd side of (11) over
SxRby M, the natural interval extension @fis computed asf](S,R) := R— M. If
d(s,r) e SxRsatisfyingf(s,r) = 0, then we must havee M, and henced](S,R) o R.
Therefore, the desired inclusion will only hold wheg(S,R) = R. This requires
M = [0, 0], which can only occur in trivial cases.

4.2 An interval existence and uniqueness test for DAES
Applying Theorem 4.1 to the algebraic equations in (1) gihesfollowing corollary.

Corollary 4.1 Let(l,P,Zx,Zy) € IDy xIDp X IDy xIDy, Zy € Zy, C € R and define

H(1,P.Zx.2y.%,.C) =7, + F(C[Z_s

(l,P,zx,zy),—c:[g](l,P,zx,fy),(zy—iy)).

With Z;, = H(I,P,Zx, Zy,zy,C), the following conclusions hold:

1. If(t,p,2x,2y) € | x PxZxx Zy satisfiex(t, p, zx, zy) = 0, thenzy e Z;,
2. 1fZ;=0, then#(t,p, zx, zy) € | x Px Zx x Zy such thai(t, p, zx, z,) = 0.
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3. IfZy € int(Z,) and 0 # Z c int(Z,), thendH e C*(I x Px Z4,Z;) such that, for
every(t,p,zy) € | x PxZy, zy = H(t,p,zy) is the unique element of, Batisfying

o(t, p,zx, zy) = 0. Moreover, the interval matrik:[g—g](l,RZx,Zy) does not con-
tain a singular matrix and does not contain zero in any of iegdnal elements.

Proof The result follows immediately from Theorem 4.1. O

The following theorem is the main result of this section.

Theorem 4.2 Let(l, P, Zy, Zy) € IDxIDp xIDx XDy, Zy € Zy, C € RY*"Y, and define
H(I,P,Zy, 2y, 7y,C) as in Corollary 4.1. Furthermore, letp€ IR™ satisfyxo(P) c Xo
and denote k [to,t¢]. If the inclusions

7y €int(Zy), 12)
0+ Z, = H(1,P,Zx.Z,,%.C) Cint(Zy), (13)
Xo+[0,tr —to] [f] (1. P.Zx. Z)) € Zx, (14)

hold, then there exists a regular solution (f) on | x P satisfying(x(t, p),y(t,p)) €
Zyx Zyfor all (t,p) € | x P. Furthermore, for any connectédt | containing b, any

connectecP c P, and any solutiorfx*,y*) of (1) onTx P, either(x*,y*) = (x,y) on
I xP, ory*(to,p) ¢ Zy, Vp € P.

Proof By Conclusion 3 of Corollary 4.1C [ng/] (I, P, Zx, Zy) contains no singular ma-

trix and3H e C1(I x PxZy,Zy) such that, for everyt(p, zx) € | xPx Zy, z, = H(t, p, zx)
is the unique element &, satisfyingg(t, p, zx, zy) = 0.
Choose any® e C1(I x P, Z,) and define the sequenp&} by

t
X< (t,p) = Xo(p) + ft f(sp.x(sp).HEp XX sp)ds VELp)elxP  (15)

If XX e C1(I x P, Z,), which is true fork = 0, thenx¥*1 is well-defined and
XUt p) € Xo+[0,tr ~to] [[1(1.P.Z Z)) € Zy, V(tp)elxP.  (16)

Then, by inductionxk e C1(I x P, Zy), Yk € N.

Noting that bothf andH are continuously dierentiable, the mapping, p, zx) +—
f(t,p,zx, H(t, p,zx)) is Lipschitz onl x Px Zyx by Lemma 2.1. Then, a standard induc-
tive argument (see [8], Ch. I, Thm. 1.1) shows thé$ converges uniformly ohx P
to a continuous limit function, denoted andx satisfies

X(t’ p) = f(t’ p,X(t, p)’ H (t’ p, X(t’ p)))’ X(to’ p) = XO(p)’ V(t, p) €lxP. (17)

Sincex is continuous on x P, x e C1(l x P, Z,). Then, we may defing: | x P — Dy
by y(t,p) = H(t, p,x(t, p)). With this definition,y € C1(I x P.Z)) and

9(t,p.X(tp).y(t.p)) = o(t.p.X(L.P).H (t.p.X(t.P)) =0, V(t,p)elIxP. ~ (18)
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Therefore, X,y) is a solution of (1) on x P. Sincec[g—f,’](l,P,Zx,Zy), and hence
[g—g] (I, P, Zx, Zy), contains no singular matrixx(y) must be regular.

Now consider any connectdd= | containingto, any connected® c P, and any
solution &*,y*) of (1) onTx P. If y*(to,p) € Z, for somep € P, then the fact that
H (to, p, Xo(p)) satisfiexy(to, p,Xo(p), H(to, p,Xo(p))) = 0 uniquely among elements of
Zy implies thaty*(to, p) = H(to, p, Xo(p)) = Y(to, p). Then the fact thatqy) = (x*,y*)
on 1 x P follows from Corollary 3.1. O

By checking some relatively simple inclusions, Theorempt®ides a computa-
tional means to verify existence and uniqueness of a solofi¢l) on given intervals
| x P, and provides a valid interval enclosure of this solutionPart 2 of this article,
an dficient numerical procedure for satisfying these inclusisngresented. In the
following section, this result is used to develop compotadily useful characteriza-
tions of bounding trajectories for the solutions of (1).

5 Bounding DAE Solutions using Dfferential Inequalities

This section presents three comparison theorems whiclid@rsuficient conditions,
in terms of diferential inequalities, for mappingsw : | — R™ to satisfy

v(t) <x(t,p) <w(t), VY(,p)elxP, (19)

for some solution of (1) ohx P. The first such theorem (Theorem 5.1) is very gen-
eral, but does not suggest a complete computational bogmaotedure for reasons
discussed below. The remaining two results are modificat@Theorem 5.1 that
address these issues. Since these results are proven lar sireihods, three lemmas
are first proven to minimize repeated arguments.

Lemma5.1 Let | = [to, tf] c Dy and Pc Dy be intervals and lefx,y) be a regular

solution of (1) on I x P. Choose any continuowsw : | — R™ and anyp € P and
define

X(t,p) = mid(v(t), w(t), x(t, p)). (20)

For any 4 € [to,t) such thatx(ty, p) = x(t1,p), there existsate (i1,t;], L >0, and a
continuous functioy : [t1,t4] x P — R™ such that

(X(t. ). y(t.p)) € Dxx Dy, (21)

o(t. P, X(t, p), ¥(t.p)) = O, (22)

lly(t, B) = Y(t. D)lleo < LIX(E, P) = X(t, P)llcos (23)

lIx(t, p) — f(t. . X(t. B). Y(t. B)llo < LIIX(t, ) = X(t. P)llco- (24)

for all t € [ty,t4].
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Proof Since &,Y) is regular, Theorem 2.2 may be applied to conclude that ¢xésts
an open ball aroundi(, p, x(t1, p)), V1 € Dy x Dpx Dy, and a functiorn € C1(V1, Dy)
such that(t1,p) = h(ty, p, x(t1, p)) and

o(t,p,zx, h(t,p,zx)) =0, V(t,p,zx) € Vi. (25)

Moreover, Lemma A.2 shows that there exists an open balhar¢y, f), U; C D¢ x
Dy, such thatt(p,x(t, p)) € V1 andy(t, p) = h(t,p,x(t,p)), V(t,p) € U1 N (I X P). Since
X(-,p) is continuous and{, p, X(t1, P)) = (t1, P, x(t1,P)) € V1, U1 may be chosen small
enough that in additiort,(, X(t, p)) € Vi, V(t,p) € U1 N (I x P). Choosingy4 > t; such
that [ty,t4] X {p} c U1 N (I x P), definey(t,p) = h(t, p,X(t,p)), vVt € [t1,t4]. Equation
(21) now follows sincén maps intoDy, and (22) follows from (25).
Since bothf andh are continuously dierentiable, the mappings
(t’ p’ ZX) = h(t, p, ZX),
(t7 p7 ZX) = f(t’ p» ZX5 h(t’ p» ZX))3

are Lipschitz on any compa&t c V; by Lemma 2.1. LeK = {(t,p,zx) e V1 .t €
[t ta], p =P, z« = X(t,p) or zx = x(t,p)}. Letting L be the maximum of the corre-
sponding Lipschitz constants, we arrive at (23) and (24). O

Lemma 5.2 Let | = [to,t;] c R. Given anye,L > 0, there existp € C*(I,R) non-
decreasing and satisfying

O<p()<e and p'(t)>Lp(t), Vtel. (26)

Proof Choosing anyy > 0, the required properties are easily checked ) =
Ee(l—"'?’)(t—tf ) . O

Lemma 5.3 Let | =[to, tt] € Dy and Pc Dy, be intervals, le(x,y) be a regular solu-
tion of (1) on I x P, and letv,w : | — R™ be continuous and satisfy
(EX):  v(t) <w(t), Ytel.
(IC):  v(to) < xo(p) < w(tp), Yp € P.
Supposél(t,p) € | x P such thai(t, p) ¢ [v(t), w(t)] and define
ty=inf{te | x(t,p) ¢ [v(t), w(t)]}. (27)
Thenp <ty <t; and
X(t,p) € [v(t),w(t)], Vte[to,ta]. (28)

Moreover, given anyste (t1,t¢] and anye, L > 0, there exists an indexa {1, ..., Ny},
a non-decreasing functiop € C1([t1,t4],R) satisfying(26) on [t1,t4], and numbers
to,t3 € [t1,14] with t < t3 such that

v(t) - 1p(t) < x(t,p) <w(t) + 1p(t), Yte[to,t3) (29)
and
%i(t2,p) = Vi(t2),  %i(ts,p) = Vi(ts) —p(ts), and x(t,p) < vi(b), (30)
(orxi(ta,p) =wi(tz), Xi(ta,P) =Wi(ta) +p(ta), and x(t.p) >wi(t),) (31)
for all t € (t2,t3).
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Proof By the definition of the infimum, we havet, p) € [v(t),w(t)] for all t € | such
thatt < ty. If t; > tp, then continuity ensures that this inclusion also holdg a0
that (28) holds. It; = tg, then (28) holds by Hypothesis (IC). By the assumption that
X(t, ) € [v(t),w(t)] for somet € I, it follows thatt; < ts.

Choose any, L > 0 and anyt, € (t1,tt] and define

m= max [1x(t,B) ~ mid (x(t. B). V(). W)l (32)

There must exist € (t1,t4) such thatx(t, p) ¢ [v(t),w(t)], since otherwisd; would
not satisfy (27). It follows thatn > 0. Applying Lemma 5.2, we now choogee
C([t,t4],R) such that

0<p(t)§min(g,e), and /() > Lp(t), Vte[ts,td. (33)

Now define

ts = inf{t € [t1,ta] : X(t, p) ¢ int([v(t) — 1p(t), w(t) + 1p(B)])}- (34)

Because < m, this set in nonempty, artg > t; by (28) and positivity op. Becausés

is a lower bound, (29) holds. Becausgés the greatest lower bound, eithe(ts, p) =
Vi(t3) — p(t3) or x(t3,p) = wi(t3) + p(t3) for some indexi. Suppose the former (the
proof in the latter case is analogous) and define

to = sut € [t1,t3] : %i(t,p) = vi(b)}. (35)

By (28), this set is nonempty, and the fact tidts, p) = vi(t3) — p(t3) ensures that
t1 <ty < t3. Because; is an upper bound;(t) < vi(t), VYt € (t2,t3), andx;i(t2) = vi(t2)
holds because it is the least upper bound. O

Theorem 5.1 below is the first of the three bounding resutigg in this section.
Its statement requires the following definition.

Definition 5.1 (8/Y) Let 8-, 8" : IR™ — IR™ be defined byB-([v,w]) = (z €
[v,w]: z =v} andBiU([v,w]) ={ze[v,w]: z =w}, foreveryi=1,...,ny.

Note that the computation @'" is trivial. For exampleB*-(v,w) = [v,w’], where
W =V, andvv} =wj, Vj#i.

Theorem 5.1 Let | = [to, tf] ¢ Dy and Pc Dy, be intervals and lev,w : | — R™ be
absolutely continuous functions satisfying

(EX):  v(t) <w(t), Vtel.
(IC):  v(tg) < Xo(p) <W(tg), Vp € P.
(RHS): For a.e. te | and each index i,
1. vi(t) < fi(t, p, zx, zy) for all (p, zx,zy) € Px Dy x Dy such that
zx € Br([v(),w(V)]) andg(t,p,zx.2y) = O,
2. wi(t) > fi(t,p, zx, zy) for all (p, z«, zy) € Px Dyxx Dy such that
zx € B2 ([v(t), w(t)]) andg(t, p,zx. 2y) = O.

Then every regular solution dfl) on I x P satisfiex(t, p) € [v(t), w(t)], V(t,p) € | x P.
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Proof Let (x,y) be any regular solution of (1) drx P. Choose any € P and suppose
that there existse | such thak(t, p) ¢ [v(t), w(t)]. It will be shown that this results in
a contradiction.

Definet; as in (27) and define as in (20). Noting that the hypotheses of Lemma
5.3 are satisfied, (28) implies tha(t;, p) = x(t1, p). Then, the hypotheses of Lemma
5.1 are verified, so that there exigise (t1,t¢], L > 0 andy satisfying (21)-(24).
Applying Lemma 5.3 withts, L and arbitrarye > O yields an index € {1,...,ny},

a non-decreasing functigne C1([t1,t4],R) satisfying (26) ontj,ts], and numbers
to,t3 € [t1,t4] with to < t3 such that (29) and (30) hold (the proof is analogous if
instead (31) holds).

It will now be shown thatvi(t) — p’(t) < xi(t,p) for a.e.t € [tp,t3]. Choose any
t € (t2,t3). By (30) and Hypothesis (EX), we have(t,p) < vi(t) < w;i(t). By defi-
nition, this implies thai(t,p) € BiL([v(t),W(t)]). Then, by (21) and (22), the point
(P, x(t, p),y(t, p)) satisfies all of the of conditions of Hypothesis (RHS).bntining
this with (24) gives

vi(t) < fi(t, p.X(t, p), y(t, P)) < Xi(t, P) + LIIX(t, p) — X(t. P)lleo, (36)

for a.e.t € [to,t3]. By (29), |IX(t, p) — X(t,p)ll is bounded by(t) for all t € [to,13).
Then, since’(t) > Lo(t) for a.e.t € [ty,14],

Vi) o' (1) < X(t.p) + Lo(t) — o' (1) < %(t. D), (37)

fora.e.t € [to, t3].
Applying Theorem 2.1, the function — p — X (-, p) is non-increasing ont4, t3),
so that in particular,

Vi(t3) — p(t3) — Xi(ts, P) < Vi(t2) — p(t2) — Xi(t2,P). (38)

Using (30), this implies that & —p(t2), which is a contradiction becaupé) > O for
all t € [tp,t3]. Thus, we must have(t, p) € [v(t),w(t)], Yt € |. In fact, sinced € P was
chosen arbitrarily, we havd(t, p) € [v(t),w(t)], Y(t,p) € | x P. O

Theorem 5.1 is very similar to existing results for bounding solutions of ex-
plicit ODEs [40,7,33]. In [7] it was shown that interval dmbetic can be used to
derive an auxiliary system of ODEs whose solutions satisfiyditions analogous
to (IC) and (RHS) in Theorem 5.1, and these ODEs can be solffaieatly us-
ing a state-of-the-art numerical integrator to providerats We present similar ap-
proaches for DAEs in Part 2 of this article. However, thera goblem with using
Theorem 5.1 directly. Using interval methods to satisfy @3kvould require some
procedure for computing bounds on the zerog(fp, zx,-) with (t,p,zx) restricted
to a given interval. Using the interval Hansen-Senguptaotktit is only possible to
refine such an enclosure when provided with a guarardgeobri enclosure.

A further complication is that Theorem 5.1 produces bouhdséncloseall reg-
ular solutions of (1) o x P. However, in applications it is very likely that there will
be a particular solution of interest, specified by a conststetial conditiony(to, p)
for somep € P (see Corollary 3.1). Theorem 5.1 provides no mechanismefdrict-
ing v andw based on this information because (RHS) requireswhandw; bound
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fi(t, p, zx, zy) for all zy satisfyingg(t, p, zx, zy) = 0. The following theorem shows that
both of these problems can be avoided by modifying (RHS) énctise where inter-
vals satisfying the conditions of Theorem 4.2 are available

Theorem 5.2 Let (I, P, Zx,Zy,Z)) € IDt X IDp x IDx X IDy X IDy, | = [to,t¢] and Z, c
Z,, and let(x,y) € C*(I x P.Zx) xC}(I x P,Z)) be a regular solution of1) on I x P.
Suppose further thatH € C1(I x Px Zy,Zy) such that, for everft,p, zx) € | X Px Z,
zy = H(t, p, zx) is the unique element of, Batisfyingg(t,p, zx,z,) = 0. Letv,w: | —
R™ be absolutely continuous functions satisfying

(EX):  v(t) <w(t) and ZN[v(t),w(t)] #0, Ytel.
(IC):  v(to) < xo(p) < w(tp), Yp e P.
(RHS): For a.e. te | and each index i,
1. Vi(t) < fi(t,p, zx. zy) for all (p, zx, zy) € PXx Zx X Zj such that
Zy € BH(Zx N [v(t),w(t)]) andg(t.p, zx. 2y) = O,
2. wi(t) > fi(t,p,zx, zy) for all (p,zx,zy) € PxZy XZ such that
zx € B (ZxN [v(t), w(t)]) andg(t, p,zx, 2y) = O.

Thenx(t,p) € [v(t),w(t)] for all (t,p) € | x P.

Proof Choose any € P and suppose that there existsl such thak(t, p) ¢ [v(t), w(t)].
It will be shown that this results in a contradiction.

Definex(t,p) as in (20). Clearlyx(t,p) € [v(t),w(t)], Vt € I. Let [z,z}{] = Z.
Sincex;(t,p) € [%( leJ ] by definition, it follows thatx;(t. p) € [z, ” z;’ ] for any in-
dex j such thalx,(t p) = x;(t,p). Alternatively, for anyj such thalx,(t p) # Xj(t,p),
we havex;(t,p) < vj(t) (or x;(t,p) > wj(t)), which, combined with the fact tha N
[v(t),w(t)] is nonempty by hypothesis, gives

2 < Xj(tP) < vj(t) = mid(vj (1), w (1), X (&, B)) = Xj(t.B) < (39)
(or 2;=xi(t.) > w;(t) = mid(vj(®),w; (1), X(L.B) = X(t.P) 2 z;).  (40)

Thereforex(t, p) € Zx.

Definet; as in (27), defing, = t¢, and defing/(t,p) = H(t, p, x(t,p)), Yt € |. By the
definition ofH, it follows thaty(t,p) € Z; for all t € [t1,t4] and (22) holds. Moreover,
it can be shown that (24) holds by noting that the function

(t’ p7 ZX) i f(ts ps ZX9 H (t3 p, ZX))?

is Lipschitz on compact subsets bk P x Zy, exactly as in Lemma 5.1. Apply-
ing Lemma 5.3 withty, L and arbitrarye > 0 yields an index € {1,...,ny}, a non-
decreasing functiop € C([t1,t4],R) satisfying (26) onty,t4], and numbers,,ts €
[t1,t4] with t2 < t3 such that (29) and (30) hold (the proof is analogous if ir{&4)
holds).

It will now be shown that (36) holds for a.ee€ [t2,t3]. Choose anyt € (i, t3).
It was argued above tha(t, p) € Zx N [v(t), w(t)] andy(t,p) € Zj. By (30) and Hy-
pothesis (EX), we havs_{;,i < X (L P) < vi(t) = mid(v;(t), wi(t), % (t, p)) = xi(t,p), and
thereforex(t, p) € B-(Zx N [v(t),w(t)]). Then, by (22), the pointi( X(t, p). y(t, p)) sat-
isfies all of the conditions of Hypothesis (RHS).1. Combinthis with (24) proves
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(36), and the remainder of the proof follows exactly as ispgtoof of Theorem 5.1.
O

The final result below shows that the complications with Then5.1 can also be
avoided without having to first satisfy the conditions of ®rem 4.2, as in Theorem
5.2. Instead, we require satisfaction of (13) pointwiseglthe bounding trajectories
v andw, as in the following Hypothesis.

Hypothesis 5.1 Let(l,P) € ID;xIDp, C: | - R andz, : | - R™. Suppose that

z)%,zU | - R"Y andv,w : | — R™ are continuous and satisfy

(EX):  v(t) <w(t) andz(t) < z/(t), Vt e l.
(ALG): Foralltel,

([v(t), w(t)], Zy(t)) € IDx x IDy, (41)
Zy(t) € int(Zy(1)), (42)
0 # Z)(t) = H([t.t], P.[V(t), w(t)], Zy(). Zy(t), C(t) C int(Zy(1)),  (43)

where Z(t) = [z'y-(t),z}L,J ()] andH is defined as in Corollary 4.1.
Lemma 5.4 Suppose Hypothesis 5.1 holds and define
V ={(t,p,zx) € | x Px Dy : 2y € [V(t),w(t)]}. (44)

There existdH € CL(V, Dy) such that, for everft,p,zx) € V, zy, = H(t,p, z) is an
element of Z(t) and satisfieg(t, p, zx, zy) = 0 uniquely among elements of(®.

Proof Choose anyt € | and defineV; = [t,t] x P x [v(t),w(t)]. By Hypothesis 5.1
and Conclusion 3 of Corollary 4.1, there exibtse C1(Vt,Z§(t)) such that, for every
(t,p,Zx) € Vi, zy = Hi(t, p, zx) is the unique element & (t) satisfyingg(t, p, zx, zy) = 0.
DefineH : V — Dy by H(t,p,zx) = H¢(t, p, zx). By the properties of eadH; above, it
only remains to show that e C1(V, Dy).

By Lemma 23.1in [20], it sfices to show that, for every, f, Zy) €V, there exists
an open balU and a functiorh € cl(U, Dy) that agrees witlti on UnV. Choose any
such pointand let, = H(f, P, Zy). Applying Theorem 2.2 at the poirtt p, Zy,2y) gives
an open ball arouncf@ 2y), V c Dy x D, x Dy, an open ball arounz& Qc Dy, and
h e c(v,d) such thah(t P.Zx) = zy and, for everyt(p,zy) € V, zy = h(t,p,zy) is the
unique element o) satisfyingg(t, p, zx) = 0. Noting thatzy, = H(f,p. 2y) is in Zy(ﬁ
and hence in infy(f)) by (43), choose an open b&) aroundzy such that its closure
is contained in in®,(f)). By continuity ofz; andzy, 36 > 0 such thatY c int(z,(t)),
foralltel with |t—f] <. By continuity ofh there exists an open ball aroun;ﬁ( Zy),

U cV, so small that anyt(p,zy) € UnV haslt—f| < § andh(t,p,z) € &'. Then, for
any ¢.p,zx) € U NV, bothh(t,p,z,) andH(t,p,zy) are zeros ofy(t,p, zy,-) in Zy(t),
and hencéa(t,p,zyx) = H(t, p, zx). O

Lemma 5.5 Suppose Hypothesis 5.1 holds andey) be a solution of(1) on Ix P.
Forany I' =[t’,t”] cl andp’ € P, the following implication holds:

X(t,p) € [v(t),w(t)], V(t.p)el’xP y(t.p) € Z)(1),
y(t',p’) €Z,(t') } = Y(tp)e |Z'y>< P (45)
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Proof First, it is shown that the implication

(X(t,p).y(t. p)) € [V(t),w(t)] x Zy(t) = y(t,p) € Zi() (46)
holds for any {,p) € | x P. LetV andH be as in Lemma 5.4 and suppose that the hy-
pothesis of (46) holds. By definitidf(t, p, x(t, p)) is the unique zero aj(t, p, x(t, p), -)
in Zy(t). Buty(t, p) is a zero ofy(t, p, x(t, p),-) in Zy(t), and hencg(t, p) = H(t, p, X(t, p)).
Noting thatH maps intoZj(t), (46) is established.

Under the hypotheses of (45), (46) implies thét, p’) € Zi(t'). If the conclusion
of (45) fails, then there must exist{p2) € (t',t”] X P such thaty(tz, p2) ¢ Zj(t2).
Furthermore, this point must satisyt>, p2) ¢ Zy(t), since otherwise (46) provides
a contradiction. Continuity of, z; andzy then imply thaB(ts, ps) € (t',t”"] x P such
thaty(ty, p1) is an element of the boundary Bj(t1), and hence oFy(t1), but not an
element ofZj(t1) C int(Zy(t1)). Again, (46) provides a contradiction. O

Theorem 5.3 Suppose Hypothesis 5.1 holds. Additionallyylet be absolutely con-
tinuous and satisfy
(IC):  v(tg) < Xo(p) < wl(tg), Vp e P.
(RHS): For a.e. te | and each index i,
1. Vi(t) < fi(t,p.zx.zy) for all (p,zx.zy) € Px Dxx Z(t) such thatzy €
BH([v(), w(t)]) andg(t,p,zx.zy) = O,
2. wi(t) > fi(t,p,zx, zy) for all (p,zx,2zy) € P x Dy xZ{,(t) such thatzy €
B ([v(), w(D)]) andg(t,p,zx.zy) = 0.
Then every regular solution dfl) on I x P withy(to,p) € Zy(to) for at least one € P
must satisfyx(t, p),y(t, p)) € [v(t), w(t)] x Z(t) for all (t,p) € | x P.

Proof Let (x,y) be a regular solution of (1) ohx P satisfyingy(to,p) € Zy(to) for
somep € P. Choose any € P and suppose that there exists| such that(t,p) ¢
[v(t), w(t)]. It will be shown that this results in a contradiction.

Definet; as in (27). Noting that the hypotheses of Lemma 5.3 are satif28)
holds and (45) implies that(t, p) € Zi(t), Vt € [to,t1]. Definex as in Lemma 5.1.
Noting thatx(ts, p) = x(t1, p) by (28), Lemma 5.1 furnisheg € (t1,t¢], L > 0 andy
satisfying (21)-(24). By (23) and (43){t1,p) = y(t1,p) € int(Zy(t1)). By continuity
ofy, z;, 2, itis possible to restridy so that

y(t.p) € Zy(t), Vte[ty,ta]. 47

We now apply Lemma 5.3 witky, L and arbitrarye > 0. This yields an index
i € {1,...,ny}, a non-decreasing functigne C1([t1,t4],R) satisfying (26) onty, ta],
and numberdy, t3 € [t1,t4] with t; < t3 such that (29) and (30) hold (the proof is
analogous if instead (31) holds).

It will now be shown that (36) holds for a.ee [tp,t3]. Choose anyt € (to,t3).
By (30) and Hypothesis 5.1 (EX), we haxgt,p) < vi(t) < w;(t). By definition, this
implies thatx(t,p) € Bi'-([v(t),w(t)]). SincexX(t,p) € [v(t),w(t)] and y(t,p) is a zero
of g(t, p, x(t, p),-) by (22), Equation (47) and Corollary 4.1 show tiyétt p) € Z/(t).
Then, by (21) and (22), the poinp,(t,p),y(t,p)) satisfies all of the conditions of
(RHS).1. Combining this with (24) proves (36) and, exactyisathe proof of The-
orem 5.1, we conclude thait,p) € [v(t),w(t)], Y(t,p) € | x P. The theorem now
follows from (45). O
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6 Conclusions

We have presented a detailed analysis characterizingyattenclosures of the solu-
tions of semi-explicit, index-one DAESs subject to uncertaitial conditions and pa-
rameters. The primary contributions are (1) a set of comulitguaranteeing existence
and uniqueness of a solution and providing a crude enclpande(2) three theorems
giving suficient conditions for some functions to describe bounds anarall so-
lutions pointwise in the independent variable. What rem#rts develop methods
for satisfying these conditions computationally, thusliag to dficient, constructive
procedures for computing bounds. We take up this task inZPart

A Unigueness Proofs

LemmaA.1 Let Ec R" be connected and let : E — R be continuous. If the s¢f € E : y(£) = 0} is
nonempty and open with respect to E, tligg) =0, V&€ € E.

Proof LetE; ={£€E:y(£)=0}andE; = {£ € E: y(£) # 0}, and note thaE; NEz =0 andE; UE, = E.
SinceE is connected, it cannot be written as the disjoint union a henempty open (w.r.€) sets. But
E; is nonempty and open w.rE by hypothesis, ané; is open w.r.tE because it is the inverse image of
an open set under a continuous mappind=oilence E; = 0 andE; = E. O

LemmaA.2 Let(x,y) € CX(I x P,Dy) x C(I x P,Dy) and (x*,y*) € C1(I x P, Dy) x C}(I x P, Dy) be solu-
tions of (1a)on | x P andl x P, respectively, and suppose tifaty) is regular. Then
1. Forany(t',p’) € | x P, there exists an open ball arourftd,p’), U’ c D¢ x Dp, an open ball around
(t',p’.x(t",p")), V' c Dyx Dp x Dy, an open ball aroung(t’, p’), Q' c Dy, and a functiorh clv',Q)
satisfying(t, p,x(t,p)) € V" andy(t,p) = h(t,p,x(t,p)) € Q', V(t,p) e U' N (I x P). )
2. IfPc PnP is connected and(t’, p) € (I N 1) x P such thak(t’,p) = x*(t',p), Yp € P, andy(t’.p) =
y*(t',p), theny(t’,p) = y*(t',p), Yp € P.

Proof Choose anyt(,p’) € | xP. Since &, y) is aregular solution of (1a) drx P, (t’,p’, x(t’,p’),y(t’,p’)) €
GNGr. Then, by Theorem 2.2, there exists an open ball aroting! (x(t',p’)), V' € Dy x Dp x Dy, an
open ball aroung(t’,p’), Q" c Dy, and a functiorh € CY(V’,Q’) such thah(t’,p’,x(t',p’)) = y(t’,p’) and,
for each §,p,zx) € V’, h(t,p, zx) is the unique element @’ satisfyingg(t, p, zx, h(t,p, zx)) = 0. Now, by
continuity, there exists an open ball around the pointt(,p’) small enough thatt(p,x(t,p)) € V' for
every ¢,p) € U n(l xP), and it follows that

gt p.x(t,p), h(t,p,x(t,p))) =0, Y(t,p)eU'n(I xP). (48)

Again by continuity, it is possible to choo&¥ small enough thag(t,p) € Q' for all (t,p) e U’ n (I x P),
which implies, by the uniqueness propertyhoh Q', that

y(t.p) =h(t.p.x(t,p)), V(t.p)eU N(IxP). (49)

This establishes the first conclusion of the lemma.
To prove the second conclusion, choose Bng andt’ as in the hypothesis of the lemma and define

R={peP:lly(t'.p)-y"(t'.p)I =0} (50)

By hypothesisp € Rso thatR is nonempty. It will be shown thaR is open with respect t8. Choose any
p’ € Rand, corresponding to the poitt,p’), letU’, V’, Q" andh be as in the first conclusion of the lemma.
By hypothesis,t(,p’,x*(t’,p’)) = (t',p’,x(t’,p’)) € V’, and by the definition oR, y*(t',p’) = y(t’,p’) € Q,

S0 continuity implies that we may choose an open all arquind,, small enough thaly x {t'} c U’, and
(t',p,x*(t',p)) € V" andy*(t',p) € Q’, forallpe Jy N P. Then the first conclusion of the theorem gives

y(t,’ p) = h(t,’ p,X(t,, p))? Vp € Jp’ n If)’ (51)
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and an identical argument shows that
y'(t'.p) = h(t'.p.X"(t',p)), YpeJpNP. (52)

Butx*(t',p) = x(t',p), Vp € P by hypothesis, so this implies that(t’, p) = y(t',p), Yp € Jp NP. ThusRis
open with respect t&. Now, smceP is connected by hypothesis aRds nonempty and open with respect
to P, Lemma A.1 shows th& = P; i.e.y*(t',p) = Y(t’,p), Vp € P. O

LemmaA.3 Let(x,y) € CL(I x P.Dy) x C(I x P,Dy) and (x*,y*) € C1(I x P, Dy) x C}(I x P, Dy) be so-
lutions of (1a)on Ix P and 1 x P, respectively, and suppose tHaty) is regular. If P c PN P is con-
nected and compact ani(f,p) € (I N 1) x P such thai(f, p) = x*(£,p), ¥p € P, andy(f, p) = y*(f. p), then
X(t,p) = x*(t,p) andy(t,p) = y*(t,p), Y(t,p) € (IN1) x P.

Proof Choose any, p andf as in the hypothesis of the lemma and define

R=(telnT: rpeaﬁx(nx(t, p) = X" (t, I + lly(t. B) - y* (t. B)Il = O}. (53)

Ris nonempty since it contairfsIt will be shown thaiR is open with respect tbnT. Choose any € R.
Applying the second conclusion of Lemma A.2, we hgit’, p) = y(t’, p), ¥p € P. Choose anyp’ € P and,
corresponding to the point'(p’), letU’, V’/, Q" andh be as in the first conclusion of Lemma A.2. By the
definition ofR, (t’,p’,x*(t’,p’)) = (', p’, x(t',p’)) € V' and, by the argument abowe(t’,p’) =y(t',p") e Q'.
Then continuity implies that there exists an open ball aratng),, and an open ball arourg, Jy, such
thatJdy x Jy c U’, and € p,x*(t.p)) € V' andy*(t.p) € @, for all (t.p) € (Jv x Jy) N (I x P). From Lemma
A.2, we have

y(t.p) = (L, p.X(Et.p), Y(t.p) e (Fr xIpy)N(IxP), (54)

and an identical argument using the uniqueness propettyrof)y shows that

y*(t.p) =h(t.p.x"(t.p)), V(t.p) € (Jr x Ip) N (IxP). (55)

Then, by definition,
X(t,p) = f(t.p.X(t.p), h(t.p.x(t,P))), Y(t.p) € (I x Jpy)N(I xP), (56)
X*(t,p) = f(t.p. X" (t.p). h(t.p.x"(t.p))).  Y(t.p) € (Jr x )N (I xP). (57)

Butf andh are continuously dierentiable and hence the mapping(zy) — f(t, p, h(t, p, z¥)) is Lipschitz
onV’ by Lemma 2.1. The definition dR givesx(t’,p) = x*(t',p), Yp € P, so _a standard application of
Gronwall’s inequality shows that(t,p) = x*(t,p), Y(t,p) € (Jv x Jyr) N ((I n1) x P). Furthermore, this
implies thaty(t, p) = h(t, p.x(t. p)) = h(t,p,.x*(t,p)) = y*(t,p), ¥(t.p) € (I x Iy )N ((I N NxP).

Now, sincep’ € P was chosen arbitrarily, the preceding construction apptieeveryp € P. Thus,
to everyq € P, there corresponds an open ball arouhdl (q), and an open ball aroung) Jg, such
that &, y)(t,p) = (X", y*)(t.p), Y(t.p) € (Jr (@) X Ig) N ((I N 1) x P). Noting that thely constructed in this
way form an open cover dP, compactness of implies that there exist finitely many elements sz
Q1....,0n, Such thaP is covered bylg, U...U Jg,- Let J;, = Jv(q1) N...N Jv(dn). Then, for everyp € P,
there exists € {1,...,n} such thatp € Jy, wh|ch |mpl|es that X, y)(t, p) (x*,y")(t.p), Vte I, n(l .
Therefore J; N (1N I) is contained irR, so thatt’ is an interior point oR when viewed as a subsetlofil,
and since” € R was chosen arbitrariR is open with respect tonT. Sincel N1 is connected an® is
nonempty and open with respectito |, Lemma A.1 shows tha& = | N 1. But by definition, this implies
thatx(t, p) = x*(t,p) andy(t,p) = y*(t.p), Y(t.p) € (IN 1) x P. Finally, the second conclusion of Lemma A.2
implies thaty(t, p) = y*(t,p), V(t,p) e (IN1) x P. O

Theorem A.1 Let(x,y) € C1(I x P,Dy) x C1(I x P, Dy) and (x*,y*) € C1(I x P, Dyx) x C1(I x P, Dy) be so-
lutions of (1a)on Ix P andl x P, respectively, and suppose tifaty) is regular. IfP c PN P is connected
and3(f,p) € (I 1) x P such thai(f.p) = x*(E.p), ¥p € P, andy(f. p) = y*(£. §), thenx(t,p) = x*(t.p) and

y(t.p) =y"(t.p), V(t.p) € (1 NT)x P.
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Proof Choose any € P. Clearly,{p} c PN P is compact and connected, and Lemma A.2 guarantees that
y(€.p) = y*(f.p). Then Lemma A.3 shows thaft, p) = x*(t,p) andy(t,p) = y*(t,p), Vte I N1. ]

Corollary 3.1 is a simple consequence of these developmentheBdefinition of a solution of (1),
we havex(to, p) = X*(to, p), Yp € P, andy(to, p) = y*(to, p) by hypothesis. SincP is connected, the result
follows from Theorem A.1.
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