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Abstract

Cyanoacrylate glues are easily applied to wounds with good cosmetic results. However, they tend

to be brittle and can induce local tissue toxicity. A series of cyanoacrylate monomers with a

flexible ether linkage and varying side-chain lengths was synthesized and characterized for

potential use as tissue adhesives. The effect of side-chain length on synthesis yield, physical and

mechanical properties, formaldehyde generation, cytotoxicity in vitro and biocompatibility in vivo

were examined. The incorporation of etheric oxygen allowed the production of flexible monomers

with good adhesive strength. Monomers with longer side-chains were found to have less toxicity

both in vitro and in vivo. Polymerized hexoxyethyl cyanoacrylate was more elastic than its

commercially available and widely used alkyl analog 2-octyl cyanoacrylate, without

compromising biocompatibility.
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1. Introduction

For surgical adhesives to be attractive alternatives to sutures and staples they should allow

rapid adhesion and maintain strong and close apposition of wound edges for a sufficient

time. Ideally surgical adhesives should not elicit a vigorous inflammatory response and

should be biodegradable with minimal tissue toxicity [1]. α-Cyanoacrylates (CA) possess

some of these properties and can be applied in medicine and dentistry with little discomfort
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and with good cosmetic results [2]. However, the use of commonly available CA adhesives,

particularly within tissues, is limited by two major concerns. First, tissue toxicity, including

necrosis, occurs in the immediate vicinity of the CAs, and is attributed to by-products such

as cyanoacetate and formaldehyde [3], insufficient tissue vascularization [4], and the

exothermic nature of the reaction [5]. Secondly, CA polymers are hard and brittle and may

have insufficient flexibility for the dynamic nature of in vivo conditions [6]. Consequently,

CAs are currently contraindicated for high tension wounds [7] and are only used in external

or temporary applications, such as skin closure [8,9] and repair of corneal perforations [4].

The objective of this study was to develop CA adhesives that have better elastic properties

without compromising biocompatibility.

Our hypothesis was that CA monomers containing etheric oxygen could produce polymers

with superior elasticity, while the use of longer carbon side-chains could mitigate the

toxicity. The incorporation of etheric oxygen could improve the elastic properties because of

the absence of hydrogen atoms on the etheric oxygen (asterisk in Fig. 1) facilitates chain

rotation and consequently polymer flexibility [10,11]. It has also been suggested that tissue

injury due to cyanoacrylates occurs in part because of the poor elasticity of the polymerized

glue [12]. Improving the elastic properties could therefore improve tissue reaction. Toxicity

is believed to be reduced by the longer alkyl side groups, which slow degradation and

therefore decrease the accumulation of toxic by-products[13-15].

To produce a potential surgical adhesive with improved physical properties and reduced

toxicity we have developed and characterized a range of ethylene glycol alkyl ether

monomers with increasing side-chain lengths. The mechanical strengths of the resulting

polymers were assessed, as was their cytotoxicity in vitro and biocompatibility in vivo.

2. Materials and methods

2.1. Chemicals

Cyanoacetic acid was purchased from Alfa Aesar (99% pure, Ward Hill, MA). Ethylene

glycol hexyl ether was purchased from TCI America (Portland, OR). All other ethylene

glycol ethers, phosphorus pentoxide, hydroquinone, dicyclohexylcarbodiimide (DCC),

paraformaldehyde (91–99% pure), piperidine, p-toluenesulfonic acid, dioctyl phthalate and

Dulbecco’s phosphate-buffered saline (DPBS) were purchased from Sigma–Aldrich (St

Louis, MO). Benzene, methanol and tetrahydrofuran (THF) were OmniSolv grade from

EMD Chemicals (Gibbstown, NJ) and were used as received. 2-Octyl-CA (Dermabond®)

and n-butyl-CA (Vetbond®) were purchased from Ethicon Inc. (Somerville, NJ) and 3M (St

Paul, MN), respectively.

2.2. Synthesis

Cyanoacetate esters were synthesized by condensation between cyanoacetic acid and a

suitable alcohol followed by Knoevenagel reaction [16] (Fig. 1). In a typical reaction (here

relating to hexoxyethyl-CA) a mixture of 0.6 mol ethylene glycol hexyl ether and 0.6 mol

cyanoacetic acid were stirred in 1000 ml of THF and maintained at 5–10 °C, then 0.6 mol

DCC in 500 ml of THF was added in a dropwise manner. The resulting suspension was
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filtered to remove the dicyclohexylurea and evaporated using a rotary evaporator. After 12 h

the crude oil was filtered again. Fractional distillation at reduced pressure through a short

Vigreux column gave the final cyanoacetate oil.

0.5 mol paraformaldehyde and 0.3 ml of piperidine were placed in a three-necked glass flask

and dissolved in 120 ml of methanol. A Dean–Stark trap combined with a reflux condenser,

a thermometer, and a 500 ml separatory funnel were attached to the flask. The mixture was

heated to 70 °C and 0.5 mol of cyanoacetate oil was added slowly while maintaining the

boiling temperature. Then the heat was increased and the methanol removed via a DeanStark

trap. Once about half of the methanol had been collected 100 ml of benzene was slowly

added for azeotropic distillation. Of note, for industrial production, where heterogeneous

azeotropic distillation columns are commonly used, alternative solvents such as toluene,

ethanol, cyclohexane or a mixture of ethyl methyl ketone and hexane may be used [17,18].

After all the methanol and the entire theoretical amount of water (9 ml) were collected in the

trap p-toluenesulfonic acid (0.6 g) was added to the mixture to neutralize the piperidine

catalyst. The plastisizer dioctyl phthalate was then added (10 ml) and the solution was

placed in a 0.6 mm Hg vacuum at 80 °C for solvent removal. 0.25 g hydroquinone and 2 g

phosphorus pentoxide were added and the flask was connected to a short path distillation

unit with a 100 ml receiver flask containing 0.125 g hydroquinone and 1 g phosphorus

pentoxide. Sulfur dioxide gas was carefully introduced and a 740 torr vacuum was applied.

The temperature was increased until depolymerization occurred (around 160 °C), as evident

by the accumulation of droplets in the receiving flask. Repeated vacuum distillations and

phosphorus pentoxide/hydroquinone additions to inhibit spontaneous polymerization were

performed until a high purity product was achieved. The monomers were stored at 4 °C in

the presence of p-toluenesulfonic acid.

2.3. Analysis of synthesized monomers

The chemical structures of the monomers were determined by 1H NMR using a Varian

Mercury (Palo Alto, CA) 300 MHz spectrometer at 25 °C in CDCl3. Purity was determined

by gas chromatography–mass spectrometry (GC–MS) (Agilent 5973 N, Little Falls, DE)

with a temperature ramp from 100 to 350 °C at a heating rate of 10 °C min−1. Monomer

solution (300 p.p.m. in THF, 1 ll injection volume) was used for analysis. The hydrophilicity

of the monomers was characterized by measuring the contact angle by the sessile drop

method [19]. 5 μl of each monomer was dropped on a hydrophobic natural rubber latex

wafer [20] (VWR, MA) and the contact angle images were recorded using a goniometer

equipped with video capture (VCA-2000, AST Inc., NJ). Each reported contact angle

measurement represents an average value of at least six separate drops.

The peak temperatures generated by CA bulk polymerization were monitored by a

temperature recording system equipped with a thermocouple wire (Fluke 51-2, Fluke, MA).

The wire was placed in a preheated (37 °C) 96-well plate, then 200 μl of test monomer was

inserted and 10 μl of 0.1 N NaOH was added. Each reported peak temperature represents an

average value of six separate measurements.
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2.4. Release of formaldehyde

10 μl of glue monomer were placed at the center of a 24-well culture plate. Monomers were

allowed to polymerize for 24 h at room temperature. The resulting film was submerged in 1

ml of phosphate-buffered saline (PBS) and incubated at 37 °C. At predetermined time points

the PBS was removed for analysis and replaced with fresh medium. The analysis consisted

of measurement of the formaldehyde concentration using a fluorometric detection kit (Assay

Designs, Ann Arbor, MI). The results for each sample were averaged (n = 4).

2.5. Mechanical testing

Mechanical tests were conducted using an Instron universal testing machine provided with a

load cell of 500 N (model 5542, load cell model 2530-416, 0.125 N resolution or 0.25% of

load, Instron Corp., Canton, MA) at a cross-head speed of 10 mm min−1 (ASTM method

0897-49 [2]). The test machine was controlled by Merlin 1999 operating system software v.

22031 (Richardson, TX), which provides all the test set-up, control and analysis functions.

Experiments were first performed using aluminum specimens (Ted Pella Inc., Redding, CA)

with 6.25 mm slotted heads and 1 cm pins. 5 μl of each monomer were applied to one of the

two specimens and the second gently laid on top. The specimens were held together with

clips for 12 h to insure monomer curing. The probe was withdrawn from the upper moving

crimp at a rate of 0.1 mm min−1. The peak detachment force (N) was recorded as a function

of extension diagram. The modulus was determined from the slope of the stress plotted

against the applied strain. Each test trial consisted of eight replicate measurements.

A similar experiment was performed using segments of fresh skin harvested from 10 rats. 25

μl of each glue was applied to cross-sectional incisions in 2 × 6 cm strips of skin, after which

the strips were apposed and maintained in contact for 24 h at 4 °C, as previously described

[21-23]. The specimens were stretched at a rate of 10 mm min−1. Each test trial consisted of

five replicate measurements.

2.6. Cytotoxicity studies

2.6.1. Cell toxicity of polymerized glue—The toxicity to HeLa cells (CRL 1658,

Rockville, MD) of the different CAs was evaluated in comparison with cells without

exposure to CA glues (control). Cells were grown at 37 °C in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine serum (Gibco-Invitrogen Corp.,

Grand Island, NY). Cultures were maintained in a 95% air/5% carbon dioxide atmosphere,

at 95% relative humidity.

Cells were exposed to the polymerized glues either by direct contact (“direct”) or indirectly

by being exposed to medium that was in contact with the polymerized glues (“indirect”). In

the “direct” method 5 μl of glue monomer were placed at the center of the wells of 24-well

culture plates. In the indirect method the monomers were placed in a band around the walls

of the wells, fully in contact with the medium. Monomers were allowed to polymerize for 24

h at room temperature before cell seeding. Following 48 h exposure the cytotoxicity was

assessed using the MTS assay [24] (CellTiter 96® Aqueous kit, Promega, Madison, WI).

The results of each sample were averaged and are expressed as a percentage of the control.
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Four replicates were seeded for each of the tested CA as well as for fresh DMEM and the

control.

2.6.2. Live/dead assay—A two color fluorescence cell viability kit [25] (Live/Dead®

fluorescence viability kit, Molecular Probes, Eugene, OR) was used to confirm the results

obtained from the MTS assay. After 48 h glue exposure cells were incubated with a mixture

of 2 μM calcein acetoxymethyl and 8 μM ethidium homodimer in DPBS. Stained samples

were washed and examined at 200× magnification via fluorescence microscopy (model HAL

100, Carl × Zeiss, Jena, Germany). The numbers of viable (green, obtained with the

fluorescein filter set) and non-viable (red, obtained with the rhodamine filter set) cells were

counted manually from images captured in the center of the wells, but at least 1 mm away

from the polymer edge. Each experiment was performed with five independent replicates.

2.7. In vivo studies—Animals were cared for in compliance with protocols approved by

the Massachusetts Institute of Technology Committee on Animal Care, in conformity with

the NIH guidelines for the care and use of laboratory animals (NIH publication 85-23,

revised 1985). 35 male rats (Sprague–Dawley) weighing 200–250 g were used. Rats were

anesthetized with 2% isoflurane in oxygen and the back shaved and disinfected with 70 vol.

% isopropanol in water/betadine. Skin incisions (1.5 cm) were made and a tunneled

subcutaneous pouch produced towards the right. 20 ll of each monomer was deposited in the

pouch and the incisions were closed with sutures.

Animals were killed with carbon dioxide after 12 days. Local swelling at the surgical site

was measured with calipers, then the tissue and skin surrounding the glues were harvested

and processed for hematoxylin and eosin staining by standard techniques [26].

2.8. Statistical analysis—The results of the formaldehyde release, mechanical properties

and cell toxicity assays are presented as mean values ± SD. Statistical comparisons were

performed with Instat 3.10 software (Prism 5, GraphPad, San Diego, CA). One-way analysis

of variance (ANOVA) was used to test the significance of the differences between the

treated groups. Tukey’s test was used for post comparison of specific groups. P < 0.05 was

considered statistically significant.

3. Results

3.1. Synthesis and chemical analysis

The synthetic scheme is shown in Fig. 1. Cyanoacetic acid and ethylene glycol alkyl ether of

the desired alkyl chain length were reacted in the presence of DCC, with high yields of

cyanoacetate oil (>90%). Subsequent reaction with formaldehyde in the presence of base

produced an intermediate which spontaneously formed an oligomer. Repeated short path

distillation with heat and under vacuum produced CA monomers at variable yields (Table

1).

Synthesis of each monomer was demonstrated by NMR spectroscopy. For example, the

presence of two peaks at 6.63 and 7.05 p.p.m. for the two protons of the double bond carbon

in the spectrum for methoxyethyl-CA monomer (Fig. 2A) documented successful
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depolymerization of the oligomer into its monomeric form (the last step in Fig. 1). Gas

chromatography and mass spectrometry (Fig. 2B and C) revealed a single major component,

with traces impurities. Increasing the side-chain length decreased the specific gravity,

contact angle, and the maximal polymerization temperature (Table 1). The yields of the

synthesized monomers decreased with increasing side-chain length, possibly due to their

higher boiling point and the greater degree of side-chain entanglement with increasing

length, both of which may limit the efficiency of vacuum depolymerization [27].

3.2. Release of formaldehyde

The release profiles of formaldehyde from the polymerized alkoxyethyl-CA and from

commercial butyl- and 2-octyl-CA are illustrated in Fig. 3. In both the alkoxyethyl and the

alkyl-CA groups formaldehyde release became slower as the molecular weight of the

monomer increased. The rate of release from the alkoxyethyl-CA was faster than from the

alkyl-CA. For example, less formaldehyde was released from octyl-CA compared with

hexoxyethyl-CA, although the molecular weight of the former is lower.

3.3. Mechanical testing

Monomers were polymerized on aluminum specimens (see Section 2.5) and the load on the

cured polymers was measured as a function of extension. Increasing the side-chain length

decreased the adhesive strength (Fig. 4A), although all glues remained within the useful

range of adhesive strength [28,29]. Increasing the side-chain length also increased the

elasticity of the polymer (i.e. reduced the elastic modulus, Fig. 4B). Statistically significant

differences (P < 0.01) were observed between all the test groups and Dermabond. Of note,

the elastic modulus of hexoxyethyl-CA was lower than that of its alkyl analog, 2-octyl-CA

(Dermabond®), supporting the view that etheric oxygen could enhance elasticity.

Subsequently, full thickness segments of fresh Sprague-Dawley rat skin were glued together

side to side with the monomers (Fig. 4C). All tested CA glues polymerized ex vivo, forming

a crust. In all cases, when extension was applied to pull the incision apart the glued incision

site maintained integrity while adjacent tissues tore apart. Load values at rupture were

between 20 and 30N, which is consistent with reports for other CA glues used ex vivo [29].

3.4. Cytotoxicity studies

HeLa cells were seeded over glues that had been cured for 24 h in the center of cell culture

wells and cytotoxicity was evaluated by the MTS assay (“Direct” group in Fig. 5A, as cells

were in direct contact with the polymerized glue). Cell viability (as a percentage relative to

cells not exposed to the glues) increased with increasing carbon chain molecular weight (R2

= 0.91). This result was confirmed by a live/dead assay using flow cytometry (Fig. 5B); R2 =

0.96 for the correlation of viability and molecular weight. No living cells were seen on the

glue itself, and there was an area around the glue where cells did not survive (Fig. 5C and

D). The fact that the glues released a toxic compound was confirmed in experiments where

the glue was cured on the inside wall of the dish without direct contact with the cells

(“Indirect” in Fig. 5A). Here also, side-chain molecular weight correlated well with

increasing viability (R2 = 0.92) compared with controls not exposed to the glues. Cell
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viabilities for Dermabond® were in between those for propoxyethyl- and butoxyethyl-CA,

but less than that for its alkoxyethyl analog, hexoxyethyl-CA.

3.5. In vivo studies

CA monomers or saline (20 μl, n = 5 for each group) were deposited in surgically created

subcutaneous pouches in the right flank. After 12 days the tissue surrounding the cured

monomers was removed and processed for histology (Table 2 and Fig. 6). At the time of

necropsy there was visually obvious swelling overlying the sites of deposition of the

methoxyethyl- and ethoxyethyl-CA, while no or only mild swelling was observed in the

other groups (P < 0.05 by ANOVA).

All samples showed features of 1–2 week old granulation tissue by light microscopy (Fig.

6), with lymphocytes, occasional macro-phages, proliferation of blood vessels and active

fibroblasts. Animals receiving saline showed only granulation tissue, consistent with healing

at the incision site (Fig. 6A and B). While the degree of inflammation within any given

sample varied considerably (making it difficult to provide truly representative photographs),

the difference in extent between CA was marked, as is evident from the size of the area of

inflammation. There were also large differences in the presence and extent of necrosis.

Animals injected with hexoxyethyl- or butoxyethyl-CA (relatively long chains) showed

inflammation without necrosis (Fig. 6C and D). Animals injected with propoxyethyl-CA

showed large areas of inflammation with small areas of necrosis (Fig. 6E and F). Animals

injected with ethoxyethyl- and methoxyethyl-CA (the shortest chains) displayed the most

severe tissue response, with large areas of inflammation and large areas of necrosis (Fig. 6G

and H). Dermabond® produced a histological response (Fig. 6I and J) comparable with that

seen with hexoxyethyl-CA, but subjectively milder (as assessed by M.W.L.).

4. Discussion

The incorporation of etheric oxygen in place of an alkyl group side-chain produced

adhesives whose elasticity increased with molecular weight. The elasticities of butoxyethyl-

and hexoxyethyl-CA were greater than that of 2-octyl-CA (Dermabond®), which has more

or the same number of side-chain carbons, respectively. This may be attributable to the

bending and ease of rotation of the ether linkage in each side-chain [30] and by the internal

plasticizing effect of the side-chains: increasing side-chain length reduces intermolecular

and intramolecular forces which decrease the general order of the polymer [31,32].

Conversely, the adhesive strength of 2-octyl-CA (Dermabond®) was greater than its analog

hexoxyethyl-CA (both with eight carbons in the side-chain).

The amount of formaldehyde, a by-product released on degradation of alkoxyethyl-CA

polymers, increased with increasing molecular weight of the parent monomer. A similar

trend was observed with the two alkyl-CA: butyl-CA released approximately 50% more

formaldehyde than octyl-CA. The greater release of form-aldehyde from the alkoxyethyl-CA

than the alkyl-CA group was probably due to their relatively low hydrophobicity and high

flexibility, which enabled faster water permeation into the backbone of the polymers [33].
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Interestingly, the order of relative toxicity (Fig. 5) and of formaldehyde production did not

track perfectly. For example, 2-octyl-CA was more cytotoxic than its alkoxyethyl analog,

hexoxyethyl-CA, even though it released less formaldehyde (Fig. 3). This discrepancy may

be due to degradation reactions resulting in products other than formaldehyde, of which

several are recognized in the literature [34]. For example, hydrolysis of the side-chains ester

bonds produces poly(cyanoacrylic acid) and an alcohol. Alkyl alcohols, being more lipid

soluble than alkoxyethyl alcohols, are more likely to be cytotoxic, particularly given that the

toxicity of alcohols correlates positively with their membrane-buffer partition coefficients

[35]. While there is consensus about the potential toxicity of formaldehyde, both in vitro and

in vivo, it is not known whether poly(cyanoacrylic acid) and alcohols released by

cyanoacrylate glues are toxic in vivo [36]. However, the cytotoxicity of alcohols has been

demonstrated and found to be directly correlated with the hydrophobicity of the alcohol

[37,38], which might explain the discrepancy between the in vitro and the in vivo results

here. It is also possible that additives in the commercial alkyl-CA used here display toxicity

[39]. The in vitro and in vivo toxicity of each of the main degradation products has been

widely investigated and reported in the literature.

We used the ratio of cell survival to elasticity as a general indicator of the quality of the

individual formulations in terms of the desired properties of a soft tissue glue: toxicity is

harmful, elasticity is beneficial. However, the analogy to commonly used clinical indicators,

such as the therapeutic index, is not perfect. In the therapeutic index, for example, both the

desirable and undesirable properties of a drug can be assumed to track reasonably well with

dose or concentration. While that could be expected to be true for glue toxicity, it is less

obviously applicable to elasticity. Nonetheless, a lower elastic modulus suggests that a glue

could sustain a given strain with a lower cross-sectional area before it broke, i.e. less of it

might have to be applied, which in turn might reduce toxicity. Here, the ratio for

hexoxyalkyl-CA was approximately 8-fold higher than for octyl-CA. Nonetheless, tissue

reaction to the two glues was comparable. It remains to be determined whether the higher

ratio for hexoxyalkyl-CA can translate into lower toxicity by virtue of the ability to use less

material.

In vivo the overall pattern of biocompatibility generally mirrored that seen in vitro:

increasing the side-chain length correlated with decreasing toxicity. However, although

hexoxyethyl-CA was less cytotoxic than 2-octyl-CA in vitro, this did not result in improved

in vivo biocompatibility. This dissociation between the in vitro and in vivo findings could be

a reflection of the fact that the difference in cell survival rates between the two adhesives

was only moderate (approximately 30–50%) and so was overwhelmed by the multiple

factors that could play a part in vivo. For example, it is possible that the monomers or glues

had different effects in terms of inducing cells to express pro-inflammatory or other

molecules, as has been described for other biomaterials[40,41]. It would appear, however,

that the hypothesis that superior elasticity leads to reduced toxicity [12,42] is incorrect in

this case. We note that extremely inflexible materials, such as wafers of tetrahedral

amorphous carbon and silicon, can show essentially no local toxicity after implantation [43].

CA monomers polymerize very rapidly and the highly exothermic reaction and the failure of

local heat dissipation can generate significant local increases in temperature [44]. We
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recorded a peak temperature of 55 °C for methoxyethyl-CA, and lower temperatures were

obtained for monomers with longer carbon side-chains. This may be related to the faster rate

of polymerization of the shorter CA monomers [45,46]. The heat generated by

polymerization can be a determinant of biocompatibility [47]. Thus, for example, a new

acrylic surgical glue, Glubran 2 (GEM Srl, Viareggio, Italy), incorporates

metacryloxysulpholane to slow polymerization, thus decreasing the peak polymerization

temperature to ~45 °C. Hexoxyethyl-CA, the CA with the longest carbon side-chain studied

here had a peak temperature of 46 °C without additives. Given that polymerization was

performed in sealed containers and that the thickness of the glue was greater than might be

applied clinically, the peak temperature may be lower when used in vivo.

5. Conclusion

Incorporation of an etheric oxygen side-chain in place of an alkyl group provided excellent

mechanical properties in terms of adhesive strength and flexibility. Longer carbon side-

chain lengths yielded better elasticity, reduced adhesive strength, and lowered cytotoxicity.

The improvement in mechanical properties of hexoxyethyl-CA over its commercially

available and widely use alkyl-CA analog 2-octyl-CA was achieved without compromising

biocompatibility.
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Fig. 1.
The synthesis of alkoxyethyl-CA monomers. The etheric oxygen in the final product is

indicated by an asterisk.
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Fig. 2.
Characterization of methoxyethyl-CA monomer. (A) 1H NMR spectra (in CDCl3). The

arrows show peaks assigned to =CH2. (B) Gas chromatogram. (C). Mass spectroscopy.

Structures corresponding to the longest peak in (B) are indicated. The major component,

methoxyethyl-CA monomer, is indicated by arrows in (B) and (C).
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Fig. 3.
Profiles of formaldehyde generation from alkoxyethyl-, butyl-, and 2-octyl-CA polymerized

glues (n = 4).
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Fig. 4.
(A) Adhesive strength (maximal load at rupture) of CAs with various alkoxyethyl side-

chains (n = 8). These are representative curves; the standard deviation of the maximal load

(at rupture) is in parentheses (n = 8). (B) The decrease in modulus due to the increase in

alkoxyethyl side-chain length. Asterisks denote statistically significant differences from

Dermabond®. *P < 0.01. (C) Skin sample prepared for testing in Instron grips (n = 5).

Arrows show the site of the glued incision. All data are means with standard deviations.
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Fig. 5.
HeLa cell viability after exposure to polymerized glues. (A) MTS assay of cells with or

without direct contact with the glues. (B) Live/dead assay of same. (C) Light microscopy of

the margins of the cured butoxyethyl-CA polymer 48 h after incubation with the cells. (D)

Fluorescence microscopy of the margins of the cured butoxyethyl-CA polymer 48 h after

incubation with the cells, after live/dead assay (live green, dead red). The yellow line

indicates the margins of the cured polymer. Asterisks denote statistical difference from

unexposed cells. *P < 0.05, **P < 0.01.
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Fig. 6.
Histological findings in rats injected with saline or CA monomers. (A, B) Saline alone

elicited a response with mild inflammation and a proliferation of fibroblasts and blood

vessels, consistent with granulation tissue formation and corresponding to “minimal”

histological changes. (C, D) Hexoxyethyl-CA elicited a slightly more vigorous

inflammatory response. (E, F) Propoxyethyl-CA elicited moderate inflammation and small

areas of necrosis. (G, H) Methoxyethyl-CA elicited severe inflammation with larger areas of

necrosis. (I, J) Implantation of 2-octyl-CA (Dermabond®) elicited a “mild” histological

response, which was characterized by inflammation surrounding the implanted material

without necrosis. D, dermis; SM, skeletal muscle; I, inflammation; N, necrosis. (B), (D), (F)

and (H) are higher powered views of areas of inflammation and/or necrosis adjacent to the

site of sample deposition. The arrows indicate residual cured CA glues. Areas of necrosis in

(E) and (G) are outlined by a dotted line.
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Table 1

Characterization of the alkoxyethyl-CA monomers.

Alkoxyethyl
group

Molecular
weight
(gmol−1)

Specific
gravity
(gmr−1)

Contact

angle
a

Yield
(%)

Max.
temperature

(°C)
b

Methoxy 155.1 1.09 58.3 45 55

Ethoxyl 169.2 1.08 51.2 40 51

Propoxy 183.2 1.00 48.1 36 49

Butoxy 197.2 0.99 47.2 26 48

Hexoxy 225.3 0.94 44.2 14 46

Dermabond® 209.3 0.98 41.4 N/A 48

a
Calculated using 5 μl of each monomer on a latex wafer. The contact angle of doubly distilled water on the same surface is 74.3.

b
Maximal temperature for bulk polymerization of 200 μl of monomer initiated by 10 μl of 0.1 N NaOH.

Acta Biomater. Author manuscript; available in PMC 2014 June 16.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Mizrahi et al. Page 19

Table 2

Histological findings.

Formulation n Swelling (cm)
a Necrosis

Saline 5 0 ± 0 None

Hexoxyethyl-CA 5 0 ± 0 None

Butoxyethyl-CA 5 0.2 ± 0.1

Propoxyethyl-CA 5 0.6 ± 0.4 None or mild

Ethoxyethyl-CA 5 0.8 ± 0.1 Moderate

Methoxyethyl-CA 5 1.2 ±0.5

Dermabond® 5 0.2 ± 0.1 None

a
Diameter, measured with calipers. Differences between propoxyethyl-, eth-oxyethyl- and methoxyethyl-CA and the control group were

statistically significant (P < 0.05). Data are means with standard deviations.
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