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Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety
of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation,
which assumes an electroneutral supported electrolyte. In this paper, we provide a comprehensive mathematical
theory of voltammetry in electrochemical cells with unsupported electrolytes and for other situations where
diffuse charge effects play a role, and present analytical and simulated solutions of the time-dependent Poisson-
Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions for a 1:1 electrolyte
and a simple reaction. Using these solutions, we construct theoretical and simulated current-voltage curves
for liquid and solid thin films, membranes with fixed background charge, and cells with blocking electrodes.
The full range of dimensionless parameters is considered, including the dimensionless Debye screening length
(scaled to the electrode separation), Damkohler number (ratio of characteristic diffusion and reaction times),
and dimensionless sweep rate (scaled to the thermal voltage per diffusion time). The analysis focuses on the
coupling of Faradaic reactions and diffuse charge dynamics, although capacitive charging of the electrical
double layers is also studied, for early time transients at reactive electrodes and for nonreactive blocking
electrodes. Our work highlights cases where diffuse charge effects are important in the context of voltammetry, and
illustrates which regimes can be approximated using simple analytical expressions and which require more careful
consideration.

DOI: 10.1103/PhysRevE.95.033303

I. INTRODUCTION

Polarography or linear sweep voltammetry (LSV) or
cyclic voltammetry (CV) is the most common method of
electroanalytical chemistry [1–3], pioneered by Heyrovsky
and honored by a Nobel Prize in Chemistry in 1959. The
classical Randles-Sevcik theory of polarograms is based on
the assumption of diffusion limitation of the active species
in a neutral liquid electrolyte, driven by fast reactions at the
working electrode [4–6]. Extensions for slow Butler-Volmer
kinetics (or other reaction models) are also available [1]. The
half-cell voltage is measured at a well-separated reference
electrode in the bulk liquid electrolyte, which is assumed to be
electroneutral, based on the use of a supporting electrolyte [7].

Most classical voltammetry experiments and models fea-
tured a supported electrolyte: an electrolyte with an inert
salt added to remove the effect of electromigration. In
many electrochemical systems of current interest, however,
the electrolyte is unsupported, doped, or strongly confined
by electrodes with nanoscale dimensions. Examples include
supercapacitors, [8], capacitive deionization [9], pseudocapac-
itive deionization and energy storage [10,11], electrochemical
thin films [12–15], solid electrolytes used in Li-ion or Li-metal
[16,17], electrochemical breakdown of integrated circuits [18],
fuel cells [19,20], nanofludic systems [21–23], electrodialysis
[24–26], and charged porous “leaky membranes” [27,28]
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for shock electrodialysis [29,30] and shock electrodeposition
[31,32]. In all of these situations, diffuse ionic charge must
play an important role in voltammetry, which remains to be
fully understood.

Despite an extensive theoretical and experimental literature
on this subject (reviewed below), to the authors’ knowledge,
there has been no comprehensive mathematical modeling of
the effects of diffuse charge on polarograms, while fully taking
into account time-dependent electromigration and Frumkin
effects of diffuse charge on Faradaic reaction rates. The goal
of this work is thus to construct and solve a general model for
voltammetry for charged electrolytes. We consider the simplest
Poisson-Nernst-Planck (PNP) equations for ion transport for
dilute liquid and solid electrolytes and leaky membranes,
coupled with “generalized” Frumkin-Butler-Volmer (FBV)
kinetics for Faradaic reactions at the electrodes [12,33–37],
as reviewed by Biesheuvel, Soestbergen, and Bazant [14]
and extended in subsequent work [10,11,15]. Unlike most
prior analyses, however, we make no assumptions about the
electrical double layer (EDL) thickness, Stern layer thickness,
sweep rate, or reaction rates in numerical solutions of the
full PNP-FBV model. We also define a complete set of
dimensionless parameters and take various physically relevant
limits to obtain analytical results whenever possible, which are
compared with numerical solutions in the appropriate limits.

The paper is structured as follows. We begin with a review of
theoretical and experimental studies of diffuse-charge effects
in voltammetry in Sec. II. The PNP-FBV model equations
are formulated and cast in dimensionless form in Sec. III,
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followed by voltammetry simulations on a single electrode in
a supported and unsupported electrolyte in Sec. IV. Section V
shows simulations on liquid and solid electrochemical thin
films, considering both the thin and thick double layer limits.
In Sec. VI, we simulate ramped voltages applied to porous
“leaky” membranes with fixed background charge. Finally,
ramped voltages are applied to systems with one or two
blocking electrodes in Sec. VII, and simulation results are
compared with theoretical capacitance curves. We conclude
with a summary and outlook for future work.

II. HISTORICAL REVIEW

The modeling of diffuse charge dynamics in electro-
chemical systems has a long history, reviewed by Bazant,
Thornton, and Ajdari [38]. Frumkin [39] and Levich [40]
are credited with identifying the need to consider effects of
diffuse charge on Butler-Volmer reaction kinetics at electrodes
in unsupported electrolytes by pointing out that the potential
drop which drives reactions is across the Stern layer rather
than in relation to a reference electrode far away, although
complete mathematical models for dynamical situations were
not formulated until much later. In electrochemical impedance
spectroscopy (EIS) [41], it is well known that the double-layer
capacitance must be considered in parallel with the Faradaic re-
action resistance in order to describe the interfacial impedance
of electrodes. Since the pioneering work of Jaffé [42,43] for
semiconductors and Chang and Jaffé for electrolytes [44],
Macdonald [45,46] and others have formulated microscopic
PNP-based models using the Chang-Jaffé boundary conditions
[47], which postulate mass-action kinetics, proportional to the
active ion concentration at the surface. This approximation
includes the first “Frumkin correction,” i.e., the jump in
active species concentration across the diffuse layer, but not
the second, related to the jump in electric field that drives
electron transfer at the surface [12,14]. More importantly, all
models used to interpret EIS measurements, whether based
on microscopic transport equations or macroscopic equivalent
circuit models, only hold for the small-signal response to an
infinitesimal sinusoidal applied voltage or current.

The nonlinear coupling of diffuse charge dynamics with
Faradaic reaction kinetics has received far less attention
and, until recently, has been treated mostly by empirical
macroscopic models, as reviewed by Biesheuvel, Soestbergen,
and Bazant [14]. Examples of ad hoc approximations include
fixing the electrode charge or zeta potential, independently
from the applied current or voltage, and assuming a constant
double layer capacitance in parallel with a variable Faradaic
reaction resistance given by the Butler-Volmer equation. Such
empirical models are theoretically inconsistent, because the
electrode charge and double-layer capacitance are not constant
independent variables to be fitted to experimental data. Instead,
the microscopic model must include a proper electrostatic
boundary condition, relating surface charge to the jump in
the normal component of the Maxwell dielectric displacement
[48], and the Butler-Volmer equation, or another reaction-rate
model, must be applied at the same position (the “reaction
plane”). This inevitably leads to nonlinear dependence of the
electrode surface charge on the local current density [10,12],
which includes both Faradaic current from electron-transfer

reactions and Maxwell displacement current from capacitive
charging [35,38,49].

Interest in voltammetry in low conductivity solvents and
dilute electrolytes with little to no supporting electrolyte has
slowly grown since the 1970s. Since the work of Buck [50], a
variety of PNP-based microscopic models have been proposed
[51–54], which provide somewhat different boundary
conditions than the FBV model described below. Since the
1980s, various experiments have focused on the role of
supporting electrolyte [2]. For example, Bond and co-workers
performed linear sweep [55] and cyclic [56,57] voltammetry
using the ferrocene oxidation reaction on a microelectrode
while varying supporting electrolyte concentrations. One of
the primary theoretical concerns at that time was modeling the
extra Ohmic drop in the solution from the electromigration
effects which entered into the physics due to low supporting
electrolyte concentration. Bond [58] and Oldham [59] both
solved the PNP equations for steady-state voltammetry in
dilute solutions with either Nerstian or Butler-Volmer reaction
kinetics to obtain expressions for the Ohmic drop. While they
listed the full PNP equations, they analytically solved the
system only with the electroneutrality assumption or for small
deviations from electroneutrality, which is a feature of many
later models as well [54,60,61]. The bulk electroneutrality
approximation is generally very accurate in macroscopic
electrochemical systems [7,62], although care must be
taken to incorporate diffuse charge effects properly in the
boundary conditions, as explained below. Bento, Thouin, and
Amatore [63,64] continued this type of experimental work on
voltammetry and studied the effect of diffuse layer dynamics
and migrational effects in electrolytes with low support. They
also performed voltammetry experiments on microelectrodes
in solutions while varying the ratio of supporting electrolyte
to reactant, and noted shifts in the resulting voltammograms
and a change in the solution resistance [65].

More recently, Compton and co-workers have done exten-
sive work involving theory [66–68], simulations [37,66,69,70]
(and see Chap. 7 of [3] or Chap. 10 of [2]), and experiments
[71–74] on the effect of varying the concentration of the
supporting electrolyte on voltammetry. Besides considering
a different (hemispherical) electrode geometry motivated by
ultramicroelectrodes [75], there are two significant differences
between this body of work and ours, from a modeling
perspective.

The first difference is that Compton and co-authors consider
three or more species in their models in order to account for
the supporting electrolyte and the effect of varying its concen-
tration. The additional species in their work are sometimes
neutral [71,72] and sometimes charged [66,70], depending
on the reaction being modeled. Modeling of uncharged and
supporting ionic species has also been a feature of other models
in the literature [58–60]. In this work, we only consider the two
extremes: either an unsupported binary electrolyte or (briefly,
for comparison) a fully supported electrolyte.

The second difference lies in their treatment of specific
adsorption of ions and a related approximation used to simplify
the full model. Although some studies involve numerical
solutions of the full PNP equations with suitable electrostatic
and reaction boundary conditions [37], many others employ the
“zero-field approximation” for the thin double layers [37,69],
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which is motivated by strong specific adsorption of ions. In this
picture, the Stern layer [76] (outside the continuum region of
ion transport) is postulated to have two parts: an outer layer of
adsorbed ions that fully screens the surface charge, and an inner
uncharged dielectric layer that represents solvent molecules on
the electrode surface. The assumption of complete screening
motivates imposing a vanishing normal electric field as the
boundary condition for the neutral bulk electrolyte at the
electrode outside the double layers. This assertion also has
the effect of eliminating the electromigration term from the
flux entering the double layers, despite the inclusion of this
term in the bulk mass flux. Physically, this model assumes
that the electrode always remains close to the potential of zero
charge, even during the passage of transient large currents.

Here, we base our analysis on the PNP equations with
“generalized FBV” boundary conditions [14,15], to describe
Faradaic reactions at a working electrode, whose potential
is measured relative to the point of zero charge, in the
absence of specific adsorption of ions. The model postulates a
charge-free Stern layer of constant capacitance, whose voltage
drop drives electron transfer according to the Butler-Volmer
equation, where the exchange current is determined by the
local concentration of active ions at the reaction plane. This
approach was first introduced by Frumkin and later applied by
Itskovich, Kornyshev, and Vorontyntsev [33,34] in the context
of solid electrolytes, with one mobile ionic species and fixed
background charge. For general liquid or solid electrolytes,
the FBV model based on the Stern boundary condition was
perhaps first formulated by Bazant and co-workers [12,14,35]
and independently developed by He et al. [36] and Streeter and
Compton [37]. The FBV-Stern model was extended to porous
electrodes and multicomponent electrolytes by Biesheuvel, Fu,
and Bazant [10,11].

Most of the literature on modeling diffuse-charge effects in
electrochemical cells has focused on either linear ac response
(impedance) or nonlinear steady-state response (differential
resistance), with a few notable exceptions. The PNP-FBV
model was apparently first applied to chronoampereometry
(response to a voltage step) by Streeter and Compton [37]
and to chonopotentiometry (response to a current step) by
Soestbergen, Biesheuvel, and Bazant [49], each in the limit of
thin double layers for unsupported binary liquid electrolytes.
Here, we extend this work to voltammetry and consider a much
wider range of conditions, including thick double layers, fixed
background charge, and slow reactions.

It is important to emphasize the generality of the PNP-
FBV framework, which is not limited to thin double layers
and stagnant neutral bulk electrolytes. Chu and Bazant [13]
analyzed the model for a binary electrolyte under extreme
conditions of overlimiting current, where the double layer loses
its quasiequilibrium structure and expands into an extended
bulk space charge layer, and performed simulations of steady
transport across a thin film at currents over 25 times the
classical diffusion-limited current (which might be achieved in
solid, ultrathin films). Transient space charge has also been an-
alyzed in this way for large applied voltages, for both blocking
electrodes [38,77] and FBV reactions [49]. A validation of the
PNP-FBV theory was recently achieved by Soestbergen [78],
who fitted the model to experimental data of Lemay and co-
workers for planar nanocavities [79,80]. The FBV model has

also been applied to nonlinear “induced-charge” electrokinetic
phenomena [81], in the asymptotic limit of thin double layers.
Olesen, Bruus, and Ajdari [82,83] used the quasiequilibrium
FBV double-layer model in a theory of ac electro-osmotic flow
over microelectrode arrays. Moran and Posner [84] applied the
same approach to reaction-induced-charge electrophoresis of
reactive metal colloidal particles in electric fields [85].

Many of these recent studies have exploited effective
boundary conditions for thin double layers, which were
systematically derived by asymptotic analysis and compared to
full solutions of the PNP equations, rather than ad hoc approx-
imations. Matched asymptotic expansions were first applied
to steady-state PNP transport in the 1960s without considering
FBV reaction kinetics [86–89] and used extensively in theories
of ion transport [24] and electro-osmotic fluid instabilities
[90,91] in electrodialysis, involving ion-exchange membranes
rather than electrodes. Baker and Verbrugge [92] analyzed
a simplified problem with fast reactions, where the active
species concentration vanishes at the electrode. Bazant and
co-workers first used matched asymptotic expansions to treat
Faradaic reactions using the PNP-FBV framework, applied to
steady conduction through electrochemical thin films [12,13].
Richardson and King [93] extended this approach to derive
effective boundary conditions for time-dependent problems,
which provides rigorous justification for subsequent studies
of transient electrochemical response using the thin double
layer approximation, including ours.

Finally, for completeness, we note that Moya et al. [94]
recently analyzed a model of double-layer effects on LSV
for the case of a neutral electrolyte surrounding an ideal ion-
exchange membrane with thin quasiequilibrium double layers,
and no electrodes with Faradaic reactions to sustain the current.

III. MATHEMATICAL MODEL

A. Modeling domain

In this work, we consider ramped voltages applied to
electrochemical systems with one or two electrodes. Figure 1
shows a sketch of both systems, with the directions of the
voltage and current density. The two electrode case models a
battery or capacitor, whereas the one electrode case models an
electrode under test at the right-hand side of the domain with
an ideal reservoir and potential set to zero at the left-hand side.
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FIG. 1. Diagram showing electrochemical systems with applied
voltage V and resulting current J for a system with (a) a single
electrode and (b) two electrodes. In the single-electrode case, the
left-hand boundary is modeled as an ideal reservoir with a fixed
potential. Also shown is a sketch of the potential inside the cell:
dashed line is the potential in the bulk; solid line is the potential in
the diffuse region.
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B. Poisson-Nernst-Planck equations for ion transport

Transport of ions in the bulk is described by a conservation
equation for the concentration,

dCi

dτ
= − ∂

∂X
JNP,i , (1)

and the definition of the flux,

JNP,i = −Di

∂Ci

∂X
− ziDiF

RT
Ci

∂�

∂X
, (2)

where Ci(X,τ ) denotes the concentration of the ith species
and zi is its associated charge number, where we take the
convention that the sign of the charge is attached to z (so that
a negative ion has negative z). Di is the diffusivity of the ith
species, and F , R, and T are Faraday’s constant, the ideal gas
constant, and temperature, respectively. Substituting Eq. (2)
into Eq. (1) gives the time-dependent Nernst-Planck equation
for ions in the bulk [X ∈ (0,L)], where we replace the index i

with either + or − for the positive and negative ion:

∂C±
∂τ

= ∂

∂X

[
D±

∂C±
∂X

+ z±D±F

RT
C±

∂�

∂X

]
. (3)

Note that this classical first approximation [34] neglects
excluded volume (“crowding”) effects, which are important
in crystalline ionic solids [95] and ion insertion electrodes
[96] especially at high voltages [81]. For solid electrolytes
in a lattice, Bikerman’s model [97] can be used, and for
liquid electrolytes there are hard sphere models such as the
Carnahan-Starling model [98]. Without steric effects, the
model might be better for polymeric solid electrolytes with
less severe volume constraints, or for doped solid crystals with
low carrier concentrations at sufficiently low voltages.

The potential �(X,τ ) is determined by Poisson’s equation,

−εs

∂2�

∂X2
= F (z+C+ + z−C−), (4)

where εs is the bulk permittivity of the electrolyte. We will be
considering 1:1 binary electrolytes in this work, and Eqs. (3)
and (4) describe a system with two mobile charges. For a solid
electrolyte, negative ions take a fixed value of concentration,
and so we set C−(X,τ ) = C0 and only solve one transport
equation. For a “leaky membrane” [27], we add a constant
background charge ρs to Eq. (4),

−εs

∂2�

∂X2
= F (z+C+ + z−C− + ρs). (5)

Finally, for a supported electrolyte, we set �(X,τ ) = 0 and
only solve the two Nernst-Planck equations for each charged
species.

C. Frumkin-Butler-Volmer boundary conditions for
Faradaic reactions

The boundary condition for Eq. (3) is given by

±
(

D+
∂C+
∂X

+ z+DF

RT

∂�

∂X

)∣∣∣∣
X=0,L

= JF (6)

for the flux of the cations, where the ± in Eq. (6) varies
depending on whether the boundary condition is applied at
the left or right boundary. We assume that the anion (C−) flux

is zero at both boundaries. For the Faradaic current JF , we use
the generalized Frumkin-Butler-Volmer (FBV) equation,

JF = Kc C+e( −αcnF��
RT

) − Ka CM e( αanF��
RT

). (7)

In particular, Eq. (7) models a reaction of the form

C
z+
+ + n e− � M, (8)

where n = z+ is the number of electrons transferred to reduce
the cation to the metallic state M . An example of a reaction of
the form (8) is the Cu-CuSO4 electrodeposition process, where
z+ = n = 2. Ka and Kc are the reaction rate parameters and
αa,c is the so-called transfer coefficient, with αa + αc = 1. In
the case of a blocking, or ideally polarizable electrode, or for
a species which does not take part in the electrode reaction,
Ka = Kc = 0. Following [15] and other models using FBV
kinetics, �� is explicitly defined as being across the Stern
layer (and always as the potential at the electrode minus the
potential at the Stern plane), and the direction of JF is defined
to be from the solution into the electrode.

The boundary condition on � at an electrode is

∓λs

∂�

∂X
= ��, (9)

where again the sign ∓ is for the left-hand and right side
electrode and λs is the effective width of the Stern layer,
allowing for a different (typically lower) dielectric constant
[12,35]. In this model, the point of zero charge (pzc) occurs
when �� = 0 across the Stern layer, so the potential of the
working electrode is defined relative to the pzc. For a more
general model with two electrodes having different pzc’s, an
additional potential shift must be added to Eq. (9) for at least
one electrode [36,37].

The system of equations is closed with a current conserva-
tion equation [see Eq. (9) in [49]],

d�X(L,τ )

dτ
= − 1

εs

{J (τ ) − FJF }, (10)

where J (τ ) can either be an externally set electrical current
or (when the voltage is prescribed as is the case in this work)
a postprocessed electrical current, also defined to be from the
solution into the electrode. In Eq. (10), �X denotes the X

derivative of �.
In this work, we will be using this model to consider the

effect of a ramped voltage at the right-hand side electrode. The
applied voltage takes the form

V (τ ) = Sτ, (11)

where S is the voltage scan or sweep rate. For some simulations
in this work, we wish to model only one electrode, with the
other approximating an ideal reference electrode or an ideal
reservoir. In this case, we use the electrode at X = L as the
electrode under test, and use the boundary conditions

C±(0,τ ) = C0, �(0) = 0 (12)

at X = 0, where C0 is a reference concentration.

D. Dimensionless equations

It is convenient to rescale the PNP equations so that
distance, time, concentration, and potential are scaled to
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interelectrode width, the diffusion time scale, a reference
concentration, and the thermal voltage, respectively:

x ≡ X

L
, t ≡ Dτ

L2
, c± ≡ C±

C0
, φ ≡ F�

RT
. (13)

Rescaling the Poisson-Nernst-Planck equations (3) and (4)
yields the dimensionless equations. For the remainder of the
paper, we will be assuming a 1:1 electrolyte (z+ = −z− = 1),
equal diffusivities (D+ = D− = D), and restricting ourselves
to the electrode reaction in Eq. (8) with z+ = n = 1. Other
ionic solutions and reactions can be modeled by making the
appropriate changes to Eqs. (3), (4), and (7). The Nernst-
Planck and Poisson equations become

∂c±
∂t

= d

dx

[
∂c±
∂x

± c±
∂φ

∂x

]
, (14)

−ε2 ∂2φ

∂x2
= 1

2
(c+ − c−), (15)

where ε = λD/L is the ratio between the Debye length λD ≡√
εsRT

2F 2C0
and L. To nondimensionalize the boundary conditions,

we introduce the following rescaled parameters:

kc = Kc L

4D
, jr = Ka LCM

4DC0
, δ = λs

λD

, (16)

so that Eq. (7) becomes (assuming αc = αa = 1/2)

±
(

c+
∂φ

∂x
+ ∂c+

∂x

)∣∣∣∣
x=0,1

= 4kc c+ e−�φ/2 − 4 jr e�φ/2.

(17)

Equation (9) rescales to

∓ε δ φx = �φ (18)

and finally Eq. (10) becomes

−ε2

2

d

dt
φx(1,t) = j − [kc c+(1,t) e−�φ/2 − jr e�φ/2], (19)

where j is scaled to the limiting current density Jlim = 4FDC0
L

.
The rescaled equations contain two fundamental time

scales: the diffusion time scale, τD = L2/D, and the reaction
time scale, τR = L/K , for a characteristic reaction rate K .
There is also the imposed voltage scan rate time scale,
τS = RT

F
/S. The ratios of these three time scales result in

two dimensionless groups: the nondimensional voltage scan
rate,

S̃ = τD

τS

= SL2F

DRT
, (20)

and the nondimensional reaction rate,

k = τD

4τR

= KL

4D
, (21)

also known as the “Damkohler number.” In Eq. (16), the latter
takes two forms, k = kc and k = jr , for the forward (oxidation)
and backward (reduction) reactions with the characteristic
rates, K = Kc and K = KaCM/C0, respectively.

The dimensionless model also contains thermodynamic
information about the electrochemical reaction, independent
of the overall reaction rate [1,10,96]. For any choice of a single

reaction-rate scaling, there is a third dimensionless group,
which can be expressed as the (logarithm of) the ratio of the
dimensionless forward and backward reaction rates,

ln
kc

jr

= ln
KcC0

KaCM

= �φ. (22)

This is the dimensionless equilibrium interfacial voltage,
where the net Faradaic current [Eq. (17)] vanishes in detailed
balance between the oxidation and reduction reactions for the
reactive cation at the bulk reference concentration C0.

E. Important limits

1. Supported electrolyte

As mentioned in Sec. II, we choose to model liquid elec-
trolytes in the limit of high supporting salt concentrations by
setting φ(x,t) = 0 and removing Poisson’s equation [Eq. (15)]
from the model. This has two effects: first, electromigration is
no longer a part of the transport equations [Eq. (3)]. Second,
the voltage difference �φ = v − φ(1) which enters into the
FBV equation [Eq. (17)] is just the electrode potential since
φ(1) = 0. This results in a time-dependent version of the
classical Randles-Sevcik system [1], with Butler-Volmer rather
than Nernstian boundary conditions.

2. Thin double layers (electroneutral limit)

The dimensionless parameters ε and δ control how the
model handles the double layer and diffuse charge dynamics,
respectively. The dimensionless Debye length ε governs the
amount of charge separation that is allowed to occur, or
equivalently the thickness of the diffuse layer relative to
device thickness. The parameter δ, which is effectively a
ratio of Stern and diffuse layer capacitance, controls the
competition between the Stern and diffuse layers in overall
double layer behavior. The electroneutral, or thin double layer
limit, corresponds to ε → 0. In this limit, Eq. (15) is simply

c+ = c−. (23)

Substituting Eq. (23) into the Nernst-Planck equations
[Eq. (14)] results in the ambipolar diffusion equation for the
concentration c = c+ = c− (written here for equal diffusivi-
ties),

∂c

∂t
= ∂2c

∂x2
(24)

and the following equation for the potential:

∂

∂x

(
c
∂φ

∂x

)
= 0. (25)

In the limit of thin double layers, there are two further
limits on δ. The first is the “Gouy-Chapman” (GC) limit,
δ → 0, which corresponds to a situation where all of the
potential drop in the double layer is across the diffuse region,
and the second is the “Helmholtz” (H) limit, δ → ∞, where
all of the potential drop is across the Stern layer. In the
former case, the Boltzmann distribution for ions is invoked
[c± = exp (∓�φD)] and Eq. (17) becomes

±
(

c+
∂φ

∂x
+ ∂c+

∂x

)∣∣∣∣
x=0,1

= 4kc c+ e−�φD − 4 jr , (26)
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where �φD is the potential drop across the diffuse region. In
the latter case, Eq. (17) becomes

±
(

c+
∂φ

∂x
+ ∂c+

∂x

)∣∣∣∣
x=0,1

= 4kc c+ e−�φS/2 − 4 jre
�φS/2,

(27)
where �φS is the potential drop across the Stern layer.

3. Fast reactions

The most common approximation for the boundary condi-
tions in voltammetry is the Nernstian limit of fast reactions,
kc,jr → ∞, for a fixed ratio, jr/kc, corresponding to a given
equilibrium half-cell potential for the reaction, Eq. (22). In this
limit, the left-hand sides of Eqs. (17) and (26),(27) approach
zero, and all three boundary conditions reduce to the Nernst
equation,

�φ = �φ + ln c+, (28)

where the bulk solution is used as the reference concentration.
In order to place the Nernst equation in the standard form
[1,96],

E = RT

nF
�φeq = E + RT

nF
ln

C+
Cref

, (29)

we must define the equilibrium interfacial voltage relative to a
standard reference electrode (e.g., the standard hydrogen elec-
trode in aqueous systems at room temperature and atmospheric
pressure with Cref = 1 M) by shifting the reference potential,

E = RT

nF

(
�φ − ln

C0

Cref

)
= RT

nF
ln

KcCref

KaCM

. (30)

In this way, tables of standard half-cell potentials can be
used to determine the ratio of reaction rate constants, and
measurements of exchange current density can then determine
the individual oxidation and reduction rate constants.

IV. BULK LIQUID ELECTROLYTES

A. Model problem

The model problem for this section is a single electrode
in an aqueous electrolyte with a reference electrode at x = 0
and two mobile ions. Voltammetry on a single electrode in
solution is one of the oldest problems in electrochemistry;
experiments are usually conducted using the “three-electrode
setup,” where one electrode acts as a voltage reference while
another (the counter electrode) provides current. Computa-
tionally, this setup can be mimicked with Eq. (12) applied at
X = 0. This models a cell with only one electrode, with the
other approximating an ideal reference electrode or an ideal
reservoir.

In order to ensure that dynamics do not reach the reference
electrode, we restrict ourselves to the regime S̃ � 1 and t � 1.
The reaction rate parameter k can either be fast (k � 1) or slow
(k � 1), which corresponds to a diffusion-limited regime and
reaction-limited regime, respectively.

B. Supported electrolytes

A supported electrolyte is where an inert salt is added (a salt
which does not take part in electrode or bulk reactions) in order

to screen the electric field so as to render electromigration
effects negligible (i.e., φ = 0 in the bulk). Voltammetry
with supported electrolytes has classically been treated as a
semi-infinite diffusion problem. For an aqueous system at a
planar electrode with a reversible electrode reaction (reaction
much faster than diffusion) involving two species denoted O
(oxidized) and R (reduced), the current resulting from a slow
ramped voltage is given, using the present notation, by (see
Chaps. 5 and 6 of [1])

J (τ ) = nFDO

(
∂CO(X,τ )

∂X

)
X=0

= nFAC∗
O(πDOσ )

1
2 χ (στ ),

(31)

where σ ≡ nFS/RT (S is the scan rate) and χ is the
Randles-Sevcik function. The same system of equations is also
often considered for irreversible (slow reactions compared to
diffusion) and “quasireversible” reactions, with the appropriate
changes to the boundary conditions.

The reaction we will be considering is

C+ + e− � M, (32)

where M represents the electrode material. Since the reaction
only involves one of the two ions as opposed to both as
in the Randles-Sevcik case, the mathematics are simplified
somewhat and we are able to obtain an analytical solution. The
diffusion equation [Eq. (24)] needs to be solved on x ∈ (0,∞)
with fast reactions [Eq. (28) with �φ = v(t)]. In order to
probe the forward, or reduction, reaction, we apply a voltage as
v(t) = −S̃t and compute the resulting current via j = ∂c

∂x
|x=0.

These equations admit the solution

j (t) =
√

S̃e−S̃t erfi(
√

S̃t), (33)

where erfi(z) = 2√
π

∫ z

0 exp x2 dx is the imaginary error func-
tion. The derivation of Eq. (33) can be found in the Appendix.
We term Eq. (33) a “modified” Randles-Sevcik equation,
which applies to voltammetry on an electrode with fast
reactions involving only one ionic species, and in a supported
electrolyte. Figure 2 shows simulated j (t) curves with various
values of k compared to Eq. (33), with S̃ = 50. The curves
in Fig. 2 exhibit the distinguishing features of single-reaction
voltammograms: current increases rapidly until most of the
reactant at the electrode has been removed due to transport
limitation. The peak represents the competition between the
increasing rate of reaction and the decreasing amount of
reactant at the electrode. After the peak, the lack of reactant
wins out, and there is a decrease in the amount of current the
electrode is able to sustain. Also worth noting is that at low
reaction rate k, the start of the voltammogram is exponential
rather than linear due to reaction limiting.

The simulated curves in Fig. 2 approach Eq. (33) in the
limit of large k, which makes Eq. (33) a good approximation
for the current response to a ramped voltage in a supported
electrolyte with fast, single-species reaction. Note that due to
definition differences, the simulated current must be multiplied
by 4 because there is a difference of a factor of 4 between the
current in Eq. (19) and the ion flux in Eq. (17).
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FIG. 2. Simulated current curves for a supported electrolyte with
one electrode in response to a voltage ramp with S̃ = −50, with
various values of k. Also shown is the high reaction rate limit in
Eq. (33).

C. Unsupported electrolytes with thin double layers

For the single-electrode, thin-EDL, unsupported electrolyte
problem, we use a value of ε = 0.001, and impose the
restrictions S̃ � 1 and t � 1 in order to remain in a diffusion-
limited regime. Figure 3 shows plots of voltammograms
for v(t) = −50t (S̃ = 50) with δ = 100, and the modified
Randles-Sevcik plot is also shown for comparison.

Note that while the situations leading to the currents in
Figs. 2 and 3 may seem superficially similar (both involve
voltammetry on a single electrode with fast reactions), they
do not produce the same results. The physical difference is
that electromigration is included in the latter [i.e., Eq. (15) is
solved along with the anion transport equation], which opposes
diffusion, resulting in a slower response. This type of shift in
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FIG. 3. Simulated j vs v curves with various values of reaction
rate k for an unsupported electrolyte with one electrode, in response
to a ramped voltage with scan rate S̃ = −50 and with ε = 0.001 and
δ = 100. The k = 50 simulation gives results which are numerically
equivalent to the large k limit. Also shown is the theoretical result for
a supported electrolyte from Eq. (33).

the voltammogram for low support has been well documented
in the experimental literature (see [55,63,64,70,72], among
others).

Next, Fig. 4 show a voltammogram for the k = 50 (diffusion
limited) case, with accompanying concentration profiles (c+
and c− are identical in the bulk but only c+ is shown).

The parameter δ was chosen to be large for these simulations
so that large diffuse layers do not form, making it easier to
see a correspondence between the slope of the concentration
at the electrode and the resulting current. The current and
slope of c+ both reach a maximum when the voltammogram
peaks, followed by a gradual flattening of the concentration
as transport limitation sets in. Furthermore, though we end
our simulations in this section after the cation concentration
reaches zero at the electrode, we will see in Sec. V B 3 that the
PNP-FBV equations admit solutions past this point with the
formation of space charge regions.

We end this section with Fig. 5, which shows two voltam-
metry cycles on a system with ε = 0.001, k = 50, δ = 0.01,
and |S̃| = 50. Due to the fact there is only one electrode and
only one species takes part in the reaction, the voltammogram
exhbits diodelike behavior: diffusion limiting in the direction
of positive current and exponential growth in the direction
of negative current. Also shown are the net charge densities
(ρ = c+ − c−) in the diffuse region (x > 0.99) during the first
cycle, which are allowed to form since δ is small, so that the
double layer is dominated by the diffuse charge region. The
amount of charge separation in the diffuse layer is very large
at large voltages, and highlights the need to use the PNP-FBV
equations to capture their dynamics.

Lastly, an interesting observation is that, in Fig. 5, the
current peak is much higher in the second (and subsequent)
cycle(s) than in the first. We expect that this is due to charge
dynamics near the electrode: concentration distributions do not
return their initial distributions when the polarity of v reverses.
Due to the fast scan rate, there is still an excess of positive ions
near the electrode when the voltage switches polarity at the
start of the second cycle, allowing for a much longer time for
the current to build before transport limitation occurs.

V. LIQUID AND SOLID ELECTROLYTE THIN FILMS

A. Model problem

In this section, we study voltammograms of liquid and solid
electrolyte electrochemical thin films. General steady-state
models for thin films have been previously presented in
[12] and [13] as well as in [14], with a time-dependent
model considered in [49]. From a modeling perspective,
the only difference between the two systems is that the
counterion concentration is constant for solid electrolytes, i.e.,
c−(x,t) = 1. Furthermore, for some simulations in this section,
we consider voltage ramps on systems with two dissimilar
electrodes, i.e., values of kc and jr such that an equilibrium
voltage develops across the cell.

B. Simulation results

1. Low sweep rates

At low sweep rates, the current-voltage relationship ap-
proaches the steady-state response, which for solid and
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FIG. 4. (a) Voltammogram and (b) concentrations with k = 50 (diffusion limited) for an unsupported electrolyte with one electrode
subjected to a ramped voltage with scan rate S̃ = −50, with ε = 0.001 and δ = 100. Labels in the concentration plot correspond to snapshots
of cation concentration c+ at times labeled on the current vs time plot.

liquid electrolytes was derived by Bazant et al. [12] (for an
electrolytic cell with two identical electrodes) and Biesheuvel
et al. [14] (for a galvanic cell with two different electrodes).
For a liquid electrolyte, the cell voltage is given in the GC
(δ → 0) limit by

v(j ) = v0 − 4 arctanh(j ) + ln
1 − j/jr,A

1 + j/jr,C

(34)

and in the H limit (δ → ∞) by

v(j ) = v0 − 4 arctanh(j ) − 2 arcsinh
j√

βA(1 + j )

− 2 arcsinh
j√

βC(1 − j )
, (35)

where v0 = ln kc,Cjr,A

kc,Ajr,C
is the equilibrium voltage, βA =

4kc,Ajr,A, and βC = 4kc,Cjr,C . The subscripts A and C denote
parameter values at the anode and cathode, respectively. For a
solid electrolyte in the thin EDL limit, the cell voltage is given

in the GC limit by

v(j ) = v0 − 4j + ln
1 − j/jr,A

1 + j/jr,C

(36)

and in the H limit by

v(j ) = v0 − 4j − 2 arcsinh
j√
βA

− 2 arcsinh
j√
βC

. (37)

Figure 6 shows v vs j curves for liquid and solid electrolytes
for kc,C = 30, kc,A = 1, jr,C = 0.1, jr,A = 0.8 (the same as
Fig. 3 in [14]) for an open circuit voltage of v0 ≈ 5.5 and
various values of δ along with the GC and H limits from
Eqs. (34), (35) and (36), (37). The curves were created with a
voltage ramp from −10 to +15 with a scan rate of S̃ = 2.5. For
the liquid electrolyte case, the δ = 1 and δ = 10 curves were
generated with ε = 0.001, while the δ = 0.1 and δ = 0.01
curves with ε = 0.005.

As expected, the voltage-current response for a liquid
electrolyte is seen in Fig. 6(a) to have reaction limits at
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FIG. 5. (a) Voltammogram for an unsupported electrolyte with one electrode subjected to a triangular voltage with |S̃| = 50, ε = 0.001,
k = 50, and δ = 0.01. (b) Net charge densities ρ = c+ − c−. Labels on the charge density plot correspond to snapshots of ρ in the double layer
at times labeled on the voltammogram.
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FIG. 6. v vs j curves for (a) thin EDL liquid electrolyte and (b) thin EDL solid electrolyte with two electrodes and with parameters
ε = 0.001, kc,C = 30, kc,A = 1, jr,C = 0.1, and jr,A = 0.8 (v0 ≈ 5.5). Also shown are the steady-state curves in the GC and H limits from
Eqs. (34), (35) and (36), (37). Simulated curves were created using a voltage scan rate of S̃ = 2.5.

j = −jr,C = −0.1 and j = jr,A = 0.8 in the GC limit, and
diffusion limits at j = ±1 in the H limit. The limiting cases
from Eqs. (34), (35) also do not strictly bound the simulated
results in Fig. 6(a) due to the nonmonotonic dependence of
the cell voltage v on δ [14]. Compared to the liquid electrolyte
case, the two limits on δ for fixed countercharge are seen
in Fig. 6(b) to have reaction limits at j = −jr,C = −0.2 and
j = jr,A = 0.8 in the GC limit, but no diffusion limit in the
H limit, which is consistent with the expected behavior for a
solid electrolyte.

2. Diffusion and reaction limitating

When sweep rates are fast, current-voltage curves will differ
from the slow sweep results in Sec. V B 1 due to physical
limitation of the speed at which current can be produced
at electrodes. This nonlinear interdependence of current and
voltage when current flows into an electrode is described
in electrochemistry by the blanket term polarization, not to
be confused with dielectric polarization. Generally speaking,
when current flows across a cell, its cell potential, v, will
change. The difference between the equilibrium value of v

and its value when current is applied is commonly referred to
as the overpotential or overvoltage and labeled η.

Very briefly, there are three competing sources of overpo-
tential in an electrochemical cell.

(1) Ohmic polarization is caused by the slowness of
electromigration in the bulk. When a cell behaves primarily
Ohmically, it is characterized by a linear j -v curve which can
be written as ηohm = rcellj . When this behavior is modeled by
a circuit, it is usually represented as a single resistor between
the two electrodes.

(2) Kinetic polarization is due to the slowness of electrode
reactions (k small). Using the overpotential version of the
Butler-Volmer equation as a starting point, and assuming fast
transport of species to and from the electrode (Celectrode =
Cbulk), we can invert the equation to find ηkin = arcsinh ( j

j0
),

where j0 is the nondimensional exchange current density.

Thus, when kinetic polarization is the primary cause of over-
potential, the j -v curve takes on an exponential characteristic.
This type of polarization is represented by a charge-transfer
resistance in circuit models.

(3) Transport, or concentration polarization, is due to
slowness in the supply of reactants or removal of products
from the electrode, resulting in a depletion of reactants
at the electrode. Concentration polarization is characterized
by a saturation of the current-voltage relationship, and is
represented by the frequency-dependent Warburg element in
circuit models.

In terms of electrode polarization, the key difference
between liquid and solid electrolytes is that the imposed
constant counterion concentration associated with a solid
electrolyte does not allow diffusion limiting to occur (except,
perhaps, with very large forcings), since the reacting species
is not allowed to be depleted at the electrodes. The trade-off is
that current is only carried by one species in solid electrolytes,
increasing the electrolyte resistance.

To illustrate these points, we first show in Fig. 7 Faradaic
current vs voltage for liquid and solid electrolyte with two
electrodes and with parameters ε = 0.05, δ = 1, kc,a = 50,
jr,a = 100, kc,c = 0.1, and jr,c = 0.05 (v0 ≈ 1.4). These
parameters represent a situation with slow reactions at the
cathode, and we vary the scan rate S̃ so that reaction limitation
will dominate the current. As S̃ increases, the j -v curves for
both the liquid and solid electrolyte cases are seen to take on
a more pronounced exponential character, thus showing the
effect of reaction limitation. When S̃ is small, the Faradaic
current in both cases takes a linear or predominantly Ohmic
character. Note that for plots where the sweep rate S̃ varies,
we only plot the Faradaic part of the current [the second term
on the right-hand side of Eq. (19)] since for S̃ � 1 there is a
significant displacement component.

Next, to demonstrate when and how diffusion limitation
plays a role, we show in Fig. 8 fast voltage sweeps (S̃ = −100)
on both liquid and solid electrolytes with fast reactions (k =
50), with accompanying concentration profiles. For liquid
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FIG. 7. Faradaic current vs voltage for (a) liquid electrolyte with and (b) solid electrolyte two electrodes and with S̃ varied, with parameters
ε = 0.05, δ = 1, kc,a = 50, jr,a = 100, kc,c = 0.1, and jr,c = 0.05 (v0 ≈ 1.4). A current response dominated by reaction limitation is seen when
S̃ = −100.

electrolytes [Figs. 8(a) and 8(b)], the current begins to saturate
as the cation are depleted at the cathode. Over the same voltage
range, the current in the solid electrolyte [Figs. 8(c) and 8(d)]
remains perfectly linear since the fixed negative ions allow for
much less charge separation.

3. Transient space charge

We end our modeling of electrochemical thin films by
investigating the development of space charge regions (regions
of net charge outside of the double layer where ρ = c+ − c− �=
0) at large applied voltages. This is a strongly nonlinear
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FIG. 8. (a), (b) j vs v and (c), (d) cation concentrations c+ at t = 0.025 (dashed line), 0.05 (dash-dotted line), 0.075 (dotted line), and 0.1
(solid line) for S̃ = −100 voltage sweeps on both liquid and solid electrolytes with two electrodes. Other parameters are the same as in Fig. 7.
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FIG. 9. (a) Voltammogram and (b)–(d) resulting cation (solid line) and anion (dashed line) concentrations showing space charge regions
developed at the cathode and anode from a triangular applied voltage in a thin EDL liquid electrolyte with two electrodes. Parameters used
were ε = 0.001, δ = 0.3, k = 50, and |S̃| = 100.

effect which occurs in liquid electrolytes as predicted by
Bazant, Thornton, and Ajdari [38] and solved by Olesen,
Bazant, and Bruus using asymptotics and simulations for large
sinusoidal voltages [77]. In this section, we extend this work by
showing the formation of space charge regions in the context
of voltammetry by using triangular voltages.

Figure 9(a) shows the voltammogram of a two-electrode
liquid electrolyte system subjected to a triangular voltage with
ε = 0.001, δ = 0.3, k = 50, and S̃ = 100, and Figs. 9(b)–
9(d) show the development of space charge regions. The
current-voltage response during space charge formation is a
transient case of a diffusion limited system (S̃,k � 1) being
driven above the limiting current [13,24,88] and the subsequent
breakdown of electroneutrality in the bulk. Figure 9 shows
the current peaking as diffusion limiting sets in (t = 0.1) and
anion concentration at the cathode reaches zero [Fig. 9(b)].
After this time, a space charge region begins to form outside
of the double layer as seen in Fig. 9(c), and the current ramps
up slowly until the voltage reverses direction. Since the cell
is symmetrical, the same thing occurs at the anode during
the positive voltage part of the cycle, with current flowing
in the other direction [Fig. 9(d)]. The height of the current
peak and slope of current during space charge development are
dependent on the value of S̃. Also, though the one-dimensional

equations predict it, the formation of large space charge regions
may not happen in reality due to hydrodynamic instability
caused by electrokinetic effects [21,99–102].

VI. LEAKY MEMBRANES

A. Model problem

In this section, we consider the classical description of
membranes as having constant, uniform background charge
density ρs , in addition to the mobile ions [103–106]. In
this section, we focus on the strongly nonlinear regime of
small background charge and large currents in a “leaky
membrane” [28,107]. This situation can arise as a simple
description of micro- or nanochannels with charged surfaces,
as well as traditional porous media, neglecting electro-osmotic
flows. In the case of a microchannel with negative charge
on its sidewalls, surface conduction through the positively
charged diffuse layers can sustain overlimiting current (faster
than diffusion) [27] and deionization shock waves [108].
This phenomenon has applications to desalination by shock
electrodialysis [29,30], as well as metal growth by shock
electrodeposition [31,32], and the following analysis could
be used to interpret LSV for such electrochemical systems
with bulk fixed charge.
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voltage and current density.

Figure 10 shows a sketch of the model problem. A “leaky”
membrane with a uniform background charge (negative in the
figure) and with mobile cations and anions lies between an
ideal reservoir on the left-hand side (c+ = c− = 1, φ = 0) and
an electrode on the right. We investigate situations with both
positive and negative background charge whose concentration
is small compared to that of the mobile ions.

The appropriate modification to the Poisson equation for a
background charge is Eq. (5), which is nondimensionalized to

−2ε2 ∂2φ

∂x2
= z+c+ + z−c− + 2ρ̃s , (38)

where ρ̃s = ρs/(2C0F ). Equations (5)–(38) are equivalent to
the “uniform potential model” and “fine capillary model” [109]
and have a long history in membrane science [103–105]. For
example, Tedesco et al. [110] recently used an electroneutral
version of Eq. (38) to model ion exchange membranes for
electrodialysis applications.

The time-independent Nernst-Planck equations can be
solved along with Eq. (38) in the limit of thin DL’s to obtain
the steady-state current-voltage relationship [27], which is
given by

j = 1 − e−|v|/2 − ρ̃s |v|
2

, (39)

where the factor of one-half is due to a difference in our
definition of the scaling current [in Eq. (19)] from [27].
This expression has been successfully fitted to quasisteady
current voltage relations in experiments [29,31,32], which
in fact were obtained by LSV at low sweep rates, so it is
important to understand the effects of finite sweep rates. In
Secs. VI B–VI C, we present simulation results for ramped
and cyclic voltammetry on systems with background charge
opposite sign (negative background charge) and the same sign
(positive background charge) as the reactive ions.

B. Negative background charge

First, we consider the case where the sign of the background
charge is opposite to that of the reactive cations, which avoid
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FIG. 11. Current in response to a voltage ramp in a liquid
electrolyte with one electrode and constant background charge.
Parameters are ε = 0.005, δ = 10, ρs = −0.01, and k = 50. Also
shown is the steady-state response from Eq. (39).

depletion by screening the fixed background charge. This is
the most interesting case for applications of leaky membranes
[29–32], since the system can sustain overlimiting current.
Figure 11 shows current in response to voltage ramps with
ε = 0.005, δ = 10, ρs = −0.01, and k = 50, with various
values for S̃. The limiting behavior for the current for small S̃

can be predicted by the steady-state response from Eq. (39).
As observed in multiple experiments [29,31,32], a bump of
current overshoot occurs prior to steady state for high sweep
rates, which we can attribute to diffusion limitation during
transient concentration polarization in the leaky membrane.
Similar bumps have also been predicted by Moya et al. [94] for
neutral electrolytes in contact with (nonleaky) ion-exchange
membranes with quasiequilibrium double layers.

Next, Fig. 12 shows a cyclic voltammogram with con-
centration profiles for a background charge of ρs = −0.01,
with S̃ = 10. Due to the additional background charge, the
concentrations in the bulk are slightly different. For a 1:1
electrolyte, this difference is exactly −2ρs , as in Eq. (38). For
an electrolyte that is not 1:1, the difference can be obtained
using z+c+ + z−c− = −2ρs .

Similar to the cyclic voltammogram in Sec. IV C, the
current-voltage relationship in Fig. 12 displays diffusion
limited behavior in the negative voltage sweep direction and
purely exponential growth (reaction limiting behavior) in the
other. This is because there is only one electrode in these
simulations with only one of the two species taking part in the
reaction.

C. Positive background charge

For positive ρs , Eq. (39) predicts a decreasing current
(or negative steady-state differential resistance) after the
exponential portion, a behavior which has been observed in
some experiments [31,32] and not others [29]. Interestingly,
when double-layer effects and electrode reaction kinetics are
considered in the model simulations, the region of negative
resistance is also not observed, as shown in Fig. 13 for
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FIG. 12. (a) Voltammogram and (b)–(d) resulting cation (solid line) and anion (dashed line) concentrations for a thin EDL liquid electrolyte
with two electrodes and constant negative background charge. Parameters used were ε = 0.005, δ = 1, k = 50, ρs = −0.01, and |S̃| = 10.
Two cycles are shown in (a).

ρs = 0.01. Physically, the interfaces provide overall positive
differential resistance, even as the bulk charged electrolyte
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FIG. 13. Current from a voltage ramp applied to a liquid
electrolyte with a single electrode and constant, small, positive
background charge. Parameters are ε = 0.005, δ = 10, ρs = 0.01,
and k = 50. Also shown is the steady-state response from Eq. (39),
which is shown not to match the simulations.

enters the overlimiting regime with negative local steady-state
differential resistance.

Lastly, we omit the plot of the two-cycle voltammogram
for positive background charge, and just remark that they
show results which are very similar to the voltammogram in
Fig. 12(a).

VII. BLOCKING ELECTRODES

A. Model problem

A blocking, or ideally polarizable, electrode is one where
no Faradaic reactions take place. From a modeling perspective,
this means setting kc and jr in the Butler-Volmer equation to
zero, so that current is entirely due to the displacement current
term in Eq. (19).

Voltammetry experiments are most often used to probe
Faradaic reactions at test electrodes; in this application, non-
Faradaic or charging current is undesirable. With that being
said, however, linear sweep voltammetry is also a standard
approach to measuring differential capacitance. Much of the
early work in electrochemistry was centered around matching
experimental differential capacitance curves with theory. Gouy
[111] and Chapman [112] independently solved the Poisson-
Boltzmann equation to obtain the differential capacitance per
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unit area for an electrode in a 1:1 liquid electrolyte, which in
the present notation can be written as

C̃liquid(�φ) = 1

ε
cosh

�φ

2
, (40)

where �φ is the diffuse layer. Later, Kornyshev and Vorotynt-
sev [34] performed a similar calculation for a solid electrolyte
(an electrolyte where one ion is fixed in position with a
homogeneous distribution) to obtain

C̃solid(�φ) = 1

ε

1 − e−�φ√
e−�φ + �φ − 1

sgn(�φ). (41)

Note that the capacitance for the liquid electrolyte is symmet-
rical about zero, but the capacitance for the solid electrolyte is
not symmetrical due to the fixed charge breaking the symmetry.

In this section, we use ramped voltages to investigate the
behavior of blocking electrodes for liquid and solid electrolytes
with thin and thick double layers. Similar work has been done
by Bazant et al. [38], who used asymptotics to study diffuse
charge effects in a system with blocking electrodes subjected to
a step voltage, Olesen et al. [77], who used both asymptotics
and simulations to do the same for sinusoidal voltages, and
recently by Feicht et al. [113], who studied dynamics for high-
to-low voltage steps. In this section, we present simulations for
ramped voltage boundary conditions. The results of this section
have applications to EDL supercapacitors [114], capacitive
deionization [115,116], and induced charge electro-osmotic
(ICEO) flows [81,101]. In the simulations in this section, δ is
set to 0.01 so that the capacitance is dominated by the diffuse
part of the double layer.

The displacement current in Eq. (19) is related to the
nondimensionalized capacitance through

j = −ε2

2

dφx

dt
= ε2

2

dq

dt
= ε2

2

dq

dv

dv

dt
, (42)

where q = − dφ

dx
is the surface charge density and dv

dt
= S̃.

Since C = dq

dv
, we have that

j

S̃
= ε2

2
C̃ ∼ ε

2
(43)

and therefore ε is the natural scale for capacitance when
relating to the displacement current. We refer to this as our
“rescaled” capacitance, which we denote using the symbol C̃.

Both solid and liquid electrolyte systems with two blocking
electrodes behave like the circuit shown in Fig. 14. For liquid

+−

v(t)

j

C̃

+−
Δφ

R̃

+−

C̃

−+
Δφ

FIG. 14. Equivalent circuit diagram for system with two blocking
electrodes, showing the defined direction of current and polarities of
the double layer capacitors. Note that C̃ is a function of �φ.

electrolytes, R̃ ∼ 2 and C̃(0) = ε/2. For solid electrolytes,
R̃ ∼ 4 [12,14] and C̃(0) = ε2

2 lim�φ→0 C̃solid(�φ) =
√

2ε
2 .

There are two regimes of operation when a ramped voltage
is applied to a capacitive system. The first is the small time
(t � ε) behavior, when the double layers are charged with
time constant τRC = R̃C̃/2, where the factor of 1/2 accounts
for the fact that there are two capacitors in series. To predict the
behavior during this time, we turn to the ordinary differential
equation describing the circuit in Fig. 14, which is

v(t) − 2�φ = R̃C̃(0)
d�φ

dt
, (44)

where v(t) = S̃t . From Eq. (44), the current can be solved in
the case of a two-electrode liquid electrolyte to be

2jinner(t)

S̃
= C̃(0)

(
1 − e

− v

S̃C̃(0)
)
, (45)

where we have used R̃ = 2 for a liquid electrolyte. The
equivalent expression for solid electrolytes with single and
double electrodes will be discussed in Sec. VII B. The second
regime of operation is the large time (t � ε) behavior. After
the RC charging time, the current tracks the capacitance based
on Eq. (43). The relevant equation is

j = ε2

2

dq

dt
= C̃(�φ)

d�φ

dt
. (46)

Since we are only able to control the potential drop across
the cell [v(t)] and not the potential drop across the double
layer (�φ), we must estimate the value of �φ by accounting
for the potential drop across the bulk. To do this, we can use
the equation v(t) = 2�φ + R̃j . In practice, however, j � 1
for blocking electrodes and so we can instead just use �φ ≈
v(t)/2 = S̃t/2. Equation (46) can then be rewritten as

2jouter

S̃
= C̃(v/2). (47)

From Eq. (45) we have a solution for small times (the inner
solution), and from Eq. (47) we have a solution for large times
(the outer solution). The long time limit for the inner solution
must be equal to the small time limit for the outer solution,
and so the two solutions can be combined by adding them and
subtracting the overlap,

j = jinner + jouter − joverlap, (48)

where 2joverlap/S̃ = C̃(0), thereby creating a uniformly valid
approximation of the capacitance for all values of v(t).

B. Simulation results

We begin by presenting the uniformly valid approximations
[Eq. (48)] for liquid and solid electrolytes. For a liquid
electrolyte with two electrodes, the current takes the form

2j

S̃
= C̃

(
1 − e

v

S̃C̃

) + ε

2
cosh

v

4
− C̃, (49)

where C̃ = ε/2. The situation for solid electrolytes is
more complicated: since the capacitance [Eq. (41)] is not
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FIG. 15. Simulated (solid lines) and uniformly valid approximation (dashed lines) j vs v curves for two-electrode liquid electrolyte with
(a) thin and (b) thick double layers, as well as two-electrode solid electrolyte with (c) thin and (d) thick double layers. Plots with δ = 0.01 and
S̃ = −10 are shown. Dashed lines are plotted from Eqs. (49) and (52).

symmetrical about �φ = 0, the capacitance for a solid elec-
trolyte system with two blocking electrodes can be represented
using two capacitors in series,

1

C̃solid(�φ)
= 1

C̃solid(�φ)
+ 1

C̃solid(−�φ)
. (50)

The uniformly valid approximation for a solid electrolyte with
one electrode is

j

S̃
= C̃

(
1 − e

v

S̃C̃

) + ε
1 − e−v

√
e−v + v − 1

sgn (v) − C̃, (51)

where C̃ = √
2ε. Using Eq. (50), the approximation for two

electrodes is

2j

S̃
= C̃

(
1 − e

v

2S̃C̃

) + ε

2

⎛
⎝ 1 − e− v

2√
e− v

2 + v
2 − 1

sgn (v)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 − e
v
2√

e
v
2 − v

2 − 1
sgn (−v)

⎞
⎠ − C̃, (52)

where C̃ = ε

2
√

2
and || indicates the reciprocal of the sum of

the reciprocals, i.e., A||B = 1/(1/A + 1/B). The additional
factor of 1/2 in the exponent in the inner part of Eq. (52) is due
to the fact that the electrolyte resistance for solid electrolytes
is 4 rather than 2.

Figure 15 shows j -v curves for thin EDL (ε = 0.001) and
thick EDL (ε = 0.1) liquid and solid electrolyte systems with
two electrodes. The plots are compared to the approximations

from Eqs. (49) and (52), and show generally good agreement,
except for Fig. 15(b), the liquid, thick EDL case.

The reason for this is that the approximation in Eq. (49)
is based on an equilibrium (Gouy-Chapman) picture of the
EDL. With thick EDL liquid electrolytes under large voltage
forcings, so much charge separation occurs that the system
is too far from equilibrium for the Gouy-Chapman model
to be valid. To investigate further, we plot in Fig. 16 the
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FIG. 16. (a) j vs v and (b) cation concentrations for a thick EDL liquid electrolyte with two blocking electrodes and parameters ε = 0.1,
δ = 0.01 and scan rate S̃ = −0.1. Labels in (a) correspond to cation concentrations in (b) at various times.

current resulting from a voltage sweep of S̃ = −0.1 on a
liquid electrolyte system with ε = 0.1 along with cation
concentrations at various points during the sweep. We can
separate the behavior in Fig. 16 into three regimes. For

small voltages (A), the concentrations show near-equilibrium
behavior. As the voltage increases (B), (C), the diffuse regions
become large and the bulk concentration begins to be depleted,
and the two double layers begin to overlap—it may be possible
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FIG. 17. Simulated (solid lines) vs uniformly valid approximation (dashed lines) j vs v curves for (a), (b) thin EDL solid electrolyte and
(c), (d) thick EDL solid electrolyte with a single blocking electrode. δ = 0.01 and S̃ = ±1. Figures (a) and (c) show the negative part of the
sweep and (b) and (d) show the positive part. Dashed lines are plotted from Eq. (51).
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to model behavior at this stage by accounting for the depletion
of bulk concentration as in [38]. Finally, at large voltages
(D), we see complete charge separation, with nearly all of
the positive charge located at the cathode (and, similarly,
with nearly all of the negative charge at the anode). This
is the result which highlights the need to model diffuse
charge dynamics using the PNP-FBV equations; such a highly
nonlinear separation of charge would not be predicted by
models which assume electroneutrality or neglect the coupling
between diffuse charge dynamics and electrode currents.

It is interesting to note that such a departure from equi-
librium behavior is not apparent for the thick EDL solid
electrolyte shown in Fig. 15(d). However, if we plot the
single electrode, thick EDL curves [shown in Fig. 17(c) for
the negative sweep and Fig. 17(d) for the positive sweep],
we see that there is indeed a departure from the equilibrium
capacitance curve for the positive voltage (S̃ = 1) sweep, with
the simulated capacitance having nonmonotonic dependence
on voltage. This disagreement is masked by the fact that, for
two electrodes [which can be thought of as two capacitors
in series, as in Eq. (52)], the smaller, positive voltage sweep
capacitance, which agrees with the equilibrium approximation,
dominates. Figure 17 also shows the single-electrode results
for a thin EDL solid electrolyte, which agree with the
equilibrium approximation.

We end by remarking that, despite some disagreements
in the thick EDL cases, every simulation showed very good
agreement with the approximations we used during the RC
charging portion of the curve, i.e., the inner solution in Eq. (48).

VIII. CONCLUSIONS AND FUTURE WORK

This paper provides a general theory to enable the use
of LSV or CV to characterize electrochemical systems with
diffuse charge. Our paper presents and extends theory and
simulations in a variety of situations which extend classical
interpretations (unsupported liquid electrolytes and systems
with blocking electrodes) and develop an understanding for
more complicated situations (thin films, systems where bulk
electroneutrality breaks down with space charge formation,
and leaky membranes). Following a thorough historical review,
we began with single-electrode voltammograms for supported
electrolytes, with an analytical expression in the limit of fast
reactions, as well as for unsupported electrolytes in the limit
of small ε. We showed for these systems where inclusion of
diffuse charge dynamics plays a larger role, namely when a
system with small δ has a large voltage applied.

Next, we applied ramped voltages to solid and liquid thin
films to obtain current-voltage relationships and discussed the
effect of various types of polarization, and how their effect on
the current differed between liquid and solid electrolytes. For
liquid electrolytes, we also observed the formation of space
charge regions at large voltages, another prediction which
is made possible by using the PNP-FBV equations. For our
leaky membrane model simulations, we found that simulations
matched a steady-state analytical expression reasonably well
when the background charge was opposite in polarity to
the reactive ion (negative background charge) but did not
match theory with positive background charge. We ended by
presenting analytical expressions for the capacitance of liquid

and solid electrolyte systems with blocking electrodes, and
compared them to simulations with both thin and thick double
layers. We found that our analytical approximations worked
well for thin double layers, but in some cases disagreed when
double layers were thick. In general, we conclude that diffuse
charge dynamics becomes important in voltammetry at large
applied voltages and/or with thick double layers.

For each type of system we considered, the simulation
results we obtained were compared to limiting cases and
we showed where simple analytical expressions can be
used to predict behavior (such as approximating capacitance
curves), and which regimes require more careful analysis and
simulation. This is of practical interest for electrochemists and
engineers, for whom it can assist in guiding the design of new
devices and experiments.

For future work, there are many ways to extend the model
for additional physics. For example, specific adoption of ions
could be added to the boundary conditions, providing an
additional mechanism for charge regulation of the surface
[29,117,118], in addition to Faradaic polarization, coupled
through the FBV equations. The PNP ion transport equations
could be extended to include recombination bulk reactions
(ion-ion, ion-defect, etc.) [16] or various models of ion crowd-
ing effects [81,119–121] or other nonidealities in concentrated
solutions. There is also the possibility of coupled mass
transport fluxes (Maxwell Stefan, dusty gas, etc.) [122], which
become important in concentrated electrolytes [7], as well as
for unequal diffusion coefficients. Poisson’s equation could
also be modified to account for electrostatic correlations [123]
or dielectric polarization effects [124]. Furthermore, while we
used generalized BV kinetics [96] in this work, Marcus kinetics
[1,125] may provide a more accurate model of charge transfer
reactions. Even keeping the same PNP-FBV framework, it
would be interesting to extend the model for 2D or 3D geome-
tries, convection, and moving boundaries, in order to describe
conversion batteries, electrodeposition, and corrosion.

APPENDIX: DERIVATION OF MODIFIED
RANDLES-SEVCIK EQUATION

In this Appendix, we solve the semi-infinite diffusion equa-
tion with a nonhomogeneous boundary condition. The result
we obtain is referenced in Sec. IV B as an analog to the original
Randles-Sevcik function for a single ion electrodeposition
reaction. The method used here is taken from Chap. 5.5 of
O’Neil [126]. The equation and boundary conditions are

ut = uxx, (A1)

u(x,0) = A for x > 0, (A2)

u(0,t) = f (t) [where f (0) = A]. (A3)

We begin by considering the same problem with a jump at the
boundary at time t = t0:

ut = uxx, (A4)

u(x,0) = A for x > 0, (A5)

u(0,t) =
{
A 0 < t < t0,

B t > t0,
(A6)
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where A, B are positive constants. u(0,t) can be written with
the Heaviside step function H (t) as

u(0,t) = A(1 − H (t − t0)) + BH (t − t0). (A7)

The PDE (A4)–(A6) can be solved via Laplace transform.
The Laplace transform of Eq. (A4) is

sU (x,s) − A = ∂xxU (x,s), (A8)

where U (x,s) = L u(x,t). The general solution of Eq. (A8),
a constant-coefficient second order ODE for U , is

U (x,s) = a(s)e
√

sx + b(s)e−√
sx + A

s
. (A9)

We impose the condition a(s) = 0 because we would like the
solution to be bounded as x → ∞. This leaves us to solve for
b(s) using the boundary condition [Eq. (A7)]. The Laplace
transform of Eq. (A7) is

L u(0,t) = A

s
− A

s
e−t0s + B

s
e−t0s . (A10)

Using Eq. (A10), b(s) can be solved to be

b(s) = B − A

s
e−t0s , (A11)

giving us

U (x,s) = B − A

s
e−t0se−√

sx + A

s
. (A12)

We can now take the inverse Laplace transform of Eq. (A12)
to obtain

u(x,t) = A + (B − A) erfc

(
x

2
√

t − t0

)
, (A13)

where erfc(z) = 1 − erf(z) = 2√
π

∫ ∞
z

exp (x2) dx is the
complementary error function. In other words, the solution to

the semi-infinite diffusion problem with a jump of �u(0,t0)
relative to A at x = 0 and time t = t0 is

u(x,t) = A + �u(0,t0) erfc

(
x

2
√

t − t0

)
. (A14)

Now, using Duhamel’s principle, we have for an arbitrary
series of steps at t = ti given by �u(0,ti) = f (ti),

u(x,t) = A +
∑

i

�f (ti) erfc

(
x

2
√

t − ti

)
, (A15)

where �f (ti) = f (ti+1) − f (ti). We can take the continuum
limit with �f (ti) = df

dt
(t̃i)�ti , where ti < t̃i < ti+1, to obtain

u(x,t) = A +
∫ t

0

df

dt
(t ′) erfc

(
x

2
√

t − t ′

)
dt ′ (A16)

and finally we can make the substitution τ = t − t ′ to write

u(x,t) = A −
∫ 0

t

df

dt
(t − τ ) erfc

(
x

2
√

τ

)
dτ

= A +
∫ t

0

df

dt
(t − τ ) erfc

(
x

2
√

τ

)
dτ. (A17)

Equation (A17) may be numerically integrated. Alternatively,
if we are interested in the Nernstian function, f (t) = e−St

[for quasiequilibrium fast reactions, as in Eq. (28)] and wish
to compute the resulting current j = ux(0,t), we can arrive at
an analytical expression for ux(0,t),

ux(x,t) = S e−St

∫ t

0

eSτ e− x2

4τ√
πτ

dτ, (A18)

ux(0,t) =
√

Se−St erfi(
√

St), (A19)

where erfi(z) = 2√
π

∫ z

0 exp (x2) dx is the imaginary error
function.
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