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Abstract Diabetes Mellitus is one of the leading diseases in the developed world. In order to better regu-
late blood glucose in a diabetic patient, improved modelling of insulin-glucose dynamics is a key factor in
the treatment of diabetes mellitus. In the current work, the insulin-glucose dynamics in type II diabetes
mellitus can be modelled by using a stochastic nonlinear state-space model. Estimating the parameters of
such a model is difficult as only a few blood glucose and insulin measurements per day are available in a
non-clinical setting. Therefore, developing a predictive model of the blood glucose of a person with type II
diabetes mellitus is important when the glucose and insulin concentrations are only available at irregular
intervals. To overcome these difficulties, we resort to online Sequential Monte Carlo (SMC) estimation
of states and parameters of the state-space model for type II diabetic patients under various levels of
randomly missing clinical data. Our results show that this method is efficient in monitoring and estimating
the dynamics of the peripheral glucose, insulin and incretins concentration when 10%, 25% and 50% of the
simulated clinical data were randomly removed.

Keywords Type II diabetes mellitus · Online identification · Bayesian framework · SIR particle filtering

1 Introduction

Diabetes mellitus is a serious disorder that can cause death [1]. It occurs when the control of blood glucose
levels fails. Glucose is produced in the digestive system by consuming food such as bread, potatoes, rice,
pasta and fruit. Blood glucose level is regulated by insulin, a hormone secreted from the islet beta cells of
the pancreas. Type I and type II diabetes mellitus are two types of diabetic diseases. About ninety percent
of people with diabetes are suffering from type II diabetes [1, 2, 3].

Type II diabetes occurs when the pancreas does not produce enough insulin or the human body cells
become resistance against insulin [1]. Insulin resistance happens when the sensitivity of peripheral cells to
the metabolic action of insulin is decreased due to genetic factors, environmental factors, obesity, hyperten-
sion, dyslipidemias, and/or coronary artery diseases [4]. Exercise and healthy dieting can initially control
the blood glucose concentration in type II diabetic patients. However, oral anti-diabetic agent and insulin
treatment are required in patients with moderate to severe type II diabetes mellitus. Physicians may provide
more appropriate treatments if the etiological factors of patients diabetic conditions are known. [5].There-
fore, diagnosing or detecting the dysfunction of different organs such as the pancreas, liver, muscles and
adipose tissues will be very useful for selecting the suitable medications for diabetic patients.

In diabetic patients, the glucose metabolic rates represent the health status of the liver, muscles and
adipose tissues. To measure the glucose metabolic rates in the type II diabetic patients, the measurement
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of the glucose and insulin concentrations in different parts of the body are needed. However, clinical mea-
surements of all necessary concentrations deep inside different organs or tissues are just not practical or
realistic. Therefore, physicians mostly rely on a few measurements from patients blood and/or capillary
glucose measurements at regular or irregular intervals for clinical decisions [5].

Previous studies have shown that important clinical data may be missing owing to different reasons such
as inability to record clinical results, infrequent sampling by patients, and illegible hand writing. Lack of
complete knowledge about the health status of the diabetic patients poses more problems to physicians in
managing type II diabetes while they need time oriented clinical data of past and present status of diabetic
patients [6, 7, 8].

Since only a few blood glucose measurements per day are available in a non-clinical setting, developing a
predictive model of the blood glucose of a person with type II diabetes mellitus is important. Such a model
may provide useful information to diabetic patients of dangerous metabolic conditions, enable physicians
to review past therapy, estimate future blood glucose levels, and provide therapy recommendations. It can
also be used in the design of a stabilizing control system for blood glucose regulations [9, 10].

Many studies proposed on-line identification of type I diabetes mellitus using neural network modelling
approaches [10, 11, 12, 13]. Tresp et al. [10] developed a predictive model of the blood glucose of a person with
type I diabetes mellitus with partially missing clinical data by using a combination of a nonlinear recurrent
neural network and a linear error model. However, developing a nonlinear state-space model for type II
diabetes mellitus that can easily deal with missing data has received limited attention. The compartmental
minimal modelling (MINMOD) approach for type II diabetes mellitus [14] has been used widely in many
studies. Recently, based on the Sorensen model [15], a detailed nonlinear model has been developed by Vahidi
et al. [16] for the type II diabetic patients. However, none of these approaches considered identification of a
type II diabetes model from clinical data, which contain missing data at random intervals.

The goal of this work is to develop a blood glucose predictive model for a type II diabetic patient and
the model can be estimated by using patient data collected under normal everyday conditions rather than
a well-controlled environment typically done in a clinical facility. Such a model should be able to detect
dangerous metabolic states of a patient, and optimize the patient’s therapy.

In this study, we use online Bayesian estimation framework to estimate a stochastic nonlinear model for
type II diabetes mellitus using clinical data with missing data at random intervals. We adopt the detailed
nonlinear model developed by Vahidi et al. [16, 17] for type II diabetes since the Vahidi model is a much
more detailed model comparing with the MINMOD approach. The Vahidi model is able to effectively model
individual abnormalities by characterizing distinct compartments as the faulty organs. To artificially create
clinical data sets with missing data at random intervals, we then randomly remove 10%, 25% and 50%
of the original available data obtained from the Vahidi model. At the end, glucose, insulin, and incretins
concentrations, as well as the parameters of different compartments, are estimated from clinical data with
missing data at random intervals. These estimates can then be used to measure the glucose metabolic rates
in different organs of the type II diabetic patients.

There is an extensive discussion on estimating the states and the parameters of the nonlinear state-space
models from partially missing data using mathematical approaches such as Bayesian filters, Particle filters
(PFs), Expectation-Maximization (EM) algorithms, Sequential Importance Resampling (SIR) particle filters
[18, 19, 20, 21]. In many studies, Baysian estimation has been used in metabolism and physiological modelling
[22, 23, 24]. Among these methods, we use the SIR based PF proposed by Tulsyan et al. [25] for online
Bayesian estimation of the states and the parameters of the Vahidi model since it needs less computational
cost when a large number of unknown states and parameters must be estimated simultaneously. To do this,
a clinical data set, as well as a prior information on the unknown states and parameters of the Vahidi model,
are needed. This kind of information can be gathered from physical considerations and population studies.

This paper is organized as follows. In section 2, the mathematical model of type II diabetes mellitus is
provided. In sections 3 and 4, a summary description of the SIR filtering algorithm is discussed. The on-line
parameters estimation results of the nonlinear type II diabetic model are presented in section 5 when 10%,
25% and 50% of missing clinical data are removed randomly. Then, the application of SIR particle filter-
ing technique in detecting the organ dysfunction of a group of type II diabetic patients under irregularly
sampled clinical data is presented.

2 Mathematical modelling of the type II diabetes mellitus

The model of the glucose-insulin interaction in type II diabetic patients used here is based on the Vahidi
model [16]. In this model, the concentrations of three substances (i.e., glucose, insulin and glucagon) and
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their interactions are described by three main sub-models based on the Sorensen model [15]. Each sub-
model is divided into individual numbers of compartments representing specific parts or organs of a human
body. The number of compartments is different in each sub-model. As can be seen in Fig. 1, the insulin
sub-model has seven compartments: brain, liver, heart and lungs, periphery, gut, kidney, and pancreas.
The blocks represent different compartments and the arrows indicate the blood flow directions. The glucose
sub-model is similar to the insulin sub-model except that the pancreas compartment is excluded. Since the
glucagon concentration is considered to be identical in all parts of the body, only one compartment is used
in the glucagon sub-model [26]. In each sub-model, mass balance equations are written for all individual
sub-compartments (except for the pancreas, which will be described in more details in Appendix A). The
general form of the mass balance equation on each sub-compartment is shown as follows [27]:

V
dY

dt
= Q(Yin − Yout) + rp − rc. (2.0.1)

where V is the volume of sub-compartments, Y is the concentration of either insulin, glucose, or glucagon, t
is time, Q is blood flow rate, and rP and rC are metabolic production and consumption rates of the material
balance substance, respectively. Since the glucagon sub-model has only one compartment, blood flow rate
is set to zero and the glucagon mass balance equation has only the metabolic production and consumption
rates. The metabolic rate of different substances takes on the following general form [27]:

r = MI(t, I)MG(G)MΓ (t, Γ )rB . (2.0.2)

where I, G, and Γ represent insulin, glucose, and glucagon substances, respectively. M i is the i’s multiplier,
which represents the regulatory effect of i substance on the metabolic rate, and rB is the metabolic rate at
the basal condition. The general mathematical form of multiplicative effect of each substance is [27]:

M i = A+B tanh[C(
i

iB
−D)]. (2.0.3)

where iB is the concentration of i at basal condition and A, B, C, and D are parameters, which are unknown
and should be estimated.

Fig. 1: Shematic diagram of insulin submodel [16]
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Later, the Vahidi model was modified to determine the variations of blood glucose concentration resulted
from an oral glucose intake by adding a model of gut glucose absorption in the gastrointestinal tract proposed
by Dalla Man et al. [28, 17]. In addition, the hormonal effects of incretins on boosting pancreatic insulin
secretion was included by adding a two compartment model of incretins production in order to simulate the
variations of incretins concentrations in blood circulatory system. Appendix A contains the details on the
complete model equations.

In the Vahidi model, two different clinical tests, oral glucose tolerance test (OGTT) and isoglycemic
intravenous glucose infusion test (IIVGIT) performed by Knop et al. [29, 30], were used for states and
parameters estimation. The clinical data sets are summarized in detail in section 5.1. Estimation of the
modified model parameters were carried out by minimizing the deviation of model predictions from the
available measurements of peripheral glucose, insulin and incretins concentrations. The deviation of model
predictions from the measured clinical data is minimized through the following objective function:

min
Θ

n∑
j=1

[(Gj − Ĝj)2 + (Ij − Îj)2]. (2.0.4)

where Gj and Ij are peripheral glucose and insulin concentrations at time j obtained from the model
respectively; Ĝj and Îj are the corresponding clinical measurements; n is the number of samples in the clin-
ical data set; and Θ is the vector of parameters containing the glucose, insulin, and glucagon metabolic rates
[16]. Different parameters of metabolic rates will be obtained after the optimization procedure for each type
II diabetic patient since there are different peripheral glucose, insulin and incretins concentrations profile
for different patients.

In this study, the estimation of the Vahidi model parameters are carried out by the SIR particle filtering
method for data sets that contain randomly deleted simulated data described in the following sections. To
do this, the continuous time stochastic nonlinear state-space format of the Vahidi model [17] in equation
(2.0.1) is transformed to discrete time format as follows:

ŷt = g(x̂t, θ̂t, ut), (2.0.5)

where g is the measurement dynamic function variables and ŷt is the vector of concentration of either insulin,
glucose, or glucagon at sampling time t (Y in equation (2.0.1)) monitored and recorded by several sensors
and measuring devices. These devices record patient’s critical variables yt (output) in response to the test
action ut (input) implemented at some point in time indexed by t. For example, in the intravenous glucose
infusion test, insulin concentration measurements as output yt are recorded at regular intervals against
the infused glucose concentration as input ut. A summary description of this on-line estimation method is
provided in the next following sections.

3 Response models

In clinical trials, several sensors and measuring devices were used for monitoring the response of a pa-
tient to a clinical test. Let us assume that we have a sequence of time-tagged clinical measurements
y1:t = {y1, y2, . . . , yt} corresponding to the input action u1:t = {u1, u2, . . . , ut}, and that we are interested
in predicting the response yt+1 for some known input action ut+1. Such predictions are valuable to the
physician assessing the health of the patient during clinical trials. To solve this problem, we can assume
yt+1 is independent of {u1:t, y1:t}, in which case, the prediction of yt+1 is impossible. Alternatively, we can
assume yt+1 depends on the trend recorded in the past data {u1:t, y1:t}. For the latter assumption– which is
true for any causal system– a response model1 is useful in predicting the response of a patient to a clinical
test.

A reliable response model should not only accurately model a patient’s physical and biological response
to a clinical test, it should also account for the various uncertainties such as modelling and measurement
errors. For example, random measurement errors can be modelled by viewing yt as a random realization
of a stochastic process. In this work, we use stochastic state-space models (SSMs) to represent a response
model. Mathematically, a SSM can be represented as:

xt+1 = f(yt, θt, ut) + vt, (3.0.6a)

yt = g(xt, θt, ut) + wt, (3.0.6b)

1 A response model is a mathematical model describing the dynamics of the key internal states of a patient in response
to a clinical test.
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where xt describes evolution of the internal states of the patient. Physically, xt models the complete response
of a patient subject to a clinical test. Given the states xt, inputs ut and model parameters θt at time t, the
internal states evolve to xt+1. vt in equation(3.0.6a) is the state noise, which accounts for the unknown and
unmeasured variations in the states not captured by the response model. Due to the non-zero random state
noise vt, the states are not precisely known. Equation (3.0.6b) describes how sensor readings yt relate to
the states xt and parameters θt. wt in equation (3.0.6b) is the noise term, which accounts for the random
sensor noise. In clinical trials, measurements of only a few critical states are available at our disposal. This
is because the high cost or lack of appropriate sensing technology or devices precludes measurement of all
but key internal states. The state-space modelling framework is general, and can be used to represent a
wide class of response models, including the type II diabetes mellitus response model given in section 2.

In this paper, we use equation (3.0.6) for real-time estimation of the critical response variables, such
as blood glucose, insulin and incretins concentrations during clinical trial of patients with type II diabetes
mellitus. Monitoring these variables is critical as it enables the physicians to review past therapy, estimate
future blood glucose levels and provide therapy recommendations. To predict the critical variables using
equation (3.0.6), the model states and parameters, which are typically unknown for a patient need to be
estimated first. Given the state and parameter estimates, the model predictions at t can be computed as:

ŷt = g(x̂t, θ̂t, ut), (3.0.7)

where ŷt is the response predictions and x̂t and θ̂t are the parameter and state estimates, respectively.
Ideally, given an accurate estimate of the states and parameters, the model predictions should match the
clinical measurements as closely as possible. Any standard estimation approach involves fitting the model
using available clinical measurements; however, data fitting is not straightforward for SSMs because of
the following reasons: 1) the states are stochastic, which makes estimation of both states and parameters
challenging and 2) the clinical measurements are assumed to be irregularly sampled.

In this paper, we propose the use of Bayesian methods for real-time state and parameter estimation
in equation (3.0.6) under irregularly sampled clinical measurements. In the next section, a description of
real-time Bayesian estimation is provided.

Remark. There is a much larger appeal to use state-space modelling framework to represent response
models. From equation (3.0.7), it is evident that computing the response predictions using a SSM also
requires estimation of all the internal states of the patient. Thus, any method designed to compute the
response predictions gives away estimation of all the internal states as a side product. This is of immense
value to a physician, considering only a handful of the internal states are actually measured.

4 Real-time Bayesian estimation

Our objective is to estimate zt in real-time using clinical data {u1:t; y1:t}. Let zt = {xt, θt} denote an
extended vector of unknown states and parameters. It is further assumed that the clinical measurements
are recorded at irregular times, such that only a subset of y1:t is available for estimation at t. For notational
convenience we dispense with the input ut in the succeeding discussions; however, the method presented in
this paper holds with the inputs included.

In the Bayesian framework, the variables to be estimated are assumed to be random variables. The states
are inherently random due to the noise in equation (3.0.6a); and the parameters, which are unknown but
non-random are assumed to be random, such that zt = {xt, θt} is a vector of random variables. To set up
the Bayesian estimation, we assume z0 to be distributed with a prior density p(z0|y1:0). Also, we assume the
state and measurement noise are independent and identically distributed (i.i.d) zero mean finite variance
Gaussian sequences with the probability density functions (PDF) px(.) and py(.) known a priori.

4.1 Complete clinical data

First we consider the estimation problem using the complete clinical data set. Assuming y1:t to be available,
the real-time Bayesian estimation of zt at t involves computing the posterior density p(zt|y1:t). Here, p(zt|y1:t)
is a probabilistic representation of the statistical information available on zt conditioned on the clinical
measurements y1:t. Using the Bayes’ theorem and Total law of probability, p(zt|y1:t) can be recursively
computed in two steps, which are the update and prediction steps as shown below:
Update Step:

p(zt|y1:t) ∝ py(yt|zt)p(zt|y1:t−1). (4.1.1)
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Prediction Step:

p(zt|y1:t−1) =

ˆ
pz(zt|zt−1)p(zt−1|y1:t−1)dzt. (4.1.2)

In equation (4.1.1), py(yt|zt) is the measurement noise distribution or the likelihood function indicating
how likely it is for zt to have generated the clinical measurement yt. p(zt|y1:t−1) is a one-step-ahead prior
density representing statistical information on zt prior to the recorded clinical measurement yt. The prior
density p(zt|y1:t−1) is computed using equation (4.1.2), where pz(zt|zt−1) is the joint state and parameter
noise distribution and p(zt−1|y1:t−1) is the posterior distribution at t− 1.

Starting with p(z0|y0:1), in principle, the recurrence relation between equations (4.1.1) and (4.1.2) pro-
vides a complete Bayesian solution to the state and parameter estimation problem under complete clinical
data. Finally using p(zt|y1:t), the estimate of ẑt at t can be computed as the mean of the posterior density,
such that the estimate step can be defined as:

ẑt =

ˆ
ztp(zt|y1:t)dzt, (4.1.3)

where ẑt = {x̂t, θ̂t} is the state and parameter estimation at t. Note that other values, such as the mode or
median of p(zt|y1:t) can also be selected as the point estimate.

4.2 Irregular clinical data

From section 4.1, it is evident that if yt is not measured at t, the posterior density p(zt|y1:t) cannot be
computed using equation (4.1.1). In such situations, the estimates at t, in presence of irregular data can be
computed by replacing p(zt|y1:t) in equation (4.1.3) using the one-step ahead prior density p(zt|y1:t−1).

Now assuming yt+1 to be available at t+ 1, the posterior density for zt+1, given clinical measurements
{y1:t−1, yt}, i.e., p(zt+1|y1:t−1, yt+1) can be computed using the Bayes’ theorem and the law of total proba-
bility, such that the update step shows that:

p(zt+1|y1:t−1, yt+1) ∝ p(yt+1|zt+1)p(zt+1|y1:t−1). (4.2.1)

where p(zt+1|y1:t−1, yt+1) is the posterior density for zt+1 and p(zt+1|y1:t−1) is a two-step ahead prior density
computed using the law of total probability, i.e.:

p(zt+1|y1:t−1) =

ˆ
pz(zt+1|zt)p(zt|y1:t−1)dzt. (4.2.2)

Substituting equation (4.1.2) into equation (4.2.2) yields the prediction step:

p(zt+1|y1:t−1) =

¨
pz(zt+1|zt)pz(zt|zt−1)p(zt−1|y1:t−1)dzt−1:t. (4.2.3)

Similar to section 4.1, having computed p(zt+1|y1:t−1, yt+1), the estimate of zt+1 can be computed by
replacing the density by p(zt+1|y1:t−1, yt+1) in equation (4.1.3). Note that the method proposed in this
section is general and can naturally be extended to handle consecutively missing measurements as well.

The Bayesian approach developed in section 4 provides an excellent framework for real-time state and
parameter estimation under complete and irregular clinical measurements. Computing the Bayesian solution
requires evaluation of the multiple integrals in the prediction and estimation steps. Unfortunately, except
for linear systems with Gaussian state and measurement noise, or when the states and parameters take on
only finite values, the Bayesian solution cannot be solved exactly with finite computing capabilities.

This paper uses a sequential Monte-Carlo (SMC)-based adaptive sequential-importance-resampling (SIR)
filter proposed by Tulsyan et al. [25] to numerically approximate the Bayesian solution. In the next section,
using SMC method, the estimation results of states and parameters of the state-space model for type II
diabetic patients under various levels of randomly missing clinical data are presented.
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5 Results and discussion

In this section, the efficiency of the SIR filtering method in handling missing measurements for estimation
of the nonlinear stochastic model for type II diabetes mellitus is demonstrated. All the simulations were
conducted on a 2.90 GHz CPU with 8 GB RAM Mac using MATLAB 2012b. On-line estimation of states
and all the parameters cited in the reference [17] by SIR filtering leads to large memory requirements and
computational complexity. To reduce the computation load, only the parameters of type II diabetic subjects
that have considerable effects on peripheral glucose, insulin and incretins concentrations were chosen for
estimation while keeping all other non-essential model parameters constant.

5.1 Clinical data used for model development

The states and the parameters of the Vahidi model were estimated using two different clinical tests, oral
glucose tolerance test (OGTT) and isoglycemic intravenous glucose infusion test (IIVGIT) performed by
Knop et al. [29, 30]. In the OGTT test, glucose was given to the patient subjects and their blood was
sampled afterward to determine how quickly glucagon suppression occurred.

In the OGTT test, 50-grams of water-free glucose was dissolved in 400 millilitres of water over the first
5 minutes of the experiment. The solution was given to 10 patients with type II diabetes mellitus (eight
men and two women). Blood was sampled 15, 10 and 0 minutes before, and after the ingestion of glucose
at 5, 10, 15, 20, 30, 40, 45, 50, 60, 70, 90, 120, 150, 180 and 240 minutes.

In order to mimic the plasma glucose profile obtained from the OGTT test, the same amount of glucose
was injected intravenously to the diabetic subjects in the IIVGIT test. Blood was sampled every 5 minutes
[29, 30]. For estimating the states and the parameters of the model in our study, the peripheral glucose,
insulin and incretins (GLP-1 plus GIP) concentrations from both tests were used.

5.2 On-line states and parameters estimation results

To apply the SIR particle filtering method, a prior information on the unknown parameters of the Vahidi
model from both OGTT and IIVGIT is needed. This information can be obtained from equation (2.0.4)
by minimizing the deviation of model predictions from the available clinical measurements of peripheral
glucose, insulin and incretins concentrations described in section 5.1.

After the prior information on the unknown parameters obtained, the estimation of the states and param-
eters of the Vahidi model were estimated using SIR particle filtering method. Firstly, the parameters of the
pancreas model were estimated from the isoglycemic intravenous glucose infusion test (IIVGIT) test since
no secretion of incretins occurs during the IIVGIT test. In the model parameter estimation, the peripheral
insulin concentration in the Vahidi model [17] was considered as a measurement yk. For implementing the
SIR filtering based on the discrepancies between the Vahidi model and the Knop’s experimental data, the
following parameters were selected:

• The number of particles N = 5000
• The sampling time used for discretizing the Vahidi model ∆k = 0.4 min
• The maximum states noises vk ∼ N (0, 0.001)
• The measurement noise wk ∼ N (0, 0.001)

A priori information on {x0; θ} includes the lower (LB) and the upper bound (UB) based on the phys-
iological considerations. Four simulation experiments were carried out to evaluate the effectiveness of our
proposed method to identify patient models with incomplete data. In the four experiments, 0%, 10%, 25%
and 50% of available data simulated from the Vahidi model were removed randomly. For example, when
10% of data were considered missing, a peripheral insulin concentration at each sampling time was removed
from the original data set if a uniformly distributed random variable q in the interval (0,1) is less than 0.1.
Similar experiments were done with 25% and 50% missing data [20].

The parameter values after 600 samples from each of these experiments are shown in Table 1. The
detailed information about these parameters is available by Vahidi et al. [17]. For all the experiments, the
parameters converged to the neighbourhood of the original values after a certain number of iterations.

Variations of the peripheral insulin concentrations during the IIVGIT test after 600 samples are shown in
Fig. 2a in which, r shows the percentage of missed observations. From the Fig. 2a, the dynamics of peripheral
insulin concentration can be estimated reasonably well with physiological responses in all the experiments
even when 50% of the simulated clinical data were absent. Fig. 2b presents the goodness of fit between the
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Table 1: Parameter estimation results for insulin sub-model after 600 sampling time during IIVGIT test

Parameters [17] OriginalValues Percentage of Missing insulin measurements
0% 10% 25% 50%

θ1 : α(min)−1 0.6152 0.6168 0.5728 0.5803 0.5159

θ2 : γ(U/min) 2.3665 2.3422 2.1860 2.3667 2.5200

θ3 : K(min)−1 0.0572 0.0565 0.0560 0.0561 0.0544

θ4 : N1(min)−1 0.0499 0.0496 0.0519 0.0481 0.0474

θ5 : N2(min)−1 0.0001490 0.0001489 0.0001482 0.0001500 0.0001506

estimated output and the measured output performed with MATLAB System Identification Toolbox by
using normalized root mean square error (NRMSE) as a cost function. Based on the NRMSE measure, the
goodness of fit between the simulated peripheral insulin concentration and the available measurements are
more than 80%.
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Fig. 2: Peripheral insulin concentration for type II diabetic subjects during the IIVGIT test

Secondly, from the oral glucose tolerance test (OGTT), the peripheral insulin concentration, peripheral
glucose concentration and incretins concentrations were considered as measurements yk for estimation of the
rest of the model parameters. These parameters consist of the parameters of the incretins sub-model and
those of the glucose sub-model including the parameters of the glucose absorption model and the parameters
describing the hormonal effects of incretins on the pancreatic insulin production. For implementing the SIR
filtering based on the discrepancies between the Vahidi model and the Knop’s experimental data, the
following parameters were selected:

• The number of particles N = 20000
• The sampling time used for discretizing the Vahidi model ∆k = 0.1 min
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• The maximum states noises vk ∼ N (0, 0.7)
• The measurement noise wk ∼ N (0, 0.7)

The parameter values after 2400 samples from each of these experiments are shown in Table 2 (see
the reference [17] for detailed information about these parameters). In all the experiments, the estimated
parameters, except θ3 and θ10, converged to the neighbourhood of the original values after a certain number
of iterations. θ3 and θ10 are not estimated precisely since the sensitivity of the KLD in kernel smoothing
algorithm to changes in θ3 and θ10, is smaller than its variance.

Table 2: Parameter estimation results for insulin sub-model after 2400 sampling time during OGTT test

Parameters [17] OriginalValues Percentage of Missing insulin measurements
0% 10% 25% 50%

θ1 : cIPGU 0.0970 0.0965 0.0965 0.0902 0.1300

θ2 : cI∞HGU 3.2606 3.3125 2.9543 2.9625 2.8057

θ3 : cGHGP 1.0385 1.0352 1.0885 1.9743 2.0649

θ4 : cGHGU 2.03 1.97 1.84 2.23 1.53

θ5 : dIPGU 2.752 2.747 2.724 2.897 2.909

θ6 : dI∞HGU 0.0031 0.0030 0.0028 0.0030 0.0038

θ7 : dI∞HGP 0.3648 0.3676 0.3610 0.3625 0.3667

θ8 : K12(min)−1 0.0783 0.0796 0.0798 0.0842 0.0616

θ9 : ξ1(min)−1 0.000124 0.000125 0.000126 0.000125 0.000141

θ10 : ξ2(min)−1 0.00270 0.00271 0.00280 0.00152 0.00122

Variations of the peripheral glucose, insulin, and incretins concentrations during the OGTT test after
2400 iterations are shown in Figs. 3a-5a. r shows the percentage of missing observations. From the Figs.
3a-5a, the dynamics of peripheral glucose, insulin, and incretins concentration can be estimated reasonably
well with physiological responses in all the experiments even when 50% of the clinical data is missing. Figs.
3b-5b present the goodness of fit between the estimated output and the measured output performed with
MATLAB System Identification Toolbox by using the normalized root mean square error (NRMSE) as a
cost function. From Figs. 3b-5b, the goodness of fit between the simulated peripheral glucose, insulin and
incretins concentration and their available measurements were almost 80% in all the experiments except in
Fig. 5b when 25% and 50% of peripheral insulin measurements removed randomly. Comparing to Fig. 2b in
the IIVGIT test , the peripheral insulin concentration was not estimated precisely in the OGTT test since
only the parameters of the incretins sub-model and the parameters of the glucose sub-model were estimated
in order to reduce the computational complexity.

The probability density function of the parameter CIPGU , one of the parameters of the peripheral glucose
uptake rate in the insulin sub-model in [27], is reported in Fig. 6. As somewhat expected, the posterior
provided by SIR filtering method is concentrated around its original value after about 620 sampling times.

5.3 Application of SIR particle filtering in detection of organ dysfunction in diabetic patients under
irregular clinical data

In this section, we will show the application of the adaptive sequential-importance-resampling (SIR) filter
in the estimation of the glucose, insulin, and incretins concentrations in different parts of the body under
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Fig. 3: Peripheral glucose concentration for type II diabetic subjects during the OGTT test
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Fig. 4: Peripheral insulin concentration for type II diabetic subjects during the OGTT test

irregularly sampled clinical data. These estimates are used for calculating the glucose metabolic rates in
different organs of the type II diabetic patients using irregularly sampled data. Then, by comparing the
glucose metabolic rate of each organ in the diabetic patients with the glucose metabolic rate of the same
organ in a normal subject, the abnormal functioning of certain organs is detected and identified.

Using the states and parameters of the Vahidi model estimated in the previous section, the glucose
metabolic rates in the peripheral tissues and the liver are calculated from equations (2.0.2) and (2.0.3).
Figure 7 shows the glucose metabolic rates in peripheral tissues and the liver compared with the healthy
subjects. According to Figs. 7a and 7b, the peripheral glucose uptake rate and hepatic glucose uptake rate
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Fig. 5: Incretins concentration for type II diabetic subjects during the OGTT test
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in type II diabetic patients for all experiments are less than the corresponding values in the healthy sub-
jects due to insulin sensitivity in peripheral tissues and dysfunction in the liver of the diabetic patients.
Decreased rate of glucose infusion shows that the overall insulin sensitivity of the body is decreased about
54% in diabetic patients. Even under the presence of 50% missing data, the abnormalities of the liver and
adipose tissues are detectable, which provides more physiological information to physicians.
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Fig. 7: Variation of different glucose metabolic rates

5.4 Strengths and limitations of the SIR particle filtering in clinical practice

The primary practical advantage of the SIR particle filtering method comparing to the traditional statistical
methods is its independence from the degree of nonlinearity of the model unlike extended Kalman filtering
[5]. An additional advantage in a clinical practice is that the SIR filtering approach is readily adaptable to
sequential updating of information obtained from owner history, clinical examination of diabetic patients,
and results of different diagnostic tests [31].It exhibits good performance even for systems with large process
or measurement noise.

Furthermore, the accuracy of the particle filtering method can be improved by increasing the number
of particles used in the estimation algorithm. However, particles size over 1000 can be computationally
intensive and time consuming [20, 31]. The SIR based PF used in this paper, needs less computational
cost when a large number of unknown states and parameters must be estimated simultaneously since the
marginal probability distribution of each parameter and state can be obtained from a posteriori probability
distribution of the model parameters and states [24].

6 Conclusions

In this study, we have identified the nonlinear states and the parameters of glucose, insulin and incretins
sub-model developed by Vahidi et.al [17] for type II diabetes mellitus in the presence of 10%, 25% and
50% of randomly missing clinical observations by employing the Sequential Importance Resampling (SIR)
filtering method. The motivation for this study originates from the lack of complete knowledge about the
health status of the diabetic patients. In addition, only a few blood glucose measurements per day are
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available in a non-clinical setting due to different reasons like unreadable hand writing, inability to record
clinical results, and infrequent sampling by patients.

It is shown that by implementing an on-line SIR particle filtering method to the Vahidi model developed
for type II diabetes mellitus, we are able to estimate the dynamics of the plasma glucose, insulin and incretins
concentration under the presence of maximum 50% available clinical data. In addition, the goodness of fit
between the simulated peripheral glucose, insulin and incretins concentration and their available measure-
ments were almost 80% in the most of the experiments. The results of this study can be used to inform type
II diabetic patients of their medical conditions, enable physicians to review past therapy, estimate future
blood glucose levels, provide therapeutic recommendations and even design a stabilizing control system for
blood glucose regulation.

Nomenclature

Model variables in the glucose sub-model
G Glucose concentration (mg/dl)
M Multiplier of metabolic rates (dimensionless)
Q Vascular blood flow rate (dl/min)
r Metabolic production or consumption rate (mg/min)
T Transcapillary diffusion time constant (min)
t ime (min)
V Volume (dl)

Model variables in the insulin sub-model
I Insulin concentration (mU/l)
M Multiplier of metabolic rates (dimensionless)
m Labile insulin mass (U)
P Potentiator (dimensionless)
Q Vascular blood flow rate (dl/min)
R Inhibitor (dimensionless)
r Metabolic production or consumption rate (mU/min)
S Insulin secretion rate (U/min)
T Transcapillary diffusion time constant (min)
t time (min)
V Volume (dl)
X Glucose-enhanced excitation factor (dimensionless)
Y Intermediate variable (dimensionless)

Model variables in the glucagon sub-model
Γ Normalized glucagon concentration (dimensionless)
M Multiplier of metabolic rates (dimensionless)
r Metabolic production or consumption rate (dl/min)
t time (min)
V Volume (dl)

Model variables in the incretins sub-model
Ψ Incretins concentration (pmol/l)
r Metabolic production or consumption rate (pmol/min)
t time (min)
V Volume (dl)

First superscript
Γ Glucagon
B Basal condition
G Glucose
I Insulin
M ncretins
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Second superscript
∞ Final steady state value

Metabolic rate subscripts
BGU Brain glucose uptake
GGU Gut glucose uptake
HGP Hepatic glucose production
HGU Hepatic glucose uptake
IΨR Intestinal incretins release
KGE Kidney glucose excretion
KIC Kidney insulin clearance
LIC Liver insulin clearance
MΓC Metabolic glucagon clearance
PΓC Plasma glucagon clearance
PΓR Pancreatic glucagon release
PΨC Plasma incretins clearance
PGU Peripheral glucose uptake
PIC Peripheral insulin clearance
PIR Pancreatic insulin release
RBCU Red blood cell glucose uptake

First superscripts
∞ Final steady state value
A Hepatic artery
B Brain
G Gut
L Liver
P Periphery
S Stomach

Second subscripts (if required)
C Capillary space
F Interstitial fluid space
l Liquid
s Solid

Appendix A

Glucose sub-model

The mass balance equation over each compartment in the glucose sub-model results in following equations:

V GBC
dGBC
dt

= QGB(GH −GBC)− V GBF
TGB

(GBC −GBF ), (A-1)

V GBF
dGBF
dt

=
V GBF
TGB

(GBC −GBF )− rBGU , (A-2)

V GH
dGH
dt

= QGBGBC +QGLGL +QGKGK +QGPGPC +QGHGH − rBCU , (A-3)

V GG
dGG
dt

= QGG(GH −GG)− rGGU +Ra, (A-4)

V GL
dGL
dt

= QGAGH +QGGGG −Q
G
LGL + rHGP − rHGU , (A-5)

V GK
dGK
dt

= QGK(GH −GK)− rKGE , (A-6)

V GPC
dGPC
dt

= QGP (GH −GPC)− V GPF
TGP

(GPC −GPF ), (A-7)
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V GPF
dGPF
dt

=
V GPF
TGP

(GPC −GPF )− rPGU , (A-8)

A detailed description about the metabolic rates is available in [15]. The general form of the metabolic
production and consumption rates in each organ is as follows:

r = MIMGMΓMB , (A-9)

and multipliers have the following general form:

MC = a+ b tanh(
C

CB
− d), (A-10)

The glucose absorption model that calculates the glucose appearance rate into the blood stream follow-
ing an oral glucose intake is considered in the gut compartment of the glucose sub-model as follows:

dqSs
dt

= −k12qSs + δ(t), (A-11)

dqSI
dt

= −kemptqSs + k12qSI , (A-12)

dqint
dt

= −kabsqint + kemptqSI , (A-13)

kempt = kmin +
kmax − kmin

2
{tanh[ϕ1(qSs + qSI − x1D)]− tanh[ϕ2(qSs + qSI − x2D)]}+ 2, (A-14)

ϕ1 =
5

2D(1− x1)
, (A-15)

ϕ2 =
5

2Dx2
, (A-16)

Ra = fkabsqint, (A-17)

Incretins sub-model

The incretins production is calculated from the following differential equation:

dψ

dt
= ςkemptqS2 − rIΨP , (A-18)

rIΨP = f
ψ

τψ
, (A-19)

The mass balance equation over the incretins compartment results in:

dψ

dt
= ςkemptqS2 − rIΨP , (A-20)

rPΨC = rMΨCψ, (A-21)
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Insulin sub-model

The mass balance equation over the compartments in the insulin sub-model results in following equations:

V IB
dIB
dt

= QIB(IH − IB), (A-22)

V IH
dIH
dt

= QIBIB +QILIL +QIKIK +QIP IPV −Q
I
HIH , (A-23)

V IG
dIG
dt

= QIG(IH − IG), (A-24)

V IL
dIL
dt

= QIAIH +QIGIG −Q
I
LIL + rPIR − rLIC , (A-25)

V IK
dIK
dt

= QIK(IH − IK)− rKIC , (A-26)

V IPC
dIPC
dt

= QIP (IH − IPC)− V IPF
T IP

(IPC − IPF ), (A-27)

V IPF
dIPF
dt

=
V IPF
T IP

(IPC − IPF )− rPIC , (A-28)

The pancreas model contains two compartments. The pancreas model equations include mass balance
equations over compartments and correlations between variables. The mass balance equation over each
compartment results in:

dm

dt
= K′mSKm+ γP − S, (A-29)

dmS

dt
= Km−K′mS − γP, (A-30)

The steady state mass balance equation around the storage compartment is:

K′mS = Km0, (A-31)

where m0 is the labile insulin quantity at a glucose concentration of zero. The rest of the equations for the
pancreas model are:

dP

dt
= α(P∞ − P ), (A-32)

dR

dt
= β(X −R), (A-33)

S = [N1Y +N2(X −R) + ξ1ψ]m x > R,

S = [N1Y + ξ1ψ]m x ≤ R,
(A-34)

P∞ = Y = X1.11 + ξ2ψ, (A-35)

X =
G3.27
H

1323.27 + 5.93G3.02
H

(A-36)

Glucagon sub-model

The glucagon sub-model has one mass balance equation over the whole body as follows:

V Γ
dΓ

dt
= rPΓR − rPΓC , (A-37)
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