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Abstract An investigation of the errors inherent in the calculation of integral

boundary layer parameters from discrete datasets has been carried out. The

primary errors examined were those due to discretization of the velocity profile;

distance of the first data location from the wall; and uncertainty in the floor

location. A range of turbulent velocity profiles with different shape factors

from analytical models and published DNS investigations has been examined.

This analysis demonstrates that the spacing of the first measurement point

from the floor is by far the most critical error source. Furthermore, the error

is shown to be a function of boundary layer shape factor, and therefore a cor-

rection factor chart has been derived. Two alternative methods of estimating

integral boundary layer parameters have been examined: wall modeling and a

gradient-based formulation. These have both been shown to generate smaller

errors than the basic integration approach, although both are susceptible to

external influences.
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1 Introduction

The importance of boundary-layer performance on overall fluid dynamical sys-

tem performance is well known. Examples of areas where the understanding of

the boundary-layer characteristics is crucial include wing, aircraft and other

vehicle design, flows in ducts and wind tunnels, and atmospheric flows. The

boundary layer profile is traditionally characterized by the displacement thick-

ness, δ∗, the momentum thickness, θ, and the shape factor, H. These param-

eters, in compressible form, are defined in Equations 1 – 3.

δ∗ = ∫
∞

0
(1 −

ρu

ρ∞u∞
) dy , (1)

θ = ∫
∞

0

ρu

ρ∞u∞
(1 −

u

u∞
)dy , (2)

and

H =
δ∗

θ
. (3)

These parameters are valuable because they allow the boundary layer to be

characterized quantitatively, and, as a result, they allow informative compar-

isons to be made between various boundary layers under a range of scenarios.

These parameters are therefore widely used throughout the literature. To ef-

fectively calculate and/or compare the behaviour of various boundary layers,

it is important to minimize errors in the calculation of the boundary-layer

integral parameters.

To compute the boundary-layer integral parameters, Equations 1–3, knowl-

edge of both the velocity, u, and density, ρ, variation across the boundary layer

is required. Clearly, any uncertainty in u(y) and/or ρ(y) will lead to an error
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in the displacement thickness, δ∗, momentum thickness, θ, and shape fac-

tor, H. To avoid the complexity of determining both the velocity and density

variation across the boundary layer, the boundary-layer integral parameters

can be simplified by neglecting the density variation across the boundary layer.

With the assumption of constant density across the boundary layer, ρ(y) = ρ∞,

Equations 1 to 2 yield the incompressible or kinematic boundary-layer integral

parameters, Equations 4 to 6.

δ∗i = ∫
∞

0
(1 −

u

u∞
) dy , (4)

θi = ∫
∞

0

u

u∞
(1 −

u

u∞
)dy , (5)

and

Hi =
δ∗i
θi
. (6)

While the premise of constant density across the boundary layer may seem like

a restrictive assumption, especially in transonic and supersonic applications,

density variations in mildly compressible flows, those with M∞ < 2, tend to

have little to no impact on the boundary-layer’s velocity profile and/or its

behaviour; Winter and Gaudet [1970], Morkovin [1962]. As a consequence,

authors such as Winter and Gaudet [1970] advocate the use of kinematic

boundary-layer integral parameters, because unlike compressible integral pa-

rameters, for a given boundary-layer velocity profile, the kinematic parameters

are not a strong function of M∞; Delery [1985]. This benefit, combined with

the difficulty in determining the density variation across the boundary layer,

means that the kinematic boundary-layer integral parameters are the most

valuable parameters in low-speed, transonic and mildly supersonic flows. For

this reason, the analysis presented in this article is restricted to the kinematic

(incompressible) boundary-layer integral parameters, which from here on will

be referred to simply as the boundary-layer integral parameters.
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To calculate the true values of the boundary-layer integral parameters for

a given boundary layer, the velocity variation must be known as a continuous

function through the boundary layer. Yet, real measurements are unavoidably

located at discrete locations away from the wall. This results in a discrete

dataset such as that presented in Figure 1. The error associated with inter-

polation is obviously reduced as the number of data points are increased. In

particular, more data points are often collected close to the wall, where the

highest velocity gradients typically occur. Most often, this is achieved using a

logarithmic spacing in the wall-normal direction. See for example De Graaff

and Eaton [2000] and Bailey et al. [2013].

There are circumstances, however, where a high level of resolution is not

viable, because of practical limitations to the measurement resolution, espe-

cially near the wall. This limitation is especially prevalent in laboratory-scale

applied aerodynamic research with turbulent boundary layers at high Reynolds

numbers. For example, shock wave / boundary layer interaction experiments

(Sawyer and Long [1982], Babinsky et al. [2009], and Colliss et al. [2014]),

small-scale propulsion system investigations (Wong [1974], Morris et al. [1992],

and Wasserbauer et al. [1996]), investigations pertaining to wing aerodynamics

(Keener [1986] and Ashill et al. [2005]), and cascade and single-stage turbo-

machinery studies (Wheeler et al. [2006] and Goodhand and Miller [2010]). In

these instances, boundary layers are typically thin, on the order of millime-

ters. Additionally, the boundary layers in these flows are very often difficult to

access even with the most advanced measurement techniques. Consequently, a

fine spacing in the boundary layer may not be possible. To illustrate the dif-

ficulty of obtaining high quality and high resolution boundary-layer data, an

example of a complex compressible flow is presented schematically in Figure 2.

In this example, a separated transonic shock-wave / boundary-layer interac-

tion, it is important to obtain measurements across a wide wall-normal range
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in both the viscous and inviscid portions of the flow. The typically small char-

acteristic scale, combined with the complexity of the flow, makes all velocity

measurements difficult, especially those close to the wall.

In addition to the error incurred due to interpolation between the available

data-points, there is also uncertainty in the position of the measurements with

respect to the wall, i.e., an error in the wall-normal coordinate, y. Such a bias

error in y, ∆y0, is illustrated schematically in Figure 1(b). Due to the need to

include the no-slip condition in the calculation of the integral parameters and

the high-velocity gradients near the wall, care needs to be taken to precisely

determine the location of the wall/surface.

Lastly, there is uncertainty in determining the location of the boundary-

layer edge, as shown in Figure 1(c). In practice, although the definition of the

displacement thickness, δ∗i and the momentum thickness, θi, requires integra-

tion to infinity, y →∞, the upper integration limit is set to the boundary layer

edge, y = δ, where the boundary-layer thickness is typically defined as the 99%

or 99.5% thickness. Hence the contribution of data-points above this location

is negligible. Typically, the error introduced by uncertainty in the boundary-

layer thickness is at the very least an order of magnitude smaller than the

two sources of error discussed above. This third source of error is only briefly

discussed, largely for completeness.

In addition to the three sources of error detailed in the paragraphs above,

there will, of course, be uncertainty inherent in the measured velocity at each

measurement location. This uncertainty will clearly have an impact on the

boundary-layer integral parameters. Unfortunately, such errors are a strong

function of the experimental setup—both the specifics of the measurement

technique and the experimental configuration—and it is therefore difficult to

generalize their influence. Fortunately, in the era of prevalent advanced mea-

surement techniques such as Laser Doppler Velocimetry (LDV) this source of
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error is not as significant as it once was. For these reasons, this source of error

is not included in the following discussion.

An illustrative example of the confusion that can be introduced by errors

in the boundary-layer integral parameters is presented in Figure 3. Here, ex-

perimentally measured profiles of a boundary layer on either side of a suction

slot are shown from Colliss et al. [2014]. In this investigation, a slot was used

to remove a portion (approximately 10%) of the boundary layer entering the

wind tunnel test section. The measurements of the boundary layer upstream

and downstream of the suction slot were achieved using a state-of-the-art LDV

system. From these velocity data, the boundary-layer integral parameters were

calculated using the standard trapezium based integration method. The result-

ing quantities are presented in the Table included in Figure 3. Looking at the

values of the boundary-layer integral parameters in this Table, it is evident

that although the calculated displacement and momentum thicknesses, δ∗iCALC

and θiCALC, decrease across the suction slot as expected, the calculated shape

factor, Hic, remains largely unchanged. Thus, quantitatively, there appears

to be no improvement in boundary-layer health. Yet, this is surprising given

the removal of the near-wall, low velocity flow and the marked increase in the

‘fullness’ of the velocity profile across the slot. See Figure 3. It is suspected

that the error incurred in the calculated shape factor, HiCALC, is responsi-

ble for the failure of the numerical values to represent the improvement in

boundary-layer ‘health’ and hence resistance to boundary-layer separation.

The difficulty in determining the true boundary-layer integral parameters,

and hence true boundary-layer characteristics, makes it difficult to quantify the

boundary-layer behaviour in a given flow-field. Furthermore, these difficulties

make it hard to compare experiments on nominally similar flow phenomena,

especially when the investigations have either been conducted in different facil-

ities or conducted in identical facilities but using different techniques. Compar-
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isons with boundary-layer integral parameters calculated from computational

fluid dynamics (CFD) can also be troublesome. Consequently, comparisons

and conclusions can be misleading if experimental datasets are not corrected

for the aforementioned deficiencies.

It is clear that determining the errors due to sampling, wall position, and

boundary-layer thickness is important. The aim of this paper is to quantify

these errors in the boundary-layer integral parameters calculated from discrete

velocity measurements, so that the true boundary-layer integral parameters

can be accurately estimated.

In order to rigorously access the impact of measurement resolution on

boundary-layer measurements, an analysis is first performed on a theoreti-

cal, zero-pressure-gradient, quasi-equilibrium, turbulent boundary layer, which

represents an idealized velocity profile, free from random or bias error. The

analysis is then generalized to any boundary-layer profile shape with the help

of data predominantly from Direct Numerical Simulation (DNS). In the third

part of the article, two alternative methods for estimating the boundary-layer

integral parameters are discussed.
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2 Error analysis on a boundary layer with uniformly spaced

velocity measurements

2.1 Zero-pressure-gradient turbulent boundary layer

Before the error in the boundary-layer integral parameters for a particular

profile can be quantified, the profile must be known a priori. Thus, we begin

by deriving an analytical, flat-plate, zero-pressure-gradient, quasi-equilibrium,

turbulent boundary layer from experimental measurements of a Mach 1.4 tur-

bulent boundary layer. The experimentally measured boundary layer data

and the corresponding analytically derived profile are shown in Figure 4. The

boundary-layer measurements in Figure 4 are taken from Titchener [2013]. The

continuous velocity profile in Figure 4 was constructed from the experimental

data-points using a combination of the Sun and Childs’ [1973] model for the

log-law and wake regions, and Musker’s [1979] model for the sub-layer and

buffer region. To account for compressibility a van Driest [1951] transforma-

tion has been integrated in both parts of the model. The free parameters of the

combined model which define the fit are the skin-friction coefficient, Cf, and

the boundary-layer thickness, δ. The skin-friction coefficient and boundary-

layer thickness are established by first curve-fitting the Sun and Childs’ [1973]

model to the experimental data. The calculated skin-friction coefficient, Cf, is

then utilized in the Musker’s [1979] formula.

The experimentally measured data-points and corresponding analytically

derived profile presented in Figure 4 are shown in both linear and logarithmic

coordinates. Examining Figure 4, it can be seen that very good agreement

between the experimental data and the model is achieved. It can therefore

be concluded that this compound analytical profile is a suitable baseline on

which to base the following analyses. At this point, we relinquish the exper-
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imental data-points as they are no longer required; all the following analysis

will be performed on the analytically derived profile, which will be resam-

pled as if measured experimentally. Initially we will assume for simplicity that

our boundary layer of interest is to be uniformly sampled at N equally spaced,

wall-normal locations, as if measured discretely by LDV, a hot-wire, or a Pitot-

static probe. Such a resampling results in N discrete data-points: Data from

y = δ/(N − 1) to δ with a constant spacing of ∆y = δ/(N − 1) plus the no-

slip condition. The sampled data-points, together with u(0) = 0, are used to

calculate the boundary-layer integral parameters as a function of the number

of samples, N , by numerical integration using the trapezium rule. In the re-

mainder of this article, the total number of points within y ≤ δ, N , will be

referred to as the measurement resolution. The trapezium rule is exclusively

employed in this investigation because of its robustness; in particular its use

is not constrained to any particular data-point distribution, unlike many one-

dimensional integration methods.

The error in the boundary-layer integral parameters obtained by resam-

pling the data at discrete points for various measurement resolutions, N , is

presented in Figure 5. In this figure, the error in the displacement thickness,

∆δ∗
i
, momentum thickness, ∆θi and shape factor, ∆Hi

, is shown versus uni-

form measurement resolution, N . As expected, the error on each parameter

decreases with increasing resolution, and each parameter asymptotes to its

true value as the measurement resolution, N , tends to infinity. For N = 150

there is only a 1% maximum error, whilst for N = 600 all parameters are accu-

rate to within 0.001%. Yet, for practical measurement resolutions, N ≤ 50, it

can be seen in Figure 5 that appreciable errors are present in the displacement

thickness, momentum thickness and shape factor: A 5% error, which is not an

unreasonable level of accuracy, is highlighted in Figure 5 for reference. It can

be seen that the number of measurements required to achieve an error level
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of less than 5% on all boundary-layer integral parameters, N5%, the boundary

layer must be sampled at almost 50 uniformly spaced locations, N5% = 50,

with the shape factor being the limiting variable on the sampling requirement.

The reason why the calculated shape factor, HiCALC is the limiting parame-

ter for a given error level (in this example 5%) is apparent from the behaviour

of the calculated displacement thickness, δ∗iCALC, and momentum thickness,

θiCALC, with finite sampling as shown in Figure 5: It can be seen that the

displacement thickness, δ∗i , is over-predicted for all measurement resolutions,

N ; whilst, conversely, the momentum thickness, θi, is always underestimated.

Consequently, the calculated shape factor, HiCALC, will tend to be highly

over-predicted, and hence have the largest error of the boundary-layer integral

parameters. With a low number of uniformly spaced measurements, N < 50,

it is easy to see how the state of the boundary layer could be misinterpreted.

2.2 General turbulent boundary layer

The analysis in Section 2.1 is evidence that the error associated with the

calculation of boundary-layer integral parameters can be significant. But it

should be remembered that the analysis presented thus far is only valid for the

zero-pressure-gradient turbulent boundary layer case presented in Figure 4. In

practice, the boundary layer of interest will vary widely in character, between

applications, primarily due to the action of pressure gradients. To make our

analysis analysis more valuable it needs to be extended to a wide range of

boundary layer profiles. Due to the inherent error in experimental data, as

discussed above, it was decided that the best source of boundary-layer data for

a more general analysis is data from Direct Numerical Simulations (DNS). For

this reason, a number of datasets from previously published DNS investigations

were collated and analyzed by the same method as Section 2.1. A full list of
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the data-sets employed for this analysis are shown in Table 1. These DNS

solutions provide us with data for a wide range of shape factors, Hi, as well as

equilibrium and non-equilibrium profiles. To widen the range of shape factors

examined further, a number of boundary-layer profiles have been generated

for use alongside the DNS in the following analysis. The non-DNS profiles

were produced using the analytical compound profile (Sun and Childs [1973]

and Musker [1979]), introduced in Section 2.1 and presented in Figure 4, with

the skin-friction coefficient, Cf, as a free variable.

As in the analysis of Section 2.1, the minimum measurement resolution

required to give a 5% error or better on all the parameters, N5%, will be used

as our desired error datum. Preliminary analysis of the data demonstrated

that the calculated shape factor, HiCALC, carries the largest error of the three

integral parameters for all the boundary layers of the data-sets in Table 1.

Hence, N5% represents the minimum sampling requirement for a 5% error in

the displacement thickness, δ∗i , momentum thickness, θi, and shape factor, Hi.

The minimum measurement resolution required to give a 5% error in shape

factor, N5%, is plotted against true shape factor, Hi, for each of the profiles

provided by Table 1 in Figure 6.

A trend is visible in Figure 6: The critical measurement resolution, N5%,

exhibits a clear inverse relationship with shape factor, Hi, that varies partic-

ularly strongly at low shape factors. This inverse relationship is illustrated

by the curve-fit that has been included in Figure 6. The unmistakeable trend

between N5% and Hi is a highly valuable finding, because it means that the

error resulting from discrete data resolution, ∆Hi
, can be parameterized by

the shape factor, Hi. In other words, ∆Hi
= fn(Hi,N). Using this methodol-

ogy, the true shape factor, Hi, can be obtained from the sample velocity data.

The inverse relationship exhibited in Figure 6, which only shows the required

sampling for a 5% error, is also observed when the analysis is repeated at other
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error levels. Curves for a variety of uncertainty limits, from 0.5% to 20%, are

presented in Figure 7. In Figure 7, It can be seen that the inverse relationship

between the critical measurement resolution and shape factor exists for any

given error level: The critical sampling density, N5%, decreases with increasing

shape factor, Hi. As a result of Figures 6 and 7, it can be concluded that the

error will be reduced with either higher shape factor (Hi or HiCALC) and/or

when the overall uniform measurement resolution, N , is increased.

On the basis of the trends produced in Figures 6 and 7, it is possible

to determine the error due to uniform sampling resolution as a function of

the calculated shape factor, HiCALC. Consequently, from knowledge of the

measurement resolution, N , and the estimate of shape factor from the discrete

data, HiCALC, a correction factor may be obtained∗. The resulting correction

factor is presented graphically by a family of curves in Figure 8.

In Figure 8, each curve represents a different measurement resolution (uni-

formly spaced), which is a known characteristic of the dataset. To obtain the

appropriate correction factor, the measured profile is integrated numerically

to give a first estimate of the shape factor HiCALC. For a given HiCALC each

curve has two corresponding values of the calculation error due to the shape

of the error curves—most noticeable in Figure 8(a). The appropriate part of

the curve, the lower section, must be selected to establish the error on the

boundary-layer shape factor. For example, if HiCALC = 1.80 and N = 12, the

error is either 10% (corresponding to Hi = 1.60) or 40% (corresponding to

Hi = 1.25). The correct level of error is 10% giving the true value of the

boundary-layer shape factor as Hi = 1.60.

When applying the correction factor method, it is estimated that the error

due to limited measurement resolution can be reduced to within 1% for most

∗it was found that plotting HiCALC against Hi produced curves which were too closely-
spaced to be of practical use
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boundary-layer profiles based on a regression fit analysis of the data in Figure 6

(excluding other sources of error).

It is important to remember that the analyses presented in this section

assume uniformly spaced data points. To maintain a uniform distribution of

data points, the spacing between points is decreased as the number of sam-

ples, N, is increased. Yet, a uniform distribution of points is not necessarily

realizable, or desirable, under many experimental conditions. Consequently,

the levels of errors presented above are unlikely to be valid for the majority

of experimental investigations. For this reason, the analyses are expanded to

more realistic data-point distributions in the next section, Section 3.
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3 The importance of wall offset, near-wall data-points and more

realistic data-point distributions

Looking back at Figure 1, it is evident that it is not only the discretization

of the boundary layer that introduces errors on the integral parameters. A

second source of error is introduced by uncertainty in the position of the mea-

surement location relative to the wall, y. This distance, y, may be uncertain

due to mechanical inaccuracies in the traverse gear or alignment procedure;

non-uniform surfaces; or flexure of the surface in question. To examine the

significance of a potential wall misalignment, a wall offset, ∆y0/δ, has been

added to the analytical zero-pressure-gradient boundary layer profile shown

in Figure 4 to simulate a misalignment of the experimental apparatus. Such a

theoretical misalignment represents a case where the spacing between points

within the traverse is known, but their distance relative to the wall has an

associated bias error. In other words, the wall-normal displacement of each ve-

locity measurement is shifted by an amount ∆y0/δ. For comparative purposes,

the discretization remains unchanged. Furthermore, the error level associated

with the discretization—as calculated by the analysis presented in Section 2—

has been subtracted to isolate the floor misalignment error. The results of this

analysis are presented in Figure 9.

Examining Figure 9 it is visible that even small misalignments in the floor

location have a significant impact on the error in the boundary-layer integral

parameters. For example, if all the points in the boundary layer are shifted

by ∆y0/δ = +0.01, in other words, the wall location is 0.01δ lower than the

experimentalist believes it is, there is an error in the calculated value of the

kinematic displacement thickness of 6% (∆δ∗
i
= 5.9%), an error in the kine-

matic momentum thickness of 1.5% (∆θi = 1.3%) and an error in the kinematic

shape factor of 4.5% (∆Hi
= 4.5%). It is worth noting that the displacement
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thickness, δ∗i , is most susceptible to wall misalignment errors, since its inte-

grand fδ∗
i
= 1−(u/u∞), has its maximum value at the wall, y/δ = 0. In contrast,

the momentum thickness integrand, fθi = (u/u∞)(1−u/u∞), has its maximum

at u(y) = u∞/2. For this reason, the displacement thickness is most sensitive

to wall misalignment. In Figure 9, the linearity of the wall misalignment er-

rors is also visible. Such behaviour is to be expected when utilizing a linear

interpolation scheme, such as the trapezium integration method.

The preceding discussion highlights the relative importance of the near-wall

region in the determination of the boundary-layer integral parameters. As a

consequence, it is appropriate to turn our attention to the relative significance

of sampling errors close to the wall. To illustrate the importance of the data

in the near-wall region, we will specifically focus on the first data-point from

the wall, more specifically its distance from the wall, y1. The contribution of

the position of the first data-point, y1, to the total error in boundary-layer

shape factor, ∆Hi
, has been evaluated for all the profiles in Table 1 by per-

forming two error calculations: The first with the data sampled by N = 50

uniformly spaced points and second with a linear interpolation between y = 0

and y = y1 = δ/(N − 1) and the exact profile for y > y1. The difference between

the two resulting values of the shape factor gives us an estimate of the contri-

bution of the position of the first data-point to the overall discretization error.

The results of this analysis are plotted against the shape factor in Figure 10,

where the contribution to the total error of the first data-point, ∆Hiy1/∆Hi
,

is plotted against the true shape factor, Hi. From Figure 10, it can be seen

that interpolation to the first data-point contributes the majority of the total

error—more than 70%—for all shape factors. What is more, the contribution

tends to increase for the smaller shape factors (which also have the largest

errors), reaching more than 90% of the total error for velocity profiles with

the lowest shape factors.
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The significance of the position of the first velocity measurement from the

wall, y1, can be highlighted further by plotting the wall-normal variation of

the numerical integration error, i.e., the error introduced by interpolating the

integrand of the parameter in question (fδ∗
i
= 1 − u/u∞ and fθi = (u/u∞)(1 −

u/u∞)) with straight lines. In the case of uniform spacing, with the distance

between adjacent points given by ∆y, it can be shown via some mathematical

manipulation (see Appendix A for full details) that the numerical error in

the displacement and momentum thickness is given by Equations 7 and 8

respectively:

εδ∗
i
(y) = −

∆y3

12u∞
∂2u

∂y2
, (7)

and

εθi(y) =
∆y3

12u2∞
(
∂2u

∂y2
(u∞ − 2u) − 2(

∂u

∂y
)

2

) . (8)

In Figure 11 the contribution to the total error as a function of wall-

normal distance, y, as calculated using Equations 7 and 8 is presented for

three boundary-layer profiles with different kinematic shape factors. Noting

the logarithmic scale on the ordinate, it is clear that the greatest contribu-

tion to the total error occurs close to the wall in all cases. In addition, it is

apparent that this phenomenon is exacerbated as the shape factor decreases.

Furthermore, Figure 11 demonstrates that as the shape factor is decreased, the

region of primary error moves closer to the wall. Figure 11 illustrates that it is

not the sampling rate which is of primary importance, but rather the position

of the first point away from the wall, where in this analysis y1 = δ/(N − 1).

Indeed, any data gathered above y/δ ≳ 0.05 is insensitive to the discretisation.

See Figure 11. The measurements towards the boundary-layer edge are not
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very influential. This signifies that determining the boundary layer thickness

accurately is not necessary †.

Figures 9, 10, and 11 demonstrate that the wall-proximity of the first data

point is the most important aspect in determining the error in the boundary-

layer integral parameters. This fact has a number of consequences for our anal-

ysis. Up until now, by considering only uniform sampling, we have been indi-

rectly setting the location of the first data-point from the wall at y1 ≡ δ/(N−1).

However, the position of the first data-point is not typically determined by

the overall sampling rate, but, in fact, by experimental limitations such as

the presence of reflections (in the case of optical boundary-layer measure-

ment techniques) and/or geometric restrictions (in the case of Pitot probes or

hot-wires). Consequently, it necessary to reformulate the correction technique

presented in Figure 8 to be more relevant to experimental data-sets.

To maximize the relevance of this article’s analysis, the correction technique

introduced in Section 2 needs to be reformulated so that the error correction

can be based on the non-dimensional position of the first data-point from the

wall, y1/δ, instead of the number of samples, N . To keep the analysis simple

enough to retain a graphical look-up chart, much like Figure 8, we retain a two

degree-of-freedom problem based on shape factor, Hi, and the position of the

first data-point, y1/δ. As a result, we restrict the analysis to only consider the

integration error between the wall and the first data-point‡. Nonetheless, the

insensitivity of the error due to sampling in the outer portion of the boundary

layer, as presented in Figure 11, demonstrates that such a simplification is

valid for all but the lowest measurement resolutions above the position of the

first velocity measurement u(y1).

†While the determination of the boundary-layer thickness is not crucial for the integral
parameters its accurate determination is certainly useful for other comparative purposes

‡In the analysis, the number of samples above y1 was set to 600 which approximates a
continuous profile
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Implementation of an analysis based on the first data-point, y1, instead of

the overall measurement resolution, N , leads to the data that is presented in

Figure 12. In this figure, the error in the true shape factor, ∆Hi
, as a function

of the calculated shape factor, HiCALC, for various wall-normal proximity of

the first measured data-point, y1/δ, is shown graphically.

Figure 12, much like Figure 8, can be used to estimate the true shape

factor, Hi from the calculated shape factor, HiCALC and the location of the

first measurement from the wall, y1/δ. Similarly to the original look-up chart

presented in Figure 8, using the look-up chart of Figure 12, the true boundary-

layer shape factor, Hi can be estimated to within 1% without the requirement

to collect data in close proximity to the wall. Figure 12 allows the error incurred

as a result of experimental limitations to be estimated and largely negated in

cases where y1/δ ‘is limited’.

Unlike Figure 8, Figure 12, shows that a high sampling rate (especially

at low shape factors) is no longer a requirement to achieve a small error, or

equivalently a large correction factor. This is advantageous because, as previ-

ously discussed, the measurement resolution, N , required to give acceptable

error levels (5% or better) without introducing a correction is approximately

fifty data-points, N5% = 50, which is unviable in many applications.

Up until this point, our discussion has been largely limited to instances with

uniformly spaced data-points. However, it is not uncommon for experimental

investigations to use logarithmically spaced points to account for the higher

velocity gradients in the near-wall region—see, for example, De Graaff and

Eaton [2000]. To examine the benefit of adopting such a non-uniform spacing,

the analytical profile developed in Figure 4 was sampled with fifty data-points,

N = 50, with the position of the first data-point, y1/δ, a free variable such that

y0 = 0, y1 is variable, and the remaining data-points, y2–yN , were spread

both uniformly and logarithmically up to the boundary-layer edge, y = δ. A
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comparison of the errors on the boundary-layer integral parameters as a result

of uniform and logarithmic spacing is shown in Figure 13(a).

Across the range of y1/δ shown in Figure 13(a), there is little discernible

difference between the cases employing linear and logarithmic spacing. Only

when the first data-point, y1, falls below 1% of the boundary-layer thickness,

y/δ < 0.01, is there a clear benefit to the logarithmic spacing—including a phys-

ical trend towards zero error as y1 tends to 0. It is clear from Figure 13(a),

however, that the advantage is only noteworthy at very small y1, and, unfor-

tunately, such distances are much closer to the wall than is realisable in many

applied aerodynamic investigations.

The potential benefit of employing logarithmic spacing is demonstrated in

more general form in Figure 13(b). In Figure 13(b), the critical position of

the first data-point required to give a 5% error in all boundary-layer integral

parameters, y1(5%)/δ, as a function of the measurement resolution,N , is shown.

For example, for a measurement resolution of fifty, N = 50, Figure 13(a) shows

that the largest error in boundary-layer integral parameters passes 5% when

y1/δ = 0.021, which yields the corresponding point in Figure 13(b), y1(5%)/δ =

0.021. Performing a similar analysis at various measurement resolutions, N ,

for both uniform and logarithmic spacing, leads to the curves in Figure 13(b).

It is apparent from Figure 13(b) that above a certain number of data

points, the critical position of the first velocity measurement required to give

a maximum error of 5%, y1(5%)/δ is independent of the measurement reso-

lution, N . This occurs at approximately 40 data-points in the case of linear

spacing and at approximately 20 in the case of logarithmic spacing. Below a

measurement resolution of forty, N < 40, there is an advantage to employing

logarithmically spaced data-points. At low measurement resolutions the in-

terpolation between data-points, and not just the interpolation between the

first data-point, y1, and the wall, is significant. The advantage of logarithmic
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spacing can also be achieved by clustering a handful of data-points near to the

wall, based on the resolution of your measurement technology. If it is possible

to achieve 30–40+ data-points there is no advantage to employing logarithmic

spacing: Whether uniform or logarithmic spacing is utilized, the position of

the first data-point, y1, dominates the error in the boundary-layer integral pa-

rameters. The error correction chart presented in Figure 12 is useful whether

uniform or logarithmic spacing is utilized.

In summary, the first point from the wall, y1/δ, is the key parameter in

determining the error in the kinematic boundary-layer shape parameter due to

the unavoidable discrete nature of experimental data-sets. We should always

strive to improve the near-wall resolution of our measurement technologies,

but in instances where even the best measurements lie more than 0.01δ above

the wall, the correction methodology presented in Figure 12 can be used to

gain a better estimate of the true boundary-layer integral parameters.

4 Alternative calculation methods

4.1 Wall modeling

The analysis in Section 3 demonstrates that the most significant contributor to

the error inherent in the numerical integration is data (or more precisely a lack

of data) in the near-wall region. One method to overcome this deficiency is to

add data-points near the wall using a wall model. There is general agreement

that very close to the wall, where turbulence is damped out, the velocity profile

is linear. See Lindgren [1965] and White [2006]. In other words:

τw = µw
u

y
, (9)
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which, with the introduction of the wall-shear stress and some rearrangement,

leads to

u

uτ
=
ρwy

µw
, (10)

or, simply,

u+ = y+ . (11)

The region in which Equation 11 is valid is generally accepted to be up to

a non-dimensional wall-distance based on inner-variables of 5, y+ = 5. This

region, y+ ≤ 5, is referred to as the sub-layer.

To implement this wall model, however, the skin-friction velocity, uτ , must

be estimated. To do this, the experimental data can be fitted to the log-law

region,

u+ = (1/κ) log(y+) +B , (12)

using a least squares method to determine the wall-friction velocity, uτ—much

like a Clauser plot. For compressible flows, a modified form of the log-law is

appropriate, often referred to as a van Driest [1951] transformation. Once the

skin-friction velocity, uτ , has been estimated velocity data from the wall model

can be added in the sub-layer to complement the experimental data. Since the

sub-layer velocity profile model is linear and in this instance the trapezium

rule method of integration is being used, the only data-point that needs to be

added to the experimental data is the velocity at the edge of the sub-layer,

which we will include at y+ = 5. This leads to the data-point

(y, u) = (5νw/uτ ,5uτ) , (13)
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which is then added to the experimental data. The calculation of the integral

boundary layer parameters then proceeds as before.

To illustrate how the introduction of this wall model can help to reduce

errors in the calculation of the boundary-layer integral parameters, the error

in the boundary layer integral parameters for the zero-pressure-gradient an-

alytical boundary-layer of Section 2.1 and Figure 4 is once again calculated,

but this time with the inclusion of the wall model.

The variation of the error incurred in the calculated displacement thick-

ness, ∆δ∗
i
, momentum thickness, ∆θi , and shape factor, ∆Hi

, as a function of

the measurement resolution, N , are shown in Figure 14 §. For comparative

purposes, the corresponding curves in the absence of any modeled data, from

Figure 5, are included in Figure 14 as dashed lines.

Comparing the errors in the boundary-layer integral parameters with and

without the wall model in Figure 14, it is visible that the inclusion of the

wall model has led to a substantial reduction in the errors in all boundary-

layer integral parameters relative to the standard method of calculating the

boundary-layer integral parameters (Section 2). Much like before the shape fac-

tor Hi remains the variable with the greatest overall error (an over-prediction).

Once again, an error of 5% is chosen as our desired error level. Whilst, for the

unmodified profile, the minimum measurement resolution to achieve the 5%

error is fifty, N5% = 50, for the wall modeling method, this is reduced to thirty

data-points, N5% = 30. Thus for a typical experimental dataset such as that

of Titchener [2013], in which the measurement resolution of the boundary-layer

measurements was typically thirty, N ≈ 30, the error in the boundary-layer in-

tegral parameters would be within 5% of their true value if a wall model had

been included.

§Note that the additional wall modelled point is not included in the definition of the
measurement resolution, N .
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Extending the analysis to boundary layers with various velocity distribu-

tions, the DNS data has once again been sampled but this time simultane-

ously combined with the wall model. Once more, the measurement resolution

required to achieve 5% error or less in all the boundary-layer integral parame-

ters, N5%, has been calculated for each of the profiles provided by the data-sets

of Table 1. The result of such an analysis is presented in a similar fashion to

Figure 6 in Figure 15, where the critical measurement resolution for a 5%

error, N5%, is plotted versus true shape factor, Hi. In Figure 15 the curve-fit

to the data from the standard method of Figure 6 is reproduced for compar-

ative purposes. What is apparent from Figure 15 is that the reduction in the

measurement resolution requirement for a 5% error level, N5%, is realized at

any shape factor, Hi. This is a useful result as it means that no restriction is

required as to when the simple wall modeling method can be applied. Com-

paring the curve-fits for the boundary-layer data with and without the wall

model in Figure 15, it can be seen that the trend with shape factor, Hi, is

very similar with or without modeling, i.e., the error is much more sensitive to

measurement resolution for the lower shape factors. This is not an unexpected

result given that the fundamental characteristics of the evaluation method are

unchanged by wall modeling.

It should be remembered that to implement the wall-model method, the

skin-friction velocity, uτ , must be estimated. Hence, any error in this estima-

tion should not be neglected, as an error in the skin-friction velocity, ∆uτ ,

will propagate as an additional error source to the boundary-layer integral

parameters. It is not within the scope of this article to examine the factors

that influence the wall-friction velocity, uτ , or quantify their magnitude. For

a detailed account on estimating the wall-friction velocity and any associated

uncertainty, the reader should refer to Kendall and Koochesfahani [2008], Örlü

et al. [2010], and Rodriguez-López et al. [2015].
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The magnitude of the error in the skin-friction velocity, ∆uτ , in high

Reynolds number laboratory-scale wind tunnel investigations cannot be gener-

alized as its magnitude will depend strongly on the specifics of the experimen-

tal setup in question. However, it is possible to obtain a first approximation

for the influence of an error in the wall-friction velocity, ∆uτ , by examining

the sensitivity of the boundary-layer integral parameters to the wall-friction

velocity by imposing an artificial error in the skin-friction velocity, ∆uτ and

then evaluating the resulting change in shape factor, Hi. To this end, curves

of the error incurred in the shape factor, ∆Hi
, versus measurement resolution,

N , for two profiles with different shape factors, Hi = 1.30 and Hi = 2.52, are

shown in Figure 16(a) and (b), respectively. The various curves in each figure

represent different error levels in the skin-friction velocity ∆uτ , used to imple-

ment the wall modeling method. By comparing the differences in the various

curves in Figure 16 to the overall error in calculated shape factor, HiCALC,

at a given measurement resolution, N , it is visible that the contribution to

the total error due to the uncertainty in the skin-friction velocity, uτ is small.

For example, when calculating the integral parameters of a Hi = 1.30 profile

using a dataset sampled by fifteen data-points, N = 15, an error of 10% in

the skin-friction velocity, ∆uτ = 10%, contributes 1.25% to the overall error of

14%, ∆Hi
= 14%. For a Hi = 2.52 profile sampled with the same measurement

resolution, N = 15, an error of 10% in the skin-friction velocity,∆uτ = 10%,

contributes 0.7% to the overall error of 2%, ∆Hi
= 2%. Thus, even with an

uncertainty of 10% in the value of skin-friction velocity, uτ , the wall modeling

method represents a vast improvement over the standard method presented in

Section 2.

In principle a look-up correction chart of correction factors much like Fig-

ure 12 can also be generated for the approach including the wall model. How-

ever, the error incurred in the boundary-layer integral parameters across a wide
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range of shape factors, Hi, and measurement resolutions, N , is potentially low

enough—the error is less than 10% for all but the lowest shape factors above

a measurement resolution of twenty, N > 20—to not warrant using a look-up

chart. Solely employing the wall model is also attractive because it is based on

physical observations and scaling arguments as opposed to the standard cor-

rection method in Section 2 which employs a semi-empirical correction factor.

As a result, it is suggested that in cases where a good approximation of the

skin-friction velocity can be made, it is beneficial to include the wall model in

the calculation of the boundary-layer integral parameters.

Whether or not the wall-model is employed in the calculation of the boundary-

layer integral parameters, the introduction of near-wall data-points, once again,

highlights the importance of velocity data close to the wall.

4.2 Gradient based parameters

Instead of adding data-points near the wall, an alternative method of im-

proving the calculation of the boundary-layer integral parameters is via a

gradient-based formulation. If we integrate by parts and employ the boundary

conditions u(y > δ) = u∞ and u(y = 0) = 0, the standard definitions of dis-

placement thickness, δ∗i and momentum thickness, θi, Equations 4 and 5, may

be rewritten leading to:

δ∗i =
1

u∞
∫

∞

0
y
∂u

∂y
dy (14)

and

θi =
2

u2∞
∫

∞

0
yu
∂u

∂y
dy −

1

u∞
∫

∞

0
y
∂u

∂y
dy . (15)

This alternative form of the boundary-layer integral parameters is primarily

used to avoid ambiguity in defining the boundary-layer edge in cases where
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there are strong wall-normal pressure gradients. For example, on the curved

surface of an airfoil; Spalart and Watmuff [1993], Colliss et al. [2014]. It might

be expected that these alternative formulae will also reduce the calculation

errors, since the introduction of the wall normal distance, y, in the integrands

of both parameters will reduce the contribution of the near-wall region to the

total integral value. Based on this possible benefit, the gradient method was

implemented in this study by computing the gradients using centred finite

difference approximations, before integrating using the trapezium rule. The

results of this analysis for three different boundary layer profiles from the

DNS data listed in Table 1 are shown in Figure 17. For the lower shape factors

shown in Figure 17(a) and (b), the curves of calculated displacement thickness

δ∗iCALC exhibit a similar trend to Section 2.1, with the error in the calculated

displacement thickness, δ∗iCALC, inversely proportional to the measurement

resolution, N . However, unlike Section 2, the true momentum thickness, θi,

is no longer underestimated, but overestimated. This is a noteworthy and

desirable characteristic, because, as a direct consequence, the error in the

shape factor, ∆Hi
, is significantly reduced relative to the standard integration

approach (Section 2) due to a partial cancellation of errors. See Figure 17(a)

and (b).

Yet, unlike all prior analysis in this article, the trend observed using the

gradient-based approach at low shape factors (Hi = 1.30 and 1.62) is not

consistent with that at the highest shape factor analyzed, Hi = 2.52. In the

case of the higher shape factor profile, Hi = 2.52, presented in Figure 17(c),

both the calculated displacement thickness and momentum thickness, δ∗iCALC

and θiCALC, underestimate the true parameters. On the other hand, the ob-

served overestimate in true shape factor, Hi, is similar to that produced by

the gradient-based approach at low shape factors. Contrary to the standard

and wall-model methods, the limiting factor to retain all parameters within a
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certain error tolerance is the displacement thickness, δ∗i , for low shape factors,

Hi ≤ 1.4, and the momentum thickness, θi, for higher shape factors, Hi > 1.4.

Thus, the critical measurement resolution in this case, N5%, is defined as that

for which the maximum error in all three parameters is 5% or lower (previously

only the error in shape factor, ∆Hi
, was considered since this was always the

largest). Using this definition, it is once again possible to plot and then curve-

fit critical measurement resolution, N5%, against true shape factor, Hi. These

data are presented in Figure 18. The curve-fit for the standard method of

Section 2, which utilizes no modeling or gradient methodology is, once again,

included as a dashed line.

Comparing the curve-fits of the error in the calculation of the boundary-

layer integral parameters from the standard and gradient based methods in

Figure 18, it is apparent that the gradient-based formulation reduces the error

in the boundary-layer integral parameters for a given measurement resolution,

N . However, there is more scatter in the data of the gradient based approach,

compared with the other methodologies—compare Figures 6, 15, and 18. In

particular, a small group of points in the range 1.3 < Hi < 1.6 is seen to lie

some distance away from the remainder of the data. These points correspond

to favourable pressure gradient (non-equilibrium) boundary layers. The reason

that these should depart from the curve requires further investigation; but it is

suspected to be linked to increased velocity gradients in the near-wall region.

An advantage of the gradient-based formulation over the wall modeling

method is that it does not rely on an estimate of the skin-friction velocity.

Yet, the necessity to compute the gradient of measured velocity profiles does

make this method susceptible to errors in the original boundary-layer velocity

measurements—which are unavoidable. Again, while it is beyond the scope

of this paper to generalize the sources and magnitudes of noise introduced

by the various techniques for measuring velocity, it is possible to assess the
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sensitivity of the gradient-based approach to random Gaussian noise relative

to the standard method.

To examine the influence of a velocity profile that includes noise in the ini-

tial velocity measurements, a random Gaussian noise signal was generated and

added to the sampled boundary layer profiles before the integral boundary-

layer parameters were calculated. An example of a noisy boundary-layer profile

produced by this method is shown in Figure 19(a). In this example, the mag-

nitude of the noise was set to be 1% of the local velocity, u(y), and this was

imposed at every measurement location in the profile except y = 0. (Whether

this 1% noise level is representative of a typical magnitude and distribution

of noise is difficult to verify, but if anything this level of error is thought to

underestimate typical velocity measurement errors). The integral parameters

of this noisy boundary-layer profile were then calculated using the gradient-

based method, Equations 14 and 15, as well as by the unmodified standard

integration method, Equations 4 and 5. The random nature of the noise intro-

duced in this analysis causes the resulting error curves to also exhibit random

fluctuations. Thus to obtain an average quantification of the effect of noise for

each measurement resolution the process of adding a random Gaussian sig-

nal and then calculating the boundary-layer integral parameters was repeated

1000 times. The standard deviation of the error in the boundary-layer integral

parameters was then calculated based on the 1000 sample profiles. The result

of introducing noise before calculating the boundary-layer integral parameters

is presented in Figure 19. This figure presented data for a low shape factor,

Hi = 1.30, boundary-layer.

Examining Figure 19, it is seen that, although the noise level is small, the

gradient method incurs a notably large error—particularly in the calculated

displacement thickness, δ∗iCALC and calculated momentum thickness, θiCALC:

For the noise level introduced here of 1%, it is seen that the integral param-



On the Calculation of Boundary-Layer Parameters from Discrete Data 29

eters are only reliably accurate to within 10%, even for large measurement

resolutions, N > 50. In this particular instance, the calculated momentum

thickness, θiCALC, is the limiting factor. By contrast, integration using the

standard parameter definitions, Equations 4 and 5, also shown in Figure 19,

is much more robust, with little (≤ 1%) excess error introduced by the ran-

dom noise. It is worth noting that the robustness of the standard approach to

noise demonstrated here in Figure 19 verifies our earlier assertion that errors

in the velocity measurements are only a small overall contributor to the total

error in the boundary-layer integral parameters (as long as the gradient-based

approach is avoided).

A successful implementation of the gradient-based approach thus requires

the noise inherent in the velocity data to be smoothed out before integration

is performed. Once this is done, the computed integral parameters can have

an improved error relative to the standard method of Section 2. However, the

gradient-based approach cannot be generally recommended due to its suscep-

tibility to noise in the initial boundary-layer velocity measurements (though

in certain situations it may be beneficial for alternate reasons).

5 General Recommendations

The above analysis has examined various errors associated with the calculation

of kinematic integral boundary layer parameters from discrete data sets. Based

on the findings of Sections 2–4, the following method is recommended for

minimizing the error in the boundary-layer integral parameters due to the

discrete nature of experimental data-sets:

First and foremost, the experiment should be designed such that the po-

sition of the first velocity measurement, y1, is as close to the floor/wall as

possible. The number of points between the position of the first measurement,
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y1, and the edge of the boundary layer, δ, is less critical, but somewhere in the

range 20–40 is preferable. At the lower end of this range, it is worth employing

logarithmic spacing.

Once the boundary-layer profile has been measured, an estimate of the

boundary-layer integral parameters should be made using trapezoidal numeri-

cal integration (remembering to add the no-slip condition, u = 0 at y = 0) to es-

timate the boundary-layer integral parameters, δ∗i,CALC, θi,CALC and Hi,CALC.

The best estimate of the true values of the boundary-layer integral parameters,

δ∗i , θi and Hi, can then be obtained using the correction factor methodologies

presented in this paper.

Of the three possible methodologies for correcting the boundary-layer in-

tegral parameters introduced in this article, the basic correction approach

introduced in Section 2 and presented graphically in look-up table form in

Figure 12 is advocated for widespread use. It is the simplest and the most ro-

bust method, as it invokes no additional assumptions and is least susceptible to

external errors. Consequently, the authors recommend that this methodology

be utilized in the vast majority of instances.

If implemented appropriately, the wall-modeling and gradient based ap-

proaches offer the advantage of a much reduced correction factor. In instances

where accurate velocity measurements are obtainable in the log-law region,

the wall-model method has the potential to be the most preferable option.

At the very least, it should be compared to the basic approach. In instances

with high wall-normal pressure gradients it is likely to be beneficial to employ

the gradient-based approach. When employing either the wall-model or the

gradient-based approach a correction chart similar to Figure 12 can be used.

Obviously, the most appropriate methodology will vary between applications

and the experimental investigator will need to use their own judgement where
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calculating the integral parameters. The suggestions made here should only

be used as a guideline for experimentalist best practice.

6 Conclusions

An investigation of the error sources inherent in the calculation of boundary-

layer integral parameters has been undertaken. The effect of the overall sam-

pling resolution, distance of the first point from the wall, and wall/floor mis-

alignment have been considered. The analysis was performed on boundary-

layer profiles obtained from analytical models and DNS investigations.

It has been demonstrated that the error in the boundary-layer integral

parameters is significant (≤ 5%) for most data-sets under experimental con-

ditions typically achievable for applied aerodynamic research. Furthermore, it

has been shown that the magnitude of the error in the boundary-layer integral

parameters is an inverse function of the kinematic shape factor of the veloc-

ity profile. In other words, boundary-layer profiles with a low kinematic shape

factor require significantly more data-points to achieve a given error level com-

pared to a boundary layer with a high kinematic shape factor. Crucially, the

observation that it is possible to parameterize the error in the boundary-layer

integral parameters on the true kinematic shape factor has led to to a new

error correction methodology using a simple look-up chart/table.

The greatest contribution to the error in the boundary-layer integral pa-

rameters is introduced in the region between the wall and the first data-point;

errors introduced from data above the position of the first velocity measure-

ment typically account for 10–20% of the overall error. For this reason, a

correction factor look-up table based on the position of the first data-point,

y1, was generated. Such a parameterization is thought to be very valuable
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because the position of the first data-point, y1, is typically limited by experi-

mental constraints.

The effect of uncertainty in the wall distance has also been examined. It has

been demonstrated that such a misalignment can introduce appreciable errors

even for relatively small uncertainties in the wall distance. The magnitude of

this error depends strongly on both the shape factor and skin friction coefficient

of the boundary layer profile.

Two alternative methods of calculation of the integral parameters have

also been investigated: wall modeling and a gradient-based formulation. Both

methods can reduce the error in the initial calculation of the boundary-layer

integral parameters. However, both are susceptible and therefore sensitive to

external influences. Although this sensitivity could not be generalized by the

present paper, the effects of both have been demonstrated. Both methods

showed promise relative to integration on the original data sets using the stan-

dard parameter definitions. Nevertheless both methods would still benefit from

a look-up table correction factor, largely mitigating the benefit of adopting ei-

ther method for the purpose of reducing the calculation errors. Consequently,

the authors recommend the use of the look-up chart in Figure 12 as the best

method for mitigating the error incurred in the boundary-layer integral pa-

rameters caused by discrete boundary-layer data.
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Table 1 Details of data sets used for error analysis.

Symbol Type Hi Source

DNS, M=1.5 shock/boundary layer interaction 1.40–2.80 Pirrozoli et al. 2010

DNS, M=2 zero pressure gradient 1.36–1.57 Bernardini et al. 2011, 2011a, 2011b

DNS, M=3 zero pressure gradient 1.40–1.42 Bernardini et al. 2011, 2011a, 2011b

DNS, M=4 zero pressure gradient 1.39–1.42 Bernardini et al. 2011, 2011a, 2011b

DNS, zero pressure gradient 1.39–1.53 Schlatter and Orlu 2010

DNS, zero pressure gradient 1.52–1.58 Komminaho and Skote 2002

DNS, adverse pressure gradient 1.58–1.99 Komminaho and Skote 2002

DNS, zero pressure gradient 1.42–1.67 Spalart 1988

DNS, favourable pressure gradient 1.43–1.54 Spalart 1986

DNS, favourable pressure gradient 1.32–1.38 Marquille et al. 2008

Analytical compound model, M = 1.4 1.24–1.36 -
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unmodified profile, as presented in Figure 5
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profiles (originally in Figure 6)
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Appendices

A. Numerical integration errors

In Section 2.2 the variation in error incurred due to numerical integration is

shown as a function of wall-normal height. For each y this has been estimated

by considering the error in the integral between two points around y, y1 =

y−∆y/2 and y2 = y+∆y/2. Let f be a smooth function between the two points

y1 and y2. The value of the integral I = ∫
y2
y1
f dy is estimated by numerical

integration which involves interpolating between the end points using a curve

of order n. The general formula for the error in the resulting value of the

integral is given by:

εI =
1

(n + 1)!

∂(n+1)f
∂y(n+1) ∫

y2

y1
(ỹ − y1)(ỹ − y2) dỹ

=
1

(n + 1)!

∂(n+1)f
∂y(n+1)

{−
1

6
(y2 − y1)

3
}

= −
∆y3

6(n + 1)!

∂(n+1)f
∂y(n+1)

(16)

For details the reader should refer to Milne-Thomson [1933 reprinted 1951],

Delves and Walsh [1974], Nonweiler [1984]. In the present paper, the trapez-

ium rule has been used, which interpolates with straight lines, i.e. n = 1.

Equation 16 therefore shows that the error will be proportional to the second

derivative of f . For the boundary layer integral parameters:

∂2fδ∗i
∂y2

=
∂2

∂y2
(1 −

u

u∞
) = −

1

u∞
∂2u

∂y2
(17)
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∂2fθi
∂y2

=
∂2

∂y2
{
u

u∞
(1 −

u

u∞
)}

=
1

u2∞

∂2

∂y2
(uu∞ − u2)

=
1

u2∞

∂

∂y
(u∞

∂u

∂y
− 2u

∂u

∂y
)

=
1

u2∞
((u∞ − 2u)

∂2u

∂y2
− 2(

∂u

∂y
)

2

) .

(18)

Inserting Equations 17 and 18 into Equation 16 recovers the quoted for-

mulae, Equations 7 and 8.

B. Gradient-based integral parameters

The integral boundary layer parameters may be redefined in terms of velocity

gradients using integration by parts. Starting with the kinematic displacement

thickness, δ∗i , Equation 4: integrating the first term directly and the second

term by parts gives:

δ∗i =
1

u∞
([u∞y]∞0 − {[uy]∞0 − ∫

∞

0
y
∂u

∂y
dy}) .

Inserting the boundary conditions, u(y → ∞) = u∞ and u(y = 0) = 0, en-

ables the first two terms to cancel, leaving the result quoted in equation 14

(section 4.2). Similarly for the kinematic momentum thickness, θi, integrating

both terms in the integrand of Equation 5 by parts yields

θi =
1

u2∞
∫

∞

0
(uu∞ − u2) dy

=
1

u2∞
{[u∞uy]∞0 − ∫

∞

0
u∞y

∂u

∂y
dy − ([u2y]∞0 − 2∫

∞

0
yu
∂u

∂y
dy)} .
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Again using the boundary conditions, the terms [u∞uy]∞0 and [u2y]∞0 cancel.

Some minor rearrangement leads directly to Equation 15 in section 4.2.
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