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Abstract Mathematical programming has been widely applied for the planning of
natural gas production infrastructure development. As the production infrastructure
involves large investments and is expected to remain in operation over several decades,
the factors that will impact the gas production but cannot be foreseen before the devel-
opment of the infrastructure need to be taken into account in the planning. Therefore,
two scenario-based two-stage stochastic programming models are developed to fa-
cilitate natural gas production infrastructure development under uncertainty. One is
called the stochastic pooling model, which tracks the qualities of gas streams through-
out the production network via a generalized pooling model. The other is an enhance-
ment of the stochastic pooling model with the consideration of pressure. Either model
results in a large-scale nonconvex mixed-integer nonlinear programming (MINLP)
problem, for which a global optimal solution, although very important for a prob-
lem that involves large investments, is very difficult to obtain. A novel optimization
method, called nonconvex generalized Benders decomposition (NGBD), is developed
for efficient global optimization of the large-scale nonconvex MINLP. Case studies of
a real industrial natural gas production system show the advantages of the proposed
stochastic programming models over deterministic optimization models, as well as
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the dramatic computational advantages of NGBD over a state-of-the-art global opti-
mization solver.

Keywords Natural gas production network · Mixed-integer nonlinear programming ·
Stochastic programming · Benders decomposition · Global optimization
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1 Introduction

Natural gas currently contributes about a fifth of global energy demand and it is pro-
jected to play an increasingly important role in the global energy economy through
2035 [30]. To meet increasing demands for natural gas, new gas production systems
need to be developed or existing production systems need to be expanded. The nat-
ural gas infrastructure development problem can be cast as an integrated design and
operation problem, as it is natural to consider the long-term production plan when
considering the infrastructure development.

The development of oil or gas production infrastructure involves large invest-
ments, and the infrastructure often remains in operation over the entire life span of
the project (which can be several decades), so even small fractional performance
gains made in the design can translate into significant increases in profits. Therefore,
mathematical programming has long been adopted to facilitate decision-making for
oil or gas production infrastructure development. With appropriate assumptions and
approximations, an infrastructure development problem can be formulated as a linear
programming (LP) [4] or mixed-integer linear programming (MILP) problem [10]
[58] [50] [49] [31], for which reliable and efficient commercial solvers are available
(e.g., CPLEX [29]). However, the optimality or even the feasibility of the solution
may be lost due to the linear approximation of the inherently nonlinear production
system. In order to reduce the model mismatch, appropriate nonlinearities may be
introduced into the model, such as nonlinear reservoir or well performance models
[13] [45] [66] [65] [43], nonlinear compression model [13], and nonlinear relation-
ships between gas flow rates and pressures [13] [43]. The introduction of nonlin-
earities usually leads to mixed-integer nonlinear programming problems (MINLP),
which are more difficult to solve than MILPs. Readers can refer to a survey paper by
Grossmann [23] for details on MINLP solution technologies. Notice that for a non-
convex MINLP , i.e., a MINLP involving nonconvex functions, global optimization
techniques [28] are required to guarantee that the solution obtained is a global opti-
mum, which is especially important for problems involving large capital investment.
Typical global optimization methods for nonconvex MINLPs include branch-and-
reduce [61], SMIN-αBB and GMIN-αBB [1], and nonconvex outer approximation
[35] (which is an extension of traditional outer approximation methods [11] [14] to
programs with nonconvex functions participating). All these methods require solving
a sequence of subproblems, and the sizes and/or the number of the subproblems to be
solved rely heavily on the size of the original problem.
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Before the development of an oil or gas production system, there is always un-
known or uncertain information that can significantly affect the future operation of
the system. For example, the quality and capacity of a reservoir may not be known
exactly, and the prices of the petroleum products and customer demands in the future
are uncertain. It has been widely recognized that considering these uncertainties in
the planning of the infrastructure development can help to reduce risks and improve
expected profits, so the use of stochastic programming [9] models has attracted grow-
ing interest, especially two-stage or multistage scenario-based models [32] [21] [22]
[60] [39]. A scenario-based stochastic program includes a set of scenarios, each of
which represents a possible and representative group of values for uncertain parame-
ters that may be realized in the future. The uncertain parameters may include capacity
and quality of reservoir, costumer demands and gas prices The number of the scenar-
ios required by the formulation depends on the number of uncertain parameters and
the characteristics of the uncertainties; for real-world industrial problems, this num-
ber can be very large. Therefore, with the decisions and submodels for each of the
scenarios included, the scenario-based program is likely to be a large-scale mathe-
matical program. On the other hand, these large-scale mathematical programs retain
a decomposable structure that can be exploited by specialized optimization methods
for efficient solution, e.g., Benders decomposition [7] (also called L-shaped model in
the stochastic programming literature [57]) for linear models, and generalized Ben-
ders decomposition [20] for a class of nonnlinear models. However, these methods
require strong duality [8] for convergence to a global optimum, which prevents them
from solving nonconvex MINLPs such as those arising in natural gas infrastructure
development under uncertainty. Lagrangian decomposition [34] has also been applied
to exploit the structure of scenario-based problems. However, if strong duality does
not hold, this method needs branch-and-bound operations in the full variable space,
the dimension of which depends on the number of scenarios, to guarantee global
optimality [34] [36].

In all the mentioned work on oil or gas production infrastructure development,
product qualities (e.g., composition) are not included in the optimization models. One
reason is that most of the work focuses on oil production systems, where the qual-
ity of the crude oil is not a key quantity to be controlled in the production system.
In fact, oil product qualities are ensured by processing in the downstream refineries.
However, gas products from natural gas production systems will be sent to customers
with little further processing, so they have to satisfy strict specifications. As the raw
natural gas streams entering a production network may come from different reser-
voirs with different levels of impurities (e.g., CO2, H2S), modeling the composition
of the gas products is not trivial. Considering that these raw gas streams are mixed
and split thought the production network with little processing, the qualities of gas
products can be evaluated through a pooling model [24] [47], which was originally
studied for gasoline blending in oil refineries. The pooling model has been adopted
for operational optimization of natural gas production [55] [64] [52], but not yet for
the infrastructure development (except in the authors’ recent work [39] [42] [41]).
The pooling problem is a class of bilinear optimization problem, which is highly
nonconvex and difficult to solve. Solution methods for the pooling problem have
been studied for decades. The methods that locate a local optimum include recursive
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guessing [24] [25], successive LP [38], and generalized Benders decomposition [15],
and the methods that guarantee a global optimum include GOP [16] [67] and branch-
and-bound [17] [6] [61] [48]. In addition, reformulation-linearization techniques [56]
[51] and piecewise relaxation methods [33] [46] [68] have been proposed to generate
tighter relaxations to improve global optimization of the pooling problem.

This paper presents mathematical programming models and solution methods, for
the planning of natural gas infrastructure development under uncertainty, in a unified
framework. The contents of this paper are based on the results of the authors’ recent
work [39] [42] [41]. Here the goal of the planning is, to determine the optimal system
design decisions and long-term operating conditions for natural gas production that
maximize the expected profitability of developing and operating the system, while
satisfying the product-specific constraints for all the uncertainty scenarios addressed.
A scenario-based, two-stage stochastic programming model is developed, where the
first stage decisions determine whether or not gas fields/wells, gas platforms or trun-
klines in the production network are to be developed, and the second stage decisions
determine different long-term operating conditions for different realizations of the
uncertain parameters, known after the development of the production system. This
stochastic programming model is primarily based on a generalized pooling model
that tracks the qualities of the gas streams throughout the production network, but it
also allows the consideration of pressure via integrating well performance models,
compression models and trunkline pressure-flow relationships. The resulting math-
ematical programming problem is a potentially large-scale nonconvex MINLP. As
mentioned above, traditional global optimization methods may have to solve a large
number of large-scale subproblems to locate a global optimum of this problem, and
no valid decomposition methods in the literature can take advantage of the special
problem structure. To this end, a novel decomposition method, called nonconvex
generalized Benders decomposition (NGBD), is developed for efficient global op-
timization of the stochastic nonconvex MINLP. This method only requires solution
of a sequence of subproblems whose sizes are independent of the number of scenar-
ios addressed, and computational experience shows that number of the subproblems
to be solved does not increase significantly with the number of scenarios.

The rest of the paper is organized as follows: Section 2 describes the stochastic
nonconvex MINLP model for natural gas production infrastructure development un-
der uncertainty; Section 3 introduces the NGBD method for the global optimization
of the stochastic MINLP; Section 4 presents two industrial case studies, one addresses
stream composition for the production network, but not the effects of pressure, and
the other addresses both; Section 5 summarizes the results and suggests future work.

2 Mathematical Programming Models

2.1 General Settings

A natural gas production system is viewed as a generalized pooling system here.
Fig. 1 illustrates the system, which has n sources (labelled from 1 to n) that supply
materials into the system, r pools (labelled from 1 to r) where different materials or
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Fig. 1 The generalized pooling system.

intermediate products are mixed or blended, m product terminals (labelled from 1
to m) that yield final products. For a natural gas production system, the sources can
be gas fields or individual gas wells in the gas fields, the pools can be production
platforms, riser platforms or simple mixing and splitting units, and the product ter-
minals can be liquefied natural gas (LNG) plants that produce LNG for long distance
transportation or dry gas terminals supplying end customers through gas transmission
systems. Different from the conventional pooling system, this system not only allows
connections between a source and a product terminal, a source and a pool, or a pool
and a product terminal, but also allows connections between two pools. Connections
between two sources or between two product terminals, which are also possible in
many engineering problems, are not considered explicitly in this paper for simplicity
of the resulting mathematical model. But these connections can be modeled within
the proposed general diagram by introducing additional (virtual) pools.

Two types of formulations can be used to model the generalized pooling sys-
tem. One is to formulate the mass balance equations with total flows and component
compositions, and the other is to express the mass balances with individual compo-
nent flows. As has been well recognized [51], these two formulations have their own
pros and cons respectively. In general, the first formulation will lead to more bilin-
ear terms if the total number of mixing flows entering the pools are more than the
total number of splitting flows leaving the pools; the second formulation will lead
to more bilinear terms otherwise. Natural gas production systems usually collect gas
from certain numbers of gas wells through smaller numbers of gas platforms and to
smaller numbers of product terminals, and merging instead of dividing the gas flows
in the transport is preferred as it helps reduce the pipeline investment cost. Therefore,
natural gas production systems often involve more mixing flows than splitting flows,
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so the second formulation is adopted here for fewer bilinear terms. Note that the
global optimization method proposed in this paper is applicable to either of the two
formulations, so the choice of the second formulation does not affect the generality
of the subsequent discussion on global optimization.

Figs. 1 (b)-(d) give more details on the total flows or individual component flows
entering or leaving the sources, pools and product terminals. Fig. 1 (b) shows that a
flow coming out of source i may either go to a pool j (denoted by f SP

i, j), or go to a
product terminal k (denoted by f ST

i,k). Note that since the component compositions of
source i are parameters, there is no need to model the individual component flows
explicitly for a flow coming out of source i (which avoids introducing more bilinear
terms). Fig. 1 (c) shows that a flow entering a pool j may come from a source i,
or come from another pool j+ (whose flow of component w is denoted by f PP

j+, j,w).
Also, a flow leaving pool j may go to another pool j− (whose flow of component
w is denoted by f PP

j, j−,w), or go to a product terminal k (whose flow of component w
is denoted by f PT

j,k,w). The subscript w ∈ {1, ..., l} indicates the different components.
Fig. 1 (d) shows that a flow entering a product terminal k may come from a pool j or
a source i.

A two-stage stochastic programming problem is basically a bilevel optimization
problem whose inner optimization problems represent the second-stage decision-
making for different realizations of the uncertain parameters. As has been widely
recognized, this bilevel optimization problem can be naturally reformulated into an
equivalent single-level optimization problem, called the deterministic equivalent pro-
gram (of the stochastic program) [9]. For a succinct presentation, this paper derives
the stochastic programming model in the form of its deterministic equivalent pro-
gram directly. Two stochastic programming models are developed in the following
two subsections, respectively. The first model, called the stochastic pooling model,
assumes that compressors can be installed anywhere in the system with unlimited
capacity and their investment and operating costs have little impact on the design
decisions of the system (e.g. these costs are negligible compared to the total infras-
tructure investment cost and revenue). With this assumption, pressure can be ignored
in the model because any desired flow rates of the gas streams obtained from the
model can be realized by placing compressors at appropriate locations in the system.
The second model is developed based on the stochastic pooling model, and it consid-
ers the impact of pressure by including additional submodels that relate the pressures
with the gas flow rates and energy consumption.

2.2 The Stochastic Pooling Model

The equality and inequality constraints of the stochastic pooling problem represent
mass balances and physical limits at the sources, pools and product terminals, which
are developed below step by step. After that, the expected net present value of the
system is given as the objective function. The symbols used in the stochastic pooling
model are summarized in Table 1.
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Table 1 List of Symbols for the Stochastic Pooling Model

Symbol Type Description
a Parameter Discount rate for calculating net present value
f Variable Flow rate
h Subscript Index for scenarios, h ∈ {1, ...,s}
i Subscript Index for sources, i ∈ {1, ...,n}
j Subscript Index for pools, j ∈ {1, ...,r}

j+ Subscript Index for the pools whose outlet flows enter a particular pool
j− Subscript Index for the pools whose inlet flows are from a particular pool
k Subscript Index for product terminals, k ∈ {1, ...,m}
l Parameter Number of quality components
m Parameter Number of product terminals
n Parameter Number of sources
p Parameter Probability of scenario
q Variable Ratio of a flow leaving a pool to the total flow entering the pool
r Parameter Number of pools
s Parameter Number of scenarios
t Parameter year
w Subscript Index of quality, w ∈ {1, ..., l}
y Binary variable Decision on source, pool, product terminal or trunkline investment
C Parameter Economic coefficient with cost and price information

(Cap) Superscript Indicator of capital cost
D Parameter Demand at product terminal
F Parameter Bound on flow rate
L Parameter Life span of the system

LB Superscript Indicator of lower bound
N Parameter Number of objectives in multi-objective optimization

(OC) Superscript Indicator of annual cost and revenue information related to operation
P Superscript Indicator of pool

PP Superscript Indicator of flow from pool to pool
PP+ Superscript Indicator of flow from pool entering a particular pool
PP– Superscript Indicator of flow from a particular pool entering a pool
PT Superscript Indicator of flow from pool to product terminal
S Superscript Indicator of source related quantity

SP Superscript Indicator of flow from source to pool
ST Superscript Indicator of flow from source to product terminal
T Superscript Indicator of product terminal
U Parameter Quality of materials at source

UB Superscript Indicator of upper bound
V Parameter Quality bound at product terminal
Z Parameter Source outlet flow bound
Π Set Index set for sources and pools connected to a product terminal
Θ Set Index set for pools and product terminals connected to a source
Ω Set Index set for sources, pools and terminals connected to a pool

Submodel for the sources - The variables related to the sources are subject to
the following inequalities:

yS
i Z

LB
i,h ≤ ∑

j∈Θ SP
i

f SP
i, j,h + ∑

k∈Θ ST
i

f ST
i,k,h ≤ yS

i Z
UB
i,h, (1)

ySP
i, jF

SP,LB
i, j ≤ f SP

i, j,h ≤ ySP
i, jF

SP,UB
i, j , (2)

yST
i,kF ST,LB

i,k ≤ f ST
i,k,h ≤ yST

i,kF ST,UB
i,k , (3)
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yS
i ≥ ySP

i, j, yS
i ≥ yST

i,k, yS
i ,y

SP
i, j,y

ST
i,k ∈ {0,1}, (4)

∀i ∈ {1, ...,n}, ∀ j ∈Θ SP
i , ∀k ∈Θ ST

i , ∀h ∈ {1, ...,s}.

Here the subscript h is attached to each scenario-dependent variable or parameter to
index different scenarios and s is the total number of the scenarios. The binary vari-
able yS

i represents whether source i is to be developed or not. If yS
i = 1, then source i

will be developed, and Eq. (1) denotes that the total flow coming out of a source j is
subject to a lower bound ZLB

i,h (which is due to non-negativity of flow or other system
requirements) and an upper bound ZUB

i,h (which is due to the source capacity or other
system requirements) for scenario h. Θ SP

i is an index set containing the indices of the
pools that can connect to source i and Θ ST

k is an index set containing the indices of
the product terminals that can connect to source i. If yS

i = 0, Eq. (1) forces the total
flow coming out of source i to be zero. Eq. (2) denotes that the flow in the trunkline
connecting source i and pool j is subject to relevant bounds (that are due to the trun-
kline capacity, non-negativity of flow, or other system requirements) for scenario h,
if this trunkline is to be developed (i.e., ySP

i = 1); otherwise, the flow is forced to be
zero. Eq. (3) denotes the similar limit for the flow in the trunkline connecting source
i and product terminal k. Eq. (4) denotes the topological restrictions on the sources
and the trunklines connecting to them, i.e., the trunkline between a source and a pool
or a product terminal can be developed only when the source is developed.

Submodel for the pools - The submodel for the pools can be written as follows:

f PP
j, j−,w,h = qPP

j, j−,h

 ∑
i∈Ω SP

j

f SP
i, j,hUi,w,h + ∑

j+∈Ω PP+
j

f PP
j+, j,w,h

 , (5)

f PT
j,k,w,h = qPT

j,k,h

 ∑
i∈Ω SP

j

f SP
i, j,hUi,w,h + ∑

j+∈Ω PP+
j

f PP
j+, j,w,h

 , (6)

∑
j−∈Ω PP–

j

qPP
j, j−,h + ∑

k∈Ω PT
j

qPT
j,k,h = 1, qPP

j, j−,h,q
PT
j,k,h ≥ 0, (7)

yPP
j, j−F PP,LB

j, j− ≤ ∑
w∈{1,...,l}

f PP
j, j−,w,h ≤ yPP

j, j−F PP,UB

j, j− , (8)

yPT
j,kF PT,LB

j,k ≤ ∑
w∈{1,...,l}

f PT
j,k,w,h ≤ yPT

j,kF PT,UB
j,k , (9)

f PP
j, j−,w,h, f PT

j,k,w,h ≥ 0, (10)

yP
j ≥ ySP

i, j, yP
j ≥ yPP

j, j− , yP
j− ≥ yPP

j, j− , yP
j ≥ yPT

j,k, yP
j,y

PP
j, j− ,yPT

j,k ∈ {0,1}, (11)

∀ j ∈ {1, ...,r}, ∀ j− ∈ Ω PP-
j , ∀k ∈ Ω PT

j , ∀w ∈ {1, ..., l}, ∀h ∈ {1, ...s}.

Here fractional variables qPP
j, j−,h and qPT

j,k,h are introduced to model the mass balances
at pool j. They denote the ratio of the flow from pool j to pool j− to the total flow
entering pool j for scenario h, and the ratio of the flow from pool j to product terminal
k to the total flow entering pool j for scenario h, respectively. Then, each individual
component flow of an outlet flow to another pool can be represented as Eq. (5) by
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definition, and each individual component flow of an outlet flow to a pool as Eq. (6),
where parameter Ui,w,h denotes the fraction of component w in the flow from source
i for scenario h, Ω SP

j is an index set containing the indices of the sources from which
an inlet flow to pool j can come, Ω PP+

j is an index set containing the indices of the
pools from which an inlet flow to pool j can come, Ω PP-

j is an index set containing
the indices of the pools where an outlet flow from pool j can go to, and Ω PT

j is an
index set containing the indices of the product terminals where an outlet flow from
pool j can go to. According to their definition, the split fraction variables for pool
j should be nonnegative and their sum should equal unity because of mass balance
at pool j, and these relationship are described by Eq. (7). Eqs. (8) and (9) enforce
the relevant limit on the flow (or the sum of its individual component flows) in a
trunkline connecting pool j and another pool or a product terminal, if the trunkline is
to be developed; otherwise, they force the relevant flow to be zero. Eq. (10) enforces
the non-negativity of each the individual component flows related to pool j . Eq.
(11) represents topological restrictions, i.e., a trunkline connecting to a pool can be
developed only when that pool is to be developed, where the binary decision variable
yP

j determines whether pool j is to be developed or not, yPP
j, j− determines whether the

trunkline between pool j and a downstream pool j− is to be developed or not, and
yPT

j,k determines whether the trunkline between pool j and product terminal k is to be
developed or not.

Submodel for the product terminals - The variables related to the product ter-
minals are subject to the following inequalities:

yT
kDLB

k ≤ ∑
j∈Π PT

k

∑
w∈{1,...,l}

f PT
j,k,w,h + ∑

i∈Π ST
k

f ST
i,k,h ≤ yT

kDUB
k,h, (12)

 ∑
j∈Π PT

k

∑
w∈{1,...,l}

f PT
j,k,w,h + ∑

i∈Π ST
k

f ST
i,k,h

V UB
k,w ≥

∑
j∈Π PT

k

f PT
j,k,w,h + ∑

i∈Π ST
k

f ST
i,k,hUi,w,h

≥

 ∑
j∈Π PT

k

∑
w∈{1,...,l}

f PT
j,k,w,h + ∑

i∈Π ST
k

f ST
i,k,h

V LB
k,w ,

(13)

yT
k ≥ yST

i,k, yT
k ≥ yPT

j,k, yT
k ∈ {0,1}, (14)

∀k ∈ {1, ...,m}, ∀w ∈ {1, ..., l}, ∀h ∈ {1, ...,s},

where the binary variable yT
k determines whether product terminal k is to be devel-

oped. Eq. (12) means that if product terminal k is to be developed (i.e., yT
k = 1), the

total flow (i.e., the the sum of all individual component flows) coming into a product
terminal k for scenario h is subject to lower and upper bounds, which are related to
the minimum supply required by contract and the maximum possible demand from
the market or plant capacity for the scenario, respectively; otherwise, the relevant
individual component flows are all zero. Π PT

k is an index set containing the indices
of the pools where an inlet flow to product terminal k can come from, and Π ST

k is an
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index set containing the indices of the sources where an inlet flow to product terminal
k can come from. The gas streams coming out of product terminal k are almost al-
ways subject to quality requirements imposed by contracts, technological limitations
or laws, which are usually ranges for the percentages of specific components allowed
in the product. Thefore, Eq. (13) enforces the quality requirements for scenario h,
where V

LB

k,w,h and V
UB

k,w,h are the lower and upper bounds, respectively, on the fraction
of component w in the final product at product terminal k for scenario h. Eq. (14)
enforces topology restrictions, i.e., a trunkline connecting to a product terminal can
be developed only when the product terminal is to be developed.

Objective function - There are several economic measures for the profitability of
developing the natural gas production system, such as annualized profit, net present
value (NPV), and internal rate of return. Here the expect NPV over the scenarios is
adopted. Accordingly, the objective of the optimization is:

max −C(Cap) +

(
∑

t∈{1,...,L}

1
(1+a)t

)(
∑

h∈{1,...,b}
phC(OC)

h

)
, (15)

where a is the annual discount rate, L is the lifespan of the system, t denotes the time
(in years) after the development of the system. C(Cap) denotes the total capital cost and

C(Cap) = ∑
i∈{1,...,n}

CS,(Cap)
i yS

i + ∑
j∈{1,...,r}

CP,(Cap)
j yP

j + ∑
k∈{1,...,m}

CT,(Cap)
k yT

k

+ ∑
i∈{1,...,n}

∑
j∈Θ SP

i

CSP,(Cap)
i, j ySP

i, j + ∑
i∈{1,...,n}

∑
k∈Θ ST

i

CST,(Cap)
i,k yST

i,k

+ ∑
j∈{1,...,r}

∑
j−∈Ω PP-

j

CPP,(Cap)
j, j− yPP

j, j− + ∑
j∈{1,...,r}

∑
k∈Ω PT

j

CPT,(Cap)
j,k yPT

j,k ,

(16)

where CS,(Cap)
i , CP,(Cap)

j , CT,(Cap)
k are the investment costs of source i, pool j and product

terminal k, respectively, and CSP,(Cap)
i, j , CST,(Cap)

i,k , CPP,(Cap)
j, j− , CPT,(Cap)

j,k are the investment
costs of the trunklines connecting different units in the network. Eq. (16) implies
that all the capital investment are incurred at the same time. If it is not the case, the
time value of the investment cost needs to be considered in the evaluation of the net
present value. C(OC)

h denotes the annual net income from operating the production
system, which depends on the scenario h with probability ph, and

C(OC)
h = ∑

i∈{1,...,n}
−CS,(OC)

i

 ∑
j∈Θ SP

i

f SP
i, j,h + ∑

k∈Θ ST
i

f ST
i,k,h


+ ∑

k∈{1,...,m}
CT,(OC)

k,h

 ∑
j∈Π PT

k

∑
w∈{1,...,l}

f PT
j,k,w,h + ∑

i∈Π ST
k

f ST
i,k,h

 ,

(17)

where CS,(OC)
i denotes the annual cost related to the operation of source i per unit of

gas produced, CT,(OC)
k,h denotes the annual revenue related to the operation of product

terminal k in scenario h per unit of gas produced. Notice that the costs incurred by
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Table 2 Additional Symbols for Consideration of Pressure

Symbol Type Description
P Variable Pressure at a pool without compression or at a pool after compression
Pb Variable Bottom hole pressure
Pc Variable Pressure at a pool containing compressors (before compression)
Pt Variable Flowing tubing head pressure
W Variable Compression power
α Parameter Coefficient in well performance model
β Parameter Coefficient in well performance model
θ Parameter Coefficient in well performance model
κ Parameter Coefficient in trunkline pressure-flow relationship
λ Parameter Exponent in well performance model
ν Parameter Coefficient in compression model
πr Parameter Reservoir pressure in the vicinity of a well
ω Parameter Coefficient in compression model
∆ Set Index set for pools containing compressors

operating the trunklines and pools are not considered here, but they can be easily
incorporated into the objective function as necessary.

As a summary of the above discussion, when maximizing the expected net present
value, the stochastic pooling problem to be solved is

obj: Eq. (15)
s.t. Eqs. (16-17) and (1-14),

where obj stands for the objective of the optimization problem. Note the this formu-
lation can be enhanced with extra (but redundant) reformulation-linearization con-
straints, for efficient global optimization [61]. These constraints are provided in the
online supplementary material.

2.3 Consideration of Pressure

If the effects of pressure need to be considered for planning natural gas production
infrastructure development, then additional submodels need to be incorporated into
the stochastic pooling model to reflect the relationship between the pressures in the
system and the gas flows and energy consumption. These submodels were originally
developed in [55] [54] for a short-term operational model, and they are tailored here
in the context of the stochastic programming model for infrastructure development.
Table 2 summarizes the additional symbols introduced in these submodels.

Well performance model - Reservoir pressure can vary at different wells even
for the wells in the same field. These wells need to be addressed separately if pressure
needs to be considered, so each of them can be deemed as a individual source in a
generalized pooling system. The reservoir pressure in the vicinity of a well (i.e., a
source) i, πr, is assumed to be constant over the lifespan of the system for simplicity.
And a reservoir pressure model that describes the change of the reservoir pressure
over the lifespan of the system, if available, can be easily incorporated into the prob-
lem. There are two other pressures associated to each producing well i. One is the
bottom hole pressure Pb,i, which is the pressure at the bottom of the well bore. The
other is the flowing tubing head pressure Pt,i, which is the pressure at the well head.
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These pressures are subject to the following equations:

f S
i,h = ∑

j∈Θ SP
i

f SP
i, j,h + ∑

k∈Θ ST
i

f ST
i,k,h, (18)

αi,h f S
i,h +βi,h( f S

i,h)
2 = π2

r,i,h −P2
b,i,h, (19)

θi,h( f S
i,h)

2 = P2
b,i,h −λi,hP2

t,i,h, (20)

Pb,i,h,Pt,i,h ≥ 0, (21)

∀i ∈ {1, ...,n}, ∀h ∈ {1, ...,s}.

Again, the subscript h indexes different scenarios. Eq. (18) relates the total outlet flow
to each outlet stream for well i and scenario h. Eqs. (19) and (20) relate the pressures
and the total outlet flow for well i and scenario h. Eq. (21) enforces non-negativity
for the pressures.

Implicit choke assumption - This assumption on the well head is that the pres-
sure at the common header of a pool must be less than the flowing tubing head pres-
sure of all wells connecting to the pool. In reality, this is achieved by a choke valve at
each wellhead, but an explicit model of the choke valve is not considered here. This
assumption can be modelled using the following inequalities:

Pc, j,h −Pt,i,h ≤ 0, ∀ j ∈ ∆ , i ∈ Ω SP
j , (22)

Pj,h −Pt,i,h ≤ 0, ∀ j ∈ {1, ...,r}\∆ , i ∈ Ω SP
j , (23)

Pc,i,h,Pi,h ≥ 0, (24)

∀h ∈ {1, ...,s}.

Here Eq. (22) is for pools with compression, where the common header is the pressure
before the compression and it is denoted by Pc, j,h for pool j and scenario h. Index set
∆ ⊂ {1, ...,r} contains indices of the pools containing compressors. Eq. (23) is for
pools without compression, where the common header is the pressure at the pool and
it is presented by Pj,h for pool j and scenario h. Eq. (24) enforces non-negativity for
the pressures.

Compression model - It is assumed that the compression equation is given by the
polytropic work of compression. The relationship between the compression power
and the inlet and the outlet pressures of the pool is as follows:

Wj,h = ω j f P
j,h

[(
Pj,h

Pc, j,h

)ν
−1
]
, (25)

f P
j,h = ∑

i∈Ω SP
j

f SP
i, j,h + ∑

w∈{1,...,l}
∑

j+∈Ω PP+
j

f PP
j+, j,w,h, (26)

∀ j ∈ ∆ , ∀h ∈ {1, ...,s},

where Wj,h denotes the compression power required for pool j and scenario h, f P
j,h

denotes the total flow coming through pool j in scenario h, ω j and ν are compression
parameters that can be calculated as explained in [55]. The required compression
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power may be purchased from some energy suppliers or generated by burning gas
produced from the gas production system. When the energy cost is explicitly consid-
ered as part of the operating cost, Eq. (17) becomes,

C(OC)
h = ∑

i∈{1,...,n}
−CS,(OC)

i

 ∑
j∈Θ SP

i

f SP
i, j,h + ∑

k∈Θ ST
i

f ST
i,k,h


+ ∑

k∈{1,...,m}
CT,(OC)

k,h

 ∑
j∈Π PT

k

∑
w∈{1,...,l}

f PT
j,k,w,h + ∑

i∈Π ST
k

f ST
i,k,h

− ∑
j∈∆

CW
j,hWj,h ,

(27)

where CW
j,h denotes the energy cost .

Trunkline pressure-flow relationship - The relationship between pressures at
the units connected by a trunkline and the flow rate in the trunkline is described based
on a standard gas flow equation [55] here. This equation is tailored for the stochastic
programming model as follows:

P2
i,h −P2

c, j,h = κi, j,h

(
f SP
i, j,h

)2
, ∀ j ∈ ∆ , i ∈ Ω SP

j , (28)

P2
i,h −P2

j,h = κi, j,h

(
f SP
i, j,h

)2
, ∀ j ∈ {1, ...,r}\∆ , i ∈ Ω SP

j , (29)

P2
i,h −P2

k,h = κi,k,h
(

f ST
i,k,h
)2

, ∀i ∈ {1, ...,n}, k ∈Θ ST
i , (30)

P2
j+,h −P2

c, j,h = κ j+, j,h

(
∑

w∈{1,...,l}
f PP

j+, j,w,h

)2

, ∀ j ∈ ∆ , j+ ∈ Ω PP+
j , (31)

P2
j+,h −P2

j,h = κ j+, j,h

(
∑

w∈{1,...,l}
f PP

j+, j,w,h

)2

, ∀ j ∈ {1, ...,r}\∆ , j+ ∈ Ω PP+
j , (32)

P2
j,h −P2

k,h = κ j,k,h

(
∑

w∈{1,...,l}
f PT

j,k,w,h

)2

, ∀ j ∈ {1, ...,r}, k ∈ Ω PT
j . (33)

Eq. (28) is for any trunkline connecting a source and a pool with compression, and
the pool pressure used is the one before the compression, while Eq. 28 is for any
trunkline connecting a source and a pool without compression. Eq. (30) is for any
trunkline connecting a source and a product terminal. Eq. (31) or (32) is for any
trunkline connecting a pool to a pool with or without compression. Eq.(33) is for any
trunkline connecting a pool and a product terminal.

As a summary, with the consideration of pressure, the stochastic programming
problem for natural gas production infrastructure development is:

obj: Eq. (15)
s.t. Eqs. (1-14), (16) and (18-33).
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3 Decomposition-Based Global Optimization

This section describes the NGBD method, which can solve the proposed stochastic
programming models to global optimality via solving a sequence of subproblems
whose sizes are independent of the number of scenarios. The discussion is based on
a more general MINLP formulation as follows:

min
x1,...,xs,y

s

∑
h=1

wh
(
cT

h y+ fh(xh)
)

s.t. gh(xh)+Bhy ≤ 0, ∀h ∈ {1, ...,s},
xh ∈ Xh, ∀h ∈ {1, ...,s},
y ∈ Y,

(P)

where Xh = {xh ∈ Πh ⊂Rnx : ph(xh)≤ 0}, Y = {y ∈ {0,1}ny : Ay ≤ d}, Πh is convex,
and functions fh : Πh →R, gh : Πh →Rm and ph : Πh →Rmp are continuous. Assume
at least one function in Problem (P) is nonconvex. In the stochastic pooling problem,
the nonconvex functions are the bilinear functions. The consideration of pressure in
the model results in additional quadratic equations and power functions that also ren-
der nonconvexity. The binary variables y represent design decisions, such as whether
or not to build a platform or a trunkline. The continuous variables xh represent the
operational decisions, such as gas flow rates and pressures, for each scenario h.

3.1 Decomposition strategy in NGBD

The reformulation and decomposition of Problem (P) in NGBD is described here.
First, Problem (P) is relaxed via convex relaxation of the nonconvex functions into
the following lower bounding problem:

min
x1,...,xs,
e1,...,es,y

s

∑
h=1

wh
(
cT

h y+u f ,h(xh,eh)
)

s.t. ug,h(xh,eh)+Bhy ≤ 0, ∀h ∈ {1, ...,s},
(xh,eh) ∈ Dh, ∀h ∈ {1, ...,s},
y ∈ Y,

(LBP)

where Dh = {(xh,eh) ∈ Πh ×Θh : up,h(xh,eh) ≤ 0,ue,h(xh,eh) ≤ 0}, Θh is convex,
and functions u f ,h : Πh ×Θh → R, ug,h : Πh ×Θh → Rm, up,h : Πh ×Θh → Rmp ,
and ue,h : Πh ×Θh → Rme are convex on Πh ×Θh. So Problem (LBP) is a con-
vex MINLP or a MILP. This problem involves auxiliary variables eh and constraints
ue,h(xh,eh) ≤ 0 that may be required to construct smooth relaxations. Several convex
relaxation techniques are available to generate Problem (LBP), e.g., McCormick re-
laxation [44] and outer linearization [61] for factorable nonconvex functions, which
usually introduce additional variables and constraints for differentiable relaxations,
and αBB for twice-differentiable nonconvex functions [2], which does not require
additional variables and constraints. Readers can refer to [19] for more discussions
on the convex relaxation techniques.
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If Problem (LBP) is assumed to satisfy a constraint qualification (which implies
strong duality) for any fixed y ∈Y for which Problem (LBP) is feasible, then it can be
equivalently transformed into a master problem via the principles of projection and
dualization [20] [41]. The number of variables in the master problem is independent
of the number of scenarios, but it contains an infinite number of constraints and is
usually difficult to solve directly. Instead, it is solved via solving a sequence of Pri-
mal Bounding Problems (PBP), Feasibility Problems (FP) and Relaxed Master
Problems (RMP), which are much easier to solve. The primal bounding problem
is constructed at each iteration k by restricting the binary variables to specific val-
ues, say y = y(k), in (LBP), whose solution yields a valid upper bound for the lower
bounding problem (and hence the master problem). Furthermore, it can be naturally
decomposed into s subproblems of the following form:

ob jPBPh(y
(k)) =min

xh,eh
wh

(
cT

h y(k) +u f ,h(xh,eh)
)

s.t. ug,h(xh,eh)+Bhy(k) ≤ 0,

(xh,eh) ∈ Dh,

(PBPk
h)

where ob jPBPh(y
(k)) denotes the optimal objective value of Problem (PBPk

h), h =
1, ...,s. Obviously, ∑s

h=1 ob jPBPh(y
(k)) = ob jPBP(y(k)) where ob jPBP(y(k)) is the op-

timal objective value of the primal bounding problem for y = y(k). When the primal
bounding problem is infeasible for y = y(k), a corresponding feasibility problem is
solved, which can be also decomposed into s subproblems of the following form:

ob jFPh(y
(k)) = min

xh,eh,zh
wh||zh||

s.t. ug,h(xh,eh)+Bhy(k) ≤ zh,

(xh,eh) ∈ Dh, zh ∈ Zh,

(FPk
h)

where ob jFPh(y
(k)) denotes the optimal objective value of Problem (FPk

h), h = 1, ...,s.
Obviously, ∑s

h=1 ob jFPh(y
(k))= ob jFP(y(k)) where ob jFP(y(k)) is the optimal objective

value of the feasibility problem. The relaxed master problem is constructed at each
iteration k by relaxing the master problem with a finite number of constraints that
are derived according to the solution information of all the previously solved primal
bounding and feasibility problems, as follows:

min
η ,y

η

s.t. η ≥ ob jPBP(y( j))+

(
s

∑
h=1

(
whcT

h +
(

λ ( j)
h

)T
Bh

))(
y− y( j)

)
, ∀ j ∈ T k,

0 ≥ ob jFP(y(i))+

(
s

∑
h=1

(
µ(i)

h

)T
Bh

)(
y− y(i)

)
, ∀i ∈ Sk,

∑
r∈Rt

1

yr − ∑
r∈Rt

0

yr ≤ |Rt
1|−1, ∀t ∈ T k ∪Sk,

y ∈ Y, η ∈ R,

(RMPk)
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where the index sets

T k = { j ∈ {1, ...,k} : Problem (LBP) is feasible for y = y( j)},

Sk = {i ∈ {1, ...,k} : Problem (LBP) is infeasible for y = y(i)},

Rt
1 = {r ∈ {1, · · · ,ny} : y(t)

r = 1}, Rt
0 = {r ∈ {1, · · · ,ny} : y(t)

r = 0}.

λ ( j)
h are the Lagrange multipliers for Problem (PBP j

h), which form an optimality cut

for iteration j (∀ j ∈ T k). µ(i)
h are the Lagrange multipliers for Problem (FPi

h), which
form a feasibility cut for iteration i (∀i ∈ Sk). The last group of constraints represent a
set of canonical integer cuts that prevent the previously examined integer realizations
from becoming a solution [5]. The solution of the relaxed master problem yields a
valid lower bound for the master problem (and therefore Problem (P)) augmented
with the integer cuts. Notice that the relaxed master problem is a MILP whose size
is determined by the current iteration number but is independent of the number of
scenarios. In case T k = /0, the relaxed master problem is unbounded, so the following
feasibility version of it is solved to make the algorithm proceed:

min
y

ny

∑
i=1

yi

s.t. 0 ≥ ob jFP(y(i))+

(
s

∑
h=1

(
µ(i)

h

)T
Bh

)(
y− y(i)

)
, ∀i ∈ Sk,

∑
r∈Rt

1

yr − ∑
r∈Rt

0

yr ≤ |Rt
1|−1, ∀t ∈ T k ∪Sk,

y ∈ Y, η ∈ R.

(FRMPk)

On the other hand, a restriction of Problem (P), which is called the Primal Prob-
lem (PP), is constructed at iteration l by restricting y = y(l) in Problem (P), whose
optimal objective value is a valid upper bound for Problem Problem (P). The primal
problem can be further decomposed into s subproblems of the following form:

ob jPPh(y
(l)) =min

xh
wh

(
cT

h y(l) + fh(xh)
)

s.t. gh(xh)+Bhy(l) ≤ 0,

xh ∈ Xh,

(PPl
h)

where ob jPPh(y
(l)) denotes the optimal objective value of Problem (PPl

h), h = 1, ...,s.
Obviously, ∑s

h=1 ob jPPh(y
(l)) = ob jPP(y(l)) where ob jPP(y(l)) is the optimal objective

value of the primal problem. The nonconvex nonlinear programming (NLP) prob-
lem (PPl

h) can be solved to ε-optimality in finite time by state-of-the-art branch-and-
bound global optimization solvers, such as BARON [62], and the solution can be
significantly accelerated by adding an additional cut derived from the solution of the
previously solved subproblems [41].
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Table 3 The NGBD Algorithm

Initialize:

1. Iteration counters k = 0, l = 1, and the index sets T 0 = /0 , S0 = /0 , U0 = /0.
2. Upper bound on the problem UBD = +∞, upper bound on the lower bounding problem UBDPB =

+∞, lower bound on the lower bounding problem LBD = −∞.
3. Set tolerances εh and ε such that ∑s

h=1 εh ≤ ε .
4. Integer realization y(1) is given.

repeat
if k = 0 or (Problem (RMPk) is feasible and LBD < UBDPB and LBD < UBD− ε) then

repeat
Set k = k +1
1. Solve the decomposed primal bounding subproblem (PBPk

h) for each scenario h = 1, ...,s

sequentially. If Problem (PBPk
h) is feasible and has duality multipliers λ (k)

h for all the
scenarios, add an optimality cut to the relaxed master problem (RMPk) according to the
multipliers λ (k)

1 , ...,λ (k)
s , set T k = T k−1 ∪ {k}. If ob jPBP(y(k)) = ∑s

h=1 ob jPBPh (y
(k)) <

UBDPB, update UBDPB = ob jPBP(y(k)), y∗ = y(k), k∗ = k.
2. If Problem (PBPk

h) is infeasible for scenario ĥ, stop solving it for scenarios ĥ +1, ...,s and

set Sk = Sk−1∪{k}. Then, set µ(k)
h = 0 for h = 1, ..., ĥ−1, and solve the decomposed feasi-

bility subproblem (FPk
h) for h = ĥ, ...,s and obtain the corresponding Lagrange multipliers

µ(k)
h . Add a feasibility cut to Problem (RMPk) according to µ(k)

1 , ...,µ(k)
s .

3. If T k = /0, solve the feasibility relaxed master problem (FRMPk); otherwise, solve Problem
(RMPk). In the latter case, set LBD to the optimal objective value of Problem (RMPk) if
Problem (RMPk) is feasible. In both cases, set y(k+1) to the y value at the solution of either
problem.

until LBD ≥UBDPB or (Problem (RMPk) or Problem (FRMPk) is infeasible).
end if
if UBDPB < UBD− ε then

1. Solve the decomposed primal subproblem (PP∗
h) (i.e., for y = y∗) to εh-optimality for each

scenario h = 1, ...,s sequentially. Set U l = U l−1 ∪{k∗}. If Problem (PP∗
h) has optimum x∗h for

all the scenarios and ob jPP(y∗) = ∑s
h=1 ob jPPh (y

∗) <UBD, update UBD = ob jPP(y∗) and set
y∗p = y∗, x∗p,h = x∗h for h = 1, ...,s.

2. If T k \U l = /0, set UBDPB = +∞.
3. If T k \U l ̸= /0, pick i ∈ T k \U l such that ob jPBP(y(i)) = min j∈T k\U l {ob jPBP(y( j))}. Update

UBDPB = ob jPBP(y(i)), y∗ = y(i), k∗ = i. Set l = l +1.
end if

until UBDPB≥UBD−ε and (Problem (RMPk) or Problem (FRMPk) is infeasible or LBD≥UBD−ε).
An ε-optimal solution of Problem (P) is given by (y∗p,x

∗
p,1, ...,x

∗
p,s) or Problem (P) is infeasible.

3.2 NGBD Algorithm

The pseudocode of the NGBD algorithm is given in Table 3 and its finite convergence
is stated in the following Theorem 1.

Theorem 1 If all the subproblems can be solved to ε-optimality in a finite number
of steps, then the NGBD algorithm terminates in a finite number of steps with an
ε-optimal solution of Problem (P) or an indication that Problem (P) is infeasible.

Proof Detailed proof can be found in [41]
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ture and parameters.

(b)System design with Formulation 1.

(c) System design with Formulation 2.

(d)System design with Formulation 3.
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Fig. 2 SGPS Problem 1 and the different design results.

4 Case Studies

4.1 SGPS Problem 1

4.1.1 Problem Description

This case study is inspired by the Sarawak Gas Production System (SGPS) [55]. The
supper structure of the system is given in Figure 2(a). The units and the connecting
trunklines with solid lines in the figure represent the existing part of the system,
which has eight gas fields (D35, BY, SC, E11, F6, F23SW, F23 and BN) as sources,
four platforms (BYP, E11P, F23P and E11R-A) and one plant slug-catcher (SC-1)
as pools, and one LNG plant (LNG1) as product terminal. Due to expansion of the
market, more gas fields, platforms, trunklines need to be developed to feed gas to two
potential LNG plants. The potential units and the connecting trunklines of the new
part of the system are shown in dashed lines in the figure, including seven gas fields
(B11, HL, SE, M3, M4, M1, JN) as sources, five platforms (B11P, M3P, M1P, E11R-
B, E11R-C), and one trunkline connection (T) and two plant slug-catchers (SC-2,
SC-3) as pools, and two LNG plants (LNG2, LNG3) as product terminals. The gas
platform B11P is designated to locate at the gas field B11, which should at least serve
gas from B11. This means B11 must be developed if B11P is developed and vice
versa. The same relationship exists between M3 and M3P, M1 and M1P, SC-2 and
LNG2 and SC-3 and LNG3 (where SC-2 or SC-3 is part of plant LNG2 or LNG3) as
well. Such relationships are enforced by additional topology constraints to the model.
The goal of optimization is to maximize the expected NPV of the system over the next
25 years. Other information on the optimization model, including how the model is
implemented and solved, is provided in the online supplementary material.
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It is assumed that any desired flow rate in a particular trunkline (within the trun-
kline capacity) can be achieved by adding a compressor at an upstream platform, so
it suffices to use the stochastic pooling model to plan the infrastructure development.
The following three formulations are compared in the case study:

Formulation 1 - This is a deterministic formulation that considers only the ex-
pected values of uncertain parameters, and it does not have any quality constraints.

Formulation 2 - This is a deterministic formulation that considers only the ex-
pected values of uncertain parameters, but it has quality constraints on the final prod-
ucts at the product terminals.

Formulation 3 - The stochastic pooling problem formulation.

4.1.2 Results and Discussion

First, the design results from Formulations 1, 2 and 3 are compared for the situa-
tion where the uncertain parameter is the CO2 mole percentage of gas from M1. The
uncertain parameter obeys a normal distribution with a mean of 3.34 mol% and a
standard deviation of 0.6 mol%. Five scenarios of the uncertain M1 quality are se-
lected according to the sampling rule described the online supplementary material.
Values of non-economic parameters for this problem are shown in Figure 2 (a).

Figs. 2 (b)-(d) show the system designs using the three formulations. Since For-
mulation 1 does not consider the quality constraints at the LNG plants, the new part
of the system designed with this formulation contains gas fields M1 and JN for the
lowest investment cost. However, this design is infeasible for some scenarios consid-
ering the quality constraints at the LNG plants, because the quality of gas field JN
severely violates the quality upper bounds, and the quality of gas field M1 violates
the bounds as well in some scenarios. Formulation 2 observes the quality constraints,
so the new part of the system designed by this formulation has gas fields B11, M3
and M1 instead. The blending of the gases from these fields can satisfy the quality
constraints at the LNG plants in the deterministic case. The drawback of this design
is that the quality of M1 may be so high that M1 cannot supply as much gas for
blending to final products as anticipated by the deterministic formulation; in this sit-
uation, gas field M1 will be of little use and the investment in it is not profitable.
When considering the quality uncertainty explicitly in Formulation 3, the designed
system is different from the one designed with Formulation 2, where gas fields HL,
SE, M4 are developed instead of B11. Although these gas fields are more expensive
to develop than B11, they can serve gas flows with much better qualities, so M1 can
still supply a substantial amount of gas for blending final products when its quality is
much worse than the mean quality value.

The advantage of the stochastic pooling problem formulations over the two de-
terministic formulations can be further recognized with Table 4, which summarizes
the design and operation results of SGPS Problem 1 with different formulations. For
each formulation, the total capital cost is calculated according to each designed sys-
tem and shown in the table; the net present value of each scenario is calculated and
the average over the five scenarios is shown in the table. Since the operating cost
is not included in all the formulations, all the net present values shown in Table 4
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Table 4 Design and Operation Results With Different Formulations for SGPS Problem 1

Average Net Satisfaction of Product Qualitya Bound at Capital
Present Value Each LNG Plant for the Five Scenarios Cost

(Billion $) LNG 1 LNG 2 LNG 3 (Billion $)
Formulation 1 33.1b Y/Y/Y/Y/Nc Y/Y/N/N/N Y/N/N/N/N 20.8
Formulation 2 29.0 Y/Y/Y/Y/Y Y/Y/Y/Y/Y Y/Y/Y/Y/Y 21.1
Formulation 3 32.2 Y/Y/Y/Y/Y Y/Y/Y/Y/Y Y/Y/Y/Y/Y 21.6

aProduct quality means the percentage of CO2 in the product.
bThis net present value cannot be achieved in reality because of the violation of the quality bound.
c’Y’ or ’N’ indicates whether the quality upper bound is satisfied or not for each of the five scenarios.

Table 5 Computational Results for SGPS Problem 1 With the Stochastic Pooling Model (Time Unit:
Second)

Number of Scenarios 1 16 81 256 625
Number of Variables 38/59a 38/929 38/4699 38/14849 38/36251
Time With BARON 11.3 1.3 766.5 –b – –
Time With NGBD c 3.4 14.8 60.9 320.5 617.4
aNumber of binary variables/number of continuous variables.
bNo solution is returned after 100,000 seconds.
cThis is the total time for solving all the subproblems in the local solvers.

will be higher than the real ones. Table 4 also shows whether the product quality up-
per bound is satisfied at the LNG plants for each scenario. It can be found that with
Formulation 1, the product quality at either of the two new LNG plants violates the
bound for four of the five scenarios, so the net present value calculated by this formu-
lation is meaningless for the real problem. Formulations 2 and 3 observe the product
quality constraints, but Formulation 3 achieves better average net present values than
Formulation 2 (with a large improvement of $3.2 billion).

Second, the computational efficiencies of BARON and the NGBD algorithm are
compared via solving the stochastic pooling problem (Formulation 3) with differ-
ent numbers of scenarios, for SGPS Problem 1 in the situation where four indepen-
dent uncertain parameters are present. These uncertain parameters are the qualities
of gas fields M1, JN and the maximum demands at LNG plants 2 and 3, which
obey normal distributions with means 5.04 mol%, 2.63 mol%, 1736 Mmol/day and
2275 Mmol/day, and standard deviations 1 mol%, 0.4 mol%, 144 Mmol/day and 239
Mmol/day, respectively. 1, 2, 3, 4 and 5 realizations are generated for each uncertain
parameter in the way described before, which lead to problems with 1, 16, 81, 256 and
625 scenarios. These five problems are solved with both BARON and NGBD, and the
total solver times are displayed in Table 5. Although NGBD is slower than BARON
when the number of scenarios is 1 (i.e., a deterministic formulation is solved), it is
much faster when more scenarios are addressed, and the solver time with NGBD in-
creases moderately with the number of scenarios. On the other hand, BARON cannot
obtain a solution for the problem within 100,000 seconds when 3 or more realiza-
tions are addressed for each uncertain parameters (i.e., 81 or more scenarios for the
problem).
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Fig. 3 SGPS Problem 2 and the different design results.

4.2 SGPS Problem 2

4.2.1 Problem Description

This case study considers the situation where the effects of pressure need to be con-
sidered, and the stochastic programming model developed in Section 2.3 applies. A
subsystem of the SGPS is considered for this study,which includes gas fields SE, M3,
M4, gas platform M3P, (intermediate) gas terminal T, and the relevant trunklines.
Due to the consideration of pressure, the gas wells in the gas fields are considered
explicitly. Fig. 3 (a) shows the superstructure of the subsystem, where the solid lines
indicate the part of the subsystem that has to be developed and dashed lines indi-
cate the part of the subsystem that may be developed for the system. Gas fields M4,
M3, and SE have 2, 10 and 2 gas wells, respectively, and gas platform M3P has a
compressor installed. Fig. 3 (a) also shows some economic information for the sub-
system, where other costs associated with the subsystem may be understood as the
investments for the facilities indispensable for the raw gas to be delivered to end cus-
tomers (e.g., transmission and processing facilities). The goal of the optimization is
again to maximize the expected NPV over the next 25 years. Other information on the
optimization model, including how the model is implemented and solved, is provided
in the online supplementary material.

Two formulations are compared for SGPS Problem 2. One is the deterministic
formulation that only considers the expected value realizations of the uncertain pa-
rameters, and the other is the stochastic programming formulation developed in Sec-
tion 2.3, with the scenarios generated via the sampling rule described in the online
supplementary material.
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Table 6 Computational Results for SGPS Problem 2 With the Stochastic Programming Model (Time Unit:
Second)

Number of Scenarios 1 27 125 343 729 1331

Number of variables a 20/110 20/2970 20/13750 20/37730 20/80190 20/146410

Time with BARON 11.3 1.1 447.0 31841.1 -b - -

Time with NGBD c 0.3 30.6 167.6 431.4 951.9 1606.5
aNumber of binary variables/Number of continuous variables.
bNo solution returned within 100,000 seconds.
cThis is the total time for solving all the subproblems in the local solvers.

4.2.2 Results and Discussion

Figs. 3 (b) and (c) show the design results using the deterministic model and the
stochastic model, respectively. It is clear that more gas wells are to be developed
with the stochastic model, which are used to hedge the risks that may come from
the uncertain factors. As a result, the subsystem designed with the stochastic model
achieves better expected net present value (with a improvement of more than 200
Million dollars).

Table 6 compares the computational efficiencies of BARON and NGBD, for
SGPS Problem 2 with different numbers of scenarios. 1, 3, 5, 7, 9, 11 realizations
are generated for each of the three uncertain parameters, which leads to 1, 27, 125,
343, 729, 1331 scenarios in the stochastic programming model. It can be found that
even for the case with 1 scenario (i.e., essentially a deterministic formulation is used),
NGBD is much faster than BARON. With more scenarios addressed, BARON cannot
return a global solution within 10,000 seconds, while NGBD can solve the problems
in reasonable time. In addition, the solution time with NGBD increases moderately
with the number of scenarios. Notice that when 1331 scenarios are addressed, the
problem contains nearly 150,000 variables, but NGBD can obtain a global optimum
of this nonconvex MINLP within only 80 minutes.

5 Concluding Remarks

Two stochastic programming models are developed for natural gas production in-
frastructure development under uncertainty. One is the stochastic pooling model that
treats the production system as a generalized pooling system in order to track the
qualities of the gas streams and observe their bounds. The other enhances the stochas-
tic pooling model by including additional submodels to describe the effects of pres-
sure on the system. Due to their explicit consideration of uncertainties, both models
show advantages over deterministic optimization models in the case studies.

On the other hand, each stochastic programming model results in a nonconvex
MINLP whose sizes depend on the number of scenarios addressed, which is very
difficult to solve especially when the number of scenarios is large. The proposed
NGBD method, however, can solve this problem to global optimality via solving
a finite number of subproblems whose sizes are much smaller and independent of
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the number of scenarios. As a result, NGBD is advantageous over general-purpose
branch-and-bound type of global optimization methods, such as BARON as shown
by the case study results. In addition, the efficiency of NGBD can be further improved
by parallel computation, as most of the subproblems solved in a NGBD iteration do
not rely on the solution results of other subproblems.

As the scenarios in the stochastic models are generated via a naive approach in
this research, advanced scenario generation techniques may be introduced to favor
a better model for stochastic programming, such as scenario decomposition [27],
scenario reduction [26], and sample average approximation [37].

While the second-stage variables in Problem (P) are continuous, the proposed
decomposition strategy can be readily extended to solve problems involving inte-
ger second-stage variables. A variant of NGBD has been developed and successfully
applied to solve some capacity planning problems that include integer second-stage
variables [59] [40].

The proposed two-stage stochastic programming model assumes that the opera-
tion of the production system starts after the infrastructure has been completely de-
veloped. If the infrastructure is developed in several stages and parts of the system are
to be operated before the last stage, the problem needs to be modeled as a multi-stage
stochastic programming problem (such as in [21]). Generally speaking, the current
NGBD method cannot be used to solve the resulting multi-stage problem directly,
and it remains an interesting topic for future work.
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